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Abstract
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functionals. First we consider the case where one of the functionals is arbitrary and quasi-
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1 The research was supported by Dirección General de Investigación (Ministerio de Ciencia y Tecno-

logı́a) of Spain under grant number BFM2000-0015 and by Universidad de Vigo and Xunta de Galicia.
2 The research was supported by Dirección General de Investigación (Ministerio de Ciencia y Tecno-

logı́a) of Spain under grant BFM2000-0206-C04-01 and INTAS project INTAS2000-272.

�

1

Nota adhesiva
Published in: Linear Algebra and its Applications, 2003, vol. 369, p. 235-250



1. Introduction

The study of the sequence of polynomials orthogonal with respect to a sum of
measures or functionals in terms of the initial ones is an interesting question. It has
been solved when some additional conditions on the measures or functionals (for in-
stance one of them is a singular measure with finite support) are considered. Probably
it is necessary to assume some additional conditions on the measures or functionals
in order the problem is well-posed.
In this work we study the problem in a particular case where one of the func-

tionals is arbitrary and quasi-definite and the other one is the Lebesgue normalized
functional. In this case we deduce a necessary and sufficient condition for the quasi-
definite character of the new functional and we also obtain the explicit expression
for the corresponding sequence of orthogonal polynomials. This transformation in
the linear functional appears in a very natural way in the study of Laguerre–Hahn
affine functionals which are not semiclassical (see [1]).
Indeed we consider a quasi-definite hermitian linear functional L which is

semiclassical. We denote by {cn} its moments and byG(z) the formal seriesG(z) =∑∞
−∞(cn/z

n). We assume that G is not a rational function. Then there exist poly-
nomials A /= 0 and B /= 0 such that A(z)G′(z) + B(z)G(z) = 0 with z2A(1/z) +
A(z)B(1/z) = 0. If we consider the functional L̂ = L + L0, where L0 is the
Lebesgue normalized functional and we denote by Ĝ(z) the formal series associated
with L̂ , then Ĝ(z) = G(z) + 1 and therefore the following equation holds:

A(z)Ĝ′(z) + B(z)Ĝ(z) − B(z) = 0.

Thus L̂ is a Laguerre–Hahn affine functional which is not semiclassical.
On the other hand, it is easy to see that this transformation preserves the Laguerre–

Hahn affine character of this functional.
In the second part of the work we will consider the sum of two positive measures,

one is arbitrary and the second one is the Lebesgue measure and we obtain some
properties of the new measure as well as the corresponding sequence of orthogonal
polynomials. The addition of the Lebesgue normalized functional to a positive defi-
nite linear functional can be read in terms of Toeplitz matrices. Taking into account
that the entries of an infinite Toeplitz matrix T with positive definite principal sub-
matrices Tn are the moments of a positive Borel measure supported on the unit circle,
the problem under consideration means that we modify the moment of order zero by
the addition of a constant. This idea appears in the Pisarenko modelling problem [7].
Assume a finite positive definite hermitian Toeplitz matrix Tn is given. Consider

the problem of designing a discrete stationary stochastic process {x(p) : p ∈ Z} of
zero mean and having the entries t0, t1, . . . , tn, of Tn as its n + 1 first covariances:

tk = E[x(p)x(p − k)]
for k = 0, . . . , n. Stated in such general form the problem admits infinitely many
solutions. Let us restrict our attention to the particular situation where the process
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{x(p) : p ∈ Z} is further required to be made by adding two uncorrelated stationary
stochastic processes {y(p) : p ∈ Z} and {z(p) : p ∈ Z} with {z(p) : p ∈ Z} the out-
put of a discrete white noise generator of variance λ as large as possible. Thus one
must have

tk = ck + λδk,0, k = 0, 1, . . . , n,

ck = E[y(p)y(p − k)] and where λ assumes the largest possible nonnegative value.
Consider the covariance matrixCn = Tn − λIn associated with the process {y(p) :

p ∈ Z}. As Cn is required to be a covariance matrix it must be nonnegative definite.
Thus the maximum value of λ is identified at once as the smallest eigenvalue of
Tn. The positive function f (z) = c0 + 2c1z + · · · associated with the matrix Cn is
uniquely defined as a rational lossless function of degree n, i.e.,

f (z) =
n∑

m=1
hm

eiθm + z

eiθm − z
+ iα,

with hm > 0, m = 1, 2, . . . , n. As a straightforward consequence we get

ck =
n∑

j=1
hj eikθj .

