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Abstract

In this contribution we analyze the generating functions for polynomials or-
thogonal with respect to a symmetric linear functional w, i.e., a linear application
in the linear space of polynomials with complex coefficients such that u(z?""*) = 0.

In some cases we can deduce explicitly the expression for the generating func-
tion

oo

Plx,w) = Z cnPo(z)w",

n=0

where {P,}, is the sequence of orthogonal polynomials with respect to u.

1. Introduction

It is very well known that classical orthogonal polynomials (Hermite, La-
guerre, Jacobi, and Bessel) are eigenfunctions of a second order linear differential
operator L

L(y) = as(x)y” + ar(x)y/,

where (ay)?_, are polynomials with degax < k. S. Bochner [2] proved that, in fact,
they are the unique solutions of such an eigenproblem up to a linear change in the
variable which are also orthogonal polynomials. H. L. Krall [11], considered the
following extension of such a problem:

Given a fourth order linear differential operator £

4

Ly)=>_ ar(x)y™®,

k=1
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where (ay)%_, are polynomials with degay < k, to find the sequences of orthogonal
polynomials which are eigenfuntions of such a differential operator. He proved that
the solutions are the classical orthogonal polynomials (when £ = L?) as well as
three new classes of orthogonal polynomials:
(i) Laguerre-type orthogonal polynomials.
The corresponding measure of orthogonality is

xp+e " dr+ Md(z),

where ypp+ is the characteristic function of R™ and 6(x) is the Dirac measure
supported on {0}.

(ii) Legendre-type orthogonal polynomials.
The corresponding measure of orthogonality is

M 1 1
(iii) Jacobi-type orthogonal polynomials.
The corresponding measure of orthogonality is

Xpoa)(1 —2)* + Mé(z), o> -1.

From the 80’s two ways are considered in order to generalize the above poly-
nomials.

The first one emphasizes the algebraic and analytic properties of polynomials
orthogonal with respect to a general classical measure (Laguerre, Jacobi) when
mass points are added. These polynomials are said to be classical-type orthogonal
polynomials.

For the measure of orthogonality

xp+zte Tdr+ Moé(z), o> -1, (1.1)

R. Koekoek [8] deduced the recurrence relation as well as the representation as
hypergeometric series of the corresponding orthogonal polynomials. In fact, this
paper was motivated by a previous work by T. H. Koornwinder [10] where similar
problems are considered for the measure of orthogonality

X1yl —2)*(1+2)P de + Mz + 1)+ No(z — 1), o, B>-1. (1.2)

For a general approach to perturbations of general measures by addition of Dirac
masses see [12].

The second way is focused on differential properties of the classical-type or-
thogonal polynomials, i.e., to find linear differential operators

Ly) =Y ar(z)y™,
k=1

where ay, are polynomials of degree at most k, such that our classical-type orthogonal
polynomials are eigenfunctions.



J. Koekoek and R. Koekoek [6] deduced the differential equation for the
Jacobi-type polynomials orthogonal with respect to (1.2) and proved that the order
of the differential operator is infinite up to a € N or 8 € N. Moreover, the order is

28 + 4 if M>0,N=0 and €N,
20+ 4 if M=0,N>0 and o« € N,
2a+20+6 if M>0, N>0 and o, 8 € N.

For the measure of orthogonality (1.1), J. Koekoek and R. Koekoek [7] deduced the
linear differential operator £

Lly) =Y an()y™,
k=1

such that their eigenfunctions are the Laguerre-type orthogonal polynomials. In
fact, £ is an infinite order differential operator up to o € N. In such a case, the
order of the differential operator L is 2« + 4.

For a general and recent survey about orthogonal polynomials as eigenfunc-
tions of finite order differential operators, see the excellent review [5] by W. N.
Everitt et al.

The first aim of the present contribution is to obtain a generating function
for Laguerre-type orthogonal polynomials in order to complete the framework of
properties of such polynomials. From the generating function and using the Darboux
method (see [13]) we can deduce some relevant information about the asymptotics
of such polynomials.

