CONTINUOUS SYMMETRIC SOBOLEV INNER PRODUCTS

M. Isabel Bueno ${ }^{(1)}$, Francisco Marcellán ${ }^{(2)}$
Departamento de Matemáticas
Universidad Carlos III de Madrid
Avenida Universidad, 30. 28911 Leganés. Spain
${ }^{(1)}$ mbueno@math.uc3m.es
${ }^{(2)}$ pacomarc@ing.uc3m.es

January 23, 2003

Key words and phrases: Sobolev inner products, orthogonal polynomials, semiclassical linear functionals, recurrence relations.

2000 Mathematics Subject Classification. 42C05

Abstract

In this paper we consider the sequence of monic polynomials $\left(Q_{n}\right)$ orthogonal with respect to a symmetric Sobolev inner product. If $Q_{2 n}(x)=P_{n}\left(x^{2}\right)$ and $Q_{2 n+1}(x)=x R_{n}\left(x^{2}\right)$, then we deduce the integral representation of the inner products such that $\left(P_{n}\right)$ and $\left(R_{n}\right)$ are, respectively, the corresponding sequences of monic orthogonal polynomials. In the semiclassical case, algebraic relations between such sequences are deduced. Finally, an application of the above results to Freud-Sobolev polynomials is given.

1 Introduction

Let U be a linear functional in the linear space \mathbb{P} of polynomials with real coefficients. The sequence of real numbers $\left(\mu_{n}\right)_{n \in \mathbb{N}}$ where $\mu_{n}=U\left(x^{n}\right)$ is said
to be the sequence of the moments associated with the linear functional.
Let consider the bilinear functional $\varphi_{U}: \mathbb{P} \times \mathbb{P} \rightarrow \mathbb{R}$ such that

$$
\varphi(p, q)=U(p q), \quad p, q \in \mathbb{P}
$$

The Gram matrix of φ_{U} with respect to the canonical basis $\left(x^{n}\right)_{n \in \mathbb{N}}$ is a Hankel matrix (see [3]). If the principal submatrices of the Hankel matrix are nonsingular, then the linear functional U is said to be quasi-definite.

For a quasi-definite linear functional U there exists a sequence of monic polynomials $\left\{T_{n}\right\}$ such that ([3])

1. $\operatorname{deg}\left(T_{n}\right)=n, \quad n \in \mathbb{N}$.
2. $\varphi_{U}\left(T_{n}, T_{m}\right)=k_{n} \delta_{n m}, \quad k_{n} \neq 0$.

This sequence of polynomials satisfies a three-term recurrence relation

$$
x T_{n}(x)=T_{n+1}(x)+b_{n} T_{n}(x)+c_{n} T_{n-1}(x), \quad n \geq 0,
$$

with initial conditions

$$
T_{-1}(x)=0, \quad T_{0}(x)=1, \quad \text { and } \quad c_{n} \neq 0, \quad \forall n \in \mathbb{N} .
$$

The linear functional is said to be positive definite if the principal submatrices of the associated Hankel matrix are positive definite. In such conditions, there exists a positive Borel measure μ supported in the real line such that the following integral representation for the linear functional U holds:

$$
\begin{equation*}
U(p)=\int_{\mathbb{R}} p(x) d \mu(x), \quad p \in \mathbb{P} . \tag{1.1}
\end{equation*}
$$

A linear functional U is said to be symmetric if $U\left(x^{2 n+1}\right)=0, \quad n \in \mathbb{N}$. In particular, if U is positive definite and symmetric, then the support of the measure μ in (1.1) is a symmetric set with respect to the origin in the real line and the measure μ is associated with an even function in \mathbb{R}.

If U is a quasi-definite linear functional and $\left(T_{n}\right)$ denotes the corresponding sequence of monic orthogonal polynomials, then

$$
T_{2 n}(x)=S_{n}\left(x^{2}\right), \quad n \in \mathbb{N},
$$

and

$$
T_{2 n+1}(x)=x S_{n}^{*}\left(x^{2}\right), \quad n \in \mathbb{N}
$$

Here $\left(S_{n}\right)$ and $\left(S_{n}^{*}\right)$ are, respectively, sequences of monic polynomials orthogonal with respect to two quasi-definite linear functionals V and V^{*} such that

$$
\begin{aligned}
V\left(x^{n}\right) & =U\left(x^{2 n}\right), \quad n \in \mathbb{N}, \\
V^{*}\left(x^{n}\right) & =V\left(x^{n+1}\right), \quad n \in \mathbb{N},
\end{aligned}
$$

(see [3]).
Conversely, given a quasi-definite linear functional V such that $S_{n}(0) \neq 0$ for the corresponding sequence of monic orthogonal polynomials, the linear functional U satisfying

$$
U\left(x^{2 n}\right)=V\left(x^{n}\right), \quad U\left(x^{2 n+1}\right)=0
$$

is said to be the symmetrized linear functional associated with U . Notice that in this situation the sequence $\left(T_{n}\right)$ satisfies a three-term recurrence relation

$$
x T_{n}(x)=T_{n+1}(x)+c_{n} T_{n-1}(x), \quad n \geq 0,
$$

with initial conditions

$$
T_{0}(x)=1, \quad T_{1}(x)=x, \quad \text { and } \quad c_{n} \neq 0, \quad \forall n \in \mathbb{N} .
$$

As a very well known example of symmetrization process, the Hermite polynomials are the symmetrized of Laguerre polynomials with parameter $\alpha=-1 / 2$, i.e.

$$
\begin{gathered}
H_{2 n}(x)=L_{n}^{-\frac{1}{2}}\left(x^{2}\right) \\
H_{2 n+1}(x)=x L_{n}^{\frac{1}{2}}\left(x^{2}\right)
\end{gathered}
$$

In a recent work [1], the symmetrized linear functionals associated with semiclassical linear functionals are studied. A semiclassical linear functional U satisfies a distributional Pearson equation $D(\phi U)=\tau U$ where ϕ and τ are polynomials with $\operatorname{deg}(\tau) \geq 1$. They constitute an extension of classical linear functionals (Hermite, Laguerre, Jacobi, and Bessel) and they have been extensively analyzed during the last two decades (see [4], [6]).

The aim of our contribution is to analyze the symmetrization process for a kind of inner products which have received some attention very recently, the so-called Sobolev inner products. Consider two positive definite linear functionals U_{0} and U_{1} in the linear space \mathbb{P} of the polynomials with real coefficients. We introduce a bilinear functional $<\cdot, \cdot>$ in $\mathbb{P} \times \mathbb{P}$

$$
\begin{equation*}
<p, q>=U_{0}(p q)+U_{1}\left(p^{\prime} q^{\prime}\right) \tag{1.2}
\end{equation*}
$$

with $p, q \in \mathbb{P}$.
Using the Gram-Schmidt method for the canonical basis $\left(x^{n}\right)_{n \in \mathbb{N}}$ in \mathbb{P}, we obtain a sequence $\left(Q_{n}\right)$ of monic polynomials with $\operatorname{deg}\left(Q_{n}\right)=n$ which are orthogonal with respect to the inner product (1.2).

Unfortunately, these polynomials do not satisfy recurrence relations as those associated with a linear functional. Nevertheless, under some assumptions for the linear functionals U_{0} and U_{1} it is possible to deduce some higher order recurrence relations (see [5]) for the polynomials Q_{n}.

The starting point of our contribution is to assume that U_{0} and U_{1} are symmetric positive definite linear functionals. Then, $Q_{2 n}(x)=P_{n}\left(x^{2}\right)$ as well as $Q_{2 n+1}(x)=x R_{n}\left(x^{2}\right)$. In section 3 we deduce the integral representation for the inner products such that $\left(P_{n}\right)$ and $\left(R_{n}\right)$ are, respectively, the corresponding sequences of monic orthogonal polynomials. Thus, non-diagonal Sobolev inner products appear in a natural way.

In section 4 we assume that $U=U_{0}=U_{1}$ and U is a semiclassical linear functional. Then, algebraic relations between $\left(P_{n}\right)$ and $\left(R_{n}\right)$ are deduced as well as higher order recurrence relations for $\left(P_{n}\right)$ and $\left(R_{n}\right)$. Finally, as an example, we show the application of our results and techniques for the so-called Freud-Sobolev orthogonal polynomials [2].

2 Semiclassical Orthogonal Polynomials. Symmetrization and class.

Consider a quasi-definite linear functional U in the linear space \mathbb{P} of polynomials with real coefficients and let $\left\{P_{n}\right\}$ be the sequence of monic polynomials orthogonal with respect to U.

