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Abstract. Our object of study is the asymptotic behavior of the sequence of polyno-
mials orthogonal with respect to the discrete Sobolev inner product

〈 f, g〉 =
∫

E

f (ξ)g(ξ)ρ(ξ)|dξ | + f (Z)Ag(Z)H ,

where E is a rectifiabl Jordan curve or arc in the complex plane

f (Z) = ( f (z1), . . . , f (l1)(z1), . . . , f (zm), . . . , f (lm)(zm)),

A is an M × M Hermitian matrix, Ml1 + · · · + lm + m, |dξ | denotes the arc length
measure, ρ is a nonnegative function on E, and zi ∈ Ä, i = 1, 2, . . . ,m, where Ä is
the exterior region to E.

1. Introduction and Statement of Main Results

The asymptotic behavior of the polynomial sequence {Pn}n≥0, where Pn(z) = zn +
lower-degree terms, are orthogonal on E, an infinit set of the complex plane, with
respect to the measure ρ(ξ)|dξ |, i.e.,∫

E
Pn(ξ)ξ

k
ρ(ξ)|dξ | = 0, k = 0, 1, . . . ,n− 1,

where ρ(ξ) is a weight function (nonnegative and real-valued), has been analyzed in the
works of Korovkin [11] and Suetin [21], where E is a rectifiabl Jordan curve. If E is a
set of the complex plane define by the finit union of rectifiabl Jordan arcs and curves,
such a question has been studied by Widom [24]. Later on, Aptekarev [2] gave these
asymptotic formulas in a more explicit way. In [24], Widom deals with the extremal
property of the polynomials Pn:∫

E
|Pn(ξ)|2ρ(ξ)|dξ | = min

Tn=zn+···

∫
E
|Tn(ξ)|2ρ(ξ)|dξ |,(1)
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and carries out this property to a new family of functions in the functional space
H 2(Ä, ρ). We will detail this result but, from now on, in order to simplify the nota-
tion and to make the presentation clearer, we will restrict it to the case where E is a
rectifiabl Jordan curve or arc.
We will assume that E is a rectifiabl Jordan curve or arc in the complex plane, that

Ä is the unbounded component of the complement of E, and that G is the unbounded
component of the complement of the unit disk, i.e., G = {z ∈ C : |z| > 1}. By the
Riemann mapping theorem there exists a conformal representation 8 : Ä → G such
that

8(∞) = ∞ and lim
z→∞

8(z)

z
= 1

C(E)
> 0,

where C(E) is the capacity of the compact set E. These two conditions characterize the
function 8. Let 9 : G → Ä be the inverse function of 8. If E is a rectifiabl curve,
we can extend 8 by a nontangential limit to E and, in this case, we get |8(ξ)| = 1 for
ξ ∈ E. In fact, 8|E is a bijection between E and the unit circle. When E is a rectifiabl
arc we denote, by 8+(ξ) and 8−(ξ), the boundary values on both sides of the arc.
We will denote by H 2(G) the Hardy space of analytic functions in G, such that

sup
1<r<∞

∫
Dr

| f (z)|2|dz| <∞,

where Dr = {z ∈ C : |z| = r }. This space of functions has been deeply studied in [10].
If the weight function ρ(ξ) satisfie the Szegő condition∫

E
log ρ(ξ)|8′(ξ)||dξ | > −∞(2)

we can defin the so-called Szegő function Dρ by the following conditions:

(a) Dρ is analytic in Ä, Dρ(z) 6= 0 in Ä, and Dρ(∞) > 0.
(b) There exist boundary values almost everywhere and it holds that

|Dρ±(ξ)|−2|8′±(ξ)| = ρ(ξ).
Note that if E is a curve Dρ− makes no sense and, in this case, we only refer to Dρ+.

Definition 1 (cf. [24]). A function f belongs to the Hardy space H 2(Ä, ρ) if f is ana-
lytic in Ä and if f ◦9|Dρ◦9 belongs to H 2(G).

Every function f ∈ H 2(Ä, ρ) has boundary values, f+ and f− in E, which belong
to L2(ρ) (if E is a curve, then we only consider f+). We defin the norm in the space
H 2(Ä, ρ) by

‖ f ‖H 2(Ä,ρ) =
{∮

E
| f (ξ)|2ρ(ξ)|dξ |

}1/2
if E is a curve and

‖ f ‖H 2(Ä,ρ) =
{∫

E
| f (ξ)|2ρ(ξ)|dξ |

}1/2
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when E is an arc. For the sake of simplicity, in both cases, we will denote by ‖ f ‖H 2(Ä,ρ)

the norm in the space H 2(Ä, ρ).
The extremal property of the sequence {Pn}n≥0 (1), can be restated in the following

way. If we denote

mn :=
∫

E
|Pn(ξ)|2ρ(ξ)|dξ |

and ϕn := Pn/[C(E)8]n, then it holds that

mn

C(E)2n
=
∫

E
|ϕn(ξ)|2ρ(ξ)|dξ | = min

ϕ̃n=Tn/[C(E)8]n

∫
E
|ϕ̃n(ξ)|2ρ(ξ)|dξ |,

where Tn is a monic polynomial of degree n. These functions ϕ̃n belong to a certain
subspace of H 2(Ä, ρ). We can consider the following extremal problem in H 2(Ä, ρ):

µ := ‖ϕ∗‖2H 2(Ä,ρ) = min
ϕ̃∈H2(Ä,ρ)
ϕ̃(∞)=1

‖ϕ̃‖2H 2(Ä,ρ).(3)

This extremal function ϕ∗ is exactly Dρ/Dρ(∞) and we want to point out that if
K (z,∞) := Dρ(z)/µ then, for every ϕ ∈ H 2(Ä, ρ), it holds that