The second aim is to deduce a generating function for the symmetrized se-
quence of a given family of orthogonal polynomials whose generating function is
explicitly given. As an application we obtain a generating function for the general-
ized Hermite-type orthogonal polynomials.

The structure of this paper is as follows.

In Section 2, we introduce the symmetrized linear functional associated with
a linear functional u. We deduce its generating function assuming that there is
a generating function for the sequences of orthogonal polynomials with respect to
the linear functionals u and zu, respectively. As an example, we consider classical
Laguerre orthogonal polynomials and their symmetrized (the generalized Hermite
polynomials). As a nice application of the results we deduce its generating function.

In Section 3, we obtain a generating function for Laguerre-type orthogonal
polynomials and, again, we get a generating function for the so-called generalized
Hermite-type orthogonal polynomials which are related to the symmetrization pro-
cess for the Laguerre-type orthogonal polynomials.



2. Symmetric linear functionals and
generating functions

Let P be the linear space of polynomials with complex coefficients and let P,
be the linear subspace of polynomials of degree at most n.

If w is a linear functional on P, then the sequence of complex numbers {uy, }»
defined by u,, = (u, 2™), where (-, -) means the duality bracket, is called the sequence
of moments associated with u, and u is said to be the linear functional determined
by the moment sequence {uy, }.

DEFINITION 2.1. A linear functional w is said to be quasi-definite if the prin-
cipal submatrices of the Hankel matrix (u;4;)75_, are nonsingular.

PROPOSITION 2.2. A linear functional u is quasi-definite if and only if there
exists a sequence of monic polynomials { P, }, with deg P, = n such that

i) (u, Py Pp) =0, n # m.
ii) (u, P2) # 0, for every n € N.

Such a sequence is said to be a sequence of monic orthogonal polynomials with respect
to the linear functional u if the leading coefficient of P, is 1.

DEFINITION 2.3. A linear functional v is said to be positive definite if (u, P) >
0 for every polynomial P that is not identically zero and such that P(z) > 0 for
every real number x.

DEFINITION 2.4. A functional u is said to be symmetric if all of its moments
of odd order are 0, i.e., if

(u,z*" 1y =0, n=0,1,...

Let u be a quasi-definite linear functional and let {P, },, denote the sequence
of monic orthogonal polynomials with respect to the functional u. We define the
functional v by

<v,x2"> = (u,a™), <v7ac2"+1> =0, n>0.

The linear functional v is said to be the symmetrized linear functional of the linear
functional w. In ([4], Chapter 1, Section 8) necessary and sufficient conditions
for the quasi-definite character of v are given. Under such assumptions, we will
denote by {5y}, the sequence of monic orthogonal polynomials with respect to the
functional v.

We introduce the linear functional © = v + Ay via the addition of a Dirac
linear functional. Thus v is also symmetric. A necessary and sufficient condition in
order to ¥ be quasi-definite is (see [12])

1+ AL,(0,0)#0, VneN,



where

— 9;(x)S;(y)

Ly (2,y) = W»

Jj=0

n >0

)

are the kernel polynomials corresponding to {Sy, }».

LEMMA 2.5. If v is the symmetrized linear functional associated with the
functional u, then ¥ is the the symmetrized linear functional associated with the
functional @ = u+ Xy (see [1]).

PROPOSITION 2.6. If P(z,w) = " cnP,(x)w™ is a generating function for
the polynomials {P,},, and the series K(z,w) =Y ."  dn (;;1(35; K, (0, 2)w™ (where

K, (z,y) are the kernel polynomials corresponding to { Py}, ) is convergent, then

S(z,w) = Z anSp(2)w" = P(2?,w?) + 2wk (22, w?),
n=0
is a generating function for the polynomials {Sy}n, where ¢, = asy, dy = aopi1.
ProOF. The sequence {Sy,}, defined by
Son(z) = Po(2?),
Sont1(z) = 2Qn(2?), n >0,

2
where Q,(z) = %;—}(D(’;))KH(O, x), is the monic orthogonal polynomial sequence with

respect to v. Therefore
o0 oo oo
S(a,w) =Y anSu(@w™ = cnSon (@)™ + > dpSanir (2)w® !
n=0 n=0 n=0

_ ;J enPo(2?) ()" + 2w ;)dn %%)) K (0, 22)(w?)"