U is said to be a semiclassical linear functional if

$$
\begin{equation*}
D(\phi U)=\tau U \tag{2.1}
\end{equation*}
$$

where ϕ and τ are polynomials with $\operatorname{deg}(\phi)=t \geq 0$ and $\operatorname{deg}(\tau)=p \geq 1$.
Theorem 2.1 [1] The following statements are equivalent:

1. U is a semiclassical linear functional.
2. The Stieltjes function $S_{U}(z)=-\sum_{n=0}^{\infty} \frac{\mu_{n}}{z^{n+1}}$ with $\mu_{n}=U\left(x^{n}\right)$ satisfies

$$
\begin{equation*}
\phi(z) S_{U}^{\prime}(z)=C(z) S_{U}(z)+D(z) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{gather*}
C(z)=-\phi^{\prime}(z)+\tau(z) \tag{2.3}\\
D(z)=-\left(U \theta_{0} \phi\right)^{\prime}(z)+\left(U \theta_{0} \tau\right)(z) \tag{2.4}
\end{gather*}
$$

and

$$
\begin{gathered}
\left(U \theta_{0} p\right)(c)=<U, \theta_{c} p>, \quad\left(U \theta_{0} p\right)^{\prime}(c)=<U, \theta_{c}^{2} p> \\
\theta_{c} p=\frac{p(z)-p(c)}{z-c} .
\end{gathered}
$$

The condition of being semiclassical can also be characterized in terms of a weight function.

Proposition 2.2 [4] Let U be a semiclassical linear functional with integral representation

$$
U(p)=\int_{\mathbb{R}} p \omega(x) d x
$$

where ω is a continuosly differentiable function in an interval $[a, b]$ satisfying some extra boundary conditions and such that $D(\phi U)=\tau U$. Then

$$
\begin{equation*}
(\phi \omega)^{\prime}=\tau \omega \tag{2.5}
\end{equation*}
$$

and ω is said to be a semiclassical weight function.
Remark 2.3 Observe that (2.1) holds for an infinite family of pairs of polynomials (ϕ, τ). In particular, if $\left(\phi_{1}, \tau_{1}\right)$ satisfies (2.1), $\left(\pi \phi_{1}, \pi \tau_{1}+\pi^{\prime} \phi_{1}\right)$ with π any polynomial, will also satisfy (2.1).

Definition 2.1 [1] Let (ϕ, τ) be the pair of polynomials with minimum degree that satisfy (2.1). Then, the class of U is defined as

$$
\begin{equation*}
s=\max \{\operatorname{deg}(\phi)-2, \operatorname{deg}(\tau)-1\} . \tag{2.6}
\end{equation*}
$$

It is possible to characterize those pairs of polynomials (ϕ, τ) that define the class of a semiclassical functional.

Proposition 2.4 [1] Let C and D be the polynomials defined in (2.3) and (2.4). Then, (ϕ, τ) is the pair of polynomials of minimum degree that satisfy (2.1) if and only if (ϕ, C, D) are coprime.

Theorem 2.5 [1] Let Ψ be a semiclassical linear functional of class s such that $D(\phi \Psi)=\tau \Psi$ and let U be its symmetrized. Then, U is also semiclassical of class \tilde{s} and

1. $\tilde{s}=2 s$ if $\phi(0)=0,[\phi(z)=z E(z)]$ and $2 C(0)+E(0)=0$, $[2 C(z)+E(z)=z G(z)]$.
Furthermore, $D(\tilde{\phi} U)=\tilde{\tau} U$ and

$$
\begin{gather*}
\tilde{\phi}(z)=E\left(z^{2}\right) \tag{2.7}\\
\tilde{\tau}(z)=z\left[G\left(z^{2}\right)+2 E^{\prime}\left(z^{2}\right)\right] . \tag{2.8}
\end{gather*}
$$

2. $\tilde{s}=2 s+1$ if $\phi(0)=0,[\phi(z)=z E(z)]$ and $2 C(0)+E(0) \neq 0$.

Moreover

$$
\begin{gather*}
\tilde{\phi}(z)=z E\left(z^{2}\right) \tag{2.9}\\
\tilde{\tau}(z)=2\left[E\left(z^{2}\right)+z^{2} E^{\prime}\left(z^{2}\right)+C\left(z^{2}\right)\right] \tag{2.10}
\end{gather*}
$$

3. $\tilde{s}=2 s+3$ if $\phi(0) \neq 0$ and

$$
\begin{gather*}
\tilde{\phi}(z)=z \phi\left(z^{2}\right) \tag{2.11}\\
\tilde{\tau}(z)=2\left[\phi\left(z^{2}\right)+z^{2} \phi^{\prime}\left(z^{2}\right)+z^{2} C\left(z^{2}\right)\right] . \tag{2.12}
\end{gather*}
$$

Proposition 2.6 Let \boldsymbol{U} be a symmetric and semiclassical linear functional of class \tilde{s} such that:

$$
D(\tilde{\phi} \mathbf{U})=\tilde{\tau} \mathbf{U}
$$

If $\tilde{s}=2 k$ for some $k \in \mathbb{N}$, then $\tilde{\phi}$ is an even polynomial. If $\tilde{s}=2 k+1$, then $\tilde{\phi}$ is an odd polynomial.

Proof

1. Suppose that \mathbf{U} is the symmetrized of a linear functional \mathbf{L} of class s. Moreover, assume that \tilde{s} is even. Then, from Theorem 2.5 we get

$$
\begin{equation*}
\tilde{s}=2 s, \quad \tilde{s}=2 s+1 \quad \text { or } \quad \tilde{s}=2 s+3 \tag{2.13}
\end{equation*}
$$

It is easy to prove that, if $\tilde{s}=2 k$, then, necessarily $s=k$. Then, \mathbf{L} is of class k and $D(\phi \mathbf{L})=\tau \mathbf{L}$ for certain polynomials ϕ, τ, and from (2.7)

$$
\tilde{\phi}(x)=E\left(x^{2}\right)
$$

i.e., $\tilde{\phi}$ is an even polynomial.
2. Suppose now that \tilde{s} is odd, namely, $\tilde{s}=2 k+1$ for some $k \in \mathbb{N}$. Then, because of (2.13) it may happen that $s=k$ or $s=k-1$ and \mathbf{L} can be of class k or $k-1$.

- If $s=k$, from (2.9) it holds that

$$
\tilde{\phi}(x)=x E\left(x^{2}\right)
$$

Hence, $\tilde{\phi}$ is an odd polynomial.

- If $s=k-1$, then from (2.11)

$$
\tilde{\phi}(x)=x \phi\left(x^{2}\right)
$$

and $\tilde{\phi}$ is an odd polynomial.
Proposition 2.7 Let \mathbf{U} be a symmetric, semiclassical linear functional of class \tilde{s}. Assume \mathbf{U} is the symmetrized of the semiclassical linear functional \mathbf{L} of class s. If $D(\tilde{\phi} U)=\tilde{\tau} U$, where $\tilde{\phi}$ and $\tilde{\tau}$ are polynomials, then

1. For \tilde{s} even, $\tilde{\tau}$ is an odd polynomial.
2. For \tilde{s} odd, $\tilde{\tau}$ is an even polynomial.

Proof

1. If \tilde{s} is even, namely, $\tilde{s}=2 k$ for some $k \in \mathbb{N}$, then $s=k$ (see proposition 2.6). Moreover, for (2.8)

$$
\tilde{\tau}(x)=x\left[G\left(x^{2}\right)+2 E^{\prime}\left(x^{2}\right)\right]
$$

for certain polynomials $G(x)$ and $E(x)$. Thus $\tilde{\tau}$ is an odd polynomial.
2. If \tilde{s} is odd, namely, $\tilde{s}=2 k+1$ for some $k \in \mathbb{N}$, then one of the following statements holds

- $s=k$ and $\tilde{\tau}(x)=2\left[E\left(x^{2}\right)+x^{2} E^{\prime}\left(x^{2}\right)+C\left(x^{2}\right)\right]$ for certain polynomials $E(x)$ and $C(x)$. As a consequence, $\tilde{\tau}$ is an even polynomial.
- $s=k-1$ and $\tilde{\tau}(x)=2\left[\phi\left(x^{2}\right)+x^{2} \phi^{\prime}\left(x^{2}\right)+x^{2} C\left(x^{2}\right)\right]$ for certain polynomials $\phi(x), C(x)$. Thus $\tilde{\tau}$ is an even polynomial.

3 Symmetric Sobolev Inner products.

Consider two positive Borel measures μ_{0}, μ_{1} supported on the real line such that

$$
\int_{\mathbb{R}} x^{n} d \mu_{i}<\infty \quad i=0,1, \quad n \in \mathbb{N} .
$$

Consider an inner product in the linear space \mathbb{P} of polynomials with real coefficients

$$
\begin{equation*}
<p, q>_{s}=\int_{\mathbb{R}} p q d \mu_{0}+\int_{\mathbb{R}} p^{\prime} q^{\prime} d \mu_{1} \tag{3.1}
\end{equation*}
$$

This product is said to be a Sobolev inner product.
Furthermore, assume that μ_{0} and μ_{1} are supported on a subset of the real line which is symmetric with respect to the origin as well as the corresponding sequences of moments

$$
c_{n}^{(i)}=\int_{\mathbb{R}} x^{n} d \mu_{i}, \quad i=0,1,
$$

satisfy $c_{2 n+1}^{(i)}=0, \quad i=0,1, \quad n \in \mathbb{N}$.
Under these conditions, if we denote $\left\{Q_{n}\right\}$ the corresponding sequence of monic polynomials orthogonal with respect to (3.1), then

$$
Q_{2 n}(x)=P_{n}\left(x^{2}\right), \quad Q_{2 n+1}(x)=x R_{n}\left(x^{2}\right)
$$

for certain sequences of monic polynomials $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$.
We are interested in the study of the orthogonality properties of the sequences $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$, respectively.

