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Abstract

In this contribution we analyze the generating functions for polynomials or-
thogonal with respect to a symmetric linear functional u, i.e., a linear application
in the linear space of polynomials with complex coefficients such that u(x2n+1) = 0.

In some cases we can deduce explicitly the expression for the generating func-
tion

P(x,ω) =
∞∑

n=0

cnPn(x)ωn,

where {Pn}n is the sequence of orthogonal polynomials with respect to u.

1. Introduction

It is very well known that classical orthogonal polynomials (Hermite, La-
guerre, Jacobi, and Bessel) are eigenfunctions of a second order linear differential
operator L

L(y) = a2(x)y′′ + a1(x)y′,

where (ak)2k=1 are polynomials with deg ak ≤ k. S. Bochner [2] proved that, in fact,
they are the unique solutions of such an eigenproblem up to a linear change in the
variable which are also orthogonal polynomials. H. L. Krall [11], considered the
following extension of such a problem:

Given a fourth order linear differential operator L

L(y) =
4∑

k=1

ak(x)y(k),
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where (ak)4k=1 are polynomials with deg ak ≤ k, to find the sequences of orthogonal
polynomials which are eigenfuntions of such a differential operator. He proved that
the solutions are the classical orthogonal polynomials (when L = L2) as well as
three new classes of orthogonal polynomials:

(i) Laguerre-type orthogonal polynomials.
The corresponding measure of orthogonality is

χ
R

+e−x dx + Mδ(x),

where χ
R

+ is the characteristic function of R
+ and δ(x) is the Dirac measure

supported on {0}.
(ii) Legendre-type orthogonal polynomials.

The corresponding measure of orthogonality is

M

2
χ[−1,1] dx +

1
2
δ(x − 1) +

1
2
δ(x + 1).

(iii) Jacobi-type orthogonal polynomials.
The corresponding measure of orthogonality is

χ[0,1](1 − x)α + Mδ(x), α > −1.

From the 80’s two ways are considered in order to generalize the above poly-
nomials.

The first one emphasizes the algebraic and analytic properties of polynomials
orthogonal with respect to a general classical measure (Laguerre, Jacobi) when
mass points are added. These polynomials are said to be classical-type orthogonal
polynomials.

For the measure of orthogonality

χ
R

+xαe−x dx + Mδ(x), α > −1, (1.1)

R. Koekoek [8] deduced the recurrence relation as well as the representation as
hypergeometric series of the corresponding orthogonal polynomials. In fact, this
paper was motivated by a previous work by T. H. Koornwinder [10] where similar
problems are considered for the measure of orthogonality

χ[−1,1](1 − x)α(1 + x)β dx + Mδ(x + 1) + Nδ(x − 1), α, β > −1. (1.2)

For a general approach to perturbations of general measures by addition of Dirac
masses see [12].

The second way is focused on differential properties of the classical-type or-
thogonal polynomials, i.e., to find linear differential operators

L(y) =
∞∑

k=1

ak(x)y(k),

where ak are polynomials of degree at most k, such that our classical-type orthogonal
polynomials are eigenfunctions.
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J. Koekoek and R. Koekoek [6] deduced the differential equation for the
Jacobi-type polynomials orthogonal with respect to (1.2) and proved that the order
of the differential operator is infinite up to α ∈ N or β ∈ N. Moreover, the order is

⎧⎪⎨
⎪⎩

2β + 4 if M > 0, N = 0 and β ∈ N,

2α + 4 if M = 0, N > 0 and α ∈ N,

2α + 2β + 6 if M > 0, N > 0 and α, β ∈ N.

For the measure of orthogonality (1.1), J. Koekoek and R. Koekoek [7] deduced the
linear differential operator L

L(y) =
∞∑

k=1

ak(x)y(k),

such that their eigenfunctions are the Laguerre-type orthogonal polynomials. In
fact, L is an infinite order differential operator up to α ∈ N. In such a case, the
order of the differential operator L is 2α + 4.

For a general and recent survey about orthogonal polynomials as eigenfunc-
tions of finite order differential operators, see the excellent review [5] by W. N.
Everitt et al.