This shows that the process {y(p) : p ∈ Z} can be modelled by adding up the
outputs of n sinusoidal wave generators of amplitude

√
hj , j = 1, 2, . . . , n, whose

phases φj are uncorrelated random variables of zero mean.
Thus {y(p) : p ∈ Z} is modelled as y(p) = ∑n

m=1
√

hmei(pθm+φm) and, in par-
ticular, ck = E[y(p)y(p − k)]. The values θm, m = 1, 2, . . . , n, are called the Pis-
arenko model frequencies. They can be obtained by an efficient numerical procedure
(the split Levinson algorithm) [2] when tk ∈ R.

Finally, as an example the sum of a Bernstein–Szeg"o measure and the Lebesgue
measure is analyzed. We obtain explicit algebraic relations as well as the relation
between the corresponding Szeg"o’s functions.

2. Algebraic properties

Let � be the linear space of Laurent polynomials, that is, � = span{zk; k ∈ Z}
and letL : � −→ C be a linear functional which is quasi-definite and hermitian. If
we denote the moments of the functionalL by cn = L(zn) for every integer n ∈ Z,

we say that

(i) L is hermitian if ∀n � 0, c−n = cn;
(ii) L is quasi-definite (positive definite) if the principal submatrices of the Toeplitz

moment matrix associated with the sequence {cn} are nonsingular (resp. positive
definite), i.e., ∀n � 0, �n = det(ci−j )

n
i,j=0 /= 0 (resp. > 0).
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Wedenoteby 〈, 〉L thebilinear formdefinedby 〈P(z), Q(z)〉L = L(P (z)Q(1/z)).
When L is positive definite, it is well-known (see [6]) that there exists a finite

positive Borel measure μ supported on [0, 2π ] such that

cn =
∫ 2π

0
zn dμ(θ), z = eiθ .

Next we recall some definitions (see [6]).
A sequence of polynomials {Pn(z)} is said to be a sequence of polynomials or-

thogonal with respect to a linear functionalL if

(i) ∀n � 0, deg(Pn) = n,

(ii) ∀n, m � 0, 〈Pn(z), Pm(z)〉L = knδn,m with kn /= 0.

If the leading coefficient of each Pn is 1, then {Pn(z)} is said to be the monic
orthogonal polynomial sequence with respect toL, (MOPS(L)).
WhenL is positive definite {Pn(z)} is the orthonormal polynomial sequence with

respect toL if for every n = 0, 1, 2, . . .

〈Pn(z), Pn(z)〉L = ‖Pn(z)‖2μ = 1.

The following result is also well-known.
LetL be a hermitian linear functional. Then the following conditions are equiv-

alent:

(i) L is quasi-definite.
(ii) There exists a sequence of polynomials orthogonal with respect toL.

If L is a quasi-definite and hermitian linear functional and {�n(z)} is the corre-
sponding MOPS(L), we define the nth kernel Kn(z, y) by

Kn(z, y) =
n∑

k=0

1
ek

�k(z)�k(y),

with ek = 〈�k(z), �k(z)〉L.

If we denote by Pn the linear space of algebraic polynomials of degree at most n,

then the reproducing property for the nth kernel is very well-known

〈Kn(z, y), P (z)〉L = P(y), ∀P ∈ Pn.