First, observe that for $n \neq m$

$$
\begin{gathered}
0=<Q_{2 n}, Q_{2 m}>_{s}=\int_{\mathbb{R}} P_{n}\left(x^{2}\right) P_{m}\left(x^{2}\right) d \mu_{0}+\int_{\mathbb{R}} 4 x^{2} P_{n}^{\prime}\left(x^{2}\right) P_{m}^{\prime}\left(x^{2}\right) d \mu_{1}= \\
=\int_{0}^{\infty} P_{n}(x) P_{m}(x) d \hat{\mu}_{0}+\int_{0}^{\infty} P_{n}^{\prime}(x) P_{m}^{\prime}(x) d \hat{\mu}_{1}
\end{gathered}
$$

where

$$
d \hat{\mu}_{0}=x^{-\frac{1}{2}} d \mu_{0}\left(x^{\frac{1}{2}}\right), \quad d \hat{\mu}_{1}=4 x^{\frac{1}{2}} d \mu_{1}\left(x^{\frac{1}{2}}\right) .
$$

On the other hand,

$$
0 \neq<Q_{2 n}, Q_{2 n}>=\int_{\mathbb{R}^{+}} P_{n}^{2}(x) d \hat{\mu}_{0}+\int_{\mathbb{R}^{+}}\left[P_{n}^{\prime}(x)\right]^{2} d \hat{\mu}_{1} .
$$

This means that $\left\{P_{n}\right\}$ is a sequence of monic polynomials orthogonal with respect to the Sobolev inner product

$$
\begin{equation*}
<p, q>_{1}=\int_{\mathbb{R}^{+}} p q d \hat{\mu}_{0}+\int_{\mathbb{R}^{+}} p^{\prime} q^{\prime} d \hat{\mu}_{1} . \tag{3.2}
\end{equation*}
$$

Moreover, if $n \neq m$,

$$
\begin{gathered}
0=<Q_{2 n+1}, Q_{2 m+1}>= \\
=\int_{\mathbb{R}} x^{2} R_{n}\left(x^{2}\right) R_{m}\left(x^{2}\right) d \mu_{0}+\int_{\mathbb{R}}\left[R_{n}\left(x^{2}\right)+2 x^{2} R_{n}^{\prime}\left(x^{2}\right)\right]\left[R_{m}\left(x^{2}\right)+2 x^{2} R_{m}^{\prime}\left(x^{2}\right)\right] d \mu_{1}= \\
=\int_{\mathbb{R}}\left[\begin{array}{ll}
R_{n}\left(x^{2}\right) & R_{n}^{\prime}\left(x^{2}\right)
\end{array}\right]\left[\begin{array}{cc}
x^{2} d \mu_{0}+d \mu_{1} & 2 x^{2} d \mu_{1} \\
2 x^{2} d \mu_{1} & 4 x^{4} d \mu_{1}
\end{array}\right]\left[\begin{array}{c}
R_{m}\left(x^{2}\right) \\
R_{m}^{\prime}\left(x^{2}\right)
\end{array}\right]= \\
=\int_{\mathbb{R}^{+}}\left[\begin{array}{ll}
R_{n}(x) & R_{n}^{\prime}(x)
\end{array}\right]\left[\begin{array}{cc}
x d \hat{\mu}_{0}+\frac{d \hat{\mu}_{1}}{4 x} & \frac{d \hat{\mu}_{1}}{2} \\
\frac{d \hat{\mu}_{1}}{2} & x d \hat{\mu}_{1}
\end{array}\right]\left[\begin{array}{c}
R_{m}(x) \\
R_{m}^{\prime}(x)
\end{array}\right]
\end{gathered}
$$

and

This means that $\left\{R_{n}\right\}$ is a sequence of monic polynomials orthogonal with respect to the non-diagonal Sobolev inner product

$$
<p, q>_{2}=\int_{\mathbb{R}^{+}}\left[\begin{array}{ll}
p & p^{\prime}
\end{array}\right] d \Omega_{2}\left[\begin{array}{c}
q \tag{3.3}\\
q^{\prime}
\end{array}\right]
$$

where $d \Omega_{2}=\left[\begin{array}{cc}x d \hat{\mu}_{0}+\frac{d \hat{\mu}_{1}}{4 x} & \frac{d \hat{\mu}_{1}}{2} \\ \frac{d \hat{\mu}_{1}}{2} & x d \hat{\mu}_{1}\end{array}\right]$.
Observe that $d \Omega_{2}$ is a matrix of measures related to the diagonal matrix of measures

$$
d \Omega_{1}=\left[\begin{array}{cc}
d \hat{\mu}_{0} & 0 \\
0 & d \hat{\mu}_{1}
\end{array}\right]
$$

in the following way

$$
d \Omega_{2}=M d \Omega_{1} M^{t}
$$

with $M=\left[\begin{array}{cc}x^{\frac{1}{2}} & \frac{1}{2 x^{\frac{1}{2}}} \\ 0 & x^{\frac{1}{2}}\end{array}\right]=x^{\frac{1}{2}}\left[\begin{array}{cc}1 & \frac{1}{2 x} \\ 0 & 1\end{array}\right]$
namely,

$$
d \Omega_{2}=N\left[\begin{array}{cc}
x d \hat{\mu}_{0} & 0 \\
0 & x d \hat{\mu}_{1}
\end{array}\right] N^{t}
$$

with $N=\left[\begin{array}{cc}1 & \frac{1}{2 x} \\ 0 & 1\end{array}\right]$, or equivalently,

$$
d \Omega_{2}=\left[\begin{array}{cc}
x & \frac{1}{2} \\
0 & x
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{x} d \hat{\mu}_{0} & 0 \\
0 & \frac{1}{x} d \hat{\mu}_{1}
\end{array}\right]\left[\begin{array}{cc}
x & 0 \\
\frac{1}{2} & x
\end{array}\right]
$$

In the sequel, we will analyze the particular case when $d \mu_{0}$ and $d \mu_{1}$ are equal and absolutely continuous measures. Moreover

- We will specify the orthogonality measures related to the sequences $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$.
- We will look for explicit algebraic relations between $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$.
- We will determine a recurrence relation that such sequences satisfy.

4 Symmetric Sobolev inner products with equal and absolutely continuous measures

The study of Sobolev inner products with respect to a measure was considered by F.Marcellán, T.E.Pérez, M.A.Piñar, and A.Ronveaux in [5]. Moreover, they took in consideration a semiclassical, positive definite linear functional U (2.1) to define the Nth Sobolev inner product

$$
\begin{equation*}
<p, q>_{s}^{(N)}=U(p q)+\sum_{m=1}^{N} \lambda_{m} U\left(p^{(m)} q^{(m)}\right), \quad \forall p, q \in \mathbb{P} \tag{4.1}
\end{equation*}
$$

Denote by

$$
<p, q>=U(p q)
$$

the standard inner product associated with U .
Considering $\left\{P_{n}\right\}$ the monic orthogonal polynomial sequence associated with the linear functional U and denoting $\left\{Q_{n}\right\}$ the MOPS with respect to the Sobolev inner product (4.1), they proved the following result:
Proposition 4.1 For every nonnegative integer number $n \geq N s$, we get

$$
\begin{equation*}
\phi(x)^{N} P_{n}(x)=\sum_{i=n-t}^{n+N s} \alpha_{n, i} Q_{i}(x) \tag{4.2}
\end{equation*}
$$

where $s=\operatorname{deg}(\phi), \alpha_{n, n-t} \neq 0$ and $t=\operatorname{deg}\left(F^{(N)}\left(x^{n}\right)\right)-n .\left(\right.$ Here $F^{(N)}$ denotes a differential operator introduced in [5]).

We will consider the inner product

$$
\begin{equation*}
<p, q>_{s}=\int_{\mathbb{R}} p q \omega(x) d x+\int_{\mathbb{R}} p^{\prime} q^{\prime} \omega(x) d x \tag{4.3}
\end{equation*}
$$

where $\omega(x)$ is an even weight function supported on an interval of the real line symmetric with respect to the origin. In this case, the corresponding odd moments satisfy

$$
\mu_{2 n+1}=0, \quad \forall n \in \mathbb{N}
$$

Furthermore, suppose that $\omega(x)$ is a semiclassical weight, i.e,

$$
\begin{equation*}
(\phi \omega)^{\prime}=\tau \omega \tag{4.4}
\end{equation*}
$$

where ϕ, τ are the polynomials of minimum degree that satisfy (4.4) with $\operatorname{deg}(\phi)=s^{\prime} \geq 0$ and $\operatorname{deg}(\tau)=t>0$.

