GENERATING FUNCTIONS AND COMPANION SYMMETRIC LINEAR FUNCTIONALS

Esther M. García-Caballero
Samuel G. Moreno*
Francisco Marcellán**

Abstract

In this contribution we analyze the generating functions for polynomials orthogonal with respect to a symmetric linear functional u, i.e., a linear application in the linear space of polynomials with complex coefficients such that $u\left(x^{2 n+1}\right)=0$.

In some cases we can deduce explicitly the expression for the generating function $$
\mathcal{P}(x, \omega)=\sum_{n=0}^{\infty} c_{n} P_{n}(x) \omega^{n},
$$

where $\left\{P_{n}\right\}_{n}$ is the sequence of orthogonal polynomials with respect to u.

1. Introduction

It is very well known that classical orthogonal polynomials (Hermite, Laguerre, Jacobi, and Bessel) are eigenfunctions of a second order linear differential operator L

$$
L(y)=a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime},
$$

where $\left(a_{k}\right)_{k=1}^{2}$ are polynomials with $\operatorname{deg} a_{k} \leq k$. S. Bochner [2] proved that, in fact, they are the unique solutions of such an eigenproblem up to a linear change in the variable which are also orthogonal polynomials. H. L. Krall [11], considered the following extension of such a problem:

Given a fourth order linear differential operator \mathcal{L}

$$
\mathcal{L}(y)=\sum_{k=1}^{4} a_{k}(x) y^{(k)},
$$

[^0]where $\left(a_{k}\right)_{k=1}^{4}$ are polynomials with $\operatorname{deg} a_{k} \leq k$, to find the sequences of orthogonal polynomials which are eigenfuntions of such a differential operator. He proved that the solutions are the classical orthogonal polynomials (when $\mathcal{L}=L^{2}$) as well as three new classes of orthogonal polynomials:
(i) Laguerre-type orthogonal polynomials.

The corresponding measure of orthogonality is

$$
\chi_{\mathbb{R}^{+}} e^{-x} d x+M \delta(x)
$$

where $\chi_{\mathbb{R}^{+}}$is the characteristic function of \mathbb{R}^{+}and $\delta(x)$ is the Dirac measure supported on $\{0\}$.
(ii) Legendre-type orthogonal polynomials.

The corresponding measure of orthogonality is

$$
\frac{M}{2} \chi_{[-1,1]} d x+\frac{1}{2} \delta(x-1)+\frac{1}{2} \delta(x+1) .
$$

(iii) Jacobi-type orthogonal polynomials.

The corresponding measure of orthogonality is

$$
\chi_{[0,1]}(1-x)^{\alpha}+M \delta(x), \quad \alpha>-1 .
$$

From the 80 's two ways are considered in order to generalize the above polynomials.

The first one emphasizes the algebraic and analytic properties of polynomials orthogonal with respect to a general classical measure (Laguerre, Jacobi) when mass points are added. These polynomials are said to be classical-type orthogonal polynomials.

For the measure of orthogonality

$$
\begin{equation*}
\chi_{\mathbb{R}^{+}} x^{\alpha} e^{-x} d x+M \delta(x), \quad \alpha>-1 \tag{1.1}
\end{equation*}
$$

R. Koekoek [8] deduced the recurrence relation as well as the representation as hypergeometric series of the corresponding orthogonal polynomials. In fact, this paper was motivated by a previous work by T. H. Koornwinder [10] where similar problems are considered for the measure of orthogonality

$$
\begin{equation*}
\chi_{[-1,1]}(1-x)^{\alpha}(1+x)^{\beta} d x+M \delta(x+1)+N \delta(x-1), \quad \alpha, \beta>-1 . \tag{1.2}
\end{equation*}
$$

For a general approach to perturbations of general measures by addition of Dirac masses see [12].

The second way is focused on differential properties of the classical-type orthogonal polynomials, i.e., to find linear differential operators

$$
\mathcal{L}(y)=\sum_{k=1}^{\infty} a_{k}(x) y^{(k)},
$$

where a_{k} are polynomials of degree at most k, such that our classical-type orthogonal polynomials are eigenfunctions.
J. Koekoek and R. Koekoek [6] deduced the differential equation for the Jacobi-type polynomials orthogonal with respect to (1.2) and proved that the order of the differential operator is infinite up to $\alpha \in \mathbb{N}$ or $\beta \in \mathbb{N}$. Moreover, the order is

$$
\begin{cases}2 \beta+4 & \text { if } M>0, N=0 \text { and } \beta \in \mathbb{N}, \\ 2 \alpha+4 & \text { if } M=0, N>0 \text { and } \alpha \in \mathbb{N}, \\ 2 \alpha+2 \beta+6 & \text { if } M>0, N>0 \text { and } \alpha, \beta \in \mathbb{N} .\end{cases}
$$

For the measure of orthogonality (1.1), J. Koekoek and R. Koekoek [7] deduced the linear differential operator \mathcal{L}

$$
\mathcal{L}(y)=\sum_{k=1}^{\infty} a_{k}(x) y^{(k)},
$$

such that their eigenfunctions are the Laguerre-type orthogonal polynomials. In fact, \mathcal{L} is an infinite order differential operator up to $\alpha \in \mathbb{N}$. In such a case, the order of the differential operator \mathcal{L} is $2 \alpha+4$.