The first aim of the present contribution is to obtain a generating function
for Laguerre-type orthogonal polynomials in order to complete the framework of
properties of such polynomials. From the generating function and using the Darboux
method (see [13]) we can deduce some relevant information about the asymptotics
of such polynomials.

The second aim is to deduce a generating function for the symmetrized se-
quence of a given family of orthogonal polynomials whose generating function is
explicitly given. As an application we obtain a generating function for the general-
ized Hermite-type orthogonal polynomials.

The structure of this paper is as follows.
In Section 2, we introduce the symmetrized linear functional associated with

a linear functional u. We deduce its generating function assuming that there is
a generating function for the sequences of orthogonal polynomials with respect to
the linear functionals u and xu, respectively. As an example, we consider classical
Laguerre orthogonal polynomials and their symmetrized (the generalized Hermite
polynomials). As a nice application of the results we deduce its generating function.

In Section 3, we obtain a generating function for Laguerre-type orthogonal
polynomials and, again, we get a generating function for the so-called generalized
Hermite-type orthogonal polynomials which are related to the symmetrization pro-
cess for the Laguerre-type orthogonal polynomials.
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2. Symmetric linear functionals and
generating functions

Let P be the linear space of polynomials with complex coefficients and let Pn

be the linear subspace of polynomials of degree at most n.
If u is a linear functional on P, then the sequence of complex numbers {un}n

defined by un = 〈u, xn〉, where 〈·, ·〉 means the duality bracket, is called the sequence
of moments associated with u, and u is said to be the linear functional determined
by the moment sequence {un}n.

Definition 2.1. A linear functional u is said to be quasi-definite if the prin-
cipal submatrices of the Hankel matrix (ui+j)∞i,j=0 are nonsingular.

Proposition 2.2. A linear functional u is quasi-definite if and only if there
exists a sequence of monic polynomials {Pn}n with deg Pn = n such that

i) 〈u, PnPm〉 = 0, n �= m.

ii) 〈u, P 2
n〉 �= 0, for every n ∈ N.

Such a sequence is said to be a sequence of monic orthogonal polynomials with respect
to the linear functional u if the leading coefficient of Pn is 1.

Definition 2.3. A linear functional u is said to be positive definite if 〈u, P 〉 >
0 for every polynomial P that is not identically zero and such that P (x) ≥ 0 for
every real number x.

Definition 2.4. A functional u is said to be symmetric if all of its moments
of odd order are 0, i.e., if

〈u, x2n+1〉 = 0, n = 0, 1, . . .

Let u be a quasi-definite linear functional and let {Pn}n denote the sequence
of monic orthogonal polynomials with respect to the functional u. We define the
functional v by

〈v, x2n〉 = 〈u, xn〉, 〈v, x2n+1〉 = 0, n ≥ 0.

The linear functional v is said to be the symmetrized linear functional of the linear
functional u. In ([4], Chapter 1, Section 8) necessary and sufficient conditions
for the quasi-definite character of v are given. Under such assumptions, we will
denote by {Sn}n the sequence of monic orthogonal polynomials with respect to the
functional v.

We introduce the linear functional ṽ = v + λδ0 via the addition of a Dirac
linear functional. Thus ṽ is also symmetric. A necessary and sufficient condition in
order to ṽ be quasi-definite is (see [12])

1 + λLn(0, 0) �= 0, ∀n ∈ N,
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where

Ln(x, y) =
n∑

j=0

Sj(x)Sj(y)
〈v, S2

j 〉
, n ≥ 0,

are the kernel polynomials corresponding to {Sn}n.

Lemma 2.5. If v is the symmetrized linear functional associated with the
functional u, then ṽ is the the symmetrized linear functional associated with the
functional ũ = u + λδ0 (see [1]).

Proposition 2.6. If P(x, ω) =
∑∞

n=0 cnPn(x)ωn is a generating function for

the polynomials {Pn}n and the series K(x, ω) =
∑∞

n=0 dn
〈u,P 2

n〉
Pn(0) Kn(0, x)ωn (where

Kn(x, y) are the kernel polynomials corresponding to {Pn}n) is convergent, then

S(x, ω) =
∞∑

n=0

anSn(x)ωn = P(x2, ω2) + xωK(x2, ω2),

is a generating function for the polynomials {Sn}n, where cn = a2n, dn = a2n+1.

