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1 Introduction 

Most of auction theory is based on symmetric-game models in which bidders 
observe private signals from an ordered set and, in (pure-strategy) equilib
rium, bid the same strictly monotonic function of their signals.1 Some sym
metric auction games cannot possibly have such equilibria, however. Con
sider the following class: 

Two objects, known to be identical, are to be sold by a single seller at a pair 
of sealed-bid, second-price auctions with no reserve prices and no entry fees. 
The auctions occur one after the other, quickly enough that no participants 
discount anything, and the price paid in the first auction is announced publicly 
before the bidding in the second auction. There are at least three bidders, and 
each bidder desires only one of the objects; so the winner of the first auction 
does not participate in the second. Finally, each bidder's signal is a random 
variable affiliated with the identical true common values of the objects and, 
conditional on this true value, the signals are independent and have identical 
atomless distributions. 

No game in this class can have a symmetric equilibrium at which in 
the first auction each bidder bids the same strictly increasing function of 
her signal. To see the reason for this, note first that if there were such an 
equilibrium the bidder whose signal turns out to be second highest is at a 
major disadvantage in the second auction, since all other bidders can infer 
her signal (by inverting the bid function) whereas she knows only that their 
signals are lower and that one signal was higher. Consider then the position 
of a bidder in the first auction whose signal is very near, but does not quite 
equal, the lowest possible signal. Conditional on the (unlikely but germane) 
event that this signal is the first or second highest among all bidders, it is 
with very high probability the second highest. Consequently, this bidder has 
much more to gain than lose by deviating down to the lowest bid in the 
range of the equilibrium bid function. There can therefore be no symmetric 
equilibrium of this type. 

ISee, for instance, the survey of Milgrom (1985). 
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We do not know what equilibria may look like for all the games in the 
above class, but we present below some equilibria for examples from a related 
class in which signals can take on only two values, and, not surprisingly given 
the above, these equilibria involve pooling: bidders with different signals 
sometimes make the same bid in the first auction. (Some equilibrium bids 
are also randomized, but this comes more from the discrete nature of the 
signal space than from the rest of the auction structure.) Perhaps more 
importantly, however, some of the qualitative features of these equilibria run 
counter to what might be expected from the literature based on symmetric 
monotonic equilibria.2 In particular, it is not always true that 

1. The more information the seller can credibly reveal, the better for the 
seller (weakly); 

2. The price in the second auction is on average higher (weakly) than the 
price in the first auction; and 

3. The more bidders there are, the better (weakly) for the seller. 

The rest of the paper is devoted to the examples. In Section 2, we con
struct a symmetric partial-pooling equilibrium for each member of a symmet
ric class of these games. Vve then construct symmetric equilibria for another 
class of games that is identical to the first :class except that the price in the 
first auction is not announced before the second. 'Ve show numerically that 
the seller can be made either better or worse off on average, depending on 
parameter values, by announcing the first-auction price. Thus the price in 
the first auction is a piece of information the seller may not wish to commit to 
revealing before the second auction. This runs counter to the intuition that 
by revealing information the seller ameliorates the "winner's curse." That 
intuition is evidently incomplete in cases like this one, at least, where the 
seller's information is partly endogenous. 

In Section 3, we exhibit an equilibrium for an asymmetric game of a 
similar sort in which price falls in expectation not oply conditional on some 
first-auction price realizations, but in a stronger ex~ante expected sense as 
well. Although "afternoon effects" are commonly oHperved in practice {e.g., 
Ashenfelter (1989)), their possibility runs counter to,two intuitive arguments 

2l-.Iuch of the folk wisdom appears to come from Milgrom(and Weber (1982b), a collec
tion of widely circulated preliminary results and conjectures. 
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about equilibria: 1. that there is increased competition (and hence higher 
prices on average) in the second auction after both one of the objects and 
one of the bidders have been removed, since the ratio of bidders to objects is 
now higher; and 2. that if expected prices in the two auctions were not equal, 
ex ante, a bidder could do better by bidding less aggressively in one of the 
auctions and more aggressively in the other. The example in Section 3 also 
has the feature that fewer bidders can make the seller better off, although 
this feature can be observed in simpler single-object auctions as well. 

Section 4 contains additional discussion, while some details of the argu
ment.s from Sections 2 and 3 are left. to the Appendix. 