ϕ(∞) :=
∫

E
ϕ(ξ)K (ξ,∞)ρ(ξ)|dξ |,

where the integral symbol is taken in both sides, when E is an arc. In [24], one proves
the following result:

Theorem 1. Assume that E∈ C2+ is a rectifiable Jordan curve or arc and that the
weight functionρ(ξ) verifies the Szeg̋o condition(2). It holds that

lim
n→∞

mn

C(E)2n
= µ,(4)

Pn(z) = [C(E)8(z)]nϕ∗(z)[1+ εn(z)], z ∈ Ä,(5) ∫
E
|C(E)−n Pn(ξ)− Hn(ξ)|2ρ(ξ)|dξ | → 0,(6)

where

Hn(ξ) =
{
8n(ξ)ϕ∗(ξ), ξ ∈ E is a curve,

8n
+(ξ)ϕ

∗
+(ξ)+8n

−(ξ)ϕ
∗
−(ξ), ξ ∈ E is an arc,

µ is defined in(3), andεn ⇒ 0 in Ä.

Notation. The symbol⇒ means uniform convergence on compact subsets of the in-
dicated region.
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Let us consider now the following discrete Sobolev inner product

〈 f, g〉 =
∫

E
f (ξ)g(ξ)ρ(ξ)|dξ | + f (Z)Ag(Z)H ,(7)

where E is a rectifiabl Jordan curve or arc in the complex plane

f (Z) = ( f (z1), . . . , f (l1)(z1), . . . , f (zm), . . . , f (lm)(zm)),

A is an M ×M Hermitian positive definit matrix, M = l1+ · · ·+ lm+m, |dξ | denotes
the arc length, zi ∈ Ä, i = 1, 2, . . . ,m, where Ä is the unbounded component of the
complement of E and the weight function ρ(ξ) verifie the Szegő condition. Notice that
(7) is well define for every zi ∈ C. Nevertheless, using (5), it is well known that for
any compact set K ⊂ Ä, it holds that

Pn(z) 6= 0, z ∈ K ,

for n sufficientl large. This property is also verifie for P(k)
n for k = 0, 1, . . . . Since our

interest is centered on the asymptotic properties of orthogonal polynomials with respect
to (7), we will assume the constraints zi ∈ Ä, in order to consider, for n sufficientl
large, a free region of zeros.
In the last few years, algebraic and analytic properties—like zero distribution, asymp-

totic behavior, recurrence relations, and differential equations, that the polynomials,
orthogonal with respect to this kind of inner products satisfy—have been studied (see
[15] with more than 100 titles on this subject).
The study of these systems is motivated by the search for efficien algorithms for com-

puting Fourier expansions of a function f in terms of Sobolev orthogonal polynomials,
thus getting better approximation results for the function, as well as for their derivatives
and for the analysis of new quadrature Gauss formulas.
Because of the positive-definit character of the matrix A, there e xists the polynomial

sequence, {Qn(z) = zn + lower-degree terms}n≥0, orthogonal with respect to (7). The
polynomial Qn can be define by the following orthogonality relations:

〈Qn, z
k〉 = 0, k = 0, 1, . . . ,n− 1.

In the present paper, we are studying the asymptotic behavior of this sequence of
polynomials, {Qn}n≥0. This problem has been considered before when E is the interval
[−1, 1] (see [1], [14], [16]), or when E is the unit circle (see [4], [13]), although in all
these works a wider class of measures has been considered.
Our main goal in this paper is to give a unifie approach, containing the preceding

cases.
First of all, we want to point out that, similar to that which was done in the standard

case, we can consider the polynomial Qn as solution for the extremal problem

m̂n :=
∫

E
|Qn(ξ)|2ρ(ξ)|dξ | + Qn(Z)AQn(Z)

H

= min
Tn=zn+···

∫
E
|Tn(ξ)|2ρ(ξ)|dξ | + Tn(Z)ATn(Z)

H .
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Following this idea, Kaliaguine [8], [9], considers this problem when l i = 0 for
i = 1, . . . ,m, and A is a diagonal matrix, i.e., he studies the asymptotic behavior
of the sequence of monic polynomials, orthogonal with respect to a measure with an
absolutely continuous part, plus a finit number of mass points. To carry out this study,
Kaliaguine deals with a polynomial modificatio of the measure ρ(ξ)|dξ |, in order to
get rid of the masses and, in this way, he recovered the case studied by Widom. In our
case, this technique cannot be applied in a natural way because the derivatives, and the
nondiagonal structure of the matrix A, make the analysis of the situation much more
difficult We carry over the technique developed in [4], although in this case we do not
have a Christoffel–Darboux formula for the kernel polynomials.
Let {pn}n≥0, with pn(z) = knzn + lower-degree terms, kn > 0, be the sequence of

orthonormal polynomials with respect to ρ(ξ)|dξ |, i.e.,∫
E

pn(ξ)pm(ξ)ρ(ξ)|dξ | =
{
0, n 6= m,

1, n = m,

with kn = m−1/2n and let

Kn(z, w) =
n−1∑
k=0

pk(z)pk(w)

be the kernel polynomials associated to ρ(ξ)|dξ |. We denote that

K (i, j )
n (z, w) =

n−1∑
k=0

p(i )k (z)p
( j )
k (w), i, j = 0, 1, . . . .