An analog reproducing property holds for the derivatives. Indeed if we denote by

K
(0,j)
n (z, y) =

n∑
k=0

1
ek

�k(z)�
(j)
k (y),

then

〈K(0,j)
n (z, y), P (z)〉L = P (j)(y), ∀P ∈ Pn.
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Next we assume thatL is a quasi-definite and hermitian linear functional and we
denote by {�n(z)} and {Kn(z, y)} the corresponding MOPS(L) and the sequence of
n-kernels respectively. LetL0 be the linear functional associated with the Lebesgue
normalized measure, that is, L0(1) = 1 and L0(z

n) = 0 for n � 1. Consider the
linear functional L̂ = L + L0.
Next we study necessary and sufficient conditions in order to L̂ be quasi-definite.

Theorem 1. Let L be a quasi-definite and hermitian linear functional with
MOPS(L) {�n} and let L̂ = L + L0 with L0 the Lebesgue normalized linear
functional. Then the following statements are equivalent.

(1) L̂ is quasi-definite.
(2) The matrix An is nonsingular as well as

e0 + 1 /= 0, and

en + 1+
(

�n(0), . . . , �(n−1)
n (0)

)
A−1

n

(
�n(0), . . . , �(n−1)

n (0)
)T

/= 0,

for n � 1,

where
An = diag(1, (1!)2, . . . , ((n − 1)!)2) + Kn−1

with
Kn−1 = (K

(i,j)

n−1 (0, 0))n−1
i,j=0.

Moreover, theMOPS {�̂n} with respect to L̂ is given by

�̂n(z)

= 1
|An|

∣∣∣∣∣∣∣∣∣∣∣∣

�n(z) K
(0,0)
n−1 (z, 0) K

(0,1)
n−1 (z, 0) . . . K

(0,n−1)
n−1 (z, 0)

�n(0)
�(1)

n (0)
...

�(n−1)
n (0)

An

∣∣∣∣∣∣∣∣∣∣∣∣
,

(1)

for n � 1.

Proof. Let {�̂n(z)} be the MOPS(L̂). If we write

�̂n(z) = �n(z) +
n−1∑
j=0

αn,j�j (z),

then for j = 0, . . . , n − 1, we have
0 = 〈�̂n(z), �j (z)〉L̂ = 〈�̂n(z), �j (z)〉L + 〈�̂n(z), �j (z)〉L0 .

5



Since 〈�̂n(z), �j (z)〉L = αn,j ej and

〈�̂n(z), �j (z)〉L0 =
j∑

k=0

�̂
(k)
n (0)�(k)

j (0)
(k!)2 ,

then for j = 0, . . . , n − 1, we get

αn,j = − 1
ej

j∑
k=0

�̂
(k)
n (0)�(k)

j (0)
(k!)2 .

Hence

�̂n(z) = �n(z) −
n−1∑
j=0

�̂
(j)
n (0)
(j !)2 K

(0,j)

n−1 (z, 0). (2)

Finally, if we evaluate at the point z = 0 the preceding equation as well as its
derivatives up to the (n − 1)th order derivative we get the following linear system

n−1∑
j=0

[δi,j (i!)2 + K
(i,j)

n−1 (0, 0)] �̂
(j)
n (0)
(j !)2 = �(i)

n (0), i = 0, . . . , n − 1,

or equivalently with matrix notation

An

⎛⎜⎜⎜⎝
�̂n(0)

...

�̂(n−1)
n (0)

((n−1)!)2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎝
�n(0)

...

�(n−1)
n (0)

⎞⎟⎟⎠ .

Taking into account the existence and uniqueness of the family of monic orthogo-
nal polynomials with respect to the linear functional L̂, we deduce the matrix An is
nonsingular in order to the existence and uniqueness of the solution of the above lin-
ear system. Notice that ifL is positive definite then the matrixAn is positive definite
because it is the sum of two positive definite matrices (see [3]). As a consequence⎛⎜⎜⎜⎝

�̂n(0)
...

�̂(n−1)
n (0)

((n−1)!)2

⎞⎟⎟⎟⎠ = A−1
n

⎛⎜⎜⎝
�n(0)

...

�(n−1)
n (0)

⎞⎟⎟⎠ .