Proof. The sequence {Sn}n defined by

S2n(x) = Pn(x2),

S2n+1(x) = xQn(x2), n ≥ 0,

where Qn(x) = 〈u,P 2
n〉

Pn(0) Kn(0, x), is the monic orthogonal polynomial sequence with
respect to v. Therefore

S(x, ω) =
∞∑

n=0

anSn(x)ωn =
∞∑

n=0

cnS2n(x)ω2n +
∞∑

n=0

dnS2n+1(x)ω2n+1

=
∞∑

n=0

cnPn(x2)(ω2)n + xω

∞∑
n=0

dn
〈u, P 2

n〉
Pn(0)

Kn(0, x2)(ω2)n

= P(x2, ω2) + xωK(x2, ω2). �

2.1 Classical Laguerre polynomials

For an arbitrary real number α, Laguerre polynomials are defined by (see [14],
p. 100–102)

L(α)
n (x) =

n∑
k=0

(−1)k

k!

(
n + α

n − k

)
xk, n = 0, 1, 2, . . . , (2.1)
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where
(
a
k

)
denotes the generalized binomial coefficient

(
a

k

)
=

(a − k + 1)k

k!

and (a − k + 1)k stands for the so-called Pochhammer’s symbol defined by

(b)0 = 1, (b)n = b(b + 1) · · · (b + n − 1), b ∈ R, n ≥ 1.

From the above definition L
(α)
n is a polynomial of degree n with leading coef-

ficient

kn =
(−1)n

n!
.

Furthermore

L(α)
n (0) =

(
n + α

n

)
=

(α + 1)n

(1)n
, (2.2)

and
n∑

k=0

L
(α)
k (x) = L(α+1)

n (x). (2.3)

When α is not a negative integer, Laguerre polynomials are orthogonal with
respect to a quasi-definite linear functional u(α). This linear functional is positive
definite for α > −1. In fact, if α > −1 {L(α)

n }n is orthogonal with respect to the
inner product

(f, g) =
∫ +∞

0

f(x)g(x)xαe−xdx.

Moreover, if α > −1, then

‖ L(α)
n ‖2=

∫ +∞

0

(
L(α)

n (x)
)2

xαe−xdx =
Γ(n + α + 1)

n!
. (2.4)

Denote by

K(α)
n (x, y) =

n∑
j=0

L
(α)
j (x)L(α)

j (y)

‖ L
(α)
j ‖2

, n = 0, 1, 2, . . . ,

the reproducing kernel of degree n associated with the family of orthogonal polyno-
mials {L(α)

n }n.
Using (2.2) and (2.3), for n ≥ 1, we get

i) K
(α)
n−1(0, 0) =

1
Γ(α + 1)

(
n + α

n − 1

)
=

(α + 1)n

(1)n−1Γ(α + 2)
, (2.5)
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ii) K
(α)
n−1(x, 0) =

1
Γ(α + 1)

L
(α+1)
n−1 (x). (2.6)

A generating function for Laguerre polynomials is obtained by F. Brafman [3]
(see also [9])

∞∑
n=0

(γ)n

(α + 1)n
L(α)

n (x)ωn = (1 − ω)−γ
1F1

(
γ; α + 1;

xω

ω − 1

)
, (2.7)

where 1F1(a1; b1; z) denotes the confluent hypergeometric function

1F1(a1; b1; z) =
∞∑

k=0

(a1)k

(b1)k

zk

k!
.

Notice that for γ = α + 1 we get
∞∑

n=0

L(α)
n (x)ωn = (1 − ω)−(α+1)

∞∑
k=0

(
xω

ω − 1

)k 1
k!

= (1 − ω)−(α+1) exp
(

xω

ω − 1

)
,

(2.8)

(see also [14] p. 101).
Furthermore, taking into account (2.2) and (2.7) we obtain

∞∑
n=0

L
(α)
n (x)

L
(α)
n (0)

ωn =
∞∑

n=0

(1)n

(α + 1)n
L(α)

n (x)ωn

= (1 − ω)−1
1F1

(
1; α + 1;

xω

ω − 1

)
.