= P(2?,w?) + swk (22, w?). O

2.1 Classical Laguerre polynomials

For an arbitrary real number «, Laguerre polynomials are defined by (see [14],
p. 100-102)

(-1 (n+a

L) (z) = ( ( )xk n=0,1,2,... (2.1)

n | _ ) y Ly 4 )
= k! n—~k



where (Z) denotes the generalized binomial coefficient

()~ ebe

and (a — k + 1) stands for the so-called Pochhammer’s symbol defined by
(b)o=1, (b)p,=bb+1)---(b+n—1), beR, n>1.

From the above definition LSL“) is a polynomial of degree n with leading coef-
ficient

k= (="
n!
Furthermore
+a (a+1),
L@y = (" — T n 2.2
L= ("t =t (2.2
and
ST LM (@) = L (). (2.3)
k=0

When « is not a negative integer, Laguerre polynomials are orthogonal with
respect to a quasi-definite linear functional «(®). This linear functional is positive
definite for o > —1. In fact, if & > —1 {Lg{l)}n is orthogonal with respect to the
inner product

+oo
(f.9) = /O F(@)g(2)a% e 7da.

Moreover, if a > —1, then

o @ a—a,  Dnta+l
||L;>||2:/0 (ng(x))xe o= Lot D) (2.4)

n!

Denote by
"L (@)L (y)

() —
K (z,y) = i L@) E
J

, n=0,1,2,...,
§=0

the reproducing kernel of degree n associated with the family of orthogonal polyno-
mials {L;“)}n.
Using (2.2) and (2.3), for n > 1, we get

DK (0,0)= #<

n+a> (a+1),
C T(a+1)

n—1) " Wpil(a+2) (25)



.. @ 1 a+1
i) K (,0) = mL;: (). (2.6)

A generating function for Laguerre polynomials is obtained by F. Brafman [3]
(see also [9])

- D @ — (1 o) L
HZ_O(aJrl)nL" () (1 )R (’Ya —|—1,w1>7 (2.7)

where 1 F(a1;b1; 2) denotes the confluent hypergeometric function

1Fi(a;b1;2) =

Notice that for v = a + 1 we get

oS} oo k
1
L) ()" = (1 — w)— (@D w o\ L
n§=o ()" =(1-w) kZZO w—1) K

(2.8)
—(1— 7(a+1) rw
(1-w) exp ( —— ],
(see also [14] p. 101).
Furthermore, taking into account (2.2) and (2.7) we obtain
00 lea) 00 1),
S ooy O r
n=0 Ln (0) n=0 (O[ + 1)n
(2.9)
rw
=(1-w) "Rk (1;a+1;—w_ 1) .

2.2 Generalized Hermite polynomials

As an example of the symmetrization process, generalized Hermite polynomi-
als are defined by

H,S")(a:) = 2"5’7(,&)(:16), =+ %, o> —1.
Here
i) (@) = (~1)"nIL{M (22),
S () = (~1)"nlz LD (2?), n >0,

are the monic orthogonal polynomials with respect to the symmetrized linear func-
tional associated with the Laguerre linear functional u(®). We denote this functional
by v(®) . In particular, if @ = —1/2, the polynomials Hﬁo) are the classical Hermite
polynomials (see [4], Chapter 5, Section 2, (2.43)).



Using the proposition 2.6 we are going to obtain a generating function for the
generalized Hermite polynomials.

