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In this paper we will discuss the problem of generation of sequences of orthogonal polynomials with respect to
measures supported on the unit circle from a given sequence of orthogonal polynomials using a perturbation
of a cubic sieved process. The basic tools are the Szego forward recurrence relation as well as the fact of the
coprimality of orthogonal polynomials on the unit circle and their corresponding reverse polynomials. We
also give the connection between the associated orthogonality measures. Finally, some examples of this
cubic decomposition are shown.
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1. INTRODUCTION

The role of orthogonal polynomials on the unit circle in circuit and system theory is
very well recognized. Orthogonal polynomials with respect to measures supported on
the unit circle are directly related to problems of Fourier expansions, characterization
of positive functions and stable polynomials, least-square polynomial approximations,
and spectral operator analysis.

A set of orthogonal polynomials on the unit circle is classically associated with a
Toeplitz matrix which has the structure of the covariance matrix of a discrete stationary
stochastic process. The properties of orthogonal polynomials on the unit circle have
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been extensively used in least square estimation problems although they appear in that
context quite independently of the Szego theory, as a natural consequence of the pio-
neering work by Wiener, Kolmogorov and Krein. As an example, the Levinson algor-
ithm, widely used by statisticians, is well known to be built on the forward
recurrence relation that such orthogonal polynomials on the unit circle satisfy. The
Schur—Cohn algorithm is well known to be described from the backward recurrence
relation for our orthogonal polynomials on the unit circle (see [2]).

In the real line, there exists a very important specific set of orthogonal polynomials
related to eigenfunctions of differential or difference operators, whose symmetrization
factors are same very well known distributions. Beta, gamma and normal distributions
for Jacobi, Laguerre and Hermite polynomials, respectively, in the continuous case.
Poisson, binomial, Pascal and hypergeometric distributions for Charlier, Kravchuk,
Meixner and Hahn polynomials, respectively, in the discrete case (see [14]).

For the unit circle there are very few explicit examples and they have not been
used very often. One of the reasons is the fact that they enter into a different class
of problems than the classical orthogonal polynomials on the real line do (see [14]).
In such a sense, we have very powerful and theoretical tools to work but we need to
realize a constructive theory in order to give an important improvement in the analysis
of their properties. In the nineties a hard work has been achieved in such a direction
taking into account some different approaches from the perturbation of measures
of orthogonality ([11]), reflection parameters ([9]) or the polynomials themselves,
([3,6,7]). The aim of the present contribution is to give some new examples, from
the above point of view, related with a cubic decomposition of sequences of
orthogonal polynomials on the unit circle. We continue the work started in [3] for
the quadratic case.

The structure of this article is the following. First we give some basic definitions and
results concerning orthogonal polynomials related to Hermitian linear functionals
and we state our main result. In Section 2, we include its proof. Finally, in Section 3
we give some examples and, in particular, we obtain the explicit expression of the
C-function. Thus in a positive definite case the absolutely continuous component of
the orthogonality measure is obtained.

Let u be a linear functional on the linear space of the Laurent polynomials
A = span{z*: k € Z} such that if u, = (u,z"), then u , = (u,z ") =17,, n € (NU{0}).

Using this linear functional, we can introduce a bilinear form on [P, the linear space
of polynomials with complex coefficients, in the following way

(p.q) = (w,p()qz '), Vp,qeP.

Notice that in such a case, the shift operator is unitary with respect to the above
bilinear form, which we will assume is quasi-definite, i.e., the principal submatrices
T,, neN, of the Gram matrix T

T =, Zj)]ij:o

are nonsingular for every n € N. The infinite Gram matrix 7 is a Toeplitz matrix
because of the shift operator is a unitary operator with respect to the above inner prod-
uct. If the principal submatrices (7},) are positive definite, then the linear functional u is
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said to be positive definite. In such a case, there exists a unique positive Borel measure
wu supported on T such that

mmzﬁwmwy

See [2,5].
In such conditions, there exists a sequence of monic polynomials (®,), such that
(i) deg @, = n,

(11) (d)n: q>m> - Mngn,ma Mn # 0.

The sequence (®,) defined as above is said to be a monic orthogonal polynomial
sequence (MOPS) with respect to the linear functional u.

