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Abstract

In this paper we study a Jacobi block matrix and the behavior of the limit of its entries
when a perturbation of its spectral matrix measure by the addition of a Dirac delta matrix
measure is introduced.
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1. Introduction

In the study of analytic properties of polynomials orthogonal with respect to a
real measure supported on the real line, the existence of mass points plays an impor-
tant role. In [12] the asymptotic behavior of a sequence of polynomials orthogonal
with respect to a perturbation dαt of a measure dα of the Nevai class, i.e., a mea-
sure such that the coefficient of the three-term recurrence relation which such a
family satisfies converge, adding a mass concentrated at a point t is analyzed. In
fact, this asymptotic behavior depends on the location of the mass point with respect
to the support of the initial measure α. The explicit expression for the new coeffi
cients of the three-term recurrence relation can be given. More recently, a relation
for the corresponding Jacobi matrices has been found. Furthermore, if we factorize
a semi-infinit tridiagonal matrix
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L =



b1 1
a1 b2 1

a2 b3 1
. . . . . . . . .




with two factors A and B in the form

A =



α1 1
0 α2 1

0 α3 1
. . . . . . . . .


 , B =



1 0
β1 1 0

β2 1 0
. . . . . . . . .


 ,

it is easy to show that the factorization is not unique and depends on a free parameter.
If we then form the product in the reversed order

L̃ = BA,

L̃ is a new tridiagonal matrix which is called the Darboux transform of L. In a recent
paper [8] a connection of the Darboux transform of a Jacobi matrix and the presence
of a mass point has been established.

In such a way, we are interested in the study of some analog problems for matrix
measures and the corresponding sequences of matrix orthogonal polynomials. How-
ever, the analysis of asymptotic properties of matrix orthogonal polynomials is very
recent [2,15] and this is one of the reasons for the interest in the extension of the
“scalar” case to the “matrix” case.

Matrix orthogonal polynomials appear in a natural way when one considers fam-
ilies of scalar sequences of polynomials satisfying higher-order recurrence relations
[4] as well as when one analyzes scalar polynomials orthogonal with respect to mea-
sures supported on some kind of algebraic curves [10,11]. The connection between
the discrete Sturm–Liouville operator and the scattering problem using asymptotic
formulas for matrix orthogonal polynomials was stated in [1].

The structure of this paper is as follows. In Section 2 we will introduce ortho-
normal matrix polynomials on the real line and discuss some basic properties which
we will need in the following sections. In Section 3, we deduce a relation between
two truncated Jacobi matrices, when the corresponding matrix measures are related
by the addition of a Dirac delta matrix measure. Section 4 is devoted to findin
an explicit form for the perturbed matrix coefficient in the three-term recurrence
relation and their asymptotic behavior. Finally, in Section 5 we give some examples.

2. Orthogonal matrix polynomials: some basic properties

We consider in the linear space of the polynomials CN×N [t] in the variable t with
coefficient in CN×N a bilinear form

〈P,Q〉dα def=
∫

R

P(x)dα(t)Q∗(x), (2.1)
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where dα is a positive definite matrix measure with infinit support and
∫
dα(x) =

IN . Furthermore, we require that
∫
P(x) dα(x)P ∗(x) is non-singular for every ma-

trix polynomial with non-singular leading coefficient
This bilinear form satisfie

1. 〈P,Q〉dα = 〈Q,P 〉∗dα .
2. 〈xP,Q〉dα = 〈P, xQ〉dα .
3. 〈P,P 〉dα is a non-negative definite matrix. If det P /= 0, it is a positive definite

matrix.
Using the generalized Gram–Schmidt orthonormalization procedure [7] for the

set {IN , xIN , x2IN , . . .} with respect to (2.1) we will obtain a set of orthonormal
matrix polynomials {Pn(x, dα)}n∈N, i.e.,

〈Pn(x, dα), Pm(x, dα)〉dα
=

∫
R

Pn(x, dα)dα(x)P ∗
m(x, dα) = δn,mIN , (2.2)

where IN means the identity matrix in CN×N [1,6].
Notice that the set {UnPn(x, dα)} is also a set of orthonormal matrix polynomials

for every sequence (Un)n∈N of unitary matrices. If we impose the fact that the leading
coefficien is positive definite, then the uniqueness of the sequence of orthonormal
matrix polynomials follows from the uniqueness of the polar decomposition [1,9].

As in the scalar case, an orthonormal matrix polynomial Pn(x, dα) for the matrix
measure dα is orthogonal to every matrix polynomial of degree less than n and the
orthonormal polynomials satisfy a three-term recurrence relation

xPn(x, dα) =Dn+1(dα)Pn+1(x, dα)
+En(dα)Pn(x, dα)+D∗

n(dα)Pn−1(x, dα), n � 0, (2.3)

where P−1 = 0, P0 = ∫
dα = IN , Dn(dα) are the non-singular matrices andEn(dα)

are Hermitian. Furthermore, definin

Kn+1(x, y, dα)
def=

n∑
j=0

P ∗
j (y, dα)Pj (x, dα), (2.4)

we get the Christoffel–Darboux formula [16]

(x − y)Kn+1(x, y, dα)= P ∗
n (y, dα)Dn+1(dα)Pn+1(x, dα)

−P ∗
n+1(y, dα)D∗

n+1(dα)Pn(x, dα). (2.5)

By means of a straightforward computation we get the confluen formula

Kn+1(x, x, dα)= P ∗
n+1(x, dα)′D∗

n+1(dα)Pn(x, dα)
−P ∗

n (x, dα)
′Dn+1(dα)Pn+1(x, dα). (2.6)
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The matrix polynomial Kn(x, y, dα) is called the nth reproducing kernel because of
the following property. For every matrix polynomial �m(x) of degree m � n− 1,
we have

〈�m(x),Kn(x, y, dα)〉dα =
∫

R

�m(x) dα(x)K∗
n(x, y, dα) = �m(y). (2.7)

Definition 2.1. Given two matricesD and E, with EHermitian, a sequence of matrix
polynomials {Pn(x, dα)} satisfying (2.3) belongs to the Nevai matrix classM(D,E)
if

lim
n→∞Dn(dα) = D and lim

n→∞En(dα) = E. (2.8)

We say that a positive definite matrix measure dα belongs to the Nevai matrix class
M(D,E) if there exists a sequence of orthonormal matrix polynomials which be-
longs toM(D,E).