If the weight function, ρ(ξ), satisfie the Szegő condition (2), we prove (see Theorem 4
in Section 2) that

K (i, j )
n (z, w)

p(i )n (z)p
( j )
n (w)

⇒ 1
8(z)8(w)− 1

, z, w ∈ Ä, i, j = 0, 1, . . . .(8)

Let {qn}n≥0, if qn(z) = γnzn+ lower-degree terms, γn > 0, be the sequence of orthonor-
mal polynomials with respect to (7), then we can state the following result:

Theorem 2. Consider an inner product of type(7) such that E∈ C2+ is a rectifiable
Jordan curve or arc,that ρ(ξ) is an integrable nonnegative real-valued function on E
that verifies the Szegő condition(2), and that A is a positive-definite matrix of dimension
M . It holds that

lim
n→∞

kn

γn
=

m∏
i=1
|8(zi )|l i+1,(9)

q(k)n (z)

p(k)n (z)
⇒

m∏
i=1

(
8(zi )(8(z)−8(zi ))

|8(zi )|(8(z)8(zi )− 1)

)l i+1
, z ∈ Ä, k = 0, 1, . . . .(10)
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Using (5), (9), and (10), we get the following result:

Corollary 1. With the conditions of Theorem2 we have

Qn(z) = [C(E)8(z)]nψ∗(z)[1+ εn(z)],(11)

where

ψ∗(z) :=
m∏

i=1

(
8(zi )(8(z)−8(zi ))

8(z)8(zi )− 1

)l i+1
ϕ∗(z),(12)

the functionϕ∗ is the solution of the extremal problem(3) andεn ⇒ 0 in Ä.

In the framework of an extremal problem we could deduce (3), (5), and (6) for the
usual monic orthogonal polynomials. The result obtained in this corollary can also be
viewed in this way. Using (3) and (12) we can also seeψ∗ as the solution of the extremal
problem

µ̂ := ‖ψ∗‖2H 2(Ä,ρ) = min
ψ∈H̃
‖ψ‖2H 2(Ä,ρ),

where H̃ = {ψ ∈ H 2(Ä, ρ) : ψ(∞) = 1, ψ(l )(zj ) = 0, 0 ≤ l ≤ l j , 1 ≤ j ≤ m} and

µ̂ =
m∏

j=1
|8(zj )|2(l j+1)µ.

We are reminded that µ := ‖ϕ∗‖2H 2(Ä,ρ)
.

The proof of this assertion can be done in a similar way as in [8, Lemma 4.2]. Using
(9) and (12), we also get

lim
n→∞

m̂n

C(E)2n
= µ̂.(13)

The following theorem completes these results:

Theorem 3. If we suppose that the hypotheses of Theorem2 hold, then

lim
n→∞

∫
E

∣∣∣C(E)−nQn(ξ)− H̃n(ξ)

∣∣∣2 ρ(ξ)|dξ | = 0,

whereψ∗ is the extremal function given in(12) and

H̃n(ξ) :=
{
8n(ξ)ψ∗(ξ), ξ ∈ E is a curve,

8n
+(ξ)ψ

∗
+(ξ)+8n

−(ξ)ψ
∗
−(ξ), ξ ∈ E is an arc.

In the following section,wegive someauxiliary results needed to prove these theorems.
In the last section, we include their proofs.
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2. Auxiliary Results

First of all, we give the following lemma that we will use to prove (8). In fact, we assume,
for the weight function ρ, more general conditions than the Szegő condition (2). Also
notice that we extend the results obtained in [4] for the unit circle.

Lemma 1. Let {pn}n≥0 be a sequence of polynomials of degree n with zeros in C\Ä,
such that

pn+1(z)
pn(z)

⇒ 8(z), z ∈ Ä,(14)

where8 andÄ have been introduced before. Then

p(k+1)n (z)

np(k)n (z)
⇒ 8′(z)

8(z)
, z ∈ Ä.

Proof. First, we will prove the result in the case k = 0. As {pn+1/pn}n≥0 is a sequence
of analytic functions in Ä, then by (14):(

pn+1(z)
pn(z)

)′
⇒ 8′(z), z ∈ Ä.

This is equivalent to

pn+1(z)
pn(z)

[
p′n+1(z)
pn+1(z)

− p′n(z)
pn(z)

]
⇒ 8′(z), z ∈ Ä.

Then we get

p′n+1(z)
pn+1(z)

− p′n(z)
pn(z)

⇒ 8′(z)
8(z)

, z ∈ Ä.

This yields

<e
p′n+1(z)
pn+1(z)

−<e
p′n(z)
pn(z)

⇒ <e
8′(z)
8(z)

, z ∈ Ä,(15)

and

=m
p′n+1(z)
pn+1(z)

− =m
p′n(z)
pn(z)

⇒ =m
8′(z)
8(z)

, z ∈ Ä,

where <ezand =mzdenote the real and imaginary part of z, respectively. Using (15),
we get

exp<e
p′n+1(z)
pn+1(z)

exp<e
p′n(z)
pn(z)

⇒ exp<e
8′(z)
8(z)

, z ∈ Ä.
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Now if we apply [20, Theorem 3.37], then(
exp<e

p′n(z)
pn(z)

)1/n

⇒ exp<e
8′(z)
8(z)

, z ∈ Ä,

or, equivalently,

<e
p′n(z)

npn(z)
⇒ <e

8′(z)
8(z)

, z ∈ Ä.

For the imaginary part, we proceed in the same way and we get the result for k = 0. For
an arbitrary k, we use the identity

q

q′

(
p

q

)′
= p′

q′
− p

q
,(16)

that holds for the arbitrary differentiable functions p,q.

Theorem 4. If ρ(ξ) is a weight function satisfying the Szegő condition(2), then

K (i, j )
n (z, w)

p(i )n (z)p
( j )
n (w)

⇒ 1
8(z)8(w)− 1

, z, w ∈ Ä, i, j = 0, 1, . . . .