Let $\left\{Q_{n}\right\}$ be the sequence of monic polynomials orthogonal with respect to the inner product (4.3). Then,

$$
\begin{equation*}
Q_{2 n}(x)=P_{n}\left(x^{2}\right), \quad Q_{2 n+1}(x)=x R_{n}\left(x^{2}\right) \tag{4.5}
\end{equation*}
$$

for certain sequences of monic polynomials $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$.
Consider the standard inner product

$$
\begin{equation*}
<p, q>=\int_{\mathbb{R}} p q \omega(x) d x \tag{4.6}
\end{equation*}
$$

and let $\left\{T_{n}\right\}$ be the sequence of monic polynomials orthogonal with respect to (4.6). Then

Proposition 4.2

$$
\begin{equation*}
\phi(x) T_{n}(x)=\sum_{j=n-s}^{n+s^{\prime}} \alpha_{n j} Q_{j}(x) \tag{4.7}
\end{equation*}
$$

with $\alpha_{n, n-s} \neq 0$, where $s=\max \left\{\tilde{s}, s^{\prime}\right\}$ and \tilde{s} is the class of the semiclassical linear functional defined by ω.

Proof Let consider the Fourier expansion of ϕT_{n} in terms of $\left\{Q_{n}\right\}$

$$
\phi(x) T_{n}(x)=\sum_{j=0}^{n+s^{\prime}} \alpha_{n j} Q_{j}(x)
$$

Here $\alpha_{n j}=\frac{\left\langle\phi T_{n}, Q_{j}>s\right.}{\left\|Q_{j}\right\|_{s}^{2}}$. But

$$
<\phi T_{n}, Q_{j}>_{s}=\int_{\mathbb{R}} \phi T_{n} Q_{j} \omega(x) d x+\int_{\mathbb{R}} \phi^{\prime} T_{n} Q_{j}^{\prime} \omega(x) d x+\int_{\mathbb{R}} \phi T_{n}^{\prime} Q_{j}^{\prime} \omega(x) d x
$$

Applying integration by parts to the third integral we get

$$
=\int_{\mathbb{R}} \phi T_{n} Q_{j} \omega(x) d x+\int_{\mathbb{R}} \phi^{\prime} T_{n} Q_{j}^{\prime} \omega(x) d x-\int_{\mathbb{R}} T_{n}\left(\phi Q_{j}^{\prime} \omega\right)^{\prime} d x .
$$

Since ω is a semiclassical weight, we obtain

$$
=\int_{\mathbb{R}} \phi T_{n}\left(Q_{j}-Q_{j}^{\prime \prime}\right) \omega(x) d x-\int_{\mathbb{R}} T_{n} Q_{j}^{\prime}\left(\tau-\phi^{\prime}\right) \omega(x) d x
$$

The first integral will vanish if $j<n-s^{\prime}$, and the second one will vanish if $j<n-\tilde{s}$. Then $<\phi T_{n}, Q_{j}>_{s}=0$ if $j<n-\max \left\{s^{\prime}, \tilde{s}\right\}$.
Observe that $\phi(x)$ in (4.7) can be chosen in such a way that $\alpha_{n, n+s^{\prime}}=1$.

4.1 Orthogonality Measures for $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$

Taking into account that $\left\{Q_{n}\right\}$ is orthogonal with respect to the Sobolev inner product (4.3), for $n \neq m$

$$
\begin{gathered}
0=<Q_{2 n}, Q_{2 m}>_{s}=\int_{\mathbb{R}} P_{n}\left(x^{2}\right) P_{m}\left(x^{2}\right) \omega(x) d x+\int_{\mathbb{R}} 4 x^{2} P_{n}^{\prime}\left(x^{2}\right) P_{m}^{\prime}\left(x^{2}\right) \omega(x) d x= \\
=\int_{0}^{\infty} P_{n}(t) P_{m}(t) t^{-\frac{1}{2}} \omega\left(t^{\frac{1}{2}}\right) d t+\int_{0}^{\infty} 4 P_{n}^{\prime}(t) P_{m}^{\prime}(t) t^{\frac{1}{2}} \omega\left(t^{\frac{1}{2}}\right) d t,
\end{gathered}
$$

then $\left\{P_{n}\right\}$ is orthogonal with respect to the diagonal Sobolev inner product with matrix of measures

$$
d \Omega_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & 4 t
\end{array}\right] t^{-\frac{1}{2}} \omega\left(t^{\frac{1}{2}}\right) d t
$$

On the other hand, if $n \neq m$

$$
0=<Q_{2 n+1}, Q_{2 m+1}>_{s}=\int_{\mathbb{R}} x^{2} R_{n}\left(x^{2}\right) R_{m}\left(x^{2}\right) \omega(x) d x+
$$

$$
\begin{gathered}
+\int_{\mathbb{R}}\left[R_{n}\left(x^{2}\right)+2 x^{2} R_{n}^{\prime}\left(x^{2}\right)\right]\left[R_{m}\left(x^{2}\right)+2 x^{2} R_{m}^{\prime}\left(x^{2}\right)\right] \omega(x) d x= \\
=\int_{\mathbb{R}}\left(x^{2}+1\right) R_{n}\left(x^{2}\right) R_{m}\left(x^{2}\right) \omega(x) d x+2 \int_{\mathbb{R}}\left[R_{n}\left(x^{2}\right) R_{m}\left(x^{2}\right)\right]^{\prime} x^{2} \omega(x) d x+ \\
+4 \int_{\mathbb{R}} R_{n}^{\prime}\left(x^{2}\right) R_{m}^{\prime}\left(x^{2}\right) x^{4} \omega(x) d x .
\end{gathered}
$$

Changing the variable $t=x^{2}$

$$
\left.\begin{array}{rl}
\int_{0}^{\infty}(t+1) R_{n}(t) R_{m}(t) t^{-\frac{1}{2}} \omega\left(t^{\frac{1}{2}}\right) d t+ & 2 \int_{0}^{\infty}[
\end{array} R_{n}(t) R_{m}(t)\right]^{\prime} t^{\frac{1}{2}} \omega\left(t^{\frac{1}{2}}\right) d t+.
$$

Then $\left\{R_{n}\right\}$ is a sequence of monic polynomials orthogonal with respect to the Sobolev inner product with matrix of measures

$$
d \Omega_{2}=\left[\begin{array}{cc}
1+t & 2 t \\
2 t & 4 t^{2}
\end{array}\right] t^{-\frac{1}{2}} \omega(t) d t
$$

The support of both measures, $d \Omega_{1}, d \Omega_{2}$ is contained in \mathbb{R}^{+}. Denote

$$
\begin{gathered}
\pi_{1}(t)=t\left[\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
\pi_{2}(t)=t^{2}\left[\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right]+t\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
d \Omega_{1} & =\pi_{1}(t) t^{-\frac{1}{2}} \omega(t) d t \\
d \Omega_{2} & =\pi_{2}(t) t^{-\frac{1}{2}} \omega(t) d t
\end{aligned}
$$

Taking into account the calculations done in (4.8) and applying integration by parts to the second integral

$$
\begin{gathered}
0=\int_{0}^{\infty} t R_{n} R_{m} t^{-\frac{1}{2}} \omega\left(t^{\frac{1}{2}}\right) d t-\int_{0}^{\infty} R_{n} R_{m} \omega^{\prime}\left(t^{\frac{1}{2}}\right) d t+ \\
\quad+4 \int_{0}^{\infty} R_{n}^{\prime}(t) R_{m}^{\prime}(t) t^{\frac{3}{2}} \omega\left(t^{\frac{1}{2}}\right) d t
\end{gathered}
$$

If ω satisfy $\omega^{\prime}=\tau \omega$, (Freud weights), then

$$
\begin{gathered}
0=\int_{0}^{\infty}\left[t-\tau\left(t^{\frac{1}{2}}\right) t^{\frac{1}{2}}\right] R_{n} R_{m} t^{-\frac{1}{2}} \omega\left(t^{\frac{1}{2}}\right) d t+ \\
\quad+4 \int_{0}^{\infty} R_{n}^{\prime} R_{m}^{\prime} t^{\frac{3}{2}} \omega\left(t^{\frac{1}{2}}\right) d t
\end{gathered}
$$

In such a case, $\left\{R_{n}\right\}$ is orthogonal with respect to a diagonal Sobolev inner product with matrix of measures

$$
d \Omega_{2}=\left[\begin{array}{cc}
t-\tau\left(t^{\frac{1}{2}}\right) t^{\frac{1}{2}} & 0 \\
0 & 4 t^{2}
\end{array}\right] t^{-\frac{1}{2}} \omega\left(t^{\frac{1}{2}}\right) d t
$$

If $\omega^{\prime}=\tau \omega$, then the semiclassical functional defined by $\omega(t)$ is of even class. Thus, from Proposition 2.7, $\tau(x)$ is an odd polynomial and so $\tau\left(t^{\frac{1}{2}}\right) t^{\frac{1}{2}}$ is a polynomial in t.