Hence

�̂n(z) = �n(z) − (
K

(0,0)
n−1 (z, 0), K(0,1)

n−1 (z, 0), . . . , K(0,n−1)
n−1 (z, 0)

)
×A−1

n

⎛⎝ �n(0)
...

�(n−1)
n (0)

⎞⎠ , (3)

from which (1) follows.
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Moreover, if L̂ is quasi-definite and we denote by êk = 〈�̂k(z), �̂k(z)〉L̂, then

0 /= ên = 〈�̂n(z), �n(z)〉L̂ = 〈�̂n(z), �n(z)〉L + 〈�̂n(z), �n(z)〉L0

= 〈�̂n(z), �n(z)〉L + 1+
n−1∑
k=0

�̂
(k)
n (0)�(k)

n (0)
(k!)2

= en + 1+ (�n(0), . . . , �(n−1)
n (0))A−1

n

× (�n(0), . . . , �(n−1)
n (0))T.

Conversely, since An is nonsingular, we define �̂n(z) by (1). It is immediate to
prove that {�̂n} is the MOPS(L̂) and therefore L̂ is quasi-definite. Indeed for i =
0, . . . , n − 1,

〈�̂n(z), �i (z)〉L̂ = 〈�̂n(z), �i (z)〉L + 〈�̂n(z), �i (z)〉L0

=
〈
�n(z) −

n−1∑
j=0

�̂
(j)
n (0)
(j !)2 K

(0,j)

n−1 (z, 0)), �i (z)

〉
L

+
i∑

k=0

�̂
(k)
n (0)�(k)

i (0)
(k!)2

= −
n−1∑
k=0

�̂
(k)
n (0)�(k)

i (0)
(k!)2 +

i∑
k=0

�̂
(k)
n (0)�(k)

i (0)
(k!)2 = 0.

On the other hand, from the hypothesis 〈�̂0(z), �0(z)〉L̂ /= 0, and for n � 1

〈�̂n(z), �n(z)〉L̂ = 〈�̂n(z), �n(z)〉L + 〈�̂n(z), �n(z)〉L0

= en + 1+ (
�n(0), . . . , �(n−1)

n (0)
)
A−1

n

× (�n(0), . . . , �(n−1)
n (0))T /= 0. �

Next we are going to see that relation (1) can be given explicitly in terms of�n(z).

Let us consider the Christoffel–Darboux formula (see [6])

en+1(1− zy)Kn(z, y) = �∗
n+1(z)�∗

n+1(y) − �n+1(z)�n+1(y).

(Recall that the ∗ operator is defined by P ∗(z) = znP (1/z) if degP = n.)
If we take derivatives up to the j th order with respect to z and evaluate at z = 0

we have

en+1
(
K

(j,0)
n (0, y) − jyK

(j−1,0)
n (0, y)

)
= �∗

n+1
(j)

(0)�∗
n+1(y) − �(j)

n+1(0)�n+1(y).
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Taking conjugates and interchanching y by z we can write

en+1
(
K

(0,j)
n (z, 0) − jzK

(0,j−1)
n (z, 0)

)
= �∗

n+1
(j)(0)�∗

n+1(z) − �(j)

n+1(0)�n+1(z). (4)

Since

�n+1(z) =
n+1∑
k=0

�(k)
n+1(0)
k! zk and �∗

n+1(z) =
n+1∑
k=0

�(n+1−k)
n+1 (0)

(n + 1− k)!z
k

we deduce that

�∗
n+1

(k)(0)
k! = �(n+1−k)

n+1 (0)
(n + 1− k)!

and therefore (4) becomes

en+1
(
K

(0,j)
n (z, 0) − jzK

(0,j−1)
n (z, 0)

)
= j !�

(n+1−j)

n+1 (0)
(n + 1− j)!�

∗
n+1(z) − �(j)

n+1(0)�n+1(z).

Hence we have

en+1

(
K

(0,j)
n (z, 0)

j ! − z
K

(0,j−1)
n (z, 0)
(j − 1)!