Aside from exposing the falsit.y of some myths through special examples, 
there may be an additional benefit in presenting the equilibrium constructions 
of this paper. The question of how best to auction multiple objects has been 
of great interest lately,3 and the answer has been elusive primarily because 
the construction of equilibria under alternative scenarios has been limited to 
some very simple examples. The constructions of this paper may aid in the 
search for a general construction that can be used for sequential designs. 

2 Symmetric Examples 

There are 3 players. At the beginning of the game, each player secretly 
observes the signal 1 with probability q and the signal 0 with probability 
(1 - q). The players' signals are independent of each other. The value of 
either of the two objects to be auctioned to each of the players is the sum of 
the signals. No player wants more than one object, however, and the winner 
of the first auction is excluded from the second. The rules are sealed-bid, 
second-price in both auctions, with the usual unbiased tie-breaking rule.4 

3The recent spectrum auctions of the Federal Communications Commission in the U.S. 
ha\'e sparked interest in the subject most recently. McMillan (1994) discusses the design 
issues faced by the F.C.C. 

4 Sealed-bid, second-price auctions are rare. The literature's interest in them stems 
from the similarity of some of their theoretical properties to those of the widely-used, but 
more complicated, English auctions. 
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2.1 Price-Announced Case 

When the second-highest bid in the first auction is announced before the 
second auction, a pure strategy in the game is for each of the two possible 
signals (types): a bid in the first auction together with a function mapping 
announced prices to bids for the second game. 

For q E (0,1), let 

2q - 2 + V(I - q)(4 - q) 
p(q) = . 

q 

Note that p(q), which is the equilibrium pooling probability for the I-types 
in the 1st auction, declines from .75 to a as q goes from 0 to 1. The following 
behavioral strategy forms a symmetric equilibrium. 

a-TYPE 

1ST AUCTION: Bid b(q) = ( 2~P(q) 
qp q + 1- q 

2ND AUCTION: Bid 

{ 

3q - 2qp(q) 
:( q) = -2q---2q-p-( q-'-) ':"':"'+-1 

I-TYPE 

if the 1st-auction price was = b( q) 

if the 1st-auction price was > b( q). 

1ST AUCTION: \Vith probability p(q) bid b(q), and with probability 1 -
p( q) randomize according to the cumulative distribution function (c.dJ.) 

z (x) = (x - 2)(1 - q) - (3 - x)qp(q) 
q (3 - x)q(l - p(q)) [

2 - 2q + 3qp( q) 2 1 
on () , + q . 1- q + qp q 

(It is easy to check that Zq is a genuine c.dJ. for each q and that the support 
of Zq always lies above 2, while b(q) is always below 1; so a I-type who doesn't 
pool with the a-types always outbids both the a-types and the pooled I-types 
in the first auction.) 
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2ND AUCTION: If the 1st-auction price was > own bid, bid 3; if the Ist
auction price was = own bid> b(q), bid 3; if the 1st-auction price was = 
own bid ~ b(q), bid 

( ) 
_ 7 q + 2 - uqp( q) 

c q - . 
- 2q + 1 - 2qp( q) 

(Note that e(q) < 1 and 2 < c(q) < 3, so a I-type who pooled in the 1st 
auction will always outbid a O-type in the 2nd auction.) 

At this equilibrium the O-types break even on average in both auctions, 
competing away the profits in Bertrand fashion. The I-types who do not pool 
are the only possible winners in the first auction whenever they are present. 
Higher bids in the support of Zq increase a I-type's chance of winning in 
the 1st auction, but this is offset by the higher expected price involved. The 
pooling bid b( q) equates the expected profit from winning the 1st auction 
(and paying b(q)) with losing (with its chances of winning the 2nd auction and 
paying only e(q) < b(q)). The pooled I-types receive lower expected payoffs 
than the non-pooled I-types in the first auction but compensate with higher 
expected payoffs in the second auction. The argument that this strategy 
forms a symmetric equilibrium is found in the Appendix. We conjecture 
that it is the only symmetric one. Expected prices in the various possible 
events can be found in Table 1 (where dependence on q is suppressed and 
where EZi :j denotes the expectation of the ith order statistic from a random 
sample of size j distributed according to the c.dJ. Z). 