(2.9)

2.2 Generalized Hermite polynomials

As an example of the symmetrization process, generalized Hermite polynomi-
als are defined by

H(μ)
n (x) = 2nS(α)

n (x), μ = α +
1
2
, α > −1.

Here

S
(α)
2n (x) = (−1)nn!L(α)

n (x2),

S
(α)
2n+1(x) = (−1)nn!xL(α+1)

n (x2), n ≥ 0,

are the monic orthogonal polynomials with respect to the symmetrized linear func-
tional associated with the Laguerre linear functional u(α). We denote this functional
by v(α). In particular, if α = −1/2, the polynomials H

(0)
n are the classical Hermite

polynomials (see [4], Chapter 5, Section 2, (2.43)).
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Using the proposition 2.6 we are going to obtain a generating function for the
generalized Hermite polynomials.

H(μ)
1 (x, ω) =

∞∑
n=0

1[
n
2

]
!
H(μ)

n (x)ωn =
∞∑

n=0

1
n!

H
(μ)
2n (x)ω2n +

∞∑
n=0

1
n!

H
(μ)
2n+1(x)ω2n+1

=
∞∑

n=0

22n(−1)nL
(μ− 1

2 )
n (x2)ω2n + xω

∞∑
n=0

22n+1(−1)nL
(μ+ 1

2 )
n (x2)ω2n

= (1 + 4ω2)−μ− 1
2 exp

(
4x2ω2

1 + 4ω2

)
+ 2xω(1 + 4ω2)−μ− 3

2 exp
(

4x2ω2

1 + 4ω2

)

= (1 + 4ω2 + 2xω)(1 + 4ω2)−(μ+ 3
2 ) exp

(
4x2ω2

1 + 4ω2

)

(see [4], Chapter 5, Section 2, (2.49)).
Another generating function for generalized Hermite polynomials can be given

in the following way

H(μ)
2 (x, ω) =

∞∑
n=0

c̃nH(μ)
n (x)ωn

=
∞∑

n=0

c̃2nH
(μ)
2n (x)ω2n +

∞∑
n=0

c̃2n+1H
(μ)
2n+1(x)ω2n+1

=
∞∑

n=0

c̃2n22n(−1)nn!L(μ− 1
2 )

n (x2)ω2n

+ xω

∞∑
n=0

c̃2n+122n+1(−1)nn!L(μ+ 1
2 )

n (x2)ω2n.

Next we can choose

c̃2n =
(−1)n

22nn!L(μ− 1
2 )

n (0)
, n ≥ 0,

c̃2n+1 =
(−1)n

22n+1n!(μ + 1
2 )L(μ+ 1

2 )
n (0)

, n ≥ 0.

Thus we get

H(μ)
2 (x, ω) =

∞∑
n=0

L
(μ− 1

2 )
n (x2)

L
(μ− 1

2 )
n (0)

ω2n + xω

∞∑
n=0

L
(μ+ 1

2 )
n (x2)

(μ + 1
2 )L(μ+ 1

2 )
n (0)

ω2n.

Taking into account (2.9) as well as

1
μ + 1

2

1F1

(
1; μ +

3
2
;

x2ω2

ω2 − 1

)
=

ω2 − 1
x2ω2

[
1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)
− 1

]
, (2.10)
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we get

H(μ)
2 (x, ω) = (1 − ω2)−1

1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)

+ (1 − ω2)−1xω

[
1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)
− 1

]
ω2 − 1
x2ω2

= (1 − ω2)−1

(
ω2 − 1 + xω

xω

)
1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)
+

1
xω

,

which is a new generating formula for generalized Hermite polynomials.

3. Laguerre-type orthogonal polynomials

Let
{

L̃
(α)
n

}
n

denote the sequence of orthogonal polynomials with respect to

the functional ũ(α) = u(α) +λδ0, where u(α) is the Laguerre functional, α > −1 and
λ ≥ 0. L̃

(α)
n is normalized by the condition that the leading coefficient of L̃

(α)
n (x)

equals the leading coefficient of L
(α)
n (x).