Furthermore, from elementary properties of the Toeplitz matrices we get |®,(0)| # 1.
The values (®,(0)) are called the reflection parameters for the linear functional wu.

It is very well known that (®,) satisfies a forward recurrence relation:

D,(z) =zP, 1(2) + D,(00) (2), n=12,...,

1
() = 1, )

as well as a backward recurrence relation:
D,(2) = (1 = [Pu(0))z®y 1(2) + Pu(O)P}(2), n=1,2,..., @

Do(2) =1,

which were obtained by G. Szego (see [13]). By means of ®(z) we denote the reversed
polynomial of &,.

Q(z) = "D, (2 h.

Notice that the forward recurrence relation characterizes an MOPS with respect to a
linear functional u (Favard’s Theorem) if and only if |®,(0)| #£ 1 (see [5]). For a proof of
the positive definite case, i.e., |®,(0)] < 1, see [4].

We can associate with the linear functional u a formal series

o0
F(z):=up + ZZ%Z”.

n=1

In the positive definite case, F'is an analytic function in the unit disk and Re F(z) > 0.
In the literature F is said to be a Carathéodory function or a C-function (see [9,10]).

LeMMA | The zeros of the polynomial ®,, do not lie on the unit circle.

Proof 1If ®,(«x) =0 with |a| = 1, then
(o) =" Py(x) = 0.

Taking into account the backward recurrence relation, ®, (@) =0 and thus, by
iteration, () = 0 which is a contradiction. |
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LemMA 2 The polynomials @, and &}, are relatively prime polynomials.
Proof See [1]. |
As a consequence, we get:

ProposiTiON 3 If the polynomials ®, and ®; verify p(z)®,(z) = q(z)®}(z) where p
and q are polynomials with degp <n—1, degg<n—1, n>2, thenp=¢q=0.

We are interested in the following problem.

Given a MOPS (®,) with respect to a quasi-definite linear functional u, to find poly-
nomials A, ;, By, Cui, i =1,2, n € N with degree less than or equal to » such that
the sequence (¥,) of monic polynomials given by

U3,(2) = quz(Z}) +zA4, 1,1(23) + Z2An 1,2(23)7 n=>0
\IJ3H+1(Z) = Zq)n(z3) + Bn, 1(23) + Zan 1,2(23)’ n= 0 (3)
W342(2) = 20,(2) + Gt (2) +2Coa(2Y), 120

with the convention 4 || =A4 1, =B 1, =0, isa MOPS with respect to a quasi-defi-
nite linear functional v.
Notice that

\Ij3n(0) = CD,,(O),
lIJ3n+1(0) = Bn.l(o)y
lI‘J3n+2(0) = Cn,l(o)-
An analog question for the quadratic case has been already solved in [3]. There it has
been proved that, if (®,) is a MOPS then, the polynomials defined by
RZn(Z) = cbn(zz) +zB, 1(22)3
Ryuy1(2) = zCI)ﬂ(zz) + Dn(zz)y
are orthogonal with respect to a quasi-definite linear functional if and only if Dy (0) # 0

for at most one N € N and the polynomials B, D, satisfy

(1) If DO0)=0 for every neN, then B,(0)=D,0)=0 for every neN, i.e.
Rou(2) = d)n(zz), Ryny1(2) = zd)n(zz)_
(it) If Dy(0) # 0, then B,(z) = D,(z) =0 forn=0,1,2,...,N — 1 as well as

Dy(z2) = Dn(0)P)(2),
By(z) = Dy(z2) + @ n41(0)Dy(2),
Dy(z) =zB, 1(z), n>N+1,
B1(2) = 2By(2) + @n12(0)B,(2), n=N.



Notice that in such a case, the reflection parameters R,(0) are given by

Rzn(o) = qDH(O)s
Ry+1(0) =0, n#N,
Roni1(0) =y, Iyl#1.

This constitutes a finite perturbation (see [9]) of a symmetrized sequence (see [6,7])
corresponding to the reflection parameters associated with (®,(0)). The framework
of this problem is the analysis of some transformations of measures supported on the
unit circle (see [8,12]) as a natural extension of the sieved process in the real line.

The aim of our contribution is the analysis of necessary and sufficient conditions in
order that the sequence (¥,) defined in (3) be a MOPS.