4.2 Explicit Algebraic Relations between $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$

The sequence $\left\{T_{n}\right\}$, which is orthogonal with respect to the inner product(4.6), satisfies a three-term recurrence relation

$$
\begin{gather*}
x T_{n}(x)=T_{n+1}(x)+c_{n} T_{n-1}(x), \quad n \geq 1, \tag{4.9}\\
T_{-1}(x) \equiv 0, \quad T_{0}(x) \equiv 1, \quad c_{n}>0 .
\end{gather*}
$$

Furthermore,

$$
\begin{equation*}
T_{2 n}(x)=S_{n}\left(x^{2}\right), \quad T_{2 n+1}(x)=x S_{n}^{*}\left(x^{2}\right) \tag{4.10}
\end{equation*}
$$

for a certain sequence of orthogonal polynomials $\left\{S_{n}\right\}$, where $\left\{S_{n}^{*}\right\}$ is the sequence of kernel polynomials $\left\{K_{n}(x ; 0)\right\}$ associated with the sequence $\left\{S_{n}\right\}[3]$.

Taking into account (4.7) for $n=2 m$ we get

$$
\begin{equation*}
\phi(x) T_{2 m}(x)=Q_{2 m+s^{\prime}}(x)+\alpha_{2 m, 2 m+s^{\prime}-1} Q_{2 m+s^{\prime}-1}(x)+\ldots+\alpha_{2 m, 2 m-s} Q_{2 m-s}(x) \tag{4.11}
\end{equation*}
$$

- Suppose that \tilde{s} is even, then, s^{\prime} and s are even, i.e., $s=2 k$ and $s^{\prime}=2 k^{\prime}$ with $k, k^{\prime} \in \mathbb{N}$. In this case, because of Proposition $2.6, \phi$ is an even polynomial. Taking into account this result,(4.11) may be simplified

$$
\phi(x) T_{2 m}(x)=Q_{2 m+2 k^{\prime}}(x)+\alpha_{2 m, 2 m+2 k^{\prime}-2} Q_{2 m+2 k^{\prime}-2}(x)+\ldots
$$

$$
\cdots++\alpha_{2 m, 2 m-2 k} Q_{2 m-2 k}(x)
$$

From (4.5) and (4.10)we get

$$
\phi(x) S_{m}\left(x^{2}\right)=P_{m+k^{\prime}}\left(x^{2}\right)+\sum_{j=m-k}^{m+k^{\prime}-1} \alpha_{2 m, 2 j} P_{j}\left(x^{2}\right) .
$$

Since ϕ is an even polynomial, $\phi(x)=\tilde{\phi}\left(x^{2}\right)$ for a certain polynomial $\tilde{\phi}$ and then

$$
\begin{equation*}
\tilde{\phi}(x) S_{m}(x)=P_{m+k^{\prime}}(x)+\sum_{j=m-k}^{m+k^{\prime}-1} \alpha_{2 m, 2 j} P_{j}(x) . \tag{4.12}
\end{equation*}
$$

For $n=2 m+1$ (4.7) becomes

$$
\begin{aligned}
\phi(x) T_{2 m+1}(x)= & Q_{2 m+2 k^{\prime}+1}(x)+\alpha_{2 m+1,2 m+2 k^{\prime}-1} Q_{2 m+2 k^{\prime}-1}(x)+\ldots \\
& \cdots+\alpha_{2 m+1,2 m+1-2 k} Q_{2 m-2 k+1}(x)
\end{aligned}
$$

Because of (4.5) and (4.10)

$$
\phi(x) x S_{m}^{*}\left(x^{2}\right)=x R_{m+k^{\prime}}\left(x^{2}\right)+\sum_{j=m-k}^{m+k^{\prime}-1} \alpha_{2 m+1,2 j+1} x R_{j}\left(x^{2}\right) .
$$

Then,

$$
\begin{equation*}
\tilde{\phi}(x) S_{m}^{*}(x)=R_{m+k^{\prime}}(x)+\sum_{j=m-k}^{m+k^{\prime}-1} \alpha_{2 m+1,2 j+1} R_{j}(x) . \tag{4.13}
\end{equation*}
$$

Taking into account the recurrence relation (4.9) for $n=2 m$, it holds

$$
x T_{2 m}(x)=T_{2 m+1}(x)+c_{2 m} T_{2 m-1}(x), \quad m \geq 1
$$

Because of (4.10)

$$
\begin{equation*}
S_{m}(x)=S_{m}^{*}(x)+c_{2 m} S_{m-1}^{*}(x) \tag{4.14}
\end{equation*}
$$

Multiplying both hand sides of (4.14) by $\tilde{\phi}$ and applying (4.12) and (4.13),

$$
\begin{align*}
& P_{m+k^{\prime}}(x)+\sum_{j=m-k}^{m+k^{\prime}-1} \alpha_{2 m, 2 j} P_{j}(x)=R_{m+k^{\prime}}(x)+\left[\alpha_{2 m+1,2 m+2 k^{\prime}-1}+c_{2 m}\right] R_{m+k^{\prime}-1}(x)+ \\
& +\sum_{j=m-k}^{m+k^{\prime}-2}\left[\alpha_{2 m+1,2 j+1}+c_{2 m} \alpha_{2 m-1,2 j+1}\right] R_{j}(x)+\ldots \\
& \cdots+c_{2 m} \alpha_{2 m-1,2 m-2 k-1} R_{m-k-1}(x) \tag{4.15}
\end{align*}
$$

- Assume now that \tilde{s} is odd. Let $k, k^{\prime} \in \mathbb{N}$ be such that $s=2 k+1$ and $s^{\prime}=2 k^{\prime}+1$. Furthermore, ϕ is an odd polynomial from Proposition 2.7 and, as a consequence, (4.11) may be simplified to get

$$
\begin{gathered}
\phi(x) T_{2 m}(x)=Q_{2 m+2 k^{\prime}+1}(x)+\alpha_{2 m, 2 m+2 k^{\prime}-1} Q_{2 m+2 k^{\prime}-1}(x)+\ldots \\
\cdots+\alpha_{2 m, 2 m-2 k-1} Q_{2 m-2 k-1}(x)
\end{gathered}
$$

Taking into account (4.5) and (4.10)

$$
\phi(x) S_{m}\left(x^{2}\right)=x R_{m+k^{\prime}}\left(x^{2}\right)+\sum_{j=m-k-1}^{m+k^{\prime}-1} \alpha_{2 m, 2 j+1} x R_{j}\left(x^{2}\right) .
$$

Since ϕ is an odd polynomial, $\phi(x)=x \hat{\phi}\left(x^{2}\right)$, then

$$
\begin{equation*}
\hat{\phi}(x) S_{m}(x)=R_{m+k^{\prime}}(x)+\sum_{j=m-k-1}^{m+k^{\prime}-1} \alpha_{2 m, 2 j+1} R_{j}(x) . \tag{4.16}
\end{equation*}
$$

Writing (4.7) for $n=2 m+1$,
$\phi(x) T_{2 m+1}(x)=Q_{2 m+2 k^{\prime}+2}(x)+\alpha_{2 m+1,2 m+2 k^{\prime}} Q_{2 m+2 k^{\prime}}(x)+\cdots+\alpha_{2 m, 2 m-2 k} Q_{2 m-2 k}(x)$.
Because of (4.5) and (4.10)

$$
\phi(x) x S_{n}^{*}\left(x^{2}\right)=P_{m+k^{\prime}+1}\left(x^{2}\right)+\sum_{j=m-k}^{m+k^{\prime}} \alpha_{2 m+1,2 j} P_{j}\left(x^{2}\right) .
$$

Then we get

$$
\begin{equation*}
x \hat{\phi}(x) S_{n}^{*}(x)=P_{m+k^{\prime}+1}(x)+\sum_{j=m-k}^{m+k^{\prime}} \alpha_{2 m+1,2 j} P_{j}(x) . \tag{4.17}
\end{equation*}
$$

On the other hand, from

$$
x T_{2 n+1}(x)=T_{2 n+2}(x)+c_{2 n+1} T_{2 n}(x), n \geq 0
$$

we get

$$
\begin{equation*}
x S_{n}^{*}(x)=S_{n+1}(x)+c_{2 n+1} S_{n}(x) . \tag{4.18}
\end{equation*}
$$

