
Immediate Transfer of Global Improvements to
All Individuals in a Population Compared to

Automatically Defined Functions
for the EVEN-5,6-PARITY Problems

Ricardo Aler

Universidad Carlos III de Madrid
Butarque 15

28911 Leganes (Madrid), Espaiia
aler@inf.uc3m.es

http://grial.uc3m.es/-aler

Abstract. Koza has shown how automatically defined functions (ADFs)
can reduce computational effort in the GP paradigm. In Koza's ADF, as
well as in standard GP, an improvement in a part of a program (an ADF
or a main body) can only be transferred via crossover. In this article, we
consider whether it is a good idea to transfer immediately improvements
found by a single individual to the whole population. A system that
implements this idea has been proposed and tested for the EVEK-5-
PARlTY and EVEN-6-PARlTYproblems. Results are very encouraging:
computational effort is reduced (compared to Koza's ADFs) and the
system seems to be less prone to early stagnation. Finally, our work
suggests further research where less extreme approaches to our idea could
be tested.

1 Introduction

In [4], Koza showed how "automatically defined functions enable genetic
programming to solve a variety of problems in a way that can be inter­
preted as a decomposition of a problem into subproblems, a solving of
the subproblems, and an assembly of the solutions to the subproblems
into a solution to the overall problem". Also, he showed that "For a "\'3ri­
ety of problems, genetic programming requires less computational effort
to solve a problem with automatically defined functions than without
them, provided the difficulty of the problem is above a certain relatively
low problem-specific breakeven point for computational effort".
With Koza's ADFs, each individual consists of both the main body of
the program and of all its subroutines. An improvement in a subroutine
(or a main body) of an individual can only be transferred to another
individual via crossover between both individuals. Intuitively, it would

1

Cita bibliográfica
Published in: Genetic Programming, Springer, 1998, p. 60-70 (Lecture Notes in Computer Science; 1391)

seem that if an individual can immediately use improvements obtained
anywhere else in the population, then the rate of discovery would be
higher. On the other hand, it might happen that an individual cannot
use another's individual discovery because their structures are just too
different. In that case, something could be an improvement for an indi­
vidual but a hindrance to another and therefore, former good individuals
would become instantly bad individuals. What would be the net effect
of both tendencies is unclear. Thus, the aim of this article is to start
exploring empirically this matter: what would happen if improvements1

in a subroutine (or a program's main body) would be transferred imme­
diately to all individuals of the population? Explaining how this idea
has been implemented is the purpose of the next section.

2 Implementation

Let us suppose that the architecture of our individuals consists of just
two parts: a main body and one ADF (ADFO). As it is shown in Fig­
ure 1, our implementation divides the population of individuals into two
separated populations: one for program's main bodies (called main pop­
Ulation) and the other one for ADFs (named ADF popUlation). Both
populations will evoh"e independently. Each population v.ill supply the
best individual obtained so far to the other population so that individu­
als of the other population can be evaluated. More specifically, the main
population will supply the best main body obtained so far to the ADF
population. Likewise, the ADF population ""ill supply the best ADFO
obtained so far to the main population.
In order to evaluate a member (a main body) of the main population, it
will be coupled with the best ADFO supplied from the ADF population, a
whole individual will be built and the fitness obtained by that individual
will be assigned to the main body being evaluated. Similarly, in order to
evaluate an ADF in the ADF population, the ADF will be coupled with
the best main body supplied by the main population and the resulting
individual will be evaluated. Of course, it is impossible to evaluate an
individual in a population until a best individual has been obtained in
the other popUlation. But this is also true for individuals in the other
population. As the process must start somewhere, at the beginning of
the run a randomly chosen individual from each population is designated
as the best of that population.