2. ORTHOGONALITY OF THE SEQUENCE (V)

Notice that if the sequence (¥, introduced in (3) is an MOPS then the forward Szego
recurrence relation means

“Ijn(z) =z, l(Z) + \Iln(())\l/* (Z) (4)

n 1

Thus, we will consider three different cases for (3) taking into account the congruence
modulus 3 for the degrees of the polynomials.

From W3,(2) = zW3, 1(2) + ¥3,(0)¥3, |(2), taking into account (3) and (1), the iden-
tification of the polynomial components with the same cubic parity yields

An 1, 1(2) - Cn 1, I(Z) + an(O)CZ 1‘2(2)7

— x ©)
An 1.2(2) = Cy 12(2) + PO 1 (2),

for every n > 1. Notice that C#(z) := z"C,(z ') despite the fact that deg C, < n.
In the same way, from W3,,(z) = z2W3,(2) + W3,41(0)¥3,(2) we have

Bn, I(Z) = ZAn 1,2(2) + Bn, I(O)q):;(z)a
Bn 1,2(2) = An I,l(Z) + Bn, I(O)A: 1, I(Z)n (6)
Bn. 1(())14:1< 1,2(2) = 0>

Notice that Wi(z) = z + By, 1(2), i.e., Bo,l(Z) = W (0).
Finally W3,42(2) = zW341(2) + W3,42(0) W5, 1 (2) yields

Cn, 1(2) = ZBn 1,2(2) + Cn, 1(0)@;(2),
Cn.Z(Z) = Bn, I(Z) + Cn, I(O)BZ, I(Z)v (7)
Cn, I(O)B:; 1,2(2) = 0,

for every n > 0.



Thus, we get

THEOREM 4  Let (V,) be the polynomial sequence defined in (3), where (®,,) is a MOPS.
(W) is a MOPS if and only if (5), (6) and (7) hold together with the fact that |B, 1(0)| # 1
and |C,, 1(0)] # 1 for every n > 1.

In the next Proposition, we deduce a sufficient condition in order (¥,) be a MOPS,
more simple than the above one. We use the following notation:

_ An,l(z) * _ AZ,I(Z) _ 0 1
Au(z) = (An,2(2)>, An(z) = (AZ,Z(Z) , J= 1 o)
ProrosiTION 5 Assume that (®,) is a MOPS and consider the sequence of monic poly-
nomials (\-IJH) defined in (3). If (\11,1) is a MOPS, then there exists at most one positive inte-

ger number N such that By 1(0)Cy 1(0) # 0. For such a N, B, 1(0) = C,1(0) =0 for
every n # N. The matrix sequence (A,) satisfies the recurrence relation

A, (z) =zA, 1(2) + Pp1 (VA ((2), n>=N+1
and initial conditions
By 1(0)
An(z) = ¢N+1(0)(4>®N(Z)
Cn,1(0)

Cn,1(0) + D x4 1(0)Cn,1(0) By, 1(0)
+ ( )@’,‘V(z)
By, 1(0) + Cn,1(0) By,1(0)

Proof  1If for some m € N B, 1(0)Cy,,1(0) # 0, then from (6); we get A,, 1.2 = 0. Thus
(5), becomes Cp, 1,2(2) = —=,,(0)C}, 1. 1(2) and then (5), leads to

Am l,l(Z) = (1 - |q)n(0)|2)cm 1,1(2)~ (9)

From (7); we get B,, 1.2 =0. Thus in (6),

Am 1.1(2) = =By 1(0)4,, | 1(2),
ie.,
(1= [Bu 1(0)*) A 1,1(2) = 0.
Since |B,,1(0)] # 1, then A4,, 1,1 =0. Thus, C,, 1,1 =0= C,, 12 and so we get

W3 I(Z) = qu)m 1(23)-
Thus from (4)

W3 2(2) =z®, 1(23),

as well as

W3, 3(2) = o, 1(23)-



In other words
An 21 =Am 22=By 1,1 =By 22=0.
But from (5),
Cu 21 = Cy 22=0,

W3 4(2) = Z2q)m 2(23)7
W3, 5(2) =z®d,, 2(23)3
\Ij3m 6(2) =, 2(23)~

Then, B, 1(0) = C,.1(0) = 0 Vn < m.
Thus if there exist two positive integer values N,N’ (N < N’) such that

By 1(0)Cy 1(0) # 0, By 1(0)Cy,1(0) # 0, we get a contradiction.
Finally, from (6),
By, 1(2) = B, 1(0)®;,(2)
and from (7); and (7),
Ci, 1(2) = G, 1(0)D5,(2) - (10)
Cin2(2) = By, 1(0)®7,(2) 4+ Cin 1(0) By, 1(0)Pin(2).