Multiplying both sides by $\hat{\phi}$ and applying (4.16) and (4.17),

$$
\begin{gather*}
P_{m+k^{\prime}+1}(x)+\sum_{j=m-k}^{m+k^{\prime}} \alpha_{2 m+1,2 j} P_{j}(x)=R_{m+k^{\prime}+1}(x)+\left[\alpha_{2 m+2,2 m+2 k^{\prime}+1}+\right. \\
\left.c_{2 m+1}\right] R_{m+k^{\prime}}(x)++\sum_{j=m-k}^{m+k^{\prime}-1}\left[\alpha_{2 m+2,2 j+1}+c_{2 m+1} \alpha_{2 m, 2 j+1}\right] R_{j}(x)+\ldots \\
\cdots+\alpha_{2 m, 2 m-2 k-1} c_{2 m+1} R_{m-k-1}(x) . \tag{4.19}
\end{gather*}
$$

4.3 Recurrence Relations

If the linear functional associated with the weight function $\omega(x)$ is of class \tilde{s} and \tilde{s} is even, (4.15) holds as well as (4.18). Multiplying both hand sides of (4.18) by $\tilde{\phi}$ and considering (4.13) and (4.14) we get

$$
\begin{gather*}
x\left[R_{m+k^{\prime}}(x)+\sum_{i=m-k}^{m+k^{\prime}-1} \alpha_{2 m+1,2 i+1} R_{i}(x)\right]=\left[P_{m+k^{\prime}+1}(x)+\sum_{i=m-k+1}^{m+k^{\prime}} \alpha_{2 m+2,2 i} P_{i}(x)\right]+ \\
\cdots+c_{2 m+1}\left[P_{m+k^{\prime}}(x)+\sum_{i=m-k}^{m+k^{\prime}-1} \alpha_{2 m, 2 i} P_{i}(x)\right] . \tag{4.20}
\end{gather*}
$$

Substituting (4.15) in (4.20) in a convenient way

$$
\begin{aligned}
& x\left[R_{m+k^{\prime}}(x)+\sum_{i=m-k}^{m+k^{\prime}-1} \alpha_{2 m+1,2 i+1} R_{i}(x)\right]=R_{m+k^{\prime}+1}(x)+\sum_{i=m-k+1}^{m+k^{\prime}} \alpha_{2 m+3,2 i+1} R_{i}(x)+ \\
& +c_{2 m+2}\left[R_{m+k^{\prime}}(x)+\sum_{i=m-k}^{m+k^{\prime}-1} \alpha_{2 m+1,2 i+1} R_{i}(x)\right]+c_{2 m+1}\left[R_{m+k^{\prime}}(x)+\sum_{i=m-k}^{m+k^{\prime}-1} \alpha_{2 m+1,2 i+1} R_{i}(x)+\right. \\
& \left.\quad+c_{2 m}\left(R_{m+k^{\prime}-1}(x)+\sum_{i=m-k-1}^{m+k^{\prime}-2} \alpha_{2 m-1,2 i+1} R_{i}(x)\right)\right] .
\end{aligned}
$$

Then we get the following $\left(k+k^{\prime}+2\right)$-term recurrence relation for $\left\{R_{n}\right\}$

$$
\begin{align*}
& R_{m+k^{\prime}+1}(x)=\left(x-\alpha_{2 m+3,2 m+2 k^{\prime}+1}-c_{2 m+2}-c_{2 m+1}\right) R_{m+k^{\prime}}(x)+ \\
& +\left[x \alpha_{2 m+1,2 m+2 k^{\prime}-1}-\alpha_{2 m+3,2 m+2 k^{\prime}-1}-\left(c_{2 m+2}+c_{2 m+1}\right) \alpha_{2 m+1,2 m+k^{\prime}-1}-\right. \\
& \left.-c_{2 m+1} c_{2 m}\right] R_{m+k^{\prime}-1}(x)++\sum_{m-k+1}^{m+k^{\prime}-2}\left[x \alpha_{2 m+1,2 i+1}-\alpha_{2 m+3,2 i+1}-\right. \\
& \left.-\left(c_{2 m+2}+c_{2 m+1}\right) \alpha_{2 m+1,2 i+1}-c_{2 m+1} c_{2 m} \alpha_{2 m-1,2 i+1}\right] R_{i}(x)+\left[x \alpha_{2 m+1,2 m-2 k+1}-\right. \\
& \left.\quad-\left(c_{2 m+2}+c_{2 m+1}\right) \alpha_{2 m+1,2 m-2 k+1}-c_{2 m+1} c_{2 m} \alpha_{2 m-1,2 m-2 k-1}\right] R_{m-k}(x)+ \\
& \quad+c_{2 m} c_{2 m+1} \alpha_{2 m-1,2 m-2 k-1} R_{m-k-1}(x) . \tag{4.21}
\end{align*}
$$

Multiplying both sides of (4.15) by x and replacing (4.20) in (4.15)

$$
\begin{aligned}
& x\left[P_{m+k^{\prime}}(x)+\sum_{i=m-k}^{m+k^{\prime}-1} \alpha_{2 m, 2 i} P_{i}(x)\right]=P_{m+k^{\prime}+1}(x)+\sum_{i=m-k+1}^{m+k^{\prime}} \alpha_{2 m+2,2 i} P_{i}(x)+ \\
& +c_{2 m+1}\left[P_{m+k^{\prime}}(x)+\sum_{i=m-k}^{m+k^{\prime}-1} \alpha_{2 m, 2 i} P_{i}(x)\right]+c_{2 m}\left[P_{m+k^{\prime}}(x)+\sum_{i=m-k}^{m+k^{\prime}-1} \alpha_{2 m, 2 i} P_{i}(x)+\right. \\
& \left.+c_{2 m-1}\left(P_{m+k^{\prime}-1}(x)+\sum_{i=m-k-1}^{m+k^{\prime}-2} \alpha_{2 m-2,2 i} P_{i}(x)\right)\right] .
\end{aligned}
$$

Thus a $\left(k+k^{\prime}+2\right)$-term recurrence relation for $\left\{P_{n}\right\}$ follows.

$$
\begin{align*}
& P_{m+k^{\prime}+1}(x)=\left[x-\alpha_{2 m, 2 m+2 k^{\prime}}-c_{2 m+1}-c_{2 m}\right] P_{m+k^{\prime}}(x)+ \\
& +\left[x \alpha_{2 m, 2 m+2 k^{\prime}-2}-\alpha_{2 m+2,2 m+2 k^{\prime}-2}-\left(c_{2 m-1}+c_{2 m}\right) \alpha_{2 m, 2 m+2 k^{\prime}-2}-c_{2 m} c_{2 m-1}\right] P_{m+k^{\prime}-1}(x)+ \\
& +\sum_{i=m-k+1}^{m-k^{\prime}-2}\left[x \alpha_{2 m, 2 i}-\alpha_{2 m+2,2 i}-\left(c_{2 m+1}+c_{2 m}\right) \alpha_{2 m, 2 i}-c_{2 m} c_{2 m-1} \alpha_{2 m-2,2 i}\right] P_{i}(x)+ \\
& +\left[x \alpha_{2 m, 2 m-2 k}-c_{2 m+1} \alpha_{2 m, 2 m-2 k}-c_{2 m} \alpha_{2 m, 2 m-2 k}-c_{2 m} c_{2 m-1} \alpha_{2 m-2,2 m-2 k}\right] P_{m-k}(x)+ \\
& c_{2 m} c_{2 m-1} \alpha_{2 m-2,2 m-2 k-2} P_{m-k-1}(x) . \tag{4.22}
\end{align*}
$$

On the other hand, it has also been proved that if \tilde{s} is odd and $s=2 k+1$, $s^{\prime}=2 k^{\prime}+1$, then (4.19) holds. Let also remember (4.14). Multiplying both hand sides by $\hat{\phi}$ and substituting (4.16) and (4.17) there, we get

$$
\begin{align*}
x\left[R_{m+k^{\prime}}(x)+\right. & \left.\sum_{j=m-k-1}^{m+k^{\prime}-1} \alpha_{2 m, 2 j+1} R_{j}(x)\right]=P_{m+k^{\prime}+1}(x)+\sum_{j=m-k}^{m+k^{\prime}} \alpha_{2 m+1,2 j} P_{j}(x)+ \\
& +c_{2 m}\left[P_{m+k^{\prime}}(x)+\sum_{j=m-k-1}^{m+k^{\prime}-1} \alpha_{2 m-1,2 j} P_{j}(x)\right] \tag{4.23}
\end{align*}
$$