For a general and recent survey about orthogonal polynomials as eigenfunctions of finite order differential operators, see the excellent review [5] by W. N. Everitt et al.

The first aim of the present contribution is to obtain a generating function for Laguerre-type orthogonal polynomials in order to complete the framework of properties of such polynomials. From the generating function and using the Darboux method (see [13]) we can deduce some relevant information about the asymptotics of such polynomials.

The second aim is to deduce a generating function for the symmetrized sequence of a given family of orthogonal polynomials whose generating function is explicitly given. As an application we obtain a generating function for the generalized Hermite-type orthogonal polynomials.

The structure of this paper is as follows.
In Section 2, we introduce the symmetrized linear functional associated with a linear functional u. We deduce its generating function assuming that there is a generating function for the sequences of orthogonal polynomials with respect to the linear functionals u and $x u$, respectively. As an example, we consider classical Laguerre orthogonal polynomials and their symmetrized (the generalized Hermite polynomials). As a nice application of the results we deduce its generating function.

In Section 3, we obtain a generating function for Laguerre-type orthogonal polynomials and, again, we get a generating function for the so-called generalized Hermite-type orthogonal polynomials which are related to the symmetrization process for the Laguerre-type orthogonal polynomials.

2. Symmetric linear functionals and generating functions

Let \mathbb{P} be the linear space of polynomials with complex coefficients and let \mathbb{P}_{n} be the linear subspace of polynomials of degree at most n.

If u is a linear functional on \mathbb{P}, then the sequence of complex numbers $\left\{u_{n}\right\}_{n}$ defined by $u_{n}=\left\langle u, x^{n}\right\rangle$, where $\langle\cdot, \cdot\rangle$ means the duality bracket, is called the sequence of moments associated with u, and u is said to be the linear functional determined by the moment sequence $\left\{u_{n}\right\}_{n}$.

Definition 2.1. A linear functional u is said to be quasi-definite if the principal submatrices of the Hankel matrix $\left(u_{i+j}\right)_{i, j=0}^{\infty}$ are nonsingular.

Proposition 2.2. A linear functional u is quasi-definite if and only if there exists a sequence of monic polynomials $\left\{P_{n}\right\}_{n}$ with $\operatorname{deg} P_{n}=n$ such that
i) $\left\langle u, P_{n} P_{m}\right\rangle=0, n \neq m$.
ii) $\left\langle u, P_{n}^{2}\right\rangle \neq 0$, for every $n \in \mathbb{N}$.

Such a sequence is said to be a sequence of monic orthogonal polynomials with respect to the linear functional u if the leading coefficient of P_{n} is 1 .

Definition 2.3. A linear functional u is said to be positive definite if $\langle u, P\rangle>$ 0 for every polynomial P that is not identically zero and such that $P(x) \geq 0$ for every real number x.

Definition 2.4. A functional u is said to be symmetric if all of its moments of odd order are 0 , i.e., if

$$
\left\langle u, x^{2 n+1}\right\rangle=0, \quad n=0,1, \ldots
$$

Let u be a quasi-definite linear functional and let $\left\{P_{n}\right\}_{n}$ denote the sequence of monic orthogonal polynomials with respect to the functional u. We define the functional v by

$$
\left\langle v, x^{2 n}\right\rangle=\left\langle u, x^{n}\right\rangle, \quad\left\langle v, x^{2 n+1}\right\rangle=0, \quad n \geq 0
$$

The linear functional v is said to be the symmetrized linear functional of the linear functional u. In ([4], Chapter 1, Section 8) necessary and sufficient conditions for the quasi-definite character of v are given. Under such assumptions, we will denote by $\left\{S_{n}\right\}_{n}$ the sequence of monic orthogonal polynomials with respect to the functional v.

We introduce the linear functional $\tilde{v}=v+\lambda \delta_{0}$ via the addition of a Dirac linear functional. Thus \tilde{v} is also symmetric. A necessary and sufficient condition in order to \tilde{v} be quasi-definite is (see [12])

$$
1+\lambda L_{n}(0,0) \neq 0, \quad \forall n \in \mathbb{N}
$$

where

$$
L_{n}(x, y)=\sum_{j=0}^{n} \frac{S_{j}(x) S_{j}(y)}{\left\langle v, S_{j}^{2}\right\rangle}, \quad n \geq 0
$$

are the kernel polynomials corresponding to $\left\{S_{n}\right\}_{n}$.
Lemma 2.5. If v is the symmetrized linear functional associated with the functional u, then \tilde{v} is the the symmetrized linear functional associated with the functional $\tilde{u}=u+\lambda \delta_{0}$ (see [1]).

