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Abstract. Koza has shown how automatically defined functions (ADFs) 
can reduce computational effort in the GP paradigm. In Koza's ADF, as 
well as in standard GP, an improvement in a part of a program (an ADF 
or a main body) can only be transferred via crossover. In this article, we 
consider whether it is a good idea to transfer immediately improvements 
found by a single individual to the whole population. A system that 
implements this idea has been proposed and tested for the EVEK-5-
PARlTY and EVEN-6-PARlTYproblems. Results are very encouraging: 
computational effort is reduced (compared to Koza's ADFs) and the 
system seems to be less prone to early stagnation. Finally, our work 
suggests further research where less extreme approaches to our idea could 
be tested. 

1 Introduction 

In [4], Koza showed how "automatically defined functions enable genetic 
programming to solve a variety of problems in a way that can be inter­
preted as a decomposition of a problem into subproblems, a solving of 
the subproblems, and an assembly of the solutions to the subproblems 
into a solution to the overall problem". Also, he showed that "For a "\'3ri­
ety of problems, genetic programming requires less computational effort 
to solve a problem with automatically defined functions than without 
them, provided the difficulty of the problem is above a certain relatively 
low problem-specific breakeven point for computational effort". 
With Koza's ADFs, each individual consists of both the main body of 
the program and of all its subroutines. An improvement in a subroutine 
(or a main body) of an individual can only be transferred to another 
individual via crossover between both individuals. Intuitively, it would 
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seem that if an individual can immediately use improvements obtained 
anywhere else in the population, then the rate of discovery would be 
higher. On the other hand, it might happen that an individual cannot 
use another's individual discovery because their structures are just too 
different. In that case, something could be an improvement for an indi­
vidual but a hindrance to another and therefore, former good individuals 
would become instantly bad individuals. What would be the net effect 
of both tendencies is unclear. Thus, the aim of this article is to start 
exploring empirically this matter: what would happen if improvements1 

in a subroutine (or a program's main body) would be transferred imme­
diately to all individuals of the population? Explaining how this idea 
has been implemented is the purpose of the next section. 

2 Implementation 

Let us suppose that the architecture of our individuals consists of just 
two parts: a main body and one ADF (ADFO). As it is shown in Fig­
ure 1, our implementation divides the population of individuals into two 
separated populations: one for program's main bodies (called main pop­
Ulation) and the other one for ADFs (named ADF popUlation). Both 
populations will evoh"e independently. Each population v.ill supply the 
best individual obtained so far to the other population so that individu­
als of the other population can be evaluated. More specifically, the main 
population will supply the best main body obtained so far to the ADF 
population. Likewise, the ADF population ""ill supply the best ADFO 
obtained so far to the main population. 
In order to evaluate a member (a main body) of the main population, it 
will be coupled with the best ADFO supplied from the ADF population, a 
whole individual will be built and the fitness obtained by that individual 
will be assigned to the main body being evaluated. Similarly, in order to 
evaluate an ADF in the ADF population, the ADF will be coupled with 
the best main body supplied by the main population and the resulting 
individual will be evaluated. Of course, it is impossible to evaluate an 
individual in a population until a best individual has been obtained in 
the other popUlation. But this is also true for individuals in the other 
population. As the process must start somewhere, at the beginning of 
the run a randomly chosen individual from each population is designated 
as the best of that population. 

1 The reader should be aware that by improvements we mean global improvements, 
that is, improvements that lead to a change in the best of population 
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Therefore, all indhiduals in the main population will be coupled and 
evaluated with the same ADF (the best one obtained so far). And vice 
versa. Thus, an improvement found by the main population will be imme­
diately transferred to all ADFs in the ADF population (and vice versa). 
An immediate advantage of this idea over Koza's ADF is that each pop­
ulation can run in a separate machine, being the interaction between 
populations (and therefore, network communication) very low. Although 
figure 1 displays only two populations, many more populations could be 
used in problems requiring more ADFs. Our implementation doesn't take 
advantage of parallelism, though, so populations are evaluated sequen­
tially: if we let a n population system run for 150 generations, Po will be 
run at generation 0, H will be run at generation 1 and so on. Po will be 
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Fig. 1. Inter-relations between the main body population and the ADF population. 

run again at generation n, H at generation n + 1 and so forth. Therefore, 
each Pi will run for 150/n generations, interleaved with the rest of the 
populations. Table 1 shows the algorithm we have used for this article. 
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1. For each i, create population Pi and choose randomly a best-of-run B;. 
2. Do until the number of generations is exhausted or success. 

(a) run GP on Po for 1 generation and update Bo. Stop if success. 
(b) run GP on Pl for 1 generation and update B l . Stop if success. 
(c) .. , 
(d) run GP on Pn-l for 1 generation and update B n - l • Stop if success. 

Table 1. Basic lad! algorithm. 

Ne:>.."t section shows some experimental results obtained by our system 
for the EVEN-5-PARlTY and EVEN-6-PARlTY problems. 