Replacing (4.19) in (4.23)

$$
\begin{aligned}
& \quad x\left[R_{m+k^{\prime}}(x)+\sum_{j=m-k+1}^{m+k^{\prime}-1} \alpha_{2 m, 2 j+1} R_{j}(x)\right]=\left[R_{m+k^{\prime}+1}(x)+\sum_{j=m-k}^{m+k^{\prime}} \alpha_{2 m+2,2 j+1} R_{j}(x)\right]+ \\
& +c_{2 m+1}\left[R_{m+k^{\prime}}(x)+\sum_{j=m-k-k^{\prime}-1}^{m-1} \alpha_{2 m, 2 j+1} R_{j}(x)\right]+c_{2 m}\left[R_{m+k^{\prime}}(x)+\sum_{j=m-k-1}^{m+k^{\prime}-1} \alpha_{2 m, 2 j+1} R_{j}(x)\right. \\
& \left.+c_{2 m-1}\left(R_{m+k^{\prime}-1}(x)+\sum_{j=m-k-2}^{m-k^{\prime}-2} \alpha_{2 m-2,2 j+1} R_{j}(x)\right)\right] .
\end{aligned}
$$

Finally

$$
\begin{gathered}
R_{m+k^{\prime}+1}(x)=\left[x-\alpha_{2 m+2,2 m+2 k^{\prime}+1}-c_{2 m+1}-c_{2 m}\right] R_{m+k^{\prime}}(x)+\left[x \alpha_{2 m, 2 m+2 k^{\prime}-1}-\right. \\
\left.-\alpha_{2 m+2,2 m+2 k^{\prime}-1}-\left(c_{2 m+1}+c_{2 m}\right) \alpha_{2 m, 2 m+2 k^{\prime}-1}-c_{2 m} c_{2 m-1}\right] R_{m+k^{\prime}-1}(x)+ \\
+\sum_{j=m-k}^{m+k^{\prime}-2}\left[x \alpha_{2 m, 2 j+1}-\alpha_{2 m+2,2 j+1}-\left(c_{2 m+1}+c_{2 m}\right) \alpha_{2 m, 2 j+1}-\right. \\
\left.\quad-c_{2 m} c_{2 m-1} \alpha_{2 m-2,2 j+1}\right] R_{j}(x)+\left[x \alpha_{2 m, 2 m-2 k-1}-\left(c_{2 m+1}+c_{2 m}\right) \alpha_{2 m 2 m-2 k-1}-\right. \\
\left.-c_{2 m} c_{2 m-1} \alpha_{2 m-2,2 m-2 k-1}\right] R_{m-k-1}(x)-c_{2 m} c_{2 m-1} \alpha_{2 m-2,2 m-2 k-3} R_{m-k-2}(x)(4.24)
\end{gathered}
$$

Multiplying both hand sides of (4.19) by x and substituting (4.23) in the resulting expression, a $\left(k+k^{\prime}+3\right)$-term recurrence relation for $\left\{P_{n}\right\}$ is obtained.

$$
\begin{gather*}
P_{m+k^{\prime}+2}(x)=\left[x-\alpha_{2 m+1,2 m+2 k^{\prime}}-c_{2 m}-c_{2 m-1}\right] P_{m+k^{\prime}}(x)+\left[x \alpha_{2 m-1,2 m+2 k^{\prime}-2}\right. \\
\left.\quad-\alpha_{2 m+1,2 m+2 k^{\prime}-2}-\left(c_{2 m}+c_{2 m-1}\right) \alpha_{2 m-1,2 m+2 k^{\prime}-2}-c_{2 m-1} c_{2 m-2}\right] P_{m+k^{\prime}-1}(x)+ \\
+\sum_{j=m-k}^{m+k^{\prime}-2}\left[x \alpha_{2 m-1,2 j}-\alpha_{2 m+1,2 j}-\left(c_{2 m}+c_{2 m+1}\right) \alpha_{2 m-1,2 j}-\right. \\
\left.\quad-c_{2 m-1} c_{2 m-2} \alpha_{2 m-3,2 j}\right] P_{i}(x)+\left[x \alpha_{2 m-1,2 m-2 k-2}-\left(c_{2 m}+c_{2 m-1}\right) \alpha_{2 m-1,2 m-2 k-2}-\right. \\
\left.-c_{2 m-1} c_{2 m-2} \alpha_{2 m-3,2 m-2 k-2}\right] P_{m-k-1}(x)--c_{2 m-1} c_{2 m-2} \alpha_{2 m-3,2 m-2 k-4} P_{m-k-2}(x) . \tag{4.25}
\end{gather*}
$$

4.3.1 Recurrence Relation for $\left\{Q_{n}\right\}$

Let start from (4.7). Multiplying both hand sides of (4.7) by x and using the three-term recurrence relation for $\left\{T_{n}\right\}$,

$$
\begin{equation*}
\phi(x)\left(T_{n+1}(x)+c_{n} T_{n-1}(x)\right)=\sum_{j=n-s}^{n+s^{\prime}} x \alpha_{n j} Q_{j}(x), \tag{4.26}
\end{equation*}
$$

thus, the substitution of (4.7) in (4.26) yields a recurrence relation for $\left\{Q_{n}\right\}$.

$$
\begin{align*}
& Q_{n+s^{\prime}+1}(x)=\left[x-\alpha_{n+1, n+s^{\prime}}\right] Q_{n+s^{\prime}}(x)+ \\
& +\sum_{j=n-s+1}^{n+s^{\prime}-1}\left[x \alpha_{n j}-\alpha_{n+1, j}-c_{n} \alpha_{n-1, j}\right] Q_{j}(x)+ \\
& \quad+\left[x \alpha_{n, n-s}-c_{n} \alpha_{n-1, n-s}\right] Q_{n-s}(x)-c_{n} \alpha_{n-1, n-s-1} Q_{n-s-1}(x) . \tag{4.27}
\end{align*}
$$

4.4 Application: Freud-Sobolev Polynomials

A particular example of the Sobolev inner product given in (4.3) is

$$
\begin{equation*}
<p, q>_{s}=\int_{\mathbb{R}} p q e^{-x^{4}} d x+\int_{\mathbb{R}} p^{\prime} q^{\prime} e^{-x^{4}} d x \tag{4.28}
\end{equation*}
$$

This kind of inner product has been introduced in [2]. Let $\left\{Q_{n}\right\}$ be the sequence of monic polynomials orthogonal with respect to (4.28). These polynomials are called Freud-Sobolev Polynomials.

Obviously (4.28) is a symmetric inner product, hence $\left\{Q_{n}\right\}$ satisfy (4.5).

4.4.1 Orthogonality Measures associated with $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$ in the Freud-Sobolev Case.

Taking into account that $\left\{Q_{n}\right\}$ is orthogonal with respect to the inner product (4.28), for $n \neq m$,

$$
\begin{gathered}
0=<Q_{2 n}, Q_{2 m}>_{s}= \\
=\int_{0}^{\infty} P_{n} P_{m} t^{-\frac{1}{2}} e^{-t^{2}} d t+\int_{0}^{\infty} P_{n}^{\prime} P_{m}^{\prime} 4 t^{\frac{1}{2}} e^{-t^{2}} d t .
\end{gathered}
$$

Thereupon, $\left\{P_{n}\right\}$ is orthogonal with respect to the diagonal Sobolev inner product given by the matrix of measures

$$
d \Omega_{1}=\left[\begin{array}{cc}
1 & 0 \tag{4.29}\\
0 & 4 t
\end{array}\right] t^{-\frac{1}{2}} e^{-t^{2}} d t .
$$

On the other hand, for $n \neq m$

$$
0=<Q_{2 m+1}, Q_{2 n+1}>_{s}=
$$

$$
\begin{equation*}
=\int_{0}^{\infty} R_{n} R_{m}\left(t+4 t^{2}\right) t^{-\frac{1}{2}} e^{-t^{2}} d t+4 \int_{0}^{\infty} R_{n}^{\prime} R_{m}^{\prime} t^{\frac{3}{2}} e^{-t^{2}} d t \tag{4.30}
\end{equation*}
$$

Hence, $\left\{R_{n}\right\}$ is a sequence of monic polynomials orthogonal with respect to the diagonal Sobolev inner product given by the matrix of measures

$$
d \Omega_{2}=\left[\begin{array}{cc}
1+4 t & 0 \tag{4.31}\\
0 & 4 t
\end{array}\right] t^{\frac{1}{2}} e^{-t^{2}} d t
$$

Moreover, the support of the measures $d \Omega_{1}$ and $d \Omega_{2}$ is \mathbb{R}^{+}. Denote

$$
\begin{gathered}
\pi_{1}(t)=t\left[\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \\
\pi_{2}(t)=t^{2}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]+t\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] .
\end{gathered}
$$

Then

$$
\begin{aligned}
& d \Omega_{1}=\pi_{1}(t) t^{-\frac{1}{2}} e^{-t^{2}} d t, \\
& d \Omega_{2}=\pi_{2}(t) t^{-\frac{1}{2}} e^{-t^{2}} d t .
\end{aligned}
$$