It is shown in [2] that the support of the matrix measure dα (supp(dα) =
supp(dτα) = supp(dα1,1 + dα2,2 + · · · + dαN,N); dτα is the trace measure of dα
[3,13]) when dα belongs to the Nevai matrix classM(D,E) is uniquely determined
by its sequence of orthonormal matrix polynomials, and the ratio asymptotics be-
tween the (n− 1)th and nth orthonormal matrix polynomials with respect to the pos-
itive matrix measure dα in the Nevai matrix class M(D,E) with D non-singular, is
given by

lim
n→∞Pn−1(z, dα)P−1

n (z, dα)D−1
n (dα)

=
∫

dWD,E(t)

z− t

def= FD,E(z), z ∈ C\�, (2.9)

where � is a certain bounded set of real numbers containing supp(dα) and WD,E is
the positive matrix measure such that the matrix polynomials {Rn(t)} satisfying the
three-term matrix recurrence relation

tRn(t) = DRn+1(t)+ ERn(t)+D∗Rn−1(t), n � 0,

are orthonormal with respect to it. Unless otherwise stated, we will denote F(z) =
FD,E(z) for the sake of simplicity in notation.

The asymptotic results obtained by Nevai [12] when some mass points are added
to a measure such that the corresponding Jacobi matrix is a compact perturbation of
the infinit tridiagonal matrix


b a

a b a

a b a

. . . . . . . . .




have been extended recently (see [15]) by the authors to the matrix case.
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Let dα and dβ be two matrix measures and �̂ be the smallest closed interval which
contains the support of dα. We assume that dα and dβ are related by

dβ(u) = dα(u)+Mδ(u− c), (2.10)

where M is a positive definite matrix, δ is the Dirac delta matrix measure supported
in a point c outside �̂ containing the support of dα.

In the following, we consider the sequence of matrix polynomials {Pn(x, dα) =
An(dα)xn + Bn(dα)xn−1+ lower degree terms} which satisfie (2.3) and belongs
to M(D,E) with D non-singular. Let {Pn(x, dβ)} be the sequence of orthonormal
matrix polynomials with respect to the perturbed matrix measure dβ, for which
[An(dβ)A−1

n (dα)]∗ are lower triangular matrices with positive diagonal elements
(see [15]), and

�(c)
def= lim
n→∞

[
An(dβ)A−1

n )(dα)
]∗
. (2.11)

The following theorem has been proved.

Theorem 2.1 [15]. Let {Pn(x, ·)} be a sequence of orthonormal matrix polynomials
in CN×N [t] with respect to the matrix measures dα and dβ, related by (2.10). As-
sume that {Pn(x, dα)} belongs toM(D,E) with D non-singular and {Pn(x, dβ)} is
define as above. Then

1. lim
n→∞

[
An(dβ)An(dα)−1

]∗ [
An(dβ)An(dα)−1

]
= IN + F(c)F′(c)−1F(c),

2. lim
n→∞Pn(x, dβ)P−1

n (x, dα)

= �(c)−1 + 1
c − x

{
�(c)∗ − �(c)−1

} {
F(c)−∗ − F(x)−1

}
for x ∈ R\{�̂ ∪ {c}}.

Notice that the above formulas in the scalar case agree with the Lemma 16 in [12,
p. 132] taking into account that

�(c) = 1
|ϕ(c)| , F(c) = c

ϕ(c)
, ϕ(c)

def= c +
√
c2 − 1.

3. Perturbed Jacobi block matrix and eigenvalue problem

Consider the (2N + 1) banded infinit Hermitian matrix J(·) constructed from
the sequence of matrices Dn(·), En(·) of (2.3) in the following way:
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J(·) =




E0(·) D1(·) 0

D∗
1(·) E1(·) D2(·) . . .

0 D∗
2(·) E2(·) . . .
. . . . . . . . .


 . (3.1)

We call this matrix the N-Jacobi block matrix associated with the matrix polynomials
{Pn(x, ·)}.

Using the recurrence relation (2.3), we can show that the zeros of Pn(x, dα)
i.e., the zeros of detPn(x, dα), are the eigenvalues of the truncated N-Jacobi matrix
Jn(dα) of dimension nN (see [14]), with the same multiplicity (see [5]).

In the following we start by findin an explicit form of the perturbed truncated
N-Jacobi matrix Jn(dβ), when the associated matrix measure is define by (2.10).
To do this, we need the following lemma.

Lemma 3.1. Let dα and dβ be two matrix measures, and M be a positive semi-
definite matrix such that dβ(u) = dα(u)+Mδ(u− c), where c is a real number.
Then

Pn(x, dβ) = Mn[Pn(x, dα)− VnMK
∗
n+1(c, x, dα)], (3.2)

where{
Mn = A−∗

n (dβ)A∗
n(dα),

Vn = Pn(c, dα)(IN +MKn+1(c, c, dα))−1.
(3.3)

Proof. See [15]. �

Proposition 3.1. Let Jn(·) be the truncated N-Jacobi block matrix of dimension
(n+1)N, associated with the sequence of orthonormal matrix polynomials {Pn(x,·)}
with respect to the matrix measures dα and dβ, respectively. Then Jn(dβ) is an
N-rank perturbation of Jn(dα).