Proof. First, we prove the statement of the theorem for i, j = 0. Using (4) and (5) we
get

pn(z) = [8(z)]n
ϕ∗(z)

[
∫

E |ϕ∗(ξ)|2ρ(ξ)|dξ |]1/2
[1+ εn(z)], z ∈ Ä,(17)

where εn(z)⇒ 0 in Ä. Now, we consider the following identity:

Kn(z, w)

pn(z)pn(w)
= Kn(z, w)∑n−1

k=0 8(z)k8(w)k

∑n−1
k=0 8(z)

k8(w)k

8(z)n8(w)n
8(z)n8(w)n

pn(z)pn(w)
.

Using (17), we deduce

8(z)n8(w)n

pn(z)pn(w)
⇒
[

ϕ∗(z)ϕ∗(w)∫
E |ϕ∗(ξ)|2ρ(ξ) dξ

]−1
, z, w ∈ Ä,

and ∑n−1
k=0 8(z)

k8(w)k

8(z)n8(w)n
⇒ 1
8(z)8(w)− 1

, z, w ∈ Ä.

On the other hand,

Kn(z, w) =
n−1∑
k=0

pk(z)pk(w)

= ϕ∗(z)ϕ∗(w)∫
E |ϕ∗(ξ)|2ρ(ξ) dξ

n−1∑
k=0

8(z)k8(w)k(1+ yk(z, w)),
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where we denote

yk(z, w) := εk(z)+ εk(w)+ εk(z)εk(w).

So we get

Kn(z, w)∑n−1
k=0 8(z)k8(w)k

= ϕ∗(z)ϕ∗(w)∫
E |ϕ∗(ξ)|2ρ(ξ) dξ

[
1+

∑n−1
k=0 8(z)

k8(w)kyk(z, w)∑n−1
k=0 8(z)k8(w)k

]
.

Next, we will prove∑n−1
k=0 8(z)

k8(w)kyk(z, w)∑n−1
k=0 8(z)k8(w)k

⇒ 0, z, w ∈ Ä.(18)

Taking into account that∑n−1
k=0 8(z)

k8(w)kyk(z, w)∑n−1
k=0 8(z)k8(w)k

=
∑n−1

k=0 8(z)
k8(w)kyk(z, w)

8(z)n8(w)n
8(z)n8(w)n∑n−1

k=0 8(z)k8(w)k
,

(18) follows if we prove∑n−1
k=0 8(z)

k8(w)kyk(z, w)

8(z)n8(w)n
⇒ 0, z, w ∈ Ä.

Indeed, given K1, K2 compact sets in Ä and ε > 0, there exists an n0, such that for
z ∈ K1, w ∈ K2, and n ≥ n0 then |yn(z, w)| < ε. For z ∈ K1 and w ∈ K2:∑n−1

k=0 8(z)
k8(w)kyk(z, w)

8(z)n8(w)n

=
∑n0−1

k=0 8(z)
k8(w)kyk(z, w)

8(z)n8(w)n
+
∑n−1

k=n0
8(z)k8(w)kyk(z, w)

8(z)n8(w)n
.

Then∣∣∣∣∑n−1
k=0 8(z)

k8(w)kyk(z, w)

8(z)n8(w)n

∣∣∣∣
≤ |

∑n0−1
k=0 8(z)

k8(w)kyk(z, w)|
|8(z)|n|8(w)|n +

∑n−1
k=n0
|8(z)|k|8(w)|k|yk(z, w)|
|8(z)|n|8(w)|n

≤ M(n0)

|8(z)|n|8(w)|n + ε
∑n−1

k=n0
|8(z)|k|8(w)|k

|8(z)|n|8(w)|n ,

where M(n0) is a positive constant depending on n0:

lim sup
n→∞

∣∣∣∣∑n−1
k=0 8(z)

k8(w)kyk(z, w)

8(z)n8(w)n

∣∣∣∣ ≤ ε

|8(z)8(w)| − 1
.
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Now ε can be made arbitrarily small and we get the result. For i = 1 and j = 0, we use
(16), and taking into account pn(z)/p′n(z)⇒ 0, z ∈ Ä, we get

K (1,0)
n (z, w)

p′n(z)pn(w)
⇒ 1
8(z)8(w)− 1

.

In the same way, we get the result for arbitrary i, j ∈ N.

Theorem 5. LetKn be the matrix of dimension M:

Kn(z1, z1) . . . K (l1,0)
n (z1, z1) . . . Kn(zm, z1) . . . K (lm,0)

n (zm, z1)

K (0,1)
n (z1, z1) . . . K (l1,1)

n (z1, z1) . . . K (0,1)
n (zm, z1) . . . K (lm,1)

n (zm, z1)
... . . .

... . . .
... . . .

...

K (0,l1)
n (z1, z1) . . . K (l1,l1)

n (z1, z1) . . . K (0,l1)
n (zm, z1) . . . K (lm,l1)

n (zm, z1)
... . . .

... . . .
... . . .

...
... . . .

... . . .
... . . .

...

Kn(z1, zm) . . . K (l1,0)
n (z1, zm) . . . Kn(zm, zm) . . . K (lm,0)

n (zm, zm)

K (0,1)
n (z1, zm) . . . K (l1,1)

n (z1, zm) . . . K (0,1)
n (zm, zm) . . . K (lm,1)

n (zm, zm)
... . . .

... . . .
... . . .

...

K (0,lm)
n (z1, zm) . . . K (l1,lm)

n (z1, zm) . . . K (0,lm)
n (zm, zm) . . . K (lm,lm)

n (zm, zm)



.(19)

If zi 6= zj , i, j = 1, . . . ,m, this matrix is positive definite for n≥ M .

Proof (see [4]).

Let us consider the following function g(z, w) = 1/8(z)8(w)− 1 and denote

g(i, j )(z, w) := ∂ i

∂zi

∂ j

∂w j

1
8(z)8(w)− 1

.