(n) _ — 1 = ( ) 2n (1) 2n+1
HIM (wi) - Z [ﬂ] H(M)(‘r) Z n.HH +Z .H2Z+1
n=0 L2 n=0
_ 222n nL(H z)( 2)w27L+$w222n+1( l)nL(lH- )( )w
n=0
42%w? 3 422w?
- (1 4 2\ —p—= 2 1 4 2\—p—3
(1+4w?) 2exp<1+4w2>+ zw(l + 4w?) zexp<1+4w2>

4 2,2
— (14 40? + 20w) (1 +40%) (D) exp (ﬁ)

(see [4], Chapter 5, Section 2, (2.49)).
Another generating function for generalized Hermite polynomials can be given
in the following way

oo

HY (z,0) = Y & HP (2)w"

n=0

o0
= (M) w2 2n+1
= Z ConHy,, ()™ + Z Cont1H. 2n+1 )t

_ Z 22n TL 'L(IL_Z)( ) 2n

n=0

ad 1
+ zw Z 52n+122”+1(71)"n!L§f‘+2)(x2)w2"

n=0
Next we can choose
_1)n
tn=— s,
22npI LY 2)(0)
_1)n
E2n+1: ( ) (it 1) ) TLZO
22+ )L (0)
Thus we get
00 (n— 2)(I ) (IH’ )( 2)
H(”)( w) = n W2+ 2w 2n
rLZO L(H <0 Z L(IH- )(0)

Taking into account (2.9) as well as

1 3 22w? w?—1 1 z2w?
Fi(1; —; = Fy(1; —— | -1 2.10
_‘_%1 1<1M+27w2_1> 2202 [1 1<7N+27w2_1> :|? ( )




we get

_ 1 2%w?
Hg“)(x,w) =1-wH 'R <1;,u+ A 1)

1 2%w? w?—1
2\—1 . .
+(1—w) .%'w|:1F1(1,,u+§,w2_1)—1:| x2w2

2 2,2
4 o1 (Wl faw ) 1 2w 1
= (1 w ) (ww ) 1F1 <1,ﬂ+ P21 +$w7

which is a new generating formula for generalized Hermite polynomials.

3. Laguerre-type orthogonal polynomials

Let {iﬁf‘)} denote the sequence of orthogonal polynomials with respect to

the functional @(® = u(® + Xy, where u(® is the Laguerre functional, & > —1 and

A > 0. L is normalized by the condition that the leading coefficient of L (x)

equals the leading coefficient of I ().
From the orthogonality conditions we are able to obtain a representation of

L) (x) in terms of the L%a)(l")v (see [12]).

PRroOPOSITION 3.1.
7 (a a A « «
L) (@) = L () = T LI 0K, (2, 0), (3.1)

n—1

where A\, = 1 + )\KSLO‘)(O,O).

Notice that from (3.1) we get

) (@)
£ (0) = LAi(m

n—1

In this way
@) L@ | KY(0,0)

n—1

90 L0 £'0)
If we multiply by w™, we deduce

L (x) = AKY, (x,0).

>, L > LY
Z 0 (‘T) ot =1+ Z o (.T) W
Ly (0) Ly (0)

n=1

00 (o) (I) A 00
= n w4 nL{® (z)w”
2 100  Tavy 5"

n=0

n=1



(a+1)
L,
o+ 1) Z

where we used (2.2), (2.5) and (2.6).
On the other hand from (2.8)

(a+1) (at1)( (a+2) Tw
L, L, 1-— .
g =w E ()" =w(l —w)” exp (w

n=0

Taking derivatives with respect to w in (2.8) we get

w—1

+(1—w)~(eH f’f(uzw—_l)l)—2 - (wxw )

— (1—w)~(@2) T i
(1-w) <a+1+w_1)exp<w_1 ,

ST Ll (@)t = (a+ 1)1 - w) "D exp <—W )
n=1

and thus
E L ()™ = w(l — w)~@+2) (a +1+ z) exp ( e ) .
= w—1 w—1

As a conclusion we obtain a generating function for Laguerre-type orthogonal
polynomials.