Proposition 2.6. If $\mathcal{P}(x, \omega)=\sum_{n=0}^{\infty} c_{n} P_{n}(x) \omega^{n}$ is a generating function for the polynomials $\left\{P_{n}\right\}_{n}$ and the series $\mathcal{K}(x, \omega)=\sum_{n=0}^{\infty} d_{n} \frac{\left\langle u, P_{n}^{2}\right\rangle}{P_{n}(0)} K_{n}(0, x) \omega^{n}$ (where $K_{n}(x, y)$ are the kernel polynomials corresponding to $\left.\left\{P_{n}\right\}_{n}\right)$ is convergent, then

$$
\mathcal{S}(x, \omega)=\sum_{n=0}^{\infty} a_{n} S_{n}(x) \omega^{n}=\mathcal{P}\left(x^{2}, \omega^{2}\right)+x \omega \mathcal{K}\left(x^{2}, \omega^{2}\right),
$$

is a generating function for the polynomials $\left\{S_{n}\right\}_{n}$, where $c_{n}=a_{2 n}, d_{n}=a_{2 n+1}$.
Proof. The sequence $\left\{S_{n}\right\}_{n}$ defined by

$$
\begin{aligned}
& S_{2 n}(x)=P_{n}\left(x^{2}\right) \\
& S_{2 n+1}(x)=x Q_{n}\left(x^{2}\right), \quad n \geq 0,
\end{aligned}
$$

where $Q_{n}(x)=\frac{\left\langle u, P_{n}^{2}\right\rangle}{P_{n}(0)} K_{n}(0, x)$, is the monic orthogonal polynomial sequence with respect to v. Therefore

$$
\begin{aligned}
\mathcal{S}(x, \omega) & =\sum_{n=0}^{\infty} a_{n} S_{n}(x) \omega^{n}=\sum_{n=0}^{\infty} c_{n} S_{2 n}(x) \omega^{2 n}+\sum_{n=0}^{\infty} d_{n} S_{2 n+1}(x) \omega^{2 n+1} \\
& =\sum_{n=0}^{\infty} c_{n} P_{n}\left(x^{2}\right)\left(\omega^{2}\right)^{n}+x \omega \sum_{n=0}^{\infty} d_{n} \frac{\left\langle u, P_{n}^{2}\right\rangle}{P_{n}(0)} K_{n}\left(0, x^{2}\right)\left(\omega^{2}\right)^{n} \\
& =\mathcal{P}\left(x^{2}, \omega^{2}\right)+x \omega \mathcal{K}\left(x^{2}, \omega^{2}\right) .
\end{aligned}
$$

2.1 Classical Laguerre polynomials

For an arbitrary real number α, Laguerre polynomials are defined by (see [14], p. 100-102)

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\binom{n+\alpha}{n-k} x^{k}, \quad n=0,1,2, \ldots, \tag{2.1}
\end{equation*}
$$

where $\binom{a}{k}$ denotes the generalized binomial coefficient

$$
\binom{a}{k}=\frac{(a-k+1)_{k}}{k!}
$$

and $(a-k+1)_{k}$ stands for the so-called Pochhammer's symbol defined by

$$
(b)_{0}=1, \quad(b)_{n}=b(b+1) \cdots(b+n-1), \quad b \in \mathbb{R}, n \geq 1
$$

From the above definition $L_{n}^{(\alpha)}$ is a polynomial of degree n with leading coefficient

$$
k_{n}=\frac{(-1)^{n}}{n!} .
$$

Furthermore

$$
\begin{equation*}
L_{n}^{(\alpha)}(0)=\binom{n+\alpha}{n}=\frac{(\alpha+1)_{n}}{(1)_{n}} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n} L_{k}^{(\alpha)}(x)=L_{n}^{(\alpha+1)}(x) . \tag{2.3}
\end{equation*}
$$

When α is not a negative integer, Laguerre polynomials are orthogonal with respect to a quasi-definite linear functional $u^{(\alpha)}$. This linear functional is positive definite for $\alpha>-1$. In fact, if $\alpha>-1\left\{L_{n}^{(\alpha)}\right\}_{n}$ is orthogonal with respect to the inner product

$$
(f, g)=\int_{0}^{+\infty} f(x) g(x) x^{\alpha} e^{-x} d x
$$

Moreover, if $\alpha>-1$, then

$$
\begin{equation*}
\left\|L_{n}^{(\alpha)}\right\|^{2}=\int_{0}^{+\infty}\left(L_{n}^{(\alpha)}(x)\right)^{2} x^{\alpha} e^{-x} d x=\frac{\Gamma(n+\alpha+1)}{n!} . \tag{2.4}
\end{equation*}
$$

Denote by

$$
K_{n}^{(\alpha)}(x, y)=\sum_{j=0}^{n} \frac{L_{j}^{(\alpha)}(x) L_{j}^{(\alpha)}(y)}{\left\|L_{j}^{(\alpha)}\right\|^{2}}, \quad n=0,1,2, \ldots,
$$

the reproducing kernel of degree n associated with the family of orthogonal polynomials $\left\{L_{n}^{(\alpha)}\right\}_{n}$.