1 The reader should be aware that by improvements we mean global improvements,
that is, improvements that lead to a change in the best of population

2

62

Therefore, all indhiduals in the main population will be coupled and
evaluated with the same ADF (the best one obtained so far). And vice
versa. Thus, an improvement found by the main population will be imme­
diately transferred to all ADFs in the ADF population (and vice versa).
An immediate advantage of this idea over Koza's ADF is that each pop­
ulation can run in a separate machine, being the interaction between
populations (and therefore, network communication) very low. Although
figure 1 displays only two populations, many more populations could be
used in problems requiring more ADFs. Our implementation doesn't take
advantage of parallelism, though, so populations are evaluated sequen­
tially: if we let a n population system run for 150 generations, Po will be
run at generation 0, H will be run at generation 1 and so on. Po will be

Best malO body

~ ~
MAIN o£ c?o Fitness

BODY calculation

POPULATION

- ~o£- - c?o
Fitness

c?o calcul.bon ADF
POPULATION

o£ c?o

4\ J\
BeslADF

t I
Fig. 1. Inter-relations between the main body population and the ADF population.

run again at generation n, H at generation n + 1 and so forth. Therefore,
each Pi will run for 150/n generations, interleaved with the rest of the
populations. Table 1 shows the algorithm we have used for this article.

3

63

1. For each i, create population Pi and choose randomly a best-of-run B;.
2. Do until the number of generations is exhausted or success.

(a) run GP on Po for 1 generation and update Bo. Stop if success.
(b) run GP on Pl for 1 generation and update B l . Stop if success.
(c) .. ,
(d) run GP on Pn-l for 1 generation and update B n - l • Stop if success.

Table 1. Basic lad! algorithm.

Ne:>.."t section shows some experimental results obtained by our system
for the EVEN-5-PARlTY and EVEN-6-PARlTY problems.

3 Experimental Results

The system shown in figure 1 has been tested 'with the EVEK-5-PARlTY
and EVEN-6-PARITYproblems, described in [4]. Table 3 shows the tableau
for the EVEN-5-PARITY problem problem ~;th ADFs (the EVEN-6-
P ARlTY problem is similar).

This tableau is similar to Koza's but for M and G2
• Koza's M is 16000

whereas we use a much smaller population size of 200 for EVEX-5-
PARITY and 400 for EVEN-6-PARlTY. Besides, as we wanted to ex­
plore the behaviour of the system for long runs, our G has been extended
to 150 (being Koza's G = 51). As we use different parameters, we per­
formed a series of experiments for Koza's ADFs as well, so that it can be
compared to our system. From now on, Koza's ADF results will be re­
ferred to as Kad! and our system results as lad! ("Independent ADFs").
As Koza states in [4], a good way to determine how well an adaptive
system performs (for a given problem and chosen parameters) is to ob­
tain the computational effort (E) for that problem. Computational effort
and related data for both Kad! and lad! are shown in table 3. Graphs
displaying computational effort per generation are shown in figures 2
and 3. Also, figures 4 and 5 show the cumulative probabilities of solving
EVEN-5-PARlTY and EVEN-6-PARlTY respectively.

2 M is the size of the population and G is the number of generations

4

64

Objective Find a program that produces the value for the BoolelUl even 5-parity
function as its output when given the values of the tree independent
Boolean yariables as its input.

Architecture One result-producing branch and two two-argument functions-defining
branches, with ADF1 hierarchically referring to ADFO.

Parameters Branch typing.
Terminal set for the DO, D1, D2, D3, D4
result-producing
branch:
Function set for the ADFO, ADF1, AND, OR, NAND, and NOR
result-producing
branch:
Terminal set for ARGO and ARG 1
the function-defining
branch ADFO:
Function set for AND, OR, NA!\"D, and NOR.
the function-defining
branch ADFO:
Terminal set for ARGO and ARG 1
the function-defining
branch ADF1:
Function set for AND, OR, NAKD, KOR, and ADFO (hierarchical reference to ADFO
the function-defining by ADF1).
branch ADF1:
Fitness cases All 20 = 32 combinations of the five Boolean arguments DO, D1, D2,

D3, D4.
Raw fitness The number of fitness cases for which the value returned by the program

equals the correct value of the even-5-parity function.
Standardized fitness The standardized fitness of a program is the sum, over the 32 fitness

cases, of the Hamming distance (error) between the value returned
by the program and the correct value of the Boolean even-5-parity
function.

Hits Same as raw fitness.
Wrapper None.
Parameters M - 200, G - 150
Success predicate A program scores the maximum number of hits

Table 2. Tableau with ADFs for the eyen-5-parity problem.