From the orthogonality conditions we are able to obtain a representation of
L̃

(α)
n (x) in terms of the L

(α)
n (x), (see [12]).

Proposition 3.1.

L̃(α)
n (x) = L(α)

n (x) − λ

λn−1
L(α)

n (0)K(α)
n−1(x, 0), (3.1)

where λn = 1 + λK
(α)
n (0, 0).

Notice that from (3.1) we get

L̃(α)
n (0) =

L
(α)
n (0)
λn−1

.

In this way

L̃
(α)
n (x)

L̃
(α)
n (0)

=
L

(α)
n (x)

L
(α)
n (0)

+ λ
K

(α)
n−1(0, 0)

L
(α)
n (0)

L(α)
n (x) − λK

(α)
n−1(x, 0).

If we multiply by ωn, we deduce
∞∑

n=0

L̃
(α)
n (x)

L̃
(α)
n (0)

ωn = 1 +
∞∑

n=1

L̃
(α)
n (x)

L̃
(α)
n (0)

ωn

=
∞∑

n=0

L
(α)
n (x)

L
(α)
n (0)

ωn +
λ

Γ(α + 2)

∞∑
n=1

nL(α)
n (x)ωn
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− λ

Γ(α + 1)

∞∑
n=1

L
(α+1)
n−1 (x)ωn,

where we used (2.2), (2.5) and (2.6).
On the other hand from (2.8)

∞∑
n=1

L
(α+1)
n−1 (x)ωn = ω

∞∑
n=0

L(α+1)
n (x)ωn = ω(1 − ω)−(α+2) exp

(
xω

ω − 1

)
.

Taking derivatives with respect to ω in (2.8) we get

∞∑
n=1

nL(α)
n (x)ωn−1 = (α + 1)(1 − ω)−(α+2) exp

(
xω

ω − 1

)

+ (1 − ω)−(α+1) x(ω − 1) − xω

(ω − 1)2
exp

(
xω

ω − 1

)

= (1 − ω)−(α+2)

(
α + 1 +

x

ω − 1

)
exp

(
xω

ω − 1

)
,

and thus
∞∑

n=1

nL(α)
n (x)ωn = ω(1 − ω)−(α+2)

(
α + 1 +

x

ω − 1

)
exp

(
xω

ω − 1

)
.

As a conclusion we obtain a generating function for Laguerre-type orthogonal
polynomials.

Theorem 3.2. For |ω| < 1

∞∑
n=0

L̃
(α)
n (x)

L̃
(α)
n (0)

ωn

= (1 − ω)−1

[
1F1

(
1; α + 1;

xω

ω − 1

)
− λ

Γ(α + 2)
xω

(1 − ω)α+2
exp

(
xω

ω − 1

)]
.

(3.2)

3.1 Generalized Hermite-type orthogonal polynomials

Let
{
H̃

(μ)
n

}
n

denote the sequence of orthogonal polynomials with respect to

the symmetric linear functional ṽ(α) = v(α) + λδ0, where v(α) is the symmetrized
linear functional associated with the Laguerre functional u(α), α = μ − 1/2 > −1,
λ ≥ 0 and the leading coefficient of H̃

(μ)
n is equal to the leading coefficient of the

generalized Hermite polynomials H
(μ)
n . H̃

(μ)
n are called generalized Hermite-type

orthogonal polynomials.
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By Lemma (2.5) ṽ(α) is the symmetrized linear functional of the functional
ũ(α) = u(α) + λδ0. Therefore the sequence {S̃n}n defined by

S̃
(α)
2n (x) = (−1)nn!L̃(α)

n (x2),

S̃
(α)
2n+1(x) = x

〈
ũ(α),

(
L̃

(α)
n

)2
〉

L̃
(α)
n (0)

K̃n
(α)

(0, x2) = (−1)nn!xL(α+1)
n (x2), n ≥ 0,

where K̃n
(α)

(0, x) are the kernel polynomials corresponding to the Laguerre-type
polynomials L̃

(α)
n and L

(α)
n are classical Laguerre polynomials, is the monic orthog-

onal polynomial sequence with respect to the functional ṽ(α). Therefore, H̃
(μ)
n =

2nS̃
(α)
n (x).