Using (2.2) and (2.3), for $n \geq 1$, we get

$$
\begin{equation*}
\text { i) } \quad K_{n-1}^{(\alpha)}(0,0)=\frac{1}{\Gamma(\alpha+1)}\binom{n+\alpha}{n-1}=\frac{(\alpha+1)_{n}}{(1)_{n-1} \Gamma(\alpha+2)} \text {, } \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\text { ii) } \quad K_{n-1}^{(\alpha)}(x, 0)=\frac{1}{\Gamma(\alpha+1)} L_{n-1}^{(\alpha+1)}(x) \tag{2.6}
\end{equation*}
$$

A generating function for Laguerre polynomials is obtained by F. Brafman [3] (see also [9])

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(\gamma)_{n}}{(\alpha+1)_{n}} L_{n}^{(\alpha)}(x) \omega^{n}=(1-\omega)^{-\gamma}{ }_{1} F_{1}\left(\gamma ; \alpha+1 ; \frac{x \omega}{\omega-1}\right) \tag{2.7}
\end{equation*}
$$

where ${ }_{1} F_{1}\left(a_{1} ; b_{1} ; z\right)$ denotes the confluent hypergeometric function

$$
{ }_{1} F_{1}\left(a_{1} ; b_{1} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}}{\left(b_{1}\right)_{k}} \frac{z^{k}}{k!} .
$$

Notice that for $\gamma=\alpha+1$ we get

$$
\begin{align*}
\sum_{n=0}^{\infty} L_{n}^{(\alpha)}(x) \omega^{n} & =(1-\omega)^{-(\alpha+1)} \sum_{k=0}^{\infty}\left(\frac{x \omega}{\omega-1}\right)^{k} \frac{1}{k!} \tag{2.8}\\
& =(1-\omega)^{-(\alpha+1)} \exp \left(\frac{x \omega}{\omega-1}\right)
\end{align*}
$$

(see also [14] p. 101).
Furthermore, taking into account (2.2) and (2.7) we obtain

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{L_{n}^{(\alpha)}(x)}{L_{n}^{(\alpha)}(0)} \omega^{n} & =\sum_{n=0}^{\infty} \frac{(1)_{n}}{(\alpha+1)_{n}} L_{n}^{(\alpha)}(x) \omega^{n} \tag{2.9}\\
& =(1-\omega)^{-1}{ }_{1} F_{1}\left(1 ; \alpha+1 ; \frac{x \omega}{\omega-1}\right) .
\end{align*}
$$

2.2 Generalized Hermite polynomials

As an example of the symmetrization process, generalized Hermite polynomials are defined by

$$
H_{n}^{(\mu)}(x)=2^{n} S_{n}^{(\alpha)}(x), \quad \mu=\alpha+\frac{1}{2}, \alpha>-1 .
$$

Here

$$
\begin{aligned}
& S_{2 n}^{(\alpha)}(x)=(-1)^{n} n!L_{n}^{(\alpha)}\left(x^{2}\right), \\
& S_{2 n+1}^{(\alpha)}(x)=(-1)^{n} n!x L_{n}^{(\alpha+1)}\left(x^{2}\right), \quad n \geq 0,
\end{aligned}
$$

are the monic orthogonal polynomials with respect to the symmetrized linear functional associated with the Laguerre linear functional $u^{(\alpha)}$. We denote this functional by $v^{(\alpha)}$. In particular, if $\alpha=-1 / 2$, the polynomials $H_{n}^{(0)}$ are the classical Hermite polynomials (see [4], Chapter 5, Section 2, (2.43)).

Using the proposition 2.6 we are going to obtain a generating function for the generalized Hermite polynomials.

$$
\begin{aligned}
\mathcal{H}_{1}^{(\mu)}(x, \omega) & =\sum_{n=0}^{\infty} \frac{1}{\left[\frac{n}{2}\right]!} H_{n}^{(\mu)}(x) \omega^{n}=\sum_{n=0}^{\infty} \frac{1}{n!} H_{2 n}^{(\mu)}(x) \omega^{2 n}+\sum_{n=0}^{\infty} \frac{1}{n!} H_{2 n+1}^{(\mu)}(x) \omega^{2 n+1} \\
& =\sum_{n=0}^{\infty} 2^{2 n}(-1)^{n} L_{n}^{\left(\mu-\frac{1}{2}\right)}\left(x^{2}\right) \omega^{2 n}+x \omega \sum_{n=0}^{\infty} 2^{2 n+1}(-1)^{n} L_{n}^{\left(\mu+\frac{1}{2}\right)}\left(x^{2}\right) \omega^{2 n} \\
& =\left(1+4 \omega^{2}\right)^{-\mu-\frac{1}{2}} \exp \left(\frac{4 x^{2} \omega^{2}}{1+4 \omega^{2}}\right)+2 x \omega\left(1+4 \omega^{2}\right)^{-\mu-\frac{3}{2}} \exp \left(\frac{4 x^{2} \omega^{2}}{1+4 \omega^{2}}\right) \\
& =\left(1+4 \omega^{2}+2 x \omega\right)\left(1+4 \omega^{2}\right)^{-\left(\mu+\frac{3}{2}\right)} \exp \left(\frac{4 x^{2} \omega^{2}}{1+4 \omega^{2}}\right)
\end{aligned}
$$