Let Fm be the following matrix of dimension M :

g(z1, z1) . . . g(l1,0)(z1, z1) . . . g(zm, z1) . . . g(lm,0)(zm, z1)

g(0,1)(z1, z1) . . . g(l1,1)(z1, z1) . . . g(0,1)(zm, z1) . . . g(lm,1)(zm, z1)
...

...
...

...

g(0,l1)(z1, z1) . . . g(l1,l1)(z1, z1) . . . g(0,l1)(zm, z1) . . . g(lm,l1)(zm, z1)
...

...
...

...

g(z1, zm) . . . g(l1,0)(z1, zm) . . . g(zm, zm) . . . g(lm,0)(zm, zm)

g(0,1)(z1, zm) . . . g(l1,1)(z1, zm) . . . g(0,1)(zm, zm) . . . g(lm,1)(zm, zm)
...

...
...

...

g(0,lm)(z1, zm) . . . g(l1,lm)(z1, zm) . . . g(0,lm)(zm, zm) . . . g(lm,lm)(zm, zm)



.(20)
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This matrix can be described by blocks. The (r, s) block is an (lr + 1)× (ls+ 1) matrix

(g( j,i )(zs, zr ))
j=0,...,ls
i=0,...,lr ,

where r, s= 1, . . . ,m.

Theorem 6. The matrix Fm defined in(20) is nonsingular.

Proof (see [4]). Supposing that |Fm| = 0, the linear dependence of the rows of the
matrix Fm is equivalent to the existence of ci j ∈ C, i = 1, . . . ,m, j = 0, . . . , l i , such
that for the function

f (z) =
l1∑

j=0
c1, j g

(0, j )(z, z1)+ · · · +
lm∑

j=0
cm, j g

(0, j )(z, zm) 6≡ 0,

where zi is a zero of multiplicity at least l i + 1. Therefore f ◦8−1 has at each 8(zi ) a
zero of multiplicity at least l i + 1. Thus, it has at least M zeros, taking into account the
multiplicity. But it is immediatly verifiabl that f (8−1(z)) = P(z)/Q(z), where P is a
polynomial of degree at most M − 1 and Q is a polynomial of degree M . This leads us
to a contradiction.

Lemma 2. Let Q be an M× M nonsingular matrix, and u, x two M-column vectors.
The following identity holds:

1− xT Q−1u = det[Q− uxT ]
det Q

.

Proof (see [4]).

To conclude this section, we include the following lemma that appears in [8, Lemma
2.2]:

Lemma 3. Let { fn}n≥0 be a sequence of functions in H2(Ä, ρ) such that

fn(z)⇒ f (z), z ∈ Ä and ‖ fn‖H 2(Ä,ρ) ≤ C, n = 0, 1, . . . ,

where C is a positive constant.Then

f ∈ H 2(Ä, ρ) and ‖ f ‖H 2(Ä,ρ) ≤ lim inf
n→∞ ‖ fn‖H 2(Ä,ρ).

3. Proof of the Main Results

Notation. For any function f (z) of one variable and for the vector

X = (x1,0, . . . , x1,l1 , . . . , xm,0, . . . , xm,lm),

11



we denote

f (X) := ( f (x1,0), . . . , f (l1)(x1,l1), . . . , f (xm,0), . . . , f (lm)(xm,lm)).

Since Kn(w, z) = Kn(z, w) is a function in the variable w, then for

Z = (z1, . . . , z1︸ ︷︷ ︸
l1+1

, . . . , zm, . . . , zm︸ ︷︷ ︸
lm+1

)

we write

Kn(z, Z) = Kn(Z, z),

i.e.,

Kn(z, Z) = (Kn(z, z1), . . . , K (0,l1)
n (z, z1), . . . , Kn(z, zm), . . . , K (0,lm)

n (z, zm)).

Notice that K (i, j )
n (z, w) means

∑n−1
k=0 p(i )k (z)p

( j )
k (w). Thus

K (i )
n (z, Z) = (K (i,0)

n (z, z1), . . . , K (i,l1)
n (z, z1), . . . , (K

(i,0)
n (z, zm), . . . , K (i,lm)

n (z, zm)).

First of all, we are going to deduce some algebraic expressions that we will use later
to prove Theorem 2 (see [4]).
We expand qn in terms of {pj }j≥0:

qn(z) = γn

kn
pn(z)+

n−1∑
k=0

ak,n pk(z),(21)

where

ak,n =
∫ 2π

0
qn(e

i θ )pk(ei θ ) dµ(θ) = −qn(Z)Apk(Z)
H , k = 0, 1, . . . ,n− 1.

Substituting this expression in (21) we get

qn(z) = γn

kn
pn(z)− qn(Z)A

n−1∑
k=0

pk(Z)
H pk(z)(22)

= γn

kn
pn(z)− qn(Z)AKn(z, Z)T .

Now we take successive derivatives in (23) and we substitute z = z1, . . . , z = zm, in
order to eliminate qn(Z).
Thus

qn(Z) = γn

kn
pn(Z)− qn(Z)AKn,(23)

where Kn is the matrix define in (19).

12



From (23) we obtain

qn(Z)[IM + AKn] = γn

kn
pn(Z),

where IM denotes the identity matrix of dimension M . Since Kn is a positive definit
matrix (see Theorem 5) and the matrix A is positive definite then it holds that the matrix
IM + AKn is a nonsingular matrix. Thus

qn(Z) = γn

kn
pn(Z)[IM + AKn]−1.