3 Experimental Results 

The system shown in figure 1 has been tested 'with the EVEK-5-PARlTY 
and EVEN-6-PARITYproblems, described in [4]. Table 3 shows the tableau 
for the EVEN-5-PARITY problem problem ~;th ADFs (the EVEN-6-
P ARlTY problem is similar). 

This tableau is similar to Koza's but for M and G2
• Koza's M is 16000 

whereas we use a much smaller population size of 200 for EVEX-5-
PARITY and 400 for EVEN-6-PARlTY. Besides, as we wanted to ex­
plore the behaviour of the system for long runs, our G has been extended 
to 150 (being Koza's G = 51). As we use different parameters, we per­
formed a series of experiments for Koza's ADFs as well, so that it can be 
compared to our system. From now on, Koza's ADF results will be re­
ferred to as Kad! and our system results as lad! ("Independent ADFs"). 
As Koza states in [4], a good way to determine how well an adaptive 
system performs (for a given problem and chosen parameters) is to ob­
tain the computational effort (E) for that problem. Computational effort 
and related data for both Kad! and lad! are shown in table 3. Graphs 
displaying computational effort per generation are shown in figures 2 
and 3. Also, figures 4 and 5 show the cumulative probabilities of solving 
EVEN-5-PARlTY and EVEN-6-PARlTY respectively. 

2 M is the size of the population and G is the number of generations 

4



64 

Objective Find a program that produces the value for the BoolelUl even 5-parity 
function as its output when given the values of the tree independent 
Boolean yariables as its input. 

Architecture One result-producing branch and two two-argument functions-defining 
branches, with ADF1 hierarchically referring to ADFO. 

Parameters Branch typing. 
Terminal set for the DO, D1, D2, D3, D4 
result-producing 
branch: 
Function set for the ADFO, ADF1, AND, OR, NAND, and NOR 
result-producing 
branch: 
Terminal set for ARGO and ARG 1 
the function-defining 
branch ADFO: 
Function set for AND, OR, NA!\"D, and NOR. 
the function-defining 
branch ADFO: 
Terminal set for ARGO and ARG 1 
the function-defining 
branch ADF1: 
Function set for AND, OR, NAKD, KOR, and ADFO (hierarchical reference to ADFO 
the function-defining by ADF1). 
branch ADF1: 
Fitness cases All 20 = 32 combinations of the five Boolean arguments DO, D1, D2, 

D3, D4. 
Raw fitness The number of fitness cases for which the value returned by the program 

equals the correct value of the even-5-parity function. 
Standardized fitness The standardized fitness of a program is the sum, over the 32 fitness 

cases, of the Hamming distance (error) between the value returned 
by the program and the correct value of the Boolean even-5-parity 
function. 

Hits Same as raw fitness. 
Wrapper None. 
Parameters M - 200, G - 150 
Success predicate A program scores the maximum number of hits 

Table 2. Tableau with ADFs for the eyen-5-parity problem. 

EVEN-5-PARITY EVEN-6-P ARITY 
Kad! I lad! Kad! 1 lad! 

Number of experiments 194 I 200 111 I 84 
Population size 200 400 

Effort - mini=o .. 149(I(M, i, 0.99)) 408000 I 359600 15500001 627200 
Best generation i* 33 I 30 30 I 48 

EKadf/Eladf 1.134594 2.471301 

Table 3. Computational effort results (and related data) for Kad! and lad! 
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4 Discussion 

It turns out that ladf performs slightly better than Kadf (see table 3) 
for the EVEN-5-PARITY problem (being the effort ratio E = 1.134594) 
and much better for the more complex EVEN-6-PARITY problem (E = 
2.471301). However, that is the effort that the system would have spent 
had we chosen G = i*. But i* is. not a datum we can know a priori. Had 
we started our runs without this knowledge, we could have chosen any 
other G and spent a different computational effort I. In order to have 
a better picture of what happens for different values of G, graphs dis­
playing computational effort are shown in figures 2 and 3. Also, figures 4 
and 5 show the cumulative probabilities of solving EVEN-5-PARITY 
and EVEN-6-PARITY respectively. Results in these graphs can be eas­
ily summarized: 
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Fig. 2. Computational effort (I) for both Kadf and ladf, given that EVEN-5-PARlTY 
should be solved by generation i with probability z = 0.99 
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Fig_ 3. Computational effort (1) for both Kadf and ladf, given that EVEN-6-PARITY 
should be solved by generation i with probability z = 0.99 
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Fig. 4. Cumulative probability of solving EVEK-5-PARITY by generation i with 
M=200 for both Kadf and lad! 
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Cumulative Probability of Success 
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Fig. 5. Cumulative probability of solving EVEN-6-PARlTY by generation i for both 
Kadf and lad! 

Iadfhas a smaller computational effort than Kadffor all generations 
and specially for late generations (see figure 2). This fact is even 
more noticeable for the more difficult problem (EVEN-6-PARlTY) 
(see figure 3). 
ladf manages to keep a steady rate of improvement