EVEN-5-PARITY EVEN-6-P ARITY
Kad! I lad! Kad! 1 lad!

Number of experiments 194 I 200 111 I 84
Population size 200 400

Effort - mini=o .. 149(I(M, i, 0.99)) 408000 I 359600 15500001 627200
Best generation i* 33 I 30 30 I 48

EKadf/Eladf 1.134594 2.471301

Table 3. Computational effort results (and related data) for Kad! and lad!

5

65

4 Discussion

It turns out that ladf performs slightly better than Kadf (see table 3)
for the EVEN-5-PARITY problem (being the effort ratio E = 1.134594)
and much better for the more complex EVEN-6-PARITY problem (E =
2.471301). However, that is the effort that the system would have spent
had we chosen G = i*. But i* is. not a datum we can know a priori. Had
we started our runs without this knowledge, we could have chosen any
other G and spent a different computational effort I. In order to have
a better picture of what happens for different values of G, graphs dis­
playing computational effort are shown in figures 2 and 3. Also, figures 4
and 5 show the cumulative probabilities of solving EVEN-5-PARITY
and EVEN-6-PARITY respectively. Results in these graphs can be eas­
ily summarized:

Computational Effort

2.0x106 -,..-----------,

, , , .
, " , "
'" ", ", " , , ,

0.Ox100 +-----r---,.....--...
o 50 100 150

Generation

----. Kadf

-Iadf

Fig. 2. Computational effort (I) for both Kadf and ladf, given that EVEN-5-PARlTY
should be solved by generation i with probability z = 0.99

6

5x106

4x106

-~3X106
9-

!2x10
6

1X106

Ox100

0

· ..
" .. · · ·

66

Computational Effort

:~ " ---- Kadf . "." . ,':,' ~,' -Iadf , ,.. .' . , .'

50 100 150
Generation

Fig_ 3. Computational effort (1) for both Kadf and ladf, given that EVEN-6-PARITY
should be solved by generation i with probability z = 0.99

Cumulative Probability of Success

0.20 -r------------,

0.15

-o
~0.10
.......
c.

---- Kadf
, _----_ '

. .---- -Iadf

0.05

0.00 -f-I"----..------r----t
o 50 100 150

Generation

Fig. 4. Cumulative probability of solving EVEK-5-PARITY by generation i with
M=200 for both Kadf and lad!

7

67

Cumulative Probability of Success

0.2,------;;;::======1

::::­o
~0.1
Q.

__ •• a. _______________ _ . .
0.0 -I---"'---r----.,------I

---- Kadf

-Iadf

o 50 100 150
Generation

Fig. 5. Cumulative probability of solving EVEN-6-PARlTY by generation i for both
Kadf and lad!

Iadfhas a smaller computational effort than Kadffor all generations
and specially for late generations (see figure 2). This fact is even
more noticeable for the more difficult problem (EVEN-6-PARlTY)
(see figure 3).
ladf manages to keep a steady rate of improvement (in terms of cu­
mulative probability of success) for longer than Kadf (see figure 4).
Kadfs rate diminishes by generation 30 whilst ladf continues im­
proving at a good pace for much longer. Again, this is even more
noticeable in the EVEN-6-PARITY problem (see figure 5).

5 Future Work

In this article we have studied the effects of transferring improvements
immediately to a whole population. Our expectations were that this
might be useful in terms of computational effort, and it happened to
be case for the EVEN-5,6-PARITY problems. However, in other prob­
lems it might happen that an improvement for an individual A could not
always be accepted as such by another individual B and in the worst case,
it will hinder that individual. Many other individuals could be hindered
in such a way, being their evolutionary pathways lost as a result.
In that case, a softer way of transferring improvements might be useful.
Instead of transferring the best individual of a whole population PI to

8

68

another whole population P2, the former population could be divided into
subpopulations Pll, P12, ... , each one of them having a best individual of
their own. The receiving population P2 could be divided similarly. Then,
the best individual of Pll would be transferred to P21 (and vice versa)
and so on. It is a softer approach because improvements only affect a
few individuals of a population and therefore, dammaging effects would
be restricted to them. In an extreme case, each P1i would be exactly
one individual, linked to its co-individual P2i, which is exactly Koza's
ADF approach. Thus, it seems that Koza's ADFs lies in an extreme
of a gradation, and our approach lies in the opposite extreme. Testing
approaches between both e>..i;remes will be our next step.