Substituting this expression in (23), multiplying by kn/γn, and dividing by pn(z), we
obtain

kn

γn

qn(z)

pn(z)
= 1− pn(Z)[IM + AKn]−1A

Kn(z, Z)

pn(z)

T

.(24)

On the other hand, from

〈qn, pn〉 =
∫

E
qn(ξ)pn(ξ)ρ(ξ)|dξ | + qn(Z)Apn(Z)

H,

we get

kn

γn
= γn

kn
+ qn(Z)Apn(Z)

H.

Now, multiplying by kn/γn and substituting qn(Z), we obtain(
kn

γn

)2

= 1+ pn(Z)[IM + AKn]−1Apn(Z)
H .(25)

We are going to express (24) and (25) as a ratio of determinants by using Lemma 2. It
holds

kn

γn

qn(z)

pn(z)
=

det

[
IM + AKn − A

Kn(z, Z)

pn(z)

T

pn(Z)

]
det[IM + AKn]

,(26) (
kn

γn

)2

= det[IM + AKn + Apn(Z)T pn(Z)]
det[IM + AKn]

,

(
kn

γn

)2

= det[IM + AKn+1]
det[IM + AKn]

.(27)

Now, using (26) and (27), we can deduce the asymptotic behavior of kn/γn and qn(z)/
pn(z) for z ∈ Ä.
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Proof of Theorem 2. First, we will fin the asymptotic behavior of kn/γn:

lim
n→∞

(
kn

γn

)2

= lim
n→∞

det[A−1 + Kn+1]
det[A−1 + Kn]

.

We introduce the diagonal matrix

3n = diag

(
1

pn(z1)
,

1
p′n(z1)

, . . . ,
1

p(l1)n (z1)
, . . . ,

1
pn(zm)

,
1

p′n(zm)
, . . . ,

1
p(lm)n (zm)

)
.

Notice that when the measure of orthogonality is in Szegő class we can ensure, using
(5), that this matrix is well defined for n sufficientl large. Then we get

lim
n→∞

(
kn

γn

)2

= lim
n→∞

det[3n+1A−13n+1 +3n+1Kn+13n+1]
det[3n A−13n +3nKn3n]

det[3n3n]
det[3n+13n+1]

.

The matrix3nKn3n can be described by blocks. The (r, s) block is an (lr +1)× (ls+1)
matrix (

K ( j,i )
n (zs, zr )

p( j )
n (zs)p

(i )
n (zr )

) j=0,...,ls

i=0,...,lr
,

where r, s= 1, . . . ,m. Using Theorem 4 and relation (5), we conclude that

lim
n→∞ det[3n+1A−13n+1 +3n+1Kn+13n+1] = 0

and we need to compute a limit of the form 0/0 (if l j = 0 for j = 0, . . . ,m, as we do not
have this problem, we can compute the limit, nevertheless, this case has been treated in
[8] and [9]). In [7], we fin a similar situation for a system of equations. Here, we adapt
some ideas that appear in similar works.
For all f, h differentiable functions and ν = 0, 1, 2, . . . , it holds that

f (ν)

h(ν)
=
(

f

h

)(ν) h

h(ν)
−

ν∑
k=1

F(ν, k)
f (ν−k)

h(ν−k)
,(28)

where

F(ν, k) =
(
ν

k

)
hh(ν−k)

h(ν)

(
1
h

)(k)
.

Notice that the coefficient F(ν, k) do not depend on the function f . If we take f = h,
we get the following relation:

1+
ν∑

k=1
F(ν, k) = 0.(29)

Now, in

det[3n+1A−13n+1 +3n+1Kn+13n+1],
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add to the
∑s−1

p=1(l p+1)+1+k row, for 1 ≤ k ≤ ls and 1 ≤ s ≤ m, a linear combination
of the preceding k− 1 rows with coefficient F(ν, k):

h(z) := pn+1(z),

and z= zs. Then, multiply the resulting row by

h(k)(z)/h(z)

evaluated at z= zs. We also carry out this kind of elementary operation by rows with

det[3n A−13n +3nKn3n],

where, in this case,

h(z) := pn(z).

On doing these elementary operations by rows, we fin that

det[3n+1A−13n+1 +3n+1Kn+13n+1]
det[3n A−13n +3nKn3n]

(30)

=

m∏
j=1

l j∏
s=1

p(s)n (zj )

pn(zj )
det[Bn+1 + Hn+1]

m∏
j=1

l j∏
s=1

p(s)n+1(zj )

pn+1(zj )
det[Bn + Hn]

.

Here Bn is a matrix, which can be described by blocks. The (r, s) block is the (lr + 1)×
(ls + 1) matrix([

b(r,s)i, j

p( j )
n (zs)p

(i )
n (zr )

+
i∑

k=1
F(i, k)

b(r,s)i−k, j

p( j )
n (zs)p

(i−k)
n (zr )

]
p(i )n (zr )

pn(zr )

) j=0,...,ls

i=0,...,lr
,

where b(r,s)i, j are constants

F(i, k) =
(

i

k

)
pn(zr )

p(i−k)
n (zr )

p(i )n (zr )

(
1

pn(z)

)(k)∣∣∣∣
z=zr

.(31)

Also, Hn is a matrix which can be described by blocks. The (r, s) block is the (lr + 1)×
(ls + 1) matrix  ∂ i

∂wi

K ( j,0)
n (zs, w)

p( j )
n (zs)pn(w)

∣∣∣∣∣
w=zr

 j=0,...,ls

i=0,...,lr

,
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where r, s= 1, . . . ,m. Notice that

∂ i

∂wi

K ( j,0)
n (zs, w)

p( j )
n (zs)pn(w)

∣∣∣∣∣
w=zr

=

∂ j

∂zj

∂ i

∂wi

Kn(z, w)

pn(w)

∣∣∣∣
w=zr

p( j )
n (z)

∣∣∣∣∣∣∣
z=zs

for 1 ≤ r, s ≤ m, 0 ≤ j ≤ ls, and 0 ≤ i ≤ lr .
Before we can fin the limit in (30), as n tends to infinit , we have to carry out

transformations similar to those above, but by columns on the determinants

det[Bn+1 + Hn+1] and det[Bn + Hn].