)

= �(n+1−j)

n+1 (0)
(n + 1− j)!�

∗
n+1(z) − �(j)

n+1(0)
j ! �n+1(z) (5)

for j � 1 with the initial condition

K(0,0)
n (z, 0) = 1

en+1

(
�∗

n+1(z)�∗
n+1(0) − �n+1(z)�n+1(0)

)
= 1− |�n+1(0)|2

en+1
�∗

n(z).

Taking into account the well-known recurrence relations for orthogonal polyno-
mials on the unit circle (see [6]) one has

1− |�n+1(0)|2
en+1

= 1
en

,

and therefore

K(0,0)
n (z, 0) = �∗

n(z)

en

. (6)

8



Notice that (5) can be rewritten with matrix notation

en+1

(
K

(0,0)
n (z, 0)
0! , . . . ,

K
(0,n)
n (z, 0)

n!

)
M(n) = (

�∗
n+1(z), −�n+1(z)

)
N(n),

where

M(n) =

⎛⎜⎜⎜⎜⎜⎝
1 −z 0 · · · 0
0 1 −z · · · 0
...

...
...

0 0 0 · · · −z

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠ ∈ Mn+1,n+1

and

N(n) =
⎛⎜⎝ 1 �(n)

n+1(0)
n!

�(n−1)
n+1 (0)
(n−1)! · · · �(1)

n+1(0)
1!

�n+1(0)
0!

�(1)
n+1(0)
1!

�(2)
n+1(0)
2! · · · �(n)

n+1(0)
n!

⎞⎟⎠ .

Hence

en+1

(
K

(0,0)
n (z, 0)
0! , . . . ,

K
(0,n)
n (z, 0)

n!

)
= (

�∗
n+1(z), −�n+1(z)

)
N(n)(M(n))−1.

Since

(M(n))−1 =

⎛⎜⎜⎜⎝
1 z · · · zn

0 1 · · · zn−1
...

...
...

0 0 · · · 1

⎞⎟⎟⎟⎠ ,

for 0 � j � n we get

en+1
K

(0,j)
n (z, 0)

j ! = pj (z; n + 1)�∗
n+1(z) − qj (z; n + 1)�n+1(z),

where

pj (z; n + 1) =
j∑

k=0

�(n+1−k)
n+1 (0)

(n + 1− k)!z
j−k

and

qj (z; n + 1) =
j∑

k=0

�(k)
n+1(0)
(k)! zj−k.
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On the other hand, if we take derivatives in (5) up to the pth order with respect to
z and evaluate at the point z = 0 we get

en+1

(
K

(p,j)
n (0, 0)

j ! − p
K

(p−1,j−1)
n (0, 0)

(j − 1)!

)

= �(n+1−j)

n+1 (0)
(n + 1− j)!

p!
(n + 1− p)!�

(n+1−p)

n+1 (0) − �(j)

n+1(0)
(j)! �(p)

n+1(0).

Thus

en+1

(
K

(p,j)
n (0, 0)

p!j ! − K
(p−1,j−1)
n (0, 0)

(p − 1)!(j − 1)!

)

= �(n+1−j)

n+1 (0)�(n+1−p)

n+1 (0)
(n + 1− j)!(n + 1− p)! − �(j)

n+1(0)�
(p)

n+1(0)
j !p! .

If p < j, taking into account the telescopic character of the first member in the
above expression, we obtain that

en+1
K

(p,j)
n (0, 0)

p!j ! = en+1
K

(0,j−p)
n (0, 0)
0!(j − p)!

+
p∑

k=0

⎛⎝ �(n+1−j+k)

n+1 (0)�(n+1−p+k)

n+1 (0)
(n + 1− j + k)!(n + 1− p + k)!

− �(j−k)

n+1 (0)�(p−k)

n+1 (0)
(j − k)!(p − k)!

⎞⎠
with the initial condition

K
(0,l)
n (0, 0)
0!l! = 1

en

�(n−l)
n+1 (0)

(n − l)! .