(see [4], Chapter 5, Section 2, (2.49)).
Another generating function for generalized Hermite polynomials can be given in the following way

$$
\begin{aligned}
\mathcal{H}_{2}^{(\mu)}(x, \omega)= & \sum_{n=0}^{\infty} \tilde{c}_{n} H_{n}^{(\mu)}(x) \omega^{n} \\
= & \sum_{n=0}^{\infty} \tilde{c}_{2 n} H_{2 n}^{(\mu)}(x) \omega^{2 n}+\sum_{n=0}^{\infty} \tilde{c}_{2 n+1} H_{2 n+1}^{(\mu)}(x) \omega^{2 n+1} \\
= & \sum_{n=0}^{\infty} \tilde{c}_{2 n} 2^{2 n}(-1)^{n} n!L_{n}^{\left(\mu-\frac{1}{2}\right)}\left(x^{2}\right) \omega^{2 n} \\
& +x \omega \sum_{n=0}^{\infty} \tilde{c}_{2 n+1} 2^{2 n+1}(-1)^{n} n!L_{n}^{\left(\mu+\frac{1}{2}\right)}\left(x^{2}\right) \omega^{2 n} .
\end{aligned}
$$

Next we can choose

$$
\begin{aligned}
& \tilde{c}_{2 n}=\frac{(-1)^{n}}{2^{2 n} n!L_{n}^{\left(\mu-\frac{1}{2}\right)}(0)}, \quad n \geq 0, \\
& \tilde{c}_{2 n+1}=\frac{(-1)^{n}}{2^{2 n+1} n!\left(\mu+\frac{1}{2}\right) L_{n}^{\left(\mu+\frac{1}{2}\right)}(0)}, \quad n \geq 0
\end{aligned}
$$

Thus we get

$$
\mathcal{H}_{2}^{(\mu)}(x, \omega)=\sum_{n=0}^{\infty} \frac{L_{n}^{\left(\mu-\frac{1}{2}\right)}\left(x^{2}\right)}{L_{n}^{\left(\mu-\frac{1}{2}\right)}(0)} \omega^{2 n}+x \omega \sum_{n=0}^{\infty} \frac{L_{n}^{\left(\mu+\frac{1}{2}\right)}\left(x^{2}\right)}{\left(\mu+\frac{1}{2}\right) L_{n}^{\left(\mu+\frac{1}{2}\right)}(0)} \omega^{2 n} .
$$

Taking into account (2.9) as well as

$$
\begin{equation*}
\frac{1}{\mu+\frac{1}{2}}{ }_{1} F_{1}\left(1 ; \mu+\frac{3}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)=\frac{\omega^{2}-1}{x^{2} \omega^{2}}\left[{ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)-1\right], \tag{2.10}
\end{equation*}
$$

we get

$$
\begin{aligned}
\mathcal{H}_{2}^{(\mu)}(x, \omega)= & \left(1-\omega^{2}\right)^{-1}{ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right) \\
& +\left(1-\omega^{2}\right)^{-1} x \omega\left[{ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)-1\right] \frac{\omega^{2}-1}{x^{2} \omega^{2}} \\
= & \left(1-\omega^{2}\right)^{-1}\left(\frac{\omega^{2}-1+x \omega}{x \omega}\right){ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)+\frac{1}{x \omega},
\end{aligned}
$$

which is a new generating formula for generalized Hermite polynomials.

3. Laguerre-type orthogonal polynomials

Let $\left\{\tilde{L}_{n}^{(\alpha)}\right\}_{n}$ denote the sequence of orthogonal polynomials with respect to the functional $\tilde{u}^{(\alpha)}=u^{(\alpha)}+\lambda \delta_{0}$, where $u^{(\alpha)}$ is the Laguerre functional, $\alpha>-1$ and $\lambda \geq 0 . \tilde{L}_{n}^{(\alpha)}$ is normalized by the condition that the leading coefficient of $\tilde{L}_{n}^{(\alpha)}(x)$ equals the leading coefficient of $L_{n}^{(\alpha)}(x)$.

From the orthogonality conditions we are able to obtain a representation of $\tilde{L}_{n}^{(\alpha)}(x)$ in terms of the $L_{n}^{(\alpha)}(x)$, (see [12]).

Proposition 3.1.

$$
\begin{equation*}
\tilde{L}_{n}^{(\alpha)}(x)=L_{n}^{(\alpha)}(x)-\frac{\lambda}{\lambda_{n-1}} L_{n}^{(\alpha)}(0) K_{n-1}^{(\alpha)}(x, 0) \tag{3.1}
\end{equation*}
$$

where $\lambda_{n}=1+\lambda K_{n}^{(\alpha)}(0,0)$.
Notice that from (3.1) we get

$$
\tilde{L}_{n}^{(\alpha)}(0)=\frac{L_{n}^{(\alpha)}(0)}{\lambda_{n-1}}
$$

In this way

$$
\frac{\tilde{L}_{n}^{(\alpha)}(x)}{\tilde{L}_{n}^{(\alpha)}(0)}=\frac{L_{n}^{(\alpha)}(x)}{L_{n}^{(\alpha)}(0)}+\lambda \frac{K_{n-1}^{(\alpha)}(0,0)}{L_{n}^{(\alpha)}(0)} L_{n}^{(\alpha)}(x)-\lambda K_{n-1}^{(\alpha)}(x, 0) .
$$