Proof. Using Lemma 3.1, (2.4) and (2.7) we have

Pn(x, dβ)= MnPn(x, dα)−
n∑
j=0

{MnVnM}P ∗
j (c, dα)Pj (x, dα)

= M−∗
n Pn(x, dα)−

n−1∑
j=0

{MnVnM}P ∗
j (c, dα)Pj (x, dα).

We denote byWj and V nj two matrices in CN×N define by{
Wj = Aj(dβ)A−1

j (dα),
V nj = MnVnMP

∗
j (c, dα),
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then

Pn(x, dβ) =
n−1∑
j=0

V nj Pj (x, dα)+WnPn(x, dα). (3.4)

In matrix form


P0(x, dβ)
P1(x, dβ)
P2(x, dβ)

...

Pn(x, dβ)


 =




W0 0 · · · · · · 0

V 1
0 W1

. . .
...

V 2
0 V 2

1 W2
. . .

...
...

...
...

. . . 0
V n0 V n1 · · · V nn−1 Wn







P0(x, dα)
P1(x, dα)
P2(x, dα)

...

Pn(x, dα)


 (3.5)

or equivalently,

Pn(x, dβ) = Tn · Pn(x, dα), (3.6)

where Pn(x, dβ),Pn(x, dα) denote the (n+ 1)N dimensional column vectors of
(3.5), andTn denotes the (n+ 1)N × (n+ 1)N dimensional block-triangular matrix
of (3.5).

On the other hand, using the three-term recurrence relation (2.3), we get

xPn(x, dβ) = Jn(dβ)Pn(x, dβ)+



0
...

0
IN


Dn+1(dβ)Pn+1(x, dβ), (3.7)

xPn(x, dα) = Jn(dα)Pn(x, dα)+



0
...

0
IN


Dn+1(dα)Pn+1(x, dα), (3.8)

where

Jn(·) =




E0(·) D1(·) 0 · · · · · · 0

D∗
1(·) E1(·) D2(·) . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . D∗
n−1(.) En−1(.) Dn(·)

0 · · · · · · 0 D∗
n(·) En(·)




is the (n+ 1)N × (n+ 1)N dimensional Hermitian block-tridiagonal matrix with
respect to the matrix measures dβ and dα, respectively.
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Substituting (3.6) into (3.7), we get

xTn.Pn(x, dα)

= Jn(dβ)Tn.Pn(x, dα)+



0
...

0
IN


Dn+1(dβ)Pn+1(x, dβ).

But from (3.4)

0
...

0
IN


Dn+1(dβ)Pn+1(x, dβ)

=




0 · · · 0 0
... · · · ...

...

0 · · · 0 0
Dn+1(dβ)V n+10 · · · Dn+1(dβ)V n+1n Dn+1(dβ)Wn+1




×
(

Pn(x, dα)
Pn+1(x, dα)

)

=




0 · · · 0
... · · · ...

0 · · · 0
Dn+1(dβ)V n+10 · · · Dn+1(dβ)V n+1n


 Pn(x, dα)

+



0
...

0
IN


Dn+1(dβ)Wn+1Pn+1(x, dα).

Then

xTn.Pn(x, dα)

=


Jn(dβ)Tn +




0 · · · 0
... · · · ...

0 · · · 0
Dn+1(dβ)V n+10 · · · Dn+1(dβ)V n+1n





 Pn(x, dα)
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+



0
...

0
IN


Dn+1(dβ)Wn+1Pn+1(x, dα).

Since the square matrix Tn is block-triangular with non-singular blocks Wi (i =
0, . . . , n) on the main (block) diagonal, it follows that Tn is non-singular (det Tn =∏n
k=0 detWi). Furthermore,

T−1
n



0
...

0
IN


 =




0
...

0
W−1
n


 ,

hence

xPn(x, dα)

=


T−1

n Jn(dβ)Tn + T−1
n




0 · · · 0
... · · · ...

0 · · · 0
Dn+1(dβ)V n+10 · · · Dn+1(dβ)V n+1n







×Pn(x, dα)+




0
...

0
W−1
n


Dn+1(dβ)Wn+1Pn+1(x, dα)

= T−1
n


Jn(dβ)+




0 · · · 0
... · · · ...

0 · · · 0
Dn+1(dβ)V n+10 · · · Dn+1(dβ)V n+1n


 T−1

n


 Tn

×Pn(x, dα)+



0
...

0
IN


An(dα)A−1

n+1(dα)Pn+1(x, dα).

Taking into account (3.8), we deduce that
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Jn(dα)

= T−1
n


Jn(dβ)+




0 · · · 0
... · · · ...

0 · · · 0
Dn+1(dβ)V n+10 · · · Dn+1(dβ)V n+1n


 T−1

n


 Tn

= T−1
n


Jn(dβ)+




0 · · · 0
... · · · ...

0 · · · 0
Hn
0 · · · Hn

n





 Tn,

where Hn
i (i = 0, · · · , n) can be generated as follows:

Dn+1(dβ)V n+1r =



Hn
nWn if r = n,

Hn
r Wr +

n∑
i=r+1

Hn
i V

i
r if 0 � r � n− 1.

This means

Hn
n = Dn+1(dβ)V n+1n W−1

n ,

Hn
n−1 =

[
Dn+1(dβ)V n+1n−1 −Hn

n V
n
n−1

]
W−1
n−1,

Hn
n−2 =

[
Dn+1(dβ)V n+1n−2 −Hn

n−1V
n−1
n−2 −Hn

n V
n
n−2

]
W−1
n−2,

...

Hn
0 =

[
Dn+1(dβ)V n+10 −

n∑
i=1

Hn
i V

i
0

]
W−1

0 .