In (3.2) we have deduced a generating function for Laguerre-type orthogo-
nal polynomials. Therefore in a straightforward way we can deduce a generating
function for generalized Hermite-type orthogonal polynomials.

Indeed, we denote

c̃2n =
(−1)n

22nn!L̃(μ− 1
2 )

n (0)
, n ≥ 0,

c̃2n+1 =
(−1)n

22n+1n!
, n ≥ 0.

Then

H̃1(x, ω) =
∞∑

n=0

c̃nH̃(μ)
n (x)ωn

=
∞∑

n=0

c̃2nH̃
(μ)
2n (x)ω2n +

∞∑
n=0

c̃2n+1H̃
(μ)
2n+1(x)ω2n+1

=
∞∑

n=0

L̃
(μ− 1

2 )
n (x2)

L̃
(μ− 1

2 )
n (0)

ω2n + xω

∞∑
n=0

L
(μ+ 1

2 )
n (x2)ω2n.

Taking into account (3.2) and (2.8) we get

H̃1(x, ω) = (1 − ω2)−1

[
1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)

− λ

Γ(μ + 3
2 )

x2ω2(1 − ω2)−(μ+ 3
2 ) exp

(
x2ω2

ω2 − 1

)]

+ xω(1 − ω2)−(μ+ 3
2 ) exp

(
x2ω2

ω2 − 1

)
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= (1 − ω2)−1

[
1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)

+ xω(1 − ω2)−(μ+ 1
2 ) exp

(
x2ω2

ω2 − 1

)]

− λ

Γ(μ + 3
2 )

x2ω2(1 − ω2)−(μ+ 5
2 ) exp

(
x2ω2

ω2 − 1

)
.

Another choice for the generating function is

c̃2n =
(−1)n

22nn!L̃(μ− 1
2 )

n (0)
, n ≥ 0,

c̃2n+1 =
(−1)n

22n+1n!(μ + 1
2 )L(μ+ 1

2 )
n (0)

, n ≥ 0. (3.3)

Then

H̃2(x, ω) =
∞∑

n=0

c̃2nH̃
(μ)
2n (x)ω2n +

∞∑
n=0

c̃2n+1H̃
(μ)
2n+1(x)ω2n+1

=
∞∑

n=0

L̃
(μ− 1

2 )
n (x2)

L̃
(μ− 1

2 )
n (0)

ω2n +
xω

μ + 1
2

∞∑
n=0

L
(μ+ 1

2 )
n (x2)

L
(μ+ 1

2 )
n (0)

ω2n.

Taking into account (3.2) and (2.9) we get

H̃2(x, ω) = (1 − ω2)−1

[
1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)
(3.4)

− λ

Γ(μ + 3
2 )

x2ω2(1 − ω2)−(μ+ 3
2 ) exp

(
x2ω2

ω2 − 1

)]

+xω
(1 − ω2)−1

μ + 1
2

1F1

(
1; μ +

3
2
;

x2ω2

ω2 − 1

)

= (1 − ω2)−1

[
1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)
(3.5)

+
xω

μ + 1
2

1F1

(
1; μ +

3
2
;

x2ω2

ω2 − 1

)]

− λ

Γ(μ + 3
2 )

x2ω2(1 − ω2)−(μ+ 5
2 ) exp

(
x2ω2

ω2 − 1

)
. (3.6)

Using (2.10), the substitution in (3.4) yields
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Theorem 3.3. For |ω| < 1

H̃2(x, ω) =
∞∑

n=0

c̃nH̃(μ)
n (x)ωn

= (1 − ω2)−1 ω2 − 1 + xω

xω
1F1

(
1; μ +

1
2
;

x2ω2

ω2 − 1

)
+

1
xω

− λ

Γ(μ + 3
2 )

x2ω2(1 − ω2)−(μ+ 5
2 ) exp

(
x2ω2

ω2 − 1

)
.

where c̃n is given in (3.3).
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