If we multiply by ω^{n}, we deduce

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{\tilde{L}_{n}^{(\alpha)}(x)}{\tilde{L}_{n}^{(\alpha)}(0)} \omega^{n} & =1+\sum_{n=1}^{\infty} \frac{\tilde{L}_{n}^{(\alpha)}(x)}{\tilde{L}_{n}^{(\alpha)}(0)} \omega^{n} \\
& =\sum_{n=0}^{\infty} \frac{L_{n}^{(\alpha)}(x)}{L_{n}^{(\alpha)}(0)} \omega^{n}+\frac{\lambda}{\Gamma(\alpha+2)} \sum_{n=1}^{\infty} n L_{n}^{(\alpha)}(x) \omega^{n}
\end{aligned}
$$

$$
-\frac{\lambda}{\Gamma(\alpha+1)} \sum_{n=1}^{\infty} L_{n-1}^{(\alpha+1)}(x) \omega^{n},
$$

where we used (2.2), (2.5) and (2.6).
On the other hand from (2.8)

$$
\sum_{n=1}^{\infty} L_{n-1}^{(\alpha+1)}(x) \omega^{n}=\omega \sum_{n=0}^{\infty} L_{n}^{(\alpha+1)}(x) \omega^{n}=\omega(1-\omega)^{-(\alpha+2)} \exp \left(\frac{x \omega}{\omega-1}\right)
$$

Taking derivatives with respect to ω in (2.8) we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} n L_{n}^{(\alpha)}(x) \omega^{n-1}= & (\alpha+1)(1-\omega)^{-(\alpha+2)} \exp \left(\frac{x \omega}{\omega-1}\right) \\
& +(1-\omega)^{-(\alpha+1)} \frac{x(\omega-1)-x \omega}{(\omega-1)^{2}} \exp \left(\frac{x \omega}{\omega-1}\right) \\
= & (1-\omega)^{-(\alpha+2)}\left(\alpha+1+\frac{x}{\omega-1}\right) \exp \left(\frac{x \omega}{\omega-1}\right)
\end{aligned}
$$

and thus

$$
\sum_{n=1}^{\infty} n L_{n}^{(\alpha)}(x) \omega^{n}=\omega(1-\omega)^{-(\alpha+2)}\left(\alpha+1+\frac{x}{\omega-1}\right) \exp \left(\frac{x \omega}{\omega-1}\right)
$$

As a conclusion we obtain a generating function for Laguerre-type orthogonal polynomials.

Theorem 3.2. For $|\omega|<1$

$$
\begin{align*}
& \sum_{n=0}^{\infty} \frac{\tilde{L}_{n}^{(\alpha)}(x)}{\tilde{L}_{n}^{(\alpha)}(0)} \omega^{n} \tag{3.2}\\
& =(1-\omega)^{-1}\left[{ }_{1} F_{1}\left(1 ; \alpha+1 ; \frac{x \omega}{\omega-1}\right)-\frac{\lambda}{\Gamma(\alpha+2)} \frac{x \omega}{(1-\omega)^{\alpha+2}} \exp \left(\frac{x \omega}{\omega-1}\right)\right]
\end{align*}
$$

3.1 Generalized Hermite-type orthogonal polynomials

Let $\left\{\tilde{H}_{n}^{(\mu)}\right\}_{n}$ denote the sequence of orthogonal polynomials with respect to the symmetric linear functional $\tilde{v}^{(\alpha)}=v^{(\alpha)}+\lambda \delta_{0}$, where $v^{(\alpha)}$ is the symmetrized linear functional associated with the Laguerre functional $u^{(\alpha)}, \alpha=\mu-1 / 2>-1$, $\lambda \geq 0$ and the leading coefficient of $\tilde{H}_{n}^{(\mu)}$ is equal to the leading coefficient of the generalized Hermite polynomials $H_{n}^{(\mu)}$. $\tilde{H}_{n}^{(\mu)}$ are called generalized Hermite-type orthogonal polynomials.

By Lemma (2.5) $\tilde{v}^{(\alpha)}$ is the symmetrized linear functional of the functional $\tilde{u}^{(\alpha)}=u^{(\alpha)}+\lambda \delta_{0}$. Therefore the sequence $\left\{\tilde{S}_{n}\right\}_{n}$ defined by

$$
\begin{aligned}
& \tilde{S}_{2 n}^{(\alpha)}(x)=(-1)^{n} n!\tilde{L}_{n}^{(\alpha)}\left(x^{2}\right), \\
& \tilde{S}_{2 n+1}^{(\alpha)}(x)=x \frac{\left\langle\tilde{u}^{(\alpha)},\left(\tilde{L}_{n}^{(\alpha)}\right)^{2}\right\rangle}{\tilde{L}_{n}^{(\alpha)}(0)} \tilde{K}_{n}^{(\alpha)}\left(0, x^{2}\right)=(-1)^{n} n!x L_{n}^{(\alpha+1)}\left(x^{2}\right), \quad n \geq 0,
\end{aligned}
$$

where $\tilde{K}_{n}{ }^{(\alpha)}(0, x)$ are the kernel polynomials corresponding to the Laguerre-type polynomials $\tilde{L}_{n}^{(\alpha)}$ and $L_{n}^{(\alpha)}$ are classical Laguerre polynomials, is the monic orthogonal polynomial sequence with respect to the functional $\tilde{v}^{(\alpha)}$. Therefore, $\tilde{H}_{n}^{(\mu)}=$ $2^{n} \tilde{S}_{n}^{(\alpha)}(x)$.