We describe these elementary operations on det[Bn+1 + Hn+1]. Those corresponding to
det[Bn + Hn] are the same with n+ 1 substituted by n.
Let 1 ≤ k ≤ ls and 1 ≤ s ≤ m. Add to the

∑s−1
p=1(l p + 1) + 1 + k column of

det[Bn+1+Hn+1] a linear combinationof the precedingk−1columnswith the coefficient
define in (28) with

h(z) := pn+1(z)

evaluated at z= zs and then multiply the resulting column by

h(k)(z)/h(z) evaluated at z= zs.

After carrying out similar operations on det[Bn + Hn], we fin that

m∏
j=1

l j∏
s=1

p(s)n (zj )

pn(zj )
det[Bn+1 + Hn+1]

m∏
j=1

l j∏
s=1

p(s)n+1(zj )

pn+1(zj )
det[Bn + Hn]

=

m∏
j=1

l j∏
s=1

∣∣∣∣ p(s)n (zj )

pn(zj )

∣∣∣∣2
m∏

j=1

l j∏
s=1

∣∣∣∣ p(s)n+1(zj )

pn+1(zj )

∣∣∣∣2
det[Cn+1 + Rn+1]
det[Cn + Rn]

,

where Cn is a block matrix. The (r, s) block is the (lr + 1)× (ls+ 1)matrix whose (i, j )
entry for i = 0, . . . , lr and j = 0, . . . , ls is

p( j )
n (zs)

pn(zs)

[[
b(r,s)i, j

p( j )
n (zs)p

(i )
n (zr )

+
i∑

k=1
F(i, k)

b(r,s)i−k, j

p( j )
n (zs)p

(i−k)
n (zr )

]
p(i )n (zr )

pn(zr )

+
j∑

u=1
F̃( j, u)

[
b(r,s)i, j−u

p( j−u)
n (zs)p

(i )
n (zr )

+
i∑

k=1
F(i, k)

b(r,s)i−k, j−u

p( j−u)
n (zs)p

(i−k)
n (zr )

]
p(i )n (zr )

pn(zr )

]
,
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where

F̃( j, u) =
(

j

u

)
pn(zs)

p( j−u)
n (zs)

p( j )
n (zs)

(
1

pn(zs)

)(u)
,

and F(i, k) is given by (31). Notice that the elements of the matrix Cn are o(1), and Rn

is a block matrix. The r, s block is the (lr + 1)× (ls + 1) matrix(
∂ j

∂zj

∂ i

∂wi

[
Kn(z, w)

pn(z)pn(w)

]∣∣∣∣
z=zs
w=zr

) j=0,...,ls

i=0,...,lr
,

where r, s= 1, . . . ,m. Taking into account Theorem 4, we obtain

lim
n→∞ det[Cn + Rn] = lim

n→∞ det[o(1)+ Rn] = |Fm| 6= 0,

where Fm is the matrix define in (20). From this, we have

lim
n→∞

kn

γn
=

m∏
i=1
|8(zi )|l i+1.

Using similar arguments, we can obtain the asymptotic behavior of qn(z)/pn(z). On
account of (26) and (9), this is restricted to findin the limit of

det

[
A−1 + Kn − Kn(z, Z)

pn(z)

T

pn(Z)

]
det[A−1 + Kn]

=
det

[
3n A−13n +3nKn3n −3n

Kn(z, Z)

pn(z)

T

pn(Z)3n

]
det[3n A−13n +3nKn3n]

.

In

det

[
3n A−13n +3nKn3n −3n

Kn(z, Z)

pn(z)

T

pn(Z)3n

]
,

add to the
∑s−1

p=1(l p+1)+1+k row, for 1 ≤ k ≤ ls and 1 ≤ s ≤ m, a linear combination
of the preceding k− 1 rows with the coefficient define in (28) with

h(z) := pn(z)

evaluated at z= zs, and multiply the resulting row by

h(k)(z)/h(z) evaluated at z= zs.

The resulting determinant is transformed by columns in a similar way. The same trans-
formations by rows and columns are made on det[3n A−13n +3nKn3n].

17



Taking into account (29), we fin that

lim
n→∞

det

[
3n A−13n +3nKn3n −3n

Kn(z, Z)

pn(z)

T

pn(Z)3n

]
det[3n A−13n +3nKn3n]

= f (z)

|Fm| ,

where Fm is the matrix define in (20) and f (z) is the determinant of a block matrix
whose (r, s) block is the (lr + 1)× (ls + 1) matrix whose firs column is equal to

g(zs, zr )− g(z, zr )

g(0,1)(zs, zr )− g(0,1)(z, zr )
...

g(0,lr )(zs, zr )− g(0,lr )(z, zr )


and other entries of this matrix are

(g(i−1, j−1)(zs, zr ))
j=2,...,ls+1
i=1,...,lr+1 ,

where r, s = 1, . . . ,m. If we subtract to the
∑i−1

s=1(ls + 1) + 1 column of f (z) its firs
column for i = 2, . . . ,m, we obtain that the dependence on the variable z only appears
in the firs column of this determinant. From this, if we defin

p(z) := f (8−1(z))
m∏

j=1
(z8(zj )− 1)l j+1(32)

it follows immediately that p is a polynomial in the variable zof degree atmost
∑m

i=1(l i+
1). Furthermore,

f (8−1(z))(s)|z=8(zi ) = 0, 0 ≤ s ≤ l i , i = 1, . . . ,m.