THEOREM 3.2. For |w| <1

3.1 Generalized Hermite-type orthogonal polynomials

Let {F[,(«L” )} denote the sequence of orthogonal polynomials with respect to
the symmetric linear functional 5(®) = v(® + \§;, where v(®) is the symmetrized
linear functional associated with the Laguerre functional u(®, o = pp —1/2 > —1,
A > 0 and the leading coefficient of f{y(f‘) is equal to the leading coefficient of the

generalized Hermite polynomials HT(L“). fIr(L“ ) are called generalized Hermite-type
orthogonal polynomials.

10



By Lemma (2.5) #(®) is the symmetrized linear functional of the functional
@@ = (@) 4 \§y. Therefore the sequence {Sn}n defined by

S5 () = (~1)" L) (),

(), (167)°)

=) Kn(“)(o,ﬁ) = (=1)"nlzLetY (2?), n >0,
290

S5 (@) =a

where X,L(a) (0,z) are the kernel polynomials corresponding to the Laguerre-type
polynomials i%a) and L%a) are classical Laguerre polynomials, is the monic orthog-
onal polynomial sequence with respect to the functional #(®). Therefore, JEI,(I“ ) =
2"§£a)(x).

In (3.2) we have deduced a generating function for Laguerre-type orthogo-

nal polynomials. Therefore in a straightforward way we can deduce a generating
function for generalized Hermite-type orthogonal polynomials.

Indeed, we denote

. (="

Con = = T , n>0,
92npI L2 (0)

. (=D

Contl = Soi >0

Then

Ha(w,w) = Y el (@)w"
n=0

[ee] [e.e]
= S @ B (@) + Y ot HYY, (1)
n=0 n=0
oo F(u=3) 2 o0 L
= 7~"( L_;)(x )w2” + 2w Z Lgﬂ_i)(ﬁ)w%.
n=0 Lnl 2 (0) n=0

Taking into account (3.2) and (2.8) we get

_ 1 2,2
Hi(z,w) = (1 —w?)"! {15 <1;u+ x—fl>

2 w2
A 2 2 2y —(u+3 2?w?
A 1— (u+3)
F(#_'_%)xw( w?) dexp | —5—
2,2
1— w?)~(t3) il
+ zw(l — w?) s

1"



1 2%w?
=1-w) 1A (Lpt o5
( w) |:1 1(7/‘L+2aw21>

2,,2
+ zw(l —w2)(“+é)exp< il )}

w2 -1

A 2 2 2y—(u+3 952“)2)

— 2w (l —w #t3) ex .
Tr g’ ) Pl

Another choice for the generating function is

—1)"
Con = %, n >0,
220! Ly 27 (0)

égn 1= <71> n> 0. (33)
+ (n+3)
22n+1n)(u + 1LY (0)

Then

oo o0
ﬂg(x,w) = Z égnHQ(Z) (x)wQ" + Z 52n+1H§Z)+1(x)w2”+1
n=0 n=0

L(M 2) L(IH- )( ) on
- Z Z L(/H- ) ‘

= L(u 2)

Taking into account (3.2) and (2.9) we get

Ha(z,w) = (1 —w?)™? [1F1 (h/ﬁf—%;%) (3.4)
_ F(u)-\|- %)x%}z(l w?) (/L+2)exp< 226121)}
+xw(1;j:2£_1 F (1;u+ g; I2WQ1>
=(1-w)? {1171 (w + %; jji) (3.5)
s (10325
_F(M)\Jr%)xZwQ(l — w?) =) exp (wx22w21> . (3.6)

Using (2.10), the substitution in (3.4) yields

12



THEOREM 3.3. For |w| <1

o(z,w) = Y EHP (@)

n=0
2 -1 1 2 2 1
(1602)_le<1#+ ,%2(4) >+_
Tw 2’ Tw
A 2 2
- 2?1 - W? —(ut3 )exp
T(p+3)

where ¢, is given in (3.3).

eree.
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