Thus, Jn(dα) is, essentially, an N-rank perturbation of the matrix Jn(dβ). �

4. Asymptotics for the perturbed matrix coefficients

Let dα and dβ be two positive definite matrix measures which are related by

dβ(u) = dα(u)+Mδ(u− c), c ∈ R\�̂, (4.1)

where M is a positive definite matrix. We assume that the matrix polynomial se-
quence {Pn(x, dα)} for the matrix measure dα satisfying (2.3) belongs toM(D,E),
where D is the non-singular matrix.

In this section, we will fin an explicit expression for the matrix parameters of a
Nevai matrix class which contains the perturbed matrix measure dβ.

10



Theorem 4.1. Let dα and dβ be two matrix measures related by (4.1). Assume that

{Pn(x, dα)} ∈ M(D,E),
where D is non-singular. Then there exists {Pn(x, dβ)} such that

{Pn(x, dβ)} ∈ M(D̃, Ẽ),
where

D̃ = �∗(c)D�−∗(c),
Ẽ = �∗(c)E�(c)− c(�∗(c)�(c)− IN) (4.2)

+�∗(c)D∗F(c)D�(c)− �−1(c)D∗F(c)D�−∗(c).

Notice that Ẽ is a Hermitian matrix.

Proof. Let {Pn(x, dα)} be a sequence of orthonormal matrix polynomials with re-
spect to the matrix measure dα, and {Pn(x, dβ)} introduced in Section 2. Then writ-
ing

An−1(dβ)A−1
n (dβ)= (An−1(dβ)A−1

n−1(dα))
×(An−1(dα)A−1

n (dα))(An(dβ)A−1
n (dα))−1, (4.3)

taking into account that from (2.3) and (2.2)

Dn+1(dα)= 〈xPn(x, dα), Pn+1(x, dα)〉dα
=

∫ [
An(dα)xn+1 + · · ·

]
dα(x)P ∗

n+1(x, dα)

= An(dα)A−1
n+1(dα)

∫ [
An+1(dα)xn+1 + · · ·

]
dα(x)P ∗

n+1(x, dα)

= An(dα)A−1
n+1(dα), (4.4)

and using (2.11), we deduce

lim
n→∞Dn(dβ) = �∗(c)D�−∗(c).

Now, using (2.2), (2.3) and (4.1), we have

En(dβ)= 〈xPn(x, dβ), Pn(x, dβ)〉dβ
= 〈xPn(x, dβ), Pn(x, dβ)〉dα + cPn(c, dβ)MP ∗

n (c, dβ). (4.5)

But using (3.2) we have

〈xPn(x, dβ), Pn(x, dβ)〉dα
= 〈MnxPn(x, dα)− MnVnMxKn+1(x, c, dα),

MnPn(x, dα)− MnVnMKn+1(x, c, dα)〉dα
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= Mn〈xPn(x, dα), Pn(x, dα)〉dαM∗
n

−MnVnM〈xKn+1(x, c, dα), Pn(x, dα)〉dαM∗
n (4.6a)

−Mn〈xPn(x, dα),Kn+1(x, c, dα)〉dαMV∗
nM

∗
n

+MnVnM〈xKn+1(x, c, dα),Kn+1(x, c, dα)〉dαMV∗
nM

∗
n. (4.6b)

Then the term given in (4.6a) is equal to

−MnVnM〈xP ∗
n (c, dα)Pn(x, dα)

+xP ∗
n−1(c, dα)Pn−1(x, dα), Pn(x, dα)〉dαM∗

n

= −MnVnM[P ∗
n (c, dα)En(dα)+ P ∗

n−1(c, dα)Dn(dα)]M∗
n

= −MnVnM[cP ∗
n (c, dα)− P ∗

n+1(c, dα)D∗
n+1(dα)]M∗

n.

Using (2.7) and (2.5), we have

〈xKn+1(x, c, dα),Kn+1(x, c, dα)〉dα
= 〈(x − c)Kn+1(x, c, dα),Kn+1(x, c, dα)〉dα

+cKn+1(c, c, dα)
= 〈P ∗

n (c, dα)Dn+1(dα)Pn+1(x, dα)
−P ∗

n+1(c, dα)D∗
n+1(dα)Pn(x, dα),Kn+1(x, c, dα)〉dα

+cKn+1(c, c, dα)
= −P ∗

n+1(c, dα)D∗
n+1(dα)Pn(c, dα)+ cKn+1(c, c, dα).

From the Christoffel–Darboux formula (2.5) when x=y=c, we get that P ∗
n+1(c, dα)

D∗
n+1(dα)Pn(c, dα) is Hermitian, and the term given in (4.6b) is equal to

cMnVnMKn+1(c, c, dα)MV∗
nM

∗
n

−MnVnMP
∗
n (c, dα)Dn+1(dα)Pn+1(c, dα)MV∗

nM
∗
n.

From Lemma 3.1

Pn(c, dβ)= Mn[Pn(c, dα)− VnMKn+1(c, c, dα)]
= MnPn(c, dα)

×
[
IN − (IN +MKn+1(c, c, dα))−1MKn+1(c, c, dα)

]
= MnPn(c, dα)(IN +MKn+1(c, c, dα))−1

= MnVn.