In (3.2) we have deduced a generating function for Laguerre-type orthogonal polynomials. Therefore in a straightforward way we can deduce a generating function for generalized Hermite-type orthogonal polynomials.

Indeed, we denote

$$
\begin{aligned}
& \tilde{c}_{2 n}=\frac{(-1)^{n}}{2^{2 n} n!\tilde{L}_{n}^{\left(\mu-\frac{1}{2}\right)}(0)}, \quad n \geq 0, \\
& \tilde{c}_{2 n+1}=\frac{(-1)^{n}}{2^{2 n+1} n!}, \quad n \geq 0 .
\end{aligned}
$$

Then

$$
\begin{aligned}
\tilde{\mathcal{H}}_{1}(x, \omega) & =\sum_{n=0}^{\infty} \tilde{c}_{n} \tilde{H}_{n}^{(\mu)}(x) \omega^{n} \\
& =\sum_{n=0}^{\infty} \tilde{c}_{2 n} \tilde{H}_{2 n}^{(\mu)}(x) \omega^{2 n}+\sum_{n=0}^{\infty} \tilde{c}_{2 n+1} \tilde{H}_{2 n+1}^{(\mu)}(x) \omega^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{\tilde{L}_{n}^{\left(\mu-\frac{1}{2}\right)}\left(x^{2}\right)}{\tilde{L}_{n}^{\left(\mu-\frac{1}{2}\right)}(0)} \omega^{2 n}+x \omega \sum_{n=0}^{\infty} L_{n}^{\left(\mu+\frac{1}{2}\right)}\left(x^{2}\right) \omega^{2 n} .
\end{aligned}
$$

Taking into account (3.2) and (2.8) we get

$$
\begin{aligned}
& \tilde{\mathcal{H}}_{1}(x, \omega)=\left(1-\omega^{2}\right)^{-1} {\left[{ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)\right.} \\
&\left.-\frac{\lambda}{\Gamma\left(\mu+\frac{3}{2}\right)} x^{2} \omega^{2}\left(1-\omega^{2}\right)^{-\left(\mu+\frac{3}{2}\right)} \exp \left(\frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)\right] \\
&+x \omega\left(1-\omega^{2}\right)^{-\left(\mu+\frac{3}{2}\right)} \exp \left(\frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(1-\omega^{2}\right)^{-1}\left[{ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)\right. \\
& \\
& \left.+x \omega\left(1-\omega^{2}\right)^{-\left(\mu+\frac{1}{2}\right)} \exp \left(\frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)\right] \\
& -\frac{\lambda}{\Gamma\left(\mu+\frac{3}{2}\right)} x^{2} \omega^{2}\left(1-\omega^{2}\right)^{-\left(\mu+\frac{5}{2}\right)} \exp \left(\frac{x^{2} \omega^{2}}{\omega^{2}-1}\right) .
\end{aligned}
$$

Another choice for the generating function is

$$
\begin{align*}
& \tilde{c}_{2 n}=\frac{(-1)^{n}}{2^{2 n} n!\tilde{L}_{n}^{\left(\mu-\frac{1}{2}\right)}(0)}, \quad n \geq 0, \\
& \tilde{c}_{2 n+1}=\frac{(-1)^{n}}{2^{2 n+1} n!\left(\mu+\frac{1}{2}\right) L_{n}^{\left(\mu+\frac{1}{2}\right)}(0)}, \quad n \geq 0 . \tag{3.3}
\end{align*}
$$

Then

$$
\begin{aligned}
\tilde{\mathcal{H}}_{2}(x, \omega) & =\sum_{n=0}^{\infty} \tilde{c}_{2 n} \tilde{H}_{2 n}^{(\mu)}(x) \omega^{2 n}+\sum_{n=0}^{\infty} \tilde{c}_{2 n+1} \tilde{H}_{2 n+1}^{(\mu)}(x) \omega^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{\tilde{L}_{n}^{\left(\mu-\frac{1}{2}\right)}\left(x^{2}\right)}{\tilde{L}_{n}^{\left(\mu-\frac{1}{2}\right)}(0)} \omega^{2 n}+\frac{x \omega}{\mu+\frac{1}{2}} \sum_{n=0}^{\infty} \frac{L_{n}^{\left(\mu+\frac{1}{2}\right)}\left(x^{2}\right)}{L_{n}^{\left(\mu+\frac{1}{2}\right)}(0)} \omega^{2 n} .
\end{aligned}
$$