In other words, we have the explicit expressions for the elements {W3,,,, ¥3,11, Y312}
Indeed,

V3,(2) = Cbm(z3)’
“Ij3m+l(z) = Zq)m(z3) + Bm, 1(0) q):1(z3),
lI"3m+2(2) = [Z + Cm, I(O)Bm, 1(0)]Zq>m(z3) + [ZBm, 1(0) + Cm, 1(0)]@;(23).

If we assume the existence of one N € N such that the above condition holds, we can
analyze three cases. In what follows, for the sake of simplicity we will write 8 = By_1(0)

and y = Cy 1(0).
C1 Byi,1(0) =0, Cyi11(0)#0.
Thus from (6)

Byy1,1(2) = zA4N,2(2),
By,2(2) = An1(2).

But from (7)3, By.2 =0, i.e., Ay =0.
On the other hand, in (7)

Crn+1,1(2) = Cy41,1(0) Py, 1 (2),
Cn11,2(2) = Byy1,1(2) + Cn11.1(0) By 1 (2).



Finally, in (5), Cy.1() = —®y41(0)C (2).
Taking into account the expressions (10) we get

y Pr(2) = —Pn1(0)(BPN(2) + BY Py(2)).
This means
— @y 11(0)BPN(2) = (¥ + BYPN11(0) D} (2).

Then, from Proposition 3,

0=—®y1(0)8 =y + BYPN+1(0).
Thus y = Cy,1(0) = 0, a contradiction with our initial hypothesis.
C2 Byi11(0) #0,  Cyy1,1(0) =0.
In an analog way as in the above case, we get a contradiction.
C3 By11,1(0) =0, Cyy1,1(0) =0.
These conditions mean that
W3n14(0) = 0,
and then,
Winia(2) = 2W3n43(2).
Now, keeping in mind that
W3n45(0) =0,

we can write
W3y45(2) = 2Wan44(2) = 22 Wsn43(2).

This means that the associated reflection parameters are {®y,(0),0,0}.
Finally, the explicit expression for Wiy 3(z) is

Wan13(2) = Py 1(2) + 24N 1(27) + 2 An 2(2)
= 2(2* + Byz + PPn+1(0)Dn(2)
+ 1B+ 7PN+1(0)2" + (¢ + BYOx+1(0)z + BT + Pu1 (O]DR().
Now, for the following term, we will consider another two cases.
D1 Byi1,1(0) =0, Cy41.1(0) =0,
Bni2,1(0) #0,  Cyy2,1(0) = 0.
Since By41,1(0) =0, from (6); and (6), we have

Byi1,1(2) = zAN 2(2),
By 2(2) = An1(2).



In the same way, since Cy+1,1(0) =0, (7); and (7), lead to

Cny1,1(2) = 2By 2(2) = zAN,1(2),
Cn+1,2(2) = By11,1(2) = 24N 2(2),

and from (5), we obtain

An.1(2) = Cy.1(2) + Py +1(0)Cy 5(2),
An2(2) = Cn.2(2) + Py41(0)Cy 1 (2).

Now, if we use the expressions for Cy 1(z) and Cy, 2(2) as in (10) we can deduce
An1(2) = y@y(2) + ByPn(2) + Pn1(0)[BPN(2) + BYPH(2)].
On the other hand, from (6); we have Ay+1» = 0. Now, (6); and (6), become

By i2.1(2) = Bni2,1(0) Py, (2),
By41,2(2) = An1,1(2) + By42,1(0) Ay, 1(2),

and (7)1, (7), lead to

Cni2,1(2) = zByy1,2(2),

Cn12,2(2) = Byya,1(2).