Then (4.5) becomes

En(dβ)= MnEn(dα)M∗
n

−MnVnM
[
cP ∗

n (c, dα)− P ∗
n+1(c, dα)D∗

n+1(dα)
]
M∗

n
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−Mn

[
cPn(c, dα)−Dn+1(dα)Pn+1(c, dα)

]
M∗V∗

nM
∗
n

+cMnVnMKn+1(c, c, dα)MV∗
nM

∗
n

−MnVnMP
∗
n (c, dα)Dn+1(dα)Pn+1(c, dα)MV∗

nM
∗
n

+cMnVnMV∗
nM

∗
n

= Mn

{
En(dα)− VnMP

∗
n (c, dα)Dn+1(dα)Pn+1(c, dα) MV∗

n

+VnMP
∗
n+1(c, dα)D∗

n+1(dα)
+Dn+1(dα)Pn+1(c, dα)MV∗

n

}
M∗

n

−cMn

{
VnMP

∗
n (c, dα)+ Pn(c, dα)MV∗

n (4.7a)
−VnMKn+1(c, c, dα)MV∗

n − VnMV∗
n

}
M∗
n . (4.7b)

Notice that from (3.2) and (3.3)

IN − Pn(c, dα)M(IN +Kn+1(c, c, dα)M)−1P ∗
n (c, dα)

= 〈Pn(x, dα),M−1
n Pn(x, dβ)〉dα

= 〈Pn(x, dα), Pn(x, dβ)〉dαM−∗
n

= 〈Pn(x, dα),An(dβ)An(dα)−1Pn(x, dα)〉dαM−∗
n

= 〈Pn(x, dα), Pn(x, dα)〉dαM−1
n M−∗

n

= (M∗
n + Mn)

−1. (4.8)

Then using (4.8), the terms given in (4.7a) and (4.7b) become

VnMP
∗
n (c, dα)+ Pn(c, dα)MV∗

n − VnMKn+1(c, c, dα)MV∗
n −VnMV∗

n

= −VnM
[
V∗
n +Kn+1(c, c, dα)MV∗

n − P ∗
n (c, dα)

] + P ∗
n (c, dα)MV∗

n

= −VnM
[
(IN +Kn+1(c, c, dα)M)−1P ∗

n+1(c, dα)
+Kn+1(c, c, dα)M(IN +Kn+1(c, c, dα)M)−1P ∗

n (c, dα)
−P ∗

n (c, dα)
] + Pn(c, dα)MV∗

n

= Pn(c, dα)MV∗
n

= Pn(c, dα)M(IN +Kn+1(c, c, dα)M)−1P ∗
n (c, dα)

= IN − (M∗
nMn)

−1.

Hence, substituting in (4.7a) and (4.7b), (4.5) becomes

En(dβ)= cIN − cMnM
∗
n

+Mn

{
En(dα)− VnMP

∗
n (c, dα)Dn+1(dα)Pn+1(c, dα)MV∗

n

+VnMP
∗
n+1(c, dα)D∗

n+1(dα)
+Dn+1(dα)Pn+1(c, dα)MV∗

n

}
M∗

n.
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To get the asymptotic expression Ẽ for En(dβ), we take into account the following
results (see [2,15]) for c ∈ R)\�̂
• lim
n→∞M−1

n = �(c),

• lim
n→∞Pn−1(c, dα)P−1

n (c, dα)D−1
n (dα) =

∫
dWD,E(t)

c − t

def= F(c).

Then writing

En(dβ) = cIN − cMnM
∗
n

+Mn

{
En(dα)− (VnMP

∗
n (c, dα))Dn+1(dα)Pn+1(c, dα)

×P−1
n (c, dα)(Pn(c, dα)MV∗

n)

+(VnMP
∗
n (c, dα))P

−∗
n (c, dα)P ∗

n+1(c, dα)D∗
n+1(dα)

+Dn+1(dα)Pn+1(c, dα)P−1
n (c, dα)(Pn(c, dα)MV∗

n)
}
M∗

n

= cIN − cMnM
∗
n

+Mn

{
En(dα)− (IN − M−1

n M−∗
n )

×Dn+1(dα)Pn+1(c, dα)P−1
n (c, dα)(IN − M−1

n M−∗
n )

+(IN − M−1
n M−∗

n )P−∗
n (c, dα)P ∗

n+1(c, dα)D∗
n+1(dα)

+Dn+1(dα)Pn+1(c, dα)P−1
n (c, dα)(IN−M−1

n M−∗
n )

}
M∗

n,

we get

Ẽ = cIN − c�(c)−1�(c)−∗

+�(c)−1
{
E − (IN − �(c)�(c)∗)F(c)−1(IN − �(c)�(c)∗)
+(IN − �(c)�(c)∗)F(c)−∗

+F(c)−1(IN − �(c)�(c)∗)
}
�(c)−∗

= �(c)−1
{
c(�(c)�(c)∗ − IN)

+E − (IN − �(c)�(c)∗)F(c)−1(IN − �(c)�(c)∗)
+(IN − �(c)�(c)∗)F(c)−∗

+F(c)−1(IN − �(c)�(c)∗)
}
�(c)−∗

= �−1(c)
{
E + c(�(c)�(c)∗ − I )

−�(c)�(c)∗ + F(c)−1 + �(c)�(c)∗ + F(c)−1
}
�−∗(c)

= �−1(c)
{
E − cIN + F(c)−1

}
�−∗(c)

+cIN − �∗(c)F(c)−1�(c). (4.9a)

But from (2.3), we have

D∗
n(dα)Pn−1(z, dα)Pn(z, dα)−1Dn(dα)−1)Dn(dα)
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×(Pn(z, dα)Pn+1(z, dα)−1Dn+1(dα)−1)(En(dα)− zIN)

×(Pn(z, dα)Pn+1(z, dα)−1Dn+1(dα)−1)+ IN) = 0

for z ∈ C\�. Taking into account (2.9) we get
D∗F(z)DF(z)+ (E − zIN)F(z)+ IN = 0.

In particular,

D∗F(c)DF(c)+ (E − cIN)F(c)+ IN = 0, (4.10)

i.e.,

D∗F(c)D + (E − cIN)+ F(c)−1 = 0.