This last result follows from (6) if we take derivatives with respect to z and eval-
uate at z = 0.

3. The positive definite case

Throughout this section we assume that L is a positive definite Hermitian
functional and we denote by μ the finite Borel positive measure such thatL(zn) =∫ 2π
0 zn dμ(θ), z = eiθ . Then L̂ = L + L0 is also a positive definite linear func-
tional and the associated measure μ̂ is

μ̂(θ) = (μ′(θ) + 1)dθ + μs(θ), where μ(θ) = μ′(θ)dθ + μs(θ).
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Hence if μ′(θ) is the Radon–Nikodym derivative of the measure μ (see [8]) then
μ̂′(θ) = μ′(θ) + 1 is the Radon–Nikodym derivative of the measure μ̂.

If we denote by ‖ ‖μ, ‖ ‖μ̂ and ‖ ‖θ the induced norms in the spaces L2μ[0, 2π ],
L2μ̂[0, 2π ] and L2θ [0, 2π], then we obtain the following results.

Theorem 2. Let {�n} be theMOPS(μ) and let {�̂n} be theMOPS(μ̂). If

0m = lim
n→∞ ||�n(z)||2μ and 0m̂ = lim

n→∞ ‖�̂n(z)‖2μ̂,

then

(i) 1+ ‖�n‖2μ � ‖�̂n‖2μ̂ � 1+ c0, with c0 = ∫ 2π
0 dμ(θ).

(ii) 1+ 0m � 0m̂ � 1+ c0.
(iii) ‖�̂n‖2μ � c0 and ‖�̂n‖2θ � c0 + 1 ∀n � 0.

(iv)
∑n−1

j=0
|�̂(j)

n (0)|2
(j !)2 � c0.

Proof
(i) If we apply the extremal property of the norm of the orthogonal polynomials
we get

1+ ‖�n‖2μ � ‖zn‖2θ + ‖�̂n‖2μ
� ‖�̂n‖2θ + ‖�̂n‖2μ
= ‖�̂n‖2μ̂
� ‖zn‖2μ̂
= c0 + 1.

(ii) It is straightforward from (i), taking limits when n tends to∞.

(iii), (iv) From ‖�̂n‖2θ + ‖�̂n‖2μ � c0 + 1 it follows that

‖�̂n‖2μ �
n−1∑
j=0

|�̂(j)
n (0)|2
(j !)2 � c0,

which yields the result. �

Corollary 1
(i) μ̂ belongs to the Szeg"o class S.

(ii) The absolutely continuous part of μ̂, μ̂′(θ) = μ′(θ) + 1 satisfies
1

μ̂′(θ)
� 1.

11



Proof
(i) Applying Szeg"o’s theorem (see [9,10]) we know that

μ̂ ∈ S if and only if 0m̂ > 0.

From Theorem 2 we get that 0m̂ > 0, and our statement follows.

(ii) Since

1
μ̂′(θ)

= 1
μ′(θ) + 1 � 1,

we get the result. Therefore
1

μ̂′(θ)
∈ L1[0, 2π ]. �

Some other interesting relations between the norms are given in the next theorem.

Theorem 3. Let {�n} be theMOPS(μ) and let {�̂n} be theMOPS(μ̂). Then

(i) ‖�̂n‖2μ̂ = ‖�n‖2μ + 1+
n−1∑
j=0

�̂
(i)
n (0)�(i)

n (0)
(i!)2 .

(ii) 0 � 1+
n−1∑
j=0

�̂
(i)
n (0)�(i)

n (0)
(i!)2 .

(iii) ‖�̂n‖2θ � ‖�n‖2θ .