Keeping in mind (5), it follows that
An+1.1(2) = zAN1(2) + Py 42(0) 4}y ,(2),
0 = An11.2(2) = zAN 2(2) + Pr12(0) ANy 1 (2),
and thus
Ang1.1(2) = 2(1 — [ @y2(0))) A1 (2),

which we can written in the following way
0=:2[Cr2() + Pr (OCh, ()]

+ O 12(0)] T 2) + an 0)C ()
= Bz + By 00220 P5(2)
+ [P @x11(0)z + Dy i2(0) + Br]Pa(2)

and, taking into account Proposition 3, we get 8 = By, 1(0) = 0 which is a contradiction.
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D2 Byy1.1(0)=0, Cn41,1(0)=0,
Brni2,1(0) =0, Cni2,1(0) #0.

A similar procedure yields a contradiction.
Thus, we can suppose that

B=Bn10)#0, y=Cyi(0)#0,
Byix,1(0) =0, Cnyx1(0)=0, k=1,....n, neN

and in a similar way as in the above cases using an induction process, we obtain
Brnint1,1(0) =0,  Cniny1,1(0) =0, neN.
As a conclusion,
Bui(0) = C,1(0) =0, Va=N+1.
In other words,

{ Bn.l(z) = ZAn 1,2(2)7
Bn 1,2(2) = An l,l(Z)a

{ Cp1(2) = 2By 1,2(2),
Cn.Z(Z) = Bn, 1(2),

forn> N + 1. Thus
U341(2) = z2W3,(2), n> N,
Wi2(2) = 2 W3(2), 1> N,
W343(2) = @yt (2)) + 24,1(2)) + 2 4, 2(2), n= N,
and
A (z) = 2R, 1(2) + Pur1(0)JA] (2)

for n > N + 1 with the initial conditions (8). |

The next step will be an alternative way to deduce an explicit expression for the
sequence (W,) in terms of the sequences (®,) and (£2,), where (£2,) is the MOPS of
the second kind for (®,,) (see [5.,9]).

Taking into account the above results, the sequence (¥,) is a finite perturbation of
(ffl,,) at level 3N + 2, where (\3,1) is the MOPS obtained from the sequence (W) intro-
ducing two zeros between two consecutive terms of the corresponding sequence of
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reflection parameters. By means of A, and 1~\n we denote the polynomials of the second
kind of W, and W, respectively. Using the procedure described in [3] we get

W3y 244(2) _ 1 Rz SE)\ [ Wiyi244(2)
Asviai(@) ) 22V 2en \ UG V() )\ Ranian(2) )
where

(R(z) S(z))_(@;;(z% <1>N<z3)><p(z> q(z))(z29N<z3> —z2<1>N(z3>>
Ui V() —2@) @@ )\ @)\ Q@) oy )
with

p(z)=pByz+1,
q(z) = pz +y.
Notice that R, S, U, V are self-reciprocal polynomials (see [9]).

In the same way, if we denote by F the Carath¢odory function associated with the
MOPS (¥,), then it is known ([6]) that F(z) = F(z*). Thus

PROPOSITION 6  For the Carathéodory function G associated with the MOPS (V,)) we get

UQ)F(z%) + V(2)

M EEEEE)

eD={|z] < 1}.

Proof For n > 3N + 2 we can write

AL U@WER) + V(DALR)
Wi2)  REWEE) + S(ALE)

Then (see [10])

(o) = lim 20 _ U ()F () + V(2)

M) T ROFE) 150" S -

Remember that in the positive definite case the measure dyu belongs to the Szego class
when (®,(0)) € /. In this case we can define the Szego function as

1 ["1l+ze® ,
D(Z, dM) = eXp{E/‘ mlogﬂ (Q)de}, zZ e [D,

(see [13]) and furthermore

. Kn
D(Za d/'l/) = II’IIII%

locally uniformly in I, where &, = ||®,|| 2. Now, it is easy to obtain the Szegd function
associated with the polynomials W,,.
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PropPOSITION 7 Let du be a positive Borel measure supported on T which belongs to the
Szegd class. Let (U,) be the MOPS introduced as above and denote By 1(0) = B,
Cn.1(0)=y. If B, y €D, then the measure dv of orthogonality for (¥,) belongs to the
Szeg0 class and the corresponding Szegbd function is given by

oy — 11— 181 — 2y V2 PEdw)
D) = [(1 = 1R = ) P s 2 eD.
As a consequence,
oy ORI\ 12y 172 w'(30)
VO =10 = IR0 = ) P

where (' and v’ denote, respectively, the Radon—Nikodym derivatives of n and v with
respect to the Lebesgue measure.