Next we give an explicit relation between the sequences $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$. Consider the standard inner product

$$
\begin{equation*}
<p, q>=\int_{\mathbb{R}} p q e^{-x^{4}} d x \tag{4.32}
\end{equation*}
$$

and let $\left\{T_{n}\right\}$ be the sequence of monic polynomials orthogonal with respect to (4.32), namely, the sequence of the so-called Freud Polynomials. Then, it can be proved (see [2]) that

$$
\begin{array}{r}
T_{n}(x)=Q_{n}(x)+a_{n} Q_{n-2}(x), \quad n \geq 3, \tag{4.33}\\
T_{0}(x)=Q_{0}(x), \quad T_{1}(x)=Q_{1}(x), \quad T_{2}(x)=Q_{2}(x),
\end{array}
$$

where

$$
\begin{gathered}
a_{n}=4 n \frac{\left\|T_{n+2}\right\|^{2}}{\left\|Q_{n}\right\|_{s}^{2}}, \quad n \geq 1, \\
a_{0}=a_{-1}=a_{-2}=0 .
\end{gathered}
$$

Furthermore,

$$
\begin{equation*}
T_{2 n}(x)=S_{n}\left(x^{2}\right), \quad T_{2 n+1}(x)=x S_{n}^{*}\left(x^{2}\right) \tag{4.34}
\end{equation*}
$$

for a certain sequence of orthogonal polynomials $\left\{S_{n}\right\}$ where S_{n}^{*} denotes the $n t h$ kernel polynomial $K_{n}(x ; 0)$ normalized to be monic, associated with the sequence $\left\{S_{n}\right\}$.

Overwriting (4.33) for $n=2 m$ and for $n=2 m+1$, respectively,

$$
\begin{equation*}
S_{m}(x)=P_{m}(x)+a_{2 m} P_{m-1}(x), \quad m \geq 2 \tag{4.35}
\end{equation*}
$$

and $S_{0}(x)=P_{0}(x), S_{1}(x)=P_{1}(x)$.

$$
\begin{equation*}
S_{m}^{*}(x)=R_{m}(x)+a_{2 m+1} R_{m-1}(x), \quad m \geq 1 \tag{4.36}
\end{equation*}
$$

and $S_{0}^{*}(x)=R_{0}(x)$.
On the other hand, the sequence $\left\{T_{n}\right\}$ satisfies the three-term recurrence relation

$$
\begin{array}{r}
x T_{n}(x)=T_{n+1}(x)+c_{n} T_{n-1}(x), \quad n \geq 1, \tag{4.37}\\
T_{0}(x)=1, \quad T_{1}(x)=x
\end{array}
$$

where

$$
n=4 c_{n}\left(c_{n+1}+c_{n}+c_{n-1}\right), \quad n \geq 1
$$

with initial conditions $c_{0}=0, c_{1}=\frac{\Gamma(3 / 4)}{\Gamma(1 / 4)}$.
For $n=2 m+1$, the expression (4.37) yields

$$
x S_{m}^{*}(x)=S_{m+1}(x)+c_{2 m+1} S_{m}(x)
$$

Taking into account (4.35) and (4.36), for $m \geq 2$ we get
$x\left[R_{m}(x)+a_{2 m+1} R_{m-1}(x)\right]=P_{m+1}(x)+\left(a_{2 m+2}+c_{2 m+1}\right) P_{m}(x)+a_{2 m} c_{2 m+1} P_{m-1}(x)$,
Repeating the above procedure for $n=2 m, m \geq 2$

$$
\begin{equation*}
P_{m}(x)+a_{2 m} P_{m-1}(x)=R_{m}(x)+\left(a_{2 m+1}+c_{2 m}\right) R_{m-1}(x)+c_{2 m} a_{2 m-1} R_{m-2}(x), \tag{4.39}
\end{equation*}
$$

4.4.2 Recurrence Relations in Freud-Sobolev Case

Consider again (4.38) and (4.39). Substituting (4.39) in (4.38), we get

$$
\begin{align*}
& x R_{m}(x)=R_{m+1}(x)+\left[a_{2 m+3}+c_{2 m+1}+c_{2 m+2}\right] R_{m}(x)+\left[c_{2 m} c_{2 m+1}\right. \\
& \left.\quad+a_{2 m+1}\left(c_{2 m+1}+c_{2 m+2}-x\right)\right] R_{m-1}(x)+a_{2 m-1} c_{2 m} c_{2 m+1} R_{m-2}(x) \tag{4.40}
\end{align*}
$$

for $m \geq 1$ with fixed initial conditions.
Multiplying (4.39) by x
$x\left[P_{m}(x)+a_{2 m} P_{m-1}(x)\right]=x\left[R_{m}(x)+a_{2 m+1} R_{m-1}(x)\right]+x c_{2 m}\left[R_{m-1}(x)+a_{2 m-1} R_{m-2}(x)\right]$.
Because of (4.38),

$$
\begin{gathered}
x P_{m}(x)=P_{m+1}(x)+\left(a_{2 m+2}+c_{2 m}+c_{2 m+1}\right) P_{m}(x)+\left[c_{2 m-1} c_{2 m}+a_{2 m}\left(c_{2 m}+\right.\right. \\
\left.\left.c_{2 m+1}-x\right)\right] P_{m-1}(x)+c_{2 m-1} c_{2 m} a_{2 m-2} P_{m-2}(x) .
\end{gathered}
$$

As a conclusion, the sequences $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$ satisfy the following recurrence relations

$$
\begin{align*}
& P_{m+1}(x)=\left[x-\left(a_{2 m+2}+c_{2 m}+c_{2 m+1}\right)\right] P_{m}(x)+\left[a_{2 m}\left(x-c_{2 m}-c_{2 m+1}\right)-\right. \\
&\left.-c_{2 m-1} c_{2 m}\right] P_{m-1}(x)-c_{2 m-1} c_{2 m} a_{2 m-1} P_{m-2}(x), \tag{4.41}\\
& R_{m+1}(x)=\left[x-\left(a_{2 m+3}+c_{2 m+1}+c_{2 m+2}\right)\right] R_{m}(x)+\left[a _ { 2 m + 1 } \left(x-c_{2 m+1}-\right.\right. \\
&\left.\left.\quad-c_{2 m+2}\right)-c_{2 m} c_{2 m+1}\right] R_{m-1}(x)-c_{2 m} c_{2 m+1} a_{2 m-2} R_{m-2}(x) . \tag{4.42}
\end{align*}
$$

We can summarize our main results

- We have identified $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$ as sequences of polynomials orthogonal with respect to a diagonal Sobolev inner product.
- We have proved two algebraic relations between $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$.
- We have proved that $\left\{P_{n}\right\}$ and $\left\{R_{n}\right\}$ satisfy four-term recurrence relations.

Finally , observe that multiplying (4.33) by x and applying the recurrence relation (4.37)

$$
T_{n+1}(x)+c_{n} T_{n-1}(x)=x Q_{n}(x)+a_{n} x Q_{n-2}(x) .
$$

Replacing (4.33) in the previous equation
$Q_{n+1}(x)+a_{n+1} Q_{n-1}(x)+c_{n}\left[Q_{n-1}(x)+a_{n-1} Q_{n-3}(x)\right]=x Q_{n}(x)+a_{n} x Q_{n-2}(x)$.

Then, $\left\{Q_{n}\right\}$ satisfy the following five-term recurrence relation

$$
\begin{equation*}
Q_{n+1}(x)=x Q_{n}(x)-\left(a_{n+1}+c_{n}\right) Q_{n-1}(x)+x a_{n} Q_{n-2}(x)-c_{n} a_{n-1} Q_{n-3}(x) \tag{4.43}
\end{equation*}
$$

Acknowledgements

The work of the second author was partially supported by Dirección General de Investigación (Ministerio de Ciencia y Tecnología) of Spain under grant BFM 2000-0206-C04-01 and INTAS project INTAS 2000-272.

References

[1] J.Arvesú, J.Atia and F.Marcellán, On Semiclassical Linear Functionals: The Symmetric Companion, Comm. Anal. Theory of Continued Fractions 10 (2002)13-29.
[2] A.Cachafeiro, F.Marcellán and J.J.Moreno-Balcázar, On Asymptotic properties of Freud-Sobolev Orthogonal Polynomials, 2001. Submitted.
[3] T.S.Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[4] E.Hendriksen, H.van Rossum Semiclassical Orthogonal Polynomials. In Polynômes Orthogonaux et Applications, C. Brezinski et al Editors. Lecture Notes in Mathematics 1171. Springer Verlag. Berlin (1985) 354361.
[5] F.Marcellán, T.E.Pérez, M.A.Piñar, and A.Ronveaux, General Sobolev orthogonal polynomials, J.Math.Anal.Appl. 200 (1996)614-634.
[6] P.Maroni, Une théorie algébrique des polynômes orthogonaux. Appl. aux polynômes orthogonaux semiclassiques. In Orthogonal polynomials and their applications, C. Brezinski et al Editors. IMACS Annals on Computing and Applications Math. 9 (1991) 95-130.