Taking into account (3.2) and (2.9) we get

$$
\begin{align*}
& \tilde{\mathcal{H}}_{2}(x, \omega)=\left(1-\omega^{2}\right)^{-1}\left[{ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)\right. \tag{3.4}\\
&\left.-\frac{\lambda}{\Gamma\left(\mu+\frac{3}{2}\right)} x^{2} \omega^{2}\left(1-\omega^{2}\right)^{-\left(\mu+\frac{3}{2}\right)} \exp \left(\frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)\right] \\
&+x \omega \frac{\left(1-\omega^{2}\right)^{-1}}{\mu+\frac{1}{2}}{ }_{1} F_{1}\left(1 ; \mu+\frac{3}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right) \\
&=\left(1-\omega^{2}\right)^{-1}\left[{ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)\right. \tag{3.5}\\
&\left.+\frac{x \omega}{\mu+\frac{1}{2}}{ }_{1} F_{1}\left(1 ; \mu+\frac{3}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)\right] \\
&-\frac{\lambda}{\Gamma\left(\mu+\frac{3}{2}\right)} x^{2} \omega^{2}\left(1-\omega^{2}\right)^{-\left(\mu+\frac{5}{2}\right)} \exp \left(\frac{x^{2} \omega^{2}}{\omega^{2}-1}\right) . \tag{3.6}
\end{align*}
$$

Using (2.10), the substitution in (3.4) yields

Theorem 3.3. For $|\omega|<1$

$$
\begin{aligned}
\tilde{\mathcal{H}}_{2}(x, \omega)= & \sum_{n=0}^{\infty} \tilde{c}_{n} \tilde{H}_{n}^{(\mu)}(x) \omega^{n} \\
= & \left(1-\omega^{2}\right)^{-1} \frac{\omega^{2}-1+x \omega}{x \omega}{ }_{1} F_{1}\left(1 ; \mu+\frac{1}{2} ; \frac{x^{2} \omega^{2}}{\omega^{2}-1}\right)+\frac{1}{x \omega} \\
& -\frac{\lambda}{\Gamma\left(\mu+\frac{3}{2}\right)} x^{2} \omega^{2}\left(1-\omega^{2}\right)^{-\left(\mu+\frac{5}{2}\right)} \exp \left(\frac{x^{2} \omega^{2}}{\omega^{2}-1}\right) .
\end{aligned}
$$

where \tilde{c}_{n} is given in (3.3).
Acknowledgements. The authors wish express their gratitude to the referee. His/her valuable remarks and suggestions have been very useful in order to improve our manuscript. In particular he/she pointed out us the paper by Brafman [3].

REFERENCES

[1] J. Arvesú, J. Atia and F. Marcellán, On semiclassical linear functionals: the symmetric Companion Comm. Anal. Th. Cont. Fractions 10 (2002), 13-29.
[2] S. Bochner, Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 89 (1929), 730736.
[3] F. Brafman, Some generating functions for Laguerre and Hermite polynomials, Canad. J. Math. 9 (1957), 180-187.
[4] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[5] W. N. Everitt, K. H. Kwon, L. L. Littlejohn and R. Wellman, Orthogonal polynomial solutions of linear ordinary differential equations, J. Comp. Appl. Math. 133 (2001), 85-109.
[6] J. Koekoek and R. Koekoek, Differential equations for generalized Jacobi polynomials, J. Comp. Appl. Math. 126 (2000), 1-31.
[7] J. Koekoek and R. Koekoek, On a differential equation for Koornwinder's generalized Laguerre polynomials, Proc. Amer. Math. Soc. 112 (1991), 1045-1054.
[8] R. Koekoek, Koornwinder's Laguerre polynomials, Delft Progress Report, 12 (1988), 393-404.
[9] R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology, Report no. 98-17, 1998.
[10] T. H. Koornwinder, Orthogonal polynomials with weight function $(1-x)^{\alpha}(1+$ $x)^{\beta}+M \delta(x+1)+N \delta(x-1)$, Can. Math. Bull. 27 (1984), 205-214.
[11] H. L. Krall, On orthogonal polynomials satisfying a certain fourth order differential equation, The Pennsylvania State College Studies, No. 6, State College, Pa., 1940.
[12] F. Marcellán and P. Maroni, Sur l'adjonction d'une masse de Dirac à une forme régulière et semi-classique, Ann. Mat. Pura ed Appl. 162 (1992), 1-22.
[13] E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality, Transl. of Math. Monographs, Vol. 92, Amer. Math. Soc. Providence, R.I., 1991.
[14] G. Szegő, Orthogonal Polynomials (4 $4^{\text {th }}$ edn.), Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, RI, 1975.
(Received: May 7, 2002)

[^1]
[^0]: Mathematics subject classification number: 33C45, 42C05.
 Key words and phrases: orthogonal polynomials, symmetric linear functionals, generating functions.

 * Research supported by Junta de Andalucía, Grupo de Investigación FQM 0178.
 ** Research supported by Dirección general de Investigación (Ministerio de Ciencia y Tecnología) of Spain, Grant BFM 2000-0206-C04-01 and INTAS Project 2000-272.

[^1]: Esther M. García-Caballero
 Departamento de Matemáticas
 Universidad de Jaén
 23700 Linares
 Spain
 E-MAIL: emgarcia@ujaen.es
 Samuel G. Moreno
 Departamento de Matemáticas
 Universidad de Jaén
 23700 Linares
 SPAIN
 E-MAIL: samuel@ujaen.es
 Francisco Marcellán
 Departamento de Matemáticas
 Universidad Carlos III de Madrid
 28911 Leganés
 Spain
 E-MAIL: pacomarc@ing.uc3m.es