Proof
(i) It is straightforward from ‖�̂n‖2μ̂ = 〈�̂n, �n〉μ + 〈�̂n, �n〉θ = ‖�n‖2μ + 〈�̂n,

�n〉θ .
(ii) Since ‖�n‖2μ � ‖�̂n‖2μ̂, then 0 � ‖�̂n‖2μ̂ − ‖�n‖2μ = 〈�̂n, �n〉θ ,which implies

(ii).
(iii) Since ‖�̂n‖2μ̂ � ‖�n‖2μ̂, then ‖�̂n‖2μ + ‖�̂n‖2θ � ‖�n‖2μ + ‖�n‖2θ , which im-

plies 0 � ‖�̂n‖2μ − ‖�n‖2μ � ‖�n‖2θ − ‖�̂n‖2θ . Therefore ‖�̂n‖2θ � ‖�n‖2θ , that
can be written

n−1∑
j=0

|�̂(j)
n (0)|2
(j !)2 �

n−1∑
j=0

|�(j)
n (0)|2
(j !)2 . �

Finally, in the next theorem we obtain some relations betweeen the coefficients of
the polynomials �n and �̂n.

12



Theorem 4. If {cn} is the sequence of moments of the measure μ, then

(i) ‖�̂n‖2μ̂ = 1+ c0 + c1
�̂

(n−1)
n (0)

(n − 1)! + · · · + cn�̂n(0), and

‖�n‖2μ = c0 + c1
�(n−1)

n (0)
(n − 1)! + · · · + cn�n(0).

(ii)
n∑

j=1
cj

�̂
(n−j)
n (0)

(n − j)! � 0, and
n∑

j=1
cj

�(n−j)
n (0)

(n − j)! � 0.

(iii)
n∑

j=1
cj

(
�̂

(n−j)
n (0)

(n − j)! − �(n−j)
n (0)

(n − j)!

)
=

n−1∑
j=0

�̂
(j)
n (0)�(j)

n (0)
(j !)2 .

(iv)
n−1∑
j=0

�̂
(j)
n (0)
j !

⎛⎝cn−j − �̂
(j)
n (0)
j !

⎞⎠ � 0.

Proof
(i) From ‖�̂n‖2μ̂ = 〈�̂n, z

n〉μ + 〈�̂n, z
n〉θ = 〈�̂n, z

n〉μ + 1 and ‖�n‖2μ = 〈�n, z
n〉μ,

then (i) follows.
(ii) It is straightforward taking into account (i) and using (i) in Theorem 2.
(iii) We obtain the result using ‖�̂n‖2μ̂ − ‖�n‖2μ = 〈�̂n, �n〉θ and (i).
(iv) Since

‖�̂n‖2μ̂ = ‖�n‖2μ + 1+
n−1∑
i=i

|�̂(i)
n (0)|2
(i!)2

and

‖�̂n‖2μ � c0,

from (i) the result follows. �

4. Lebesgue perturbation of a Bernstein–Szeg"o measure

When we choose as the first measure a Bernstein–Szeg"o measure we obtain some
additional properties reflecting the meaning of the perturbation by the Lebesgue
measure.
Let

dμ(θ) = dθ
2π |Ak(eiθ )|2
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be a Bernstein–Szeg"o measure whereAk(z) a polynomial with degAk = k, Ak(0) >

0 and Ak(z) /= 0, ∀z, |z| � 1. Let {ϕn(z)} be the corresponding sequence of ortho-
normal polynomials. It is well-known that ϕn(z) = zn−kA∗

k(z), ∀n � k.

Theorem 5. If A∗
k(z) = ∑k

j=0 aj z
j with ak > 0 and a0 /= 0, then for each n � k:

(i) There exist βn,n−j (j = 1, . . . , k) such that

ϕn(z) = ak�̂n(z) + βn,n−1�̂n−1(z) + · · · + βn,n−k�̂n−k(z). (7)

(ii) The sequences {βn,n−j }n�k(j = 1, . . . , k) are convergent and

|βn,n−j − ak−j | � √
c0

j−1∑
l=0

|ak−l |. (8)

(iii) ‖�̂n − zn‖2μ̂ � c0 − 1
a2k

for n � k.

(iv) 0m̂ ∈
[
1+ 1

a2k
, 1+ c0

]
.