3. SOME EXAMPLES

1. We illustrate the preceding results with some examples. First, we consider the
sequence of reflection parameters given by

1
@,1(0) = m, neNU {0}

[tis very well known that the corresponding sequence of orthogonal polynomials (®,,) is

I 4+ D22 —m+2)" + 1
+1 (1-27 '

1 n i
q)n(Z) = m;(k + l)Z = n

For the polynomials of second kind we get

I (n+ D' —(+2)2"+1
+1 z—1

Qu(z) = n

Besides, the corresponding orthogonality measure du constitutes a modification of
the Lebesgue measure. More precisely,

1.
() = 1" - 11%de,

and we can obtain the sequence {u,},- of the moments for the measure dy. In fact

1 27 . .
n :7\/‘ elk9|619 _ 1|2d9
4 0
1 = . : A
— (2elk9 _ el(k+l)9 _ el(k I)H)de =0, keZ
4 0 ’
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up to k € {0, — 1, 1}. Notice that
u=1, wu=u 1:—%.
Thus, the corresponding Carathéodory function is
F(zy=1—-z, zeD.

In order to obtain the Carathéodory function related to the sequence (W,,),n, taking
into account the expression for the sequences ®,, €,, their corresponding reciprocal
polynomials, and keeping the notation of the previous sections, now we can write

R(z) S(2) 1 rz)  s(z)
Uiz Vi) E=D\ue o)
N 1
2 - 1)<(N + 1) — Zz3k> _p2 ((N+ DN+ N Z3k>
k=0

k=0

N 1 N
(23— 1)<Zz3k—(N+l)> YN+
k=0

where r, s are polynomials of degree exactly 3N + 2 with leading coefficient ¥ and u, v
are monic polynomials of degree 3N + 2. More precisely

<r(z) s(z)) 1 (WZH yz? +73z)
u(z) v(z) CE-DIV+D) Bz+y 22+ Byz

N N 1
d -+ -2 - l)(Zz3k — (N + 1))

k=0 k=0

N 1 N 1
(N + 1)Z3N+3 _ ZZ?&k (N + 1)Z3N _ Zz?:k
k=0 k=0

As a consequence of Proposition 6 we deduce the corresponding expression for the
Carathéodory function

@ -DU@E) - V()
(2> = DR() - S(z)°

G(z) =

and from Proposition 7 it follows that

172 1 —cos 36

VO = [ =171 =] R = + SE@E"
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2. We will consider another modification of the Lebesgue measure. This is given by
means of the Poisson kernel P,(6), i.e.,

1 — |a)?

du(0) = Pk — )d0 = ————
plO) = Prakt = 00 =0

where a = |ale” € D and k e N fixed.
The corresponding sequence of orthogonal polynomials is called a Bernstein-Szegd
polynomial sequence, i.e., their reflection parameters are

©,(0)=0, neN, n#k,
(Dk(O) = d.

Keeping in mind the forward recurrence relation, for the sequence (®,),-, we obtain

q),,(Z) =z7", n<k

®,(z) =" k(zk +a), n=k

Thus, the Carathéodory function is a rational function. More precisely,

If we make a perturbation at level 3N 4 2 with N > k for the polynomials ¥, and A,
we get

Wiy n(2) = (782 + 1) Wiy (2) + (72 + B)2¥san(2),
Aiyia(2) = 7Bz + D) A5x(2) + (=72 + B)zAsn(2).
AS a consequence

Niya(2) (72 + 1)) + (=72 + B)2Y DHIQu ()
Wiy o) (7B + 1)) + (72 + B) BV D+l ()

F(z)=

_ PB4 (@ 4 1) + (724 HEY P - a)
(7Bz + 1)@z + 1) + (yz + B)23 P+ + g

The Szeg6 function for the modified sequence is (see[3]).

(1= =187 Va

PEdin = (7Bz + 1)@z + 1) + (72 + p)23W O+ 4 1)

ze .
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