6 Related Work

lad! originated in an idea that emerged from previous work done by the
author. In [2], it was indirectly shown how fixing part of a program and
letting the rest evolve, could 'be an interesting way for a programmer
to introduce background knowledge into GP and to reduce the search
space. This article is an offshoot of that idea, although it is an evolving
population best individual (instead of the programmer) which fixes part
of the program for the rest of the evolving populations.
The system we have studied in this paper can be considered as an ex­
treme case of co-evolution [3], albeit a strange one, because interaction
between populations happens only through the best individual of each
population. Co-evolution of a main program and several independent
ADF populations has already been dealt with in [1]. Both approaches
differ in perspective, though: we are more interested in the simultane­
ous transfer of information from one population to all individuals in the
other populations than in studying general ADF co-evolution. In their
approach, in order to evaluate a main program, ADF individuals are
selected from the ADF sub-populations. They tested several selection
policies, being "the best individual" policy very similar to our o'wn ap­
proach. However, in their work this policy doesn't fare well compared to
GP+ADF, which is the opposite of the results obtained in our paper.
Other differences are that we use a generational model for all evolving
populations instead of a steady-state model and that we favor program­
level fitness evaluation instead of evaluating directly the individuals in
the ADF sUb-populations. Finally, our results are in terms of compu­
tational effort to solve the problem rather than of average results per
generation, as in their case.

9

69

7 Conclusions

This paper started by posing the question of whether it would be useful
that improvements in a part of an individual (a subroutine, for instance)
would be transferred to all members of the population as soon as they
were found. We then proposed a system to test this idea and utilized it
for the EVEN-5,6-PARlTY problems. A comparison of our results 'with
Koza's ADF applied to the same problem shows that performance (in
terms of minimum computational effort) is better. Thus, there seems
to be an advantage by immediately transferring improvements to all
individuals, at least in this case.
Our approach is another way to parallelize GP, 'with the advantage that
communication between populations happens at a very small rate: all the
information populations need to exchange is the best individual obtained
so far, which changes rather slowly. This kind of parallelism would be
useful for problems requiring many different ADFs.
Our system shows a curious effect: the cumulative probability of success
keeps increasing at a good rate for longer than Kadf That is, it doesn't
seem to stagnate as soon as GP (or GP+ADF) does.
The approach scales well, obtaining better results for the more complex
problem than for the simpler one.
It has been shown that our approach and Koza's ADFs lie in opposite
extremes of a gradation. Thus, our work suggests that testing approaches
between both extremes might be an interesting line of research.
Finally, we are well aware that in order to draw general conclusions
beyond the problems studied in this article, many more experiments
must be carried out for different problems and different parameters.

References

1. Manu Ahluwalia, Larry Bell, and Terence C. Fogarty. Co-eyolving
functions in genetic programming: A comparison in ADF selec­
tion strategies. In John R. Koza, Kalyanmoy Deb, Marco Dorigo,
David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors,
Genetic Programming 1997: Proceedin9s of the Second Annual Con­
ference, pages 3-8, Stanford University, CA, USA, 13-16 July 1997.
Morgan Kaufmann.

2. Ricardo AIer, Daniel Borrajo, and Pedro Isasi. Evolving heuristics
for planning. In Proceedings of the Seventh Annual Conference on
Evolutionary Programming, Lecture Notes in Artificial Intelligence,
San Diego, CA, March 1998. Springer-Verlag.

10

70

3. W. Daniel Hillis. Co-evolving parasites improve simulated evolution
as an optimization procedure. In Christopher G. Langton, Charles
Taylor, J. Doyne Farmer, and Steen Rasmussen, editors, Artificial
Life 11, volume X of Sante Fe Institute Studies in the Sciences of
Complexity, pages 313-324. Addison-Wesley, Santa Fe Institute, New
Mexico, USA, February 1990 1992.

4. J.R. Koza. Genetic Programming 11. The MIT Press, 1994.

11