Then (4.9a) becomes

Ẽ = −�−1(c)D∗F(c)D�−∗(c)+ cIN

+�∗(c){D∗F(c)D + E − cIN }�(c)
= �∗(c)E�(c)− c(�∗(c)�(c)− IN)

+�∗(c)D∗F(c)D∗�(c)− �−1(c)D∗F(c)D�−∗(c). �

Now, from (4.8) we have[
An(dβ)A−1

n (dα)
]∗ [

An(dβ)A−1
n (dα)

]
= IN − Pn(c, dα)M(IN +Kn+1(c, c, dα)M)−1P ∗

n (c, dα). (4.11)

Then using the Cholesky factorization of the positive definite matrix given in the
right-hand side of (4.11), there is a unique lower triangular matrix Ln(c, dα) with
positive diagonal elements such that

Ln(c, dα)L∗
n(c, dα)

= IN − Pn(c, dα)(IN +MKn+1(c, c, dα))−1MP ∗
n (c, dα)

and thus[
An(dβ)A−1

n (dα)
]∗ = Ln(c, dα). (4.12)

Proposition 4.1. Consider two matrix measures dα and dβ which are related by
(2.10). Let J(dα) be the N-Jacobi block matrix define by (3.1). Then the perturbed
N-Jacobi block matrix J(dβ) associated to {Pn(x, dβ)} is determined by its matrix
entries

Dn(dβ)= L∗
n−1(c, dα)Dn(dα)L−∗

n (c, dα),
En(dβ)= L∗

n(c, dα)An(dα)(�n(c, dα)
−�n+1(c, dα))A−1

n (dα)L−∗
n (c, dα), (4.13)
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where

�n(c, dα)= A−1
n (dα)Bn(dα)

−A−1
n (dα)

{
P−∗
n (c, dα)M−1V−1

n − IN

}−1

×(Pn−1(c, dα)P−1
n (c, dα))∗An−1(dα). (4.14)

Proof. From (4.3), (4.12) and (4.4), we deduce

Dn(dβ) = L∗
n−1(c, dα)Dn(dα)L−∗

n (c, dα).

Using the three-term recurrence relation (2.3) and the orthogonality property (2.2),
we have

En(dβ)= 〈xPn(x, dβ), Pn(x, dβ)〉dβ
=

∫
[An(dβ)xn+1 + Bn(dβ)xn + · · ·]dβ(x)P ∗

n (x, dβ)

= An(dβ)A−1
n+1(dβ)

×
∫

[An+1(dβ)xn+1 + Bn+1(dβ)xn + · · ·]dβ(x)P ∗
n (x, dβ)

−An(dβ)A−1
n+1(dβ)

∫
[Bn+1(dβ)xn + · · ·]dβ(x)P ∗

n (x, dβ)

+Bn(dβ)A−1
n (dβ)

∫
[An(dβ)xn + · · ·]dβ(x)P ∗

n (x, dβ)

= An(dβ)(A−1
n (dβ)Bn(dβ)− A−1

n+1(dβ)Bn+1(dβ))A
−1
n (dβ) (4.15a)

= L∗
n(c, dα)An(dα)(A

−1
n (dβ)Bn(dβ)

−A−1
n+1(dβ)Bn+1(dβ))A

−1
n (dα)L−∗

n (c, dα).

To get the second part of (4.13), it is sufficien to proveA−1
n (dβ)Bn(dβ) = �n(c, dα).

In fact from Lemma 3.1 and (4.8)

An(dβ)= Mn[An(dα)− VnMP
∗
n (c, dα)An(dα)]

= Mn[IN − VnMP
∗
n (c, dα)]An(dα)

= M−∗
n An(dα) (4.16)

as well as

Bn(dβ)= Mn

[
Bn(dα)− VnM(P

∗
n (c, dα)Bn(dα)− P ∗

n−1(c, dα)An−1(dα))
]

= Mn

[
IN − VnMP

∗
n (c, dα)

]
Bn(dα)

−MnVnMP
∗
n−1(c, dα)An−1(dα)

= M−∗
n Bn(dα)− MnVnMP

∗
n−1(c, dα)An−1dα)
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= M−∗
n Bn(dα)

−M−∗
n

{
IN − VnMP

∗
n (c, dα)

}−1

×VnMP
∗
n−1(c, dα)An−1(dα). (4.17)

Using (4.16) and (4.17)

A−1
n (dβ)Bn(dβ)= A−1

n (dα)Bn(dα)

−A−1
n (dα)

{
P−∗
n (c, dα)M−1V−1

n − IN
}−1

×(Pn−1(c, dα)P−1
n (c, dα))∗An−1(dα). �

Corollary 4.1. Under the hypothesis of Theorem 4.1 we have

D̃ = �∗(c)D�−∗(c),
Ẽ = �∗(c) ·

{
E +D

[
�−∗(c).�−1(c)− IN

]
D∗F(c) (4.18)

−[
�−∗(c) · �−1(c)− IN

]
D∗F(c)D

}
�−∗(c).

Proof. From (4.14)

An(dα)[�n(c, dα)− �n+1(c, dα)]A−1
n (dα)

= An(dα)[A−1
n (dα)Bn(dα)− A−1

n+1(dα)Bn+1(dα)]A−1
n (dα)

−�n(c, dα)An−1(dα)A−1
n (dα)+ An(dα)A−1

n+1(dα)�n+1(c, dα), (4.19)

where

�n(c, dα)=
{
P−∗
n (c, dα)M−1V−1

n − IN
}−1

×(Pn−1(c, dα)P−1
n (c, dα))∗. (4.20)

From (4.8), the expression in (4.20) becomes

�n(c, dα)=
{
IN − VnMP

∗
n (c, dα)

}−1

×VnMP
∗
n (c, dα)(Pn−1(c, dα)P−1

n (c, dα))∗

= M∗
nMn(IN − M−1

n M−∗
n )(Pn−1(c, dα)P−1

n (c, dα))∗

= (M∗
nMn − IN)D

∗
n(dα)(Pn−1(c, dα)P−1

n (c, dα)D−1
n (dα))∗.

Then

lim
n→∞ �n(c, dα) = (�−∗(c)�−1(c)− IN)D

∗F(c).
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From (4.13), (4.19) and taking into account (4.15a) and (4.4)

En(dβ)= L∗
n(c, dα)

{
En(dα)+Dn+1(dα)�n+1(c, dα)
−�n(dα)Dn(dα)

}
L−∗
n (c, dα).