Proof
(i) If we write

ϕn(z) =
n∑

k=0
βn,k�̂k(z), (9)

and take into account that 〈ϕn(z), z
j 〉μ̂ = 0 for 0 � j � n − k − 1, then we deduce

that

〈ϕn(z), �̂j (z)〉μ̂ = βn,j‖�̂j‖2μ̂ = 0,

for j = 0, . . . , n − k − 1. This means that βn,j = 0 for j = 0, . . . , n − k − 1. Fi-
nally, identifying the leading coefficients in (9) we get (7).

(ii) For n � k and j = 1, . . . , k from (7) we deduce

βn,n−j = 〈ϕn(z), �̂n−j (z)〉θ
‖�̂n−j‖2μ̂

= 〈ϕn(z), �̂n−j (z)〉μ̂
‖�̂n−j‖2μ̂

= ak−j

〈zn−j , �̂n−j (z)〉μ̂
‖�̂n−j‖2μ̂

+ 〈∑j−1
l=0 ak−lz

n−l , �̂n−j (z)〉μ̂
‖�̂n−j‖2μ̂

.

Hence

βn,n−j − ak−j =
j−1∑
l=0

ak−l

〈zn−l , �̂n−j (z)〉μ̂
‖�̂n−j‖2μ̂

.
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For n � k, ‖�n‖2μ = (1/a2k ) and by Theorem 2 we get 1+ (1/a2k ) � ‖�̂n‖2μ̂ for
n � k.

Therefore

|〈ak−lz
n−l , �̂n−j (z)〉μ|2
‖�̂n−j‖4μ̂

�
|ak−l |2‖zn−l‖2μ‖�̂n−j‖2μ

‖�̂n−j‖4μ̂
�

|ak−l |2‖zn−l‖2μ
‖�̂n−j‖2μ̂

� |ak−l |2c0
1+ ‖�n−j‖2μ

� |ak−l |2c0
1+ ‖�n‖2μ

= |ak−l |2c0
1+ 1

a2k

� |ak−l |c0.
Hence we get (8).
Again, from (7), if we identify coefficients we get

ak−1 = ak

�̂
(n−1)
n (0)

(n − 1)! + βn,n−1.

If we take limits in the above expression and since μ̂ belongs to the Szeg"o class,
which implies that {(�̂(n−1)

n (0))/(n − 1)!} converges, then we obtain that {βn,n−1}
converges. Proceeding in the same way, for each j = 1, . . . , k we deduce that
{βn,n−j } converges.
(iii) ‖�̂n − zn‖2μ̂ = ‖zn‖2μ̂ − ‖�̂n‖2μ̂ = c0 + 1− ‖�̂n‖2μ̂ � c0 − ‖�n‖2μ

= c0 − 1
a2k
for n � k.

(iv) Since 0m = limn→∞ ‖�n‖2μ = (1/a2k ), from (ii) in Theorem 2 the result
follows. �

Corollary 2. For the measure μ̂ the Szeg"o function is a rational transformation of
the Szeg"o function for the measure μ.

Proof. If we apply the ∗n operator (see [4]) in relation (7) we get

ak + · · · + a0z
k = ak�̂

∗
n(z) + βn,n−1z�̂

∗
n−1(z) + · · · + βn,n−kz

k�̂
∗
n−k(z).

(10)

Since �∗
n(z) = (a0z

k + · · · + ak)/ak, the normalized Szeg"o function of measure μ

(see [5]) is

�(z)

�(0)
= lim

n→∞ �∗
n(z) = a0z

k + · · · + ak

ak

uniformly on compact subsets of |z| < 1.
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If we denote (�̂(z)/�̂(0)) the normalized Szeg"o function of measure μ̂, then

�̂(z)

�̂(0)
= lim

n→∞ �̂
∗
n(z)

uniformly on compact subsets of |z| < 1. But if Bk = limn→∞ βn,n−k and taking
limits in (10) we get

�̂(z)

�̂(0)
= ak

ak + B1z + · · · + Bkzk

�(z)

�(0)
= a0z

k + · · · + ak

Bkzk + · · · + B1z + ak

. �
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