This yields that

p(s)(z)|z=8(zi ) = 0, 0 ≤ s ≤ l i , i = 1, . . . ,m.

From this, we deduce that either p is the polynomial identically equal to zero or that
there exists a nonzero complex constant C such that

p(z) = C
m∏

i=1
(z−8(zi ))

l i+1.

Let us calculate p(6
m
i=1(l i+1))(z) using Leibniz’s formula on (32). If we take into account

the equality(
m∏

j=1
(z8(zj )− 1)l j+1

)(6m
i=1(l i+1))

=
(

m∑
i=1
(l i + 1)

)
!

m∏
j=1
8(zj )

l j+1
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and since
m∏

j=1
(z8(zj )− 1)l j+1g(0,s)(8−1(z), zi ), i = 1, . . . ,m, s= 0, . . . , l i ,

is a polynomial in the variable z of degree
∑m

i=1(l i + 1)− 1 (therefore its
∑m

i=1(l i + 1)
derivative is identically zero), it holds that p(z)(6

m
i=1(l i+1)) is equal to(

m∑
i=1
(l i + 1)

)
!

m∏
j=1
8(zj )

l j+1|Fm| 6= 0.

Therefore,

f (z) =
m∏

i=1

(
8(zi )(8(z)−8(zi )

(8(z)8(zi )− 1)

)l i+1
|Fm|.

Now, using (9) and (26), we deduce

lim
n→∞

qn(z)

pn(z)
=

m∏
i=1

(
8(zi )(8(z)−8(zi ))

|8(zi )|(8(z)8(zi )− 1)

)l i+1
,

and we get (10) for k = 0. For any k, the result follows using induction. In this way, we
prove Theorem 2.

Proof of Theorem 3. Let ψn := Qn/(C(E)8)n. From (11), we get

lim
n→∞ψ

( j )
n (zi ) = 0, i = 1, . . . ,m, j = 0, . . . , l i .(33)

We assume that E is a rectifiabl Jordan curve. It holds that

‖ψn‖2H 2(Ä,ρ) ≤
m̂n

C(E)2n
,

where

m̂n =
∫

E
|Qn(ξ)|2ρ(ξ)|dξ | + Qn(Z)AQn(Z)

H .

From (13), we get

lim sup
n→∞

‖ψn‖2H 2(Ä,ρ) ≤ µ̂.

This implies that the sequence of functions { 12 (ψn + ψ∗)} in H 2(Ä, ρ) is uniformly
bounded in L2(ρ). Using (11), we get

1
2 (ψn + ψ∗)⇒ ψ∗.
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Now, from Lemma 3, we can state that

4µ̂ ≤ lim inf
n→∞

∥∥ψn + ψ∗(z)
∥∥2

H 2(Ä,ρ)
.

Now, using the parallelogram identity,

lim sup
n→∞

‖ψn(z)− ψ∗(z)‖2H 2(Ä,ρ) ≤ 2 lim sup
n→∞

‖ψn‖2H 2(Ä,ρ) + 2‖ψ∗‖2H 2(Ä,ρ) − 4µ̂ ≤ 0

and, from this last expression, we deduce the statement of the theorem.

If E is a rectifiabl Jordan arc, then∫
E
|C(E)−nQn(ξ)− H̃n(ξ)|2ρ(ξ)|dξ |

=
∫

E
|C(E)−nQn(ξ)|2ρ(ξ)|dξ | +

∫
E
|H̃n(ξ)|2ρ(ξ)|dξ |

− 2<e
∫

E
C(E)−nQn(ξ)H̃n(ξ)ρ(ξ)|dξ |.

Let us estimate each te rm of this sum∫
E
|C(E)−nQn(ξ)|2ρ(ξ)|dξ | = m̂n

C(E)2n
= µ̂+ o(1),∫

E
|H̃n(ξ)|2ρ(ξ)|dξ | = ‖ψ∗‖2H 2(Ä,ρ) + 2<e

∫
E
8n+(ξ)ψ∗+(ξ)8

n
−(ξ)ψ

∗
−(ξ)ρ(ξ)|dξ |.

The second term tends to 0 when n→∞ (see [24, Lemma 12.1, p. 218]). Thus∫
E
|H̃n(ξ)|2ρ(ξ)|dξ | = µ̂+ o(1).

Let us use the relations ψ∗(z) = B(z)ϕ∗(z), ψ∗(z) = µK (z,∞), where K is the
reproducing kernel, µ̂ =∏m

j=1 |8(zj )|2(l j+1)µ, and8+(ξ) = 1/8+(ξ) for ξ ∈ E, in the
following transformations:

2<e
∫

E
C(E)−nQn(ξ)H̃n(ξ)ρ(ξ)|dξ | = 2<e

∮
E

Qn(ξ)

C(E)n8n(ξ)
ψ∗(ξ)ρ(ξ)|dξ |

= 2<e
∮

E
ψn(ξ)µB(ξ)K (ξ,∞)ρ(ξ)|dξ |

= 2µ<e
∮

E

ψn(ξ)

B(ξ)
µ|B(ξ)|2K (ξ,∞)ρ(ξ)|dξ |

= 2µ̂<e
∮

E

ψn(ξ)

B(ξ)
K (ξ,∞)ρ(ξ)|dξ |.

From (33),

ψn(z)

B(z)
=

m∑
i=1

l i∑
k=0

A(i,k)n

(z− zi )k
+ rn(z),
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where limn→∞ A(i,k)n = 0, rn(∞) = 1, rn ∈ H 2(Ä, ρ). So, using the reproducing
property of the kernel, we have

2<e
∫

E
C(E)−nQn(ξ)H̃n(ξ)ρ(ξ)|dξ | = 2µ̂+ o(1).

From this last expre ssion, we get the statement of the theorem.
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