Hence

Ẽ = �∗(c) · {E +D[�−∗(c) · �−1(c)− IN ]D∗F(c)
−[�−∗(c) · �−1(c)− IN ]D∗F(c)D

}
�−∗(c). �

Remark 4.1.
(i) The perturbed orthonormal matrix polynomials {Pn(x, dβ)} do not belong, in

general, toM(D,E). Even more as Example 1 shows, we can easily verify that
E and Ẽ are not unitarity equivalent.

(ii) The expression of Ẽ in (4.2) is equal to that given in (4.18).
To show it, let P and Q be the right-hand side expressions in (4.2) and (4.18).

Then

P = �∗(c)E�(c)− c�∗(c)�(c)cIN
+�∗(c)D∗F(c)D�(c)− �−1(c)D∗F(c)D�−∗(c). (4.21)

From Theorem 2.1,

�(c)�∗(c) = IN + F(c)(F′(c))−1F(c).

Then (4.21) becomes

P = �∗(c)E
{
IN + F(c)(F′(c))−1F(c)

}
�−∗(c)

−c�∗(c)
{
IN + F(c)(F′(c))−1F(c)

}
�−∗(c)+ cIN

+�∗(c)D∗F(c)D
{
IN + F(c)(F′(c))−1F(c)

}
�−∗(c)

−�−1(c)D∗F(c)D�−∗(c)
= �∗(c)E�−∗(c)

+�∗(c)
{[E − cIN +D∗F(c)D]F(c)(F′(c))−1F(c)

}
�−∗(c)

+�∗(c)D∗F(c)D�−∗(c)− �−1(c)D∗F(c)D�−∗(c),

and taking into account (4.10), we have

P = �∗(c)E�−∗(c)− �∗(c)(F′(c))−1F(c)�−∗(c)
+�∗(c)D∗F(c)D�−∗(c)− �−1(c)D∗F(c)D�−∗(c).

From (4.18)

Q= �∗(c)E�−∗(c)+ �∗(c)D�−∗(c)�−1(c)D∗F(c)�−∗(c)
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−�∗(c)DD∗F(c)�−∗(c)− �−1(c)D∗F(c)D�−∗(c)
+�∗(c)D∗F(c)D�−∗(c).

Finally, to prove P = Q, it is sufficien to show that
(F′(c))−1 +D�−∗(c)�−1(c)D∗ −DD∗ = 0. (4.22)

Taking derivatives in (4.10) at the point c, we get
D∗F′(c)DF(c)+ {

D∗F(c)D + E − cIN
}
F′(c) = F(c),

i.e.,

F(c)F′(c))−1F(c)
{
D∗F′(c)D − IN

} = IN

⇔ F(c)(F′(c))−1F(c)D∗

= D−1(F′(c))−1 + F(c)(F′(c))−1F(c)D−1(F′(c))−1

= {
IN + F(c)(F′(c))−1F(c)

}
D−1(F′(c))−1

= �(c)�∗(c)D−1(F′(c))−1

⇔ �(c)�∗(c)D∗ −D∗ = �(c)�∗(c)D−1(F′(c))−1

⇔ (F′(c))−1 +D�−∗(c)�−1(c)D∗ −DD∗ = 0.

Hence (4.22) is true and the second part of Remark 1 holds.

5. Examples

Example 1. Consider

D =
(√

2 0
0

√
2

)
, E =

(
1 1
1 1

)
.

Writing

F(x) =
∫

dWD,E

x − t
,

from (2.3) and (2.9) we deduce that this analytic matrix function satisfie the matrix
equation

D∗F(x)DF(x)+ (E − xI2)F(x)+ I2 = 0 x ∈ R\�. (5.1)
Since D is a positive definite matrix, the explicit expression forF(x) (see [2]) is

F(x)= 1
2
D−1(xI2 − E)D−1

−1
2
D−1/2[D−1/2(E − xI2)D

−1(E − xI2)D
−1/2 − 4I2]1/2D−1/2,

(5.2)
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where x �∈ supp(dWD,E) = {x ∈ R;D−1/2(E − xI2)D
−1/2 has at least an eigen-

value in [−2, 2]}.
The matrix square root given in (5.2) is define in the natural way, i.e., using the

diagonal form of the matrix and applying the square root to its eigenvalue w which
satisfie |w − √

w2 − 4| < 2.
A straightforward computation yields

1
2
D−1(cI2 − E)D−1 =

(−1+c
4 − 1

4

− 1
4

−1+c
4

)

and

D−1/2(E − cI2)D
−1(E − cI2)D

−1/2 − 4I2 =
(−6−2c+c2

2 1− c

1− c −6−2c+c2
2

)
.

According to the explicit form given in (5.2) we get

F(c) = 1
8

(
x1(c) x2(c)
x2(c) x1(c)

)
,

where{
x1(c) = −2+ 2c − √−8+ c2 − √−4− 4c + c2,

x2(c) = −2+ √−8+ c2 − √−4− 4c + c2.

supp(dWD,E)=
[
−2√2, 2

√
2
]

∪
[√

2(−2+ √
2),

√
2(2+ √

2)
]

=
[
−2√2,

√
2(2+ √

2)
]
,

and the square roots are chosen such thatF(z) is analytic in z ∈ R\[−2√2,
√
2(2+√

2)].
Computing the terms given in the right-hand side of the firs part of Theorem 2.1

and using (2.11), we get

�(c) · �∗(c) = 1
8

(
y1(c) y2(c)
y2(c) y1(c)

)
, (5.3)

where


y1(c) = −4+ 2c2 + 2
√−4− 4c + c2

−c
(
4+ √−8+ c2 + √−4− 4c + c2

)
,

y2(c) = c
(
−4+ √−8+ c2 − √−4− 4c + c2

)
+ 2

(
2+ √−4− 4c + c2

)
.