Since the order statistics from Z always lie between 2 and 3, it is obvious 
from this table that conditional on the 1st-auction price, the expected 2nd
auction price can be either higher or lower than the 1st-auction price. Some 
algebra reveals that the ex-ante expected prices are: 

E(Pl) = 6q3 - 39q2 + 72q - 36 + (6q2 - 24q + 18)V(4 - 5q + q2), 

E(P2) = -12q3 + 60q2 - 81q + 36 - (12q2 - 30q + 18)V(4 - 5q + q2). 
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Probe Probe Auction 1 price Probe Auction 2 price 
(1 _ q)3 b e 
3(1- q)2q b e 

(1 _ p)2 EZ2:2 2 

3(1- q)q2 2p(1- p) b 
e 

p2 b C/3 c 
2/3 e 

{ (1 - p)' EZ2:3 3 

q3 
3(1 _ p)2p EZ2:2 3 
3(1 - p)p2 b C 

p3 b c 

Table 1 

These are graphed against q in Figure 1, from which we see that the price 
does rise in the ex-ante sense. 

2.5': 

2.:. 

1.5': 

0.5':' 

00 0.2 0.4 0.6 0.8 
q 

2.2 Price-Not-Announced Case 

\Vhen the 2nd-highest bid in the first auction is not annOlllced, a pure strat
egy is an ordered pair of bids-one for each auction. The following behavioral 
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strategy forms a symmetric equilibrium. 

O-TYPE 

1ST AUCTION: Randomize according to the c.dJ. Fq, which is the unique 
function satisfying 

In(l - (1 _ q)F(x)) = _ (1 - q)xF(x) 
q 

[ 
-qlnq] on q . , l-q 

(That Fq is a genuine c.dJ. for each q is verified in the Appendix.) 

2ND AUCTION: If the 1st-auction randomization produced x (and lost), 
bid 

9q(x) = 1 - (1 .! q)Fq(x) 

(Note that 9q is monotone increasing, that 9q(q) = q, and that 
9q (-qlnqj(l- q)) = 1.) 

I-TYPE 

1ST AUCTION: Randomize according to the c.dJ. 

H ( ) - (l-q)x+qlnq [-qln q I 1 
q x = (3 ) on , 3q - q n q . q -x l-q 

(That Hq is a genuine c.dJ. for each q is straightforward to check.) 

2ND AUCTION: Bid 3. 

In this equilibrium, there is no pooling: the I-types always outbid the 
O-types. The O-types again break even on average in the pair of auctions but 
not in each auction individually: those who bid higher in the first auction 
do worse on average in the first auction when they win it, but they profit 
more on average in the second auction from the informational rent they gain 
when they lose in the first auction at a higher bid.s For the I-types, a loss 
in the 1st auction must have been to another I-type, so a bid of 3 in the 2nd 
auction is best against the strategy in question. The randomization in the 
first auction simply trades off higher win probabilities against higher prices, 

5Randomization over linked pairs of bids is also found in the equilibria of Lang and 
Rosenthal (1991). The interpretation of the linking there is somewhat different, however. 
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with proper accounting for the expected profits in the 2nd auction after a 
loss in the first. Notice that the bottom of the support of H is exactly the 
same as the top of the support of F. 

The argument that this strategy forms a symmetric equilibrium is found 
in the Appendix. Again we think it is the unique symmetric one.6 Expected 
prices in the various possible events can be found in Table 2 (where depen
dence on q is again suppressed). 

Prob. 
(1 _ q)3 

3(1 _ q)2q 
3(1 _ q)q2 

q3 

Auction 1 price 
EF2:3 

EF1:2 

EH2:2 
EH2:3 

Auction 2 price 
EgF3:3 
EgF2:2 
EgF 

3 

where EgFi:j denotes the expectation of 9 of the i-th of j order statistics 
from F and EgF denotes the expectation of 9 of a single draw from F. 

Table 2 

Again it is easy to see that conditional on 1st-auction price, the expected 
2nd-auction price can be either higher or ~ower. Some algebra (see the Ap
pendix) reveals, however, that ex ante the expected prices in both auctions 
are exactly the same, namely 3q(1 + q2)/2. 

2.3 Revenue Comparisons 

Expected seller's revenue is the sum of the ex-ante expected prices. In the 
price-announced case, this is 

_6q3 + 21q2 - 9q - (6q2 - 6q)V(4 - 5q + q2). 

In the price-not-announced case, it is simply 3q(f+ q2). In Figure 2 the 
difference in the expected seller's revenue between t~e first and second case 
is graphed against q. ; 

6\Vith a different tie-breaking rule, however, there is at least one more, at least when 
q ~ .25. See Section 4. 
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Figure 2: Revenue Difference 

Figure 2 reveals that the revenue ranking switches near .80, so when q is high 
the seller does better by committing not to reveal the 1st-auction price. 

3 An Asymmetric Example 

In this section, there are only two possible common values, 0 and 1, for the 
identical objects. A set of 2 informed bidders knows the true value V. A set 
of 2 uninformed bidders knows only that both values are equally likely. We 
assume first that the price in the first auction is not announced before the 
second auction. 

\Ve restrict attention to strategies in which, from familiar dominance 
considerations, in the 2nd auction the informed bid V and the uninformed 
bid 0; so only the 1st-auction bids need to be derived.7 At the unique such 
equilibrium, t.he c.dJ. for the bid of the I-informed in the 1st auction is 

if 0 < x < 7-ffi 
- 4 

'f > 7-v'iJ 1 X _ 4 

7Note that there are non-type-symmetric equilibria in which one informed bidder bids 
o in the first auction while the other bids V and the uninformed all bid O. Hence, since 
there is at most one nonzero bidder in each auction, the prices are constant at 0 in these 
non-type-symmetric equilibria. 
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while the c.dJ. of the bid of the uninformed is 

U(x) = (3J17-S)(1-x) . - 4 
{ 

(J17-3)(4-3x)e3_ffi+4~4:r if 0 < x < 7-yTI 

1 if x ~ 7-fI 

(The proof of this is in the Appendix; the functions are plotted in Figures 3 
and 4.) 

I-

0.8: 

0.6: 

0.4: 

o.L 

00 0.1 0.2 0.3 0.4 x 0.5 0.6 0.7 

Figure 3: I(x) 

I-
/ 

0.8':' 

0.6':' 

0.4':' 

0.2: 

00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
x 

Figure 4: U(x) 
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The expected price in the 1st auction is 
7-01 7-01 

10 4 x(I(x))2(1 - U(X))U'(x)dx + 2 10 4 xI(x)(l - I(x))U(x)U'(x)dx 
7-yTI . 7-01 

+2 10 4 xI(x)U(x)(l - U(x))I'(x)dx + 10 4 X(U(x))2(1 - I(x))I'(x)dx 
7-yTI . 

+ 10 4 x(l - U(x))U'(x)dx. 

The first 4 terms above are for the case V = 1; the 5th term is for V = o. 
The expected price in the 2nd auction is just the probability that V = 1 and 
an uninformed wins the first auction: 

7-01 

la 4 I(x)(l - (U(x))2)J'(x)dx. 

Numerical evaluations produce .38 for the 1st auction and .24 for the 2nd, 
so the ex-ante expected price declines. 

Next, notice that if the price in the first auction is announced before 
the second auction, the equilibrium described above remains an equilibrium 
in the sense that all players ignore the announcement and bid as above. 
An additional type-symmetric equilibrium is present in the price-announced 
game, however. In it, both informed bid V in both auctions, while the 
uninformed bid 0 in the first auction and bid the announced 1st-auction 
price in the second. This equilibrium is better for the seller and possesses no 
"afternoon effect," of course. 

Finally, notice that if there is only one uninformed bidder, there is an 
equilibrium for the price-not-announced game in which the uninformed bids 
1 in both auctions while the informed both bid V in both auctions. This 
means the seller earns 2V. On average, therefore, the seller earns 1 in total, 
\\'hich is more than at the randomized equilibrium above. Of course, if there 
are at least 3 informed, the seller again earns 2V at the obvious equilibrium. 

4 Concluding Remarks 

1. That there should be no upward or downward trend in prices over time on 
average in sequenced auctions seems to be a well-understood property of cer-
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tain environments. For instance, in an independent-private-values setting, 
Weber (1983) studies the sequential sale of k objects to risk-neutral bid
ders who each desire only one object. He shows that the equilibrium price 
sequence is a martingale. The result is established with an arbitrage argu
ment: If the sequence of prices were, for instance, downward drifting then, 

. in equilibrium, bidders with high values would bid low in the first auction, 
preferring to bid more aggressively later. But this behavior produces higher 
prices later, contradicting the assumed downward drifting sequence. (The 
risk-neutrality assumption is important for this result: If bidders were risk 
averse, then the sequence of prices could well be downward drifting, as the 
arbitrage argument would be complicated when a bidder incorporates in his 
current bid the risk associated with future prices (see, McMee and Vincent 
(1993)). Other variations of \Veber's model also have declining prices; e.g., 
Bernhardt and Scoones (1994) and Gale and Hausch (1992).) 

2. A similar arbitrage argument helps explain our finding that ex-ante 
expected prices are equal for the two auctions in the price-not-announced 
case of Section 2.2: Although our model has common values, when the price 
is not announced, no information about other bids is revealed from a loss in 
the 1st auction beyond what an individual could deduce for herself a priori. 
Hence, if the ex-ante expected price path were not constant, bidders would 
have incentives to bid more aggressively in the auction having the lower price 
and higher in the other auction. 

3. Information revelation considerations are generally more important for 
sequential sales of common-valued objects than for the private-values model. 
To the extent that the equilibrium is separating under common values, bids 
reveal information that can be used subsequently. Even if the price is not 
announced, a bidder who has lost in the first auction has more information 
at. the beginning of the second auction about the common value than she had 
originally. (If there were a monotone, symmetric equilibrium, for instance, 
she would know that there is a bidder with a higher estimate than hers.) In 
the private-values case, such information is worthless. Thus, in \Veber (1983) 
the symmetric equilibrium strategies for a sequential second-price auction are 
actually the same whether the price is announced or not. Of course, this is 
not generally the case for the common-values case. (See, however, Section 
3.) 
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4. In a single-object, common-values setting, Milgrom and Weber {1982} 
show that the seller can raise expected revenue by committing to a policy of 
publicly releasing whatever information he learns. The released information 
adds an additional link between a bidders's information and the selling price, 
and thereby reduces the ''winner's curse." Thus, players are willing to bid 
more aggressively on average, which is advantageous to the seller. Matters 
are not so simple in the case of sequential sale, however. If a player knows 
that his bid may reveal information, then he has an incentive to dissemble. 

5. The asymmetric model in Section 3 illustrates a sense in which the 
seller is made worse off by the presence of additional bidders. An even 
simpler instance of itS can be seen in a single-object, common-value model 
(again sealed-bid, 2nd-price auction rules) in which the object is worth 0 or 
1 with equal prior probabilities. If it is common knowledge that there are 
two bidders and they are both uninformed, then at the unique equilibrium 
they both bid 1/2. If a third bidder is added who knows the true value, 
at the unique type-symmetric equilibrium he bids the true value and the 
uninformed bid O. Thus the presence of the informed bidder destroys the 
competitive pressure that was present in the 2-bidder case. 

6. For the price-not-announced model of Section 2.2, with a different 
tie-breaking rule there is at least one additional symmetric equilibrium when 
q ~ .25. The rule is: If a tie involves more I-types than O-types, then the 
O-types lose and the tied I-types win with equal probabilities. If a tie involves 
at least as many O-types as I-types, then the I-types lose and the tied O-types 
win with equal probabilities. (This rule is not usable unless the auctioneer 
can observe the types, but the example may be interesting anyway in light 
of the existence result in Simon and Zame (1990).) The type-symmetric 
equilibrium strategy is: In the 1st auction, all bidders bid 3q/(2q+ 1); in the 
2nd auction, all O-types bid 0 and all I-types bid 3. We leave the verification 
to the reader. 

7. This paper leaves open several interesting questions. These include: 
·\Vhen bidders' signals can take on values in a continuum, since the stan
dard monotone-bid equilibrium constructions do not work in our sequential 
setting, what does work? 

8The phenomenon is familiar from Rosenthal (1982). We are grateful to Ruqu Wang 
for this example. 
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·V/hat information about early auctions is it optimal for the seller to reveal 
later? 
·Under what conditions are simultaneous designs superior for the seller (cf., 
Rosenthal and Wang (1996))? 

Appendix 

Equilibrium from Section 2.1 

Again, we suppress dependence on q for convenience. For a O-type in the 
2nd auction, if the price was > b in the 1st auction, the other two bidders 
must be I-types and so the object is worth 2. By the usual argument in 2nd
price single-object auctions, therefore, the bidder must bid 2. If the price was 
b in the 1st auction, a bid of e earns in expectation 

2p 1 221 
(1- e)2q(l- q)(1- -)- + (-e)(1- q) --

3 2 32' 

which is O. A bid below e always loses, so earns 0; a bid in (e, c) changes 
the tie-breaking factors 1/2 in the above to 1 and so again produces zero 
expected payoff. A bid of c or more is weakly dominated by a bid of 2, since 
the objects can be worth no more than 2, and so cannot result in positive 
expected payoff. So there are no profitable deviations by a O-type in the 2nd 
auction, where 0 payoffs are expected. 

For a O-type in the 1st auction, a bid of b earns in expectation 

A bid below b always loses and leads to zero expected payoffs in the second 
auction. A bid above 2 is again dominated by a bid of 2. From the last 
equation, a bid between band 2 breaks even when. it wins and produces no 
information that can be profitably used in the 2nd auction when it loses, and 
so there are no profitable deviations by a O-type. l 

For a I-type in the 2nd auction, if the 1st-auction price exceeded the 
bidder's mnl bid, the other two bidders must be l-lypes and so the object is 
worth 3. The bidder must bid 3 for the usual reasons. If in the 1st auction 
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the player's bid set the price and was above b, by bidding 3 he bids the true 
value when that value is 3 and ensures winning and paying 2 when that value 
is 2, so the usual argument applies again. For the event when the price and 
his bid were both b in the 1st auction, the expected payoff from bidding c in 
the 2nd auction is 

. 2 221 1) () 11 (3 - c)q (p -- + 2p(1 - p)- + (2 - c)2q 1 - q p--
32 2 32 

+(2 - e)2q(1 - q)(1 - P + E) + (1- e)(1 _ q)2~. 
3 3 

The value chosen for c makes the first 2 terms above sum to 0; so deviations 
into (e, c), which eliminate these two terms, make no payoff difference, and 
deviations into (c,3), which change all the (1/2)-tie-break probabilities in 
these two terms to 1, also make no payoff difference. Bids ~ e and = 3 
obviously do no better. 

For a I-type in the 1st auction, a bid of b produces the expected payoffs 

2 21 ) P ( ) ( )21 (3 - b)q p - + (2 - b)2q(1 - q - + 1 - b 1 - q -
3 3 3 

+(2 - e)2q(1 - q)(1 - p + E) + (1 - e)(1 _ q)2~. 
3 3 

Substituting for band e and simplifying, this becomes 

1 2 2 2 ( 2 3q p - 3Pq 1- q) + 1- q . (1) 

For a I-type in the 1st auction, a bid of x > b produces the expected 
payoff 

q21X (3 - y)[(1 - p)22Z(y)Z'(y) + 2p(1 - p)Z'(y)]dy 

+2q(1 - q)(1 - p) l x 

(2 - y)Z'(y)dy + 
(3 - b)q2p2 + (2 - b)2q(1 - q)p + (1 - b)(l _ q)2. 

For bids in the support of Z to produce equal payoffs, therefore, 

(3 - x)q2[(1 - p)22Z(x)Z'(x) + 2p(1 - p)Z'(x)] 
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+(2 - x)2q(1 - q)(l - p)Z'(x) = 0, 

which is satisfied uniquely by the Z defined earlier. In this case, the expected 
payoff from bidding in this support is given by its value at the lower limit of 
the support; namely, 

(3 - b)q2p2 + (2 - b)2q(1 - q)p + (1 - b)(l _ q)2. 

Substituting for b, this becomes 

(2) 

Equat.ing (1) and (2) generates the quadratic equation whose (relevant) so
lution is p defined earlier. 

Since Z is atomless, deviations above its support do no better than bid
ding t.he upper limit. of t.hat support, and deviations below its support are 
no better than the lower limit. Deviations below b are obviously worse than 
bidding b. 

Equilibrium from Section 2.2 

To comput.e g(x), pick r to maximize expected 2nd-auction profit for a 
O-type when t.he 1st-auction companion bid is x from the support of F and 
when the other bidders bid according to the hypothesized strategy: 

1

9- 1(r) 19-1(r) 
(1_q)2 z=q (-g(z) )2(1- F(x) )F' (z)dz+2q(1-q) z=q (1- g(z) )F' (z)dz. 

(3) 
Differentiating with respect to r, equating the result to zero, and setting 
g(x) = r) produces 

(1 - q)( -g(x))(l - F(x)) + q(l - g(x)) = 0; (4) 

hence the function 9 in Section 2.2. To see that this g(x) is the best compan
ion in the 2nd auction to the bid x from the support of F in the 1st auction, 
consider first an alternative r E (g (x)) 1]. The difference between the payoff 
to the pair of bids x and r and the pair x and g(x) is the eA'Pression in (3) 
with the lower limits of the integrals replaced by x. Substituting the expres
sion for g(.) from Section 2.2, this is clearly negative. A similar argument 
takes care of a companion bid r E [q, x). A companion bid E (1,3) is no 
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better than 1, a companion below q is no better than q, a.."1d a companion of 
3 or more is obviously hopeless. 

Now, assuming the companion bid is g(x), the break-even condition for 
the O-types in the first auction is 

(1 - q)21:q (-z)2F(z)F'(z)dz + (1 - q)22(1 - F(x)) l:
q 
(-g(z))F'(z)dz 

+2q(1 - q) l:
q 
(1 - g(z))F'(z)dz = o. 

This clearly holds at q. It will be satisfied on (q, -f2~q] if its derivative is zero 
there. This condition on the derivative (simplified) is 

(1 - q)( -x)F(x)F'(x) + (1 - q)( -g(x))(1 - F(x))F'(x) 

-F'(x)(1 - q) l:
q 
(-g(z)F'(z))dz + q(l - g(x))F'(x) = O. 

Substituting for g(.) results in the equation 

1
x qF'(z) 

-xF(x) + ()F( ) dz = O. 
z=q 1- 1- q z 

Or 
-xF(x) - 1 ~ q In(l - (1 - q)F(x)) = o. 

(5) 

For x < q, the only solution to this functional equation is F(x) = o. But 
above q another, positive, solution exists, and the locus of these positive 
solutions is increasing and continuous in x. (To see this, substitute z = 1 -
(l-q)F and write the equation for the inverse flmction as x = -q Inz/(l-z). 
It is not hard to check that this x is continuous and monotone decreasing in z 
on [q, 1].) The expression for the upper limit of the support of F is obtained 
by setting F(x) = 1 and solving for x. 

A deviation by a O-type in the 1st auction below q with any 2nd-auction 
companion is no better than q with that same companion. To see if the 
O-types would gain by deviating into the support of H, we calculate the 
derivative of a O-type's payoffs in this region (when the companion bid is one 
in the 2nd auction, which has to be the best companion for such a deviation) 
and it is negative. This means that any such deviation (and hence any above 
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the support of H too) is no better than the deviation -qlnq/(I- q), which 
is itself unprofitable. 

That the I-types do best by bidding 3 in the 2nd auction is obvious. 
To determine the I-types' 1st-auction randomization with this companion, 
consider overall expected payoffs against equilibrium play by the others: 

q21:-f~~q (3 - z)2H(z)H'(z)dz + 2q(1 - q) 1:-1q~~q (2 - z)H'(z)dz 

.::..2..!..!!.. 
+(1 - q)21=:-q (1 - z)2F(z)F'(z)dz 

.::..2..!..!!.. 

+2q(1 - q)(l - H(x)) l=:-q (2 - g(z))F'(z)dz. (6) 

Next check that with the 9 and H specified in Section 2.2, overall expected 
payoffs are constant on the support of H. A deviation above the support 
does not gain relative to the top of the support, and a deviation to x in the 
support of F (with best companion 3 in the 2nd auction) produces 

~ x 

2q(1 - q) l=:-q (2 - g(z))F'(z)dz + (1 - q)21=q (1 - z)2F(z)F'(z)dz 

+(1 - q)2(1 - F(x)) l:
q 

2(1 - g(z))F'(z)dz 

~ . 

+(1 - q)21=~-q 2(1 - g(z))(l - F(z))F'(z)dz. (7) 

Using the break-even conditions for the O-types in the two auctions, the last 
three terms of (7) are seen to equal 

(1 - q)2 (F2(X) + 2(1 - F(x) )F(x)) - 2q(1 - q) l:
q 
(1 - g(z))F'(z)dz 

~ 

+(1 - q)2(1 - F(x))2 - 2q(1 - q) l=~-q (1 - g(z))F'(z)dz 
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which, after some algebra, just equals the third term in (6) . Since the bidder 
is indifferent over the support of H, his expected payoff from not deviating 
can be calculated by evaluating (6) at -qInq/(l- q). The first two terms of 
this expression vanish and the fourth term becomes equal to the first term in 
(7) . Altogether then, we have shown that a deviation into the support of F 
(with best companion bid in the 2nd auction) does no better (and no worse) 
than a bid in the support of H (with companion 3). A deviation below this 
support is obviously no better than a bid at its lower limit. 

Expected prices at the equilibrium from Section 2.2. 

First, EgF = -q In q/ (1 - q); this follows from evaluating (5) at x = 
-qlnq/(1- q). To show that 

EF. =2 (1- q + qln q) 
1.2 q (_1+q)2 , 

use the previous result and the break-even condition for the O-types in the 
first auction at x = -q In q/(1-q). Similarly, integrating (4) leads to EgF2:2 = 
EF1:2 • 

~\'lultiplying both sides of (4) by (1 - F(x))F'(x), substituting this into 
the definition of EgF3:3, and simplifying results in 

E F. = 1.5 (-1+4q-3q2+2q2Inq). 
9 3.3 q (q _ 1)3 

To compute E F2:3 , first note that 

=.i.!!!..i 

EF2:3 = 3EF1:2 - 61=:-q zF2(z)F'(z)dz. 

Substituting for zF(z) by using (5), we get 

.::.2..!.!!.s 

EF2:3 = 3EF1:2 - 61=:-q F(z) (i:q g(y)F'(y)dy) F'(z)dz. 

Integration by parts results in EF2:3 = EgF3:3· 

Finally, routine calculations show that 

3(1 - q)q2 EH2:2 + q3 EH2:3 = 3(1 - q)q2(EgF) + q33 
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Thus, 

Equilibrium from Section 3 

We hypothesize an equilibrium in which the O-informed bid ° in the first 
auction, the I-informed bid according to the c.d.f. I, and the uninformed 
bid according to the c.d.f. U, the supports of both I and U being subsets of 
[0,1]. Assuming differentiability, except possibly at 0, the expected payoff to 
a I-informed bidding z E (0,1] is 

I( )U2( ) [ _ J:=o xI'(x)U2(x)dx + 2 J:=o XI'(X)U(X)I(X)dX] 
z z 1 J(z)U2(z) 

+ l~z I'(x)U
2
(x)dx. 

For indifference to hold on the interior of the support of I, the derivative 
of this expression with respect to z must be 0. Simplified, that condition 
becomes 

I'(z) = 2(1 - z)I(z)U'(z). 
zU(z) 

Similarly, the expected payoff to an uninformed bidding z E (0,1] is 

~U( ) [- J:=oXU'(X)dX] 
2 z U(z) 

~J2( )U( ) [ _ 2 J:=o xI'(x)J(x)U(x)dx + J:=o XU'(X)J2(X)dX]. 
+ 2 z z 1 J2(Z)U(Z) 

Differentiating as above and simplifying results in 

U'(z) = 2J(z)1'(z)U(z)(1 - z). 
z - J2(Z) + zJ2(z) ; 

Substituting the expression for l' into that for U' Yl1elds 

2 
I2( ) Z 

Z = 4-7z+3z2 
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Notice ]2(0) = 0, and /2 increases on [0,6/7]. To find the upper limit for 
the support, we set z2 = 4 - 7 z + 3z2, which produces z = 7±f1. Taking the 
upper limit of the support of / to be 

7 - v'I7 fV .72 < 6/7, 
4 

therefore, results in a c.dJ. Substituting the expression for / back into the 
expression for U' generates the differential equation 

U'(z) = (8 - 7z)U(z) 
4(1 - z)2(4 - 3z) 

Taking the initial condition to be U((7 - Ji7)/4) = 1, standard arguments 
show that it has a unique solution on [0, (7 - Ji7)/4] which is 

U(z) = (Ji7 - 3)(4 - 3z) ea-ffi+ 4':4%, 
(3Ji7 - 5)(1 - z) 

an increasing function with U(O) > 0, and therefore a c.dJ. By construction, 
the I-informed and the uninformed are indifferent over the supports of their 
mixtures. Neither type can gain by bidding either above (7 - Ji7)/4 or 
below O. Similarly, the O-informed cannot gain by making nonzero bids, so I 
and U generate an equilibrium. 

That there can be no other type-symmetric equilibria in the game is easy 
to verify: Neither I nor U can have mass points other than at 0, both must 
have the same supports, and the common support can contain no gaps. The 
derivation above, therefore, rules out all other possibilities. 
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