Using the Cholesky factorization of the positive definite matrix given in the right-
hand side of (5.3), we obtain

20



�(c) = 1
2

(
z1(c) 0
z2(c) z3(c)

)
,

where

z1(c)=
√

−2− 2c + c2 − (−2+ c)
√−4+ (−4+ c)c

2
− c

√−8+ c2

2
,

z2(c)= 4− 4c − (−2+ c)
√−4+ (−4+ c)c + c

√−8+ c2√−2(−2+ c)
√−4+ (−4+ c)c + 4(−2+ (−2+ c)c)− 2c

√−8+ c2
,

z3(c)=4
√
2

√
1

(−2+ c)
√−4+ (−4+ c)c + 2(−2+ (−2+ c)c)+ c

√−8+ c2
.

Finally, according to (4.2), the limits of the perturbed matrix coefficient are given
by

D̃ =
(√

2 0
0

√
2

)

and

Ẽ =



2c

√−8+ c2 − w(c)

2(−2+ (−2+ c)c)

8u(c)
v(c)

8u(c)
v(c)

2(4+ c(−c + √−8+ c2

w(c)


 ,

where


u(c) =
[
(−2+ c)

√−4+ (−4+ c)c

+2(−2+ (−2+ c)+ c)+ c
√−8+ c2

]−1/2
,

v(c) =
[

− (
(−2+ c)

√−4+ (−4+ c)c
)

+2(−2+ (−2+ c)c)− c
√−8+ c2

]1/2
,

w(c) = 4− 2(−2+ c)c + (−2+ c)
√−4+ (−4+ c)c + c

√−8+ c2.

Example 2. Consider

D =



√
3 0 0
0

√
3 0

0 0
√
3


 , E =


1 2 0
2 1 0
0 0 1


 .
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A straightforward computation yields

1
2
D−1(cI3 − E)D−1 =




−1+c
6 − 1

3 0

− 1
3

−1+c
6 0

0 0 −1+c
6




and

D−1/2(E − cI3)D
−1(E − cI3)D

−1/2 − 4I3

=




−7−2c+c2
3

−4(−1+c)
3 0

−4(−1+c)
3

−7−2c+c2
3 0

0 0 −11−2c+c2
3


 .

Using (5.2) we get

F(c) = 1
12


x1(c) x2(c) 0
x2(c) x1(c) 0
0 0 x3(c)


 ,

where

x1(c) = −2+ 2c − (−3+ (−6+ c)c)1/2 − (−11+ c(2+ c))1/2,

x2(c) = −4− (−3+ (−6+ c)c)1/2 + (−11+ c(2+ c))1/2,

x3(c) = 2
(−1+ c − (−11+ (−2+ c)c)1/2

)
and

supp(dWD,E)=
[

−6+ √
3√

3
,
6+ √

3√
3

]
∪

[√
3(−2√3),

√
3(2+ √

3)
]

∪
[
−(√3(2+ √

3)),−(√3(−2+ √
3))

]
=

[
−(√3(2+ √

3)), (
√
3(2+ √

3))
]
.

The square roots are chosen such thatF(z) is analytic in

z ∈ R
∖[

−
(√

3
(
2+ √

3
))
,
(√

3
(
2+ √

3
))]

.

Computing the terms given in the right-hand side of the firs part of Theorem 2.1 and
using (2.11), we get

�(c) · �∗(c) = 1
2


y1(c) y2(c) 0
y2(c) y1(c) 0
0 0 y3(c)


 , (5.4)
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where

y1(c) = − (
(−3+ c)

√−3+ (−6+ c)c
) + 2(−1+ (−2+ c)c)

−(1+ c)
√−11+ c(2+ c),

y2(c) = −8(−1+ c)− (−3+ c)
√−3+ (−6+ c)c

+(1+ c)
√−11+ c(2+ c),

y3(c) = 2
(−5− 2c + c2 − (−1+ c)

√−11+ (−2+ c)c
)
,

Using the Cholesky factorization of the positive definite matrix given in the right-
hand side of (5.4), we obtain

�(c) = 1
2
√
3


z1(c) 0 0
z2(c) z3(c) 0
0 0 z4(c)


 ,

where


z1(c) = [− (
(−3+ c)

√−3+ (−6+ c)c
)

+2(−1+ (−2+ c)c)− (1+ c)
√−11+ c(2+ c)

]1/2
,

z2(c) = −
√
3(8(−1+c)+(−3+c)√−3+(−6+c)c−(1+c)√−11+c(2+c))√

−3(−3+c)√−3+(−6+c)c+6(−1+(−2+c)c)−3(1+c)√−11+c(2+c) ,

z3(c) = 12
√

1
(−3+c)√−3+(−6+c)c+2(−1+(−2+c)c)+(1+c)√−11+c(2+c) ,

z4(c) = √
2
√

−5− 2c + c2 − (−1+ c)
√−11+ (−2+ c)c.

Finally, according to (4.2), the limits of the perturbed matrix coefficient are given
by

D̃ =



√
3 0 0
0

√
3 0

0 0
√
3




and

Ẽ =

u(c) w(c) 0
w(c) v(c) 0
0 0 1


 ,

where


u(c) = −1−2c+c2−(−3+c)√−3+(−6+c)c+(1+c)√−11+c(2+c)
−1+(−2+c)c ,

v(c) = −1−2c+c2+(−3+c)√−3+(−6+c)c−(1+c)√−11+c(2+c)
−1+(−2+c)c ,

w(c) = 24
√

1
(−3+c)√−3+(−6+c)c+2(−1+(−2+c)c)+(1+c)√−11+c(2+c)√

−((−3+c)√−3+(−6+c)c)+2(−1+(−2+c)c)−(1+c)√−11+c(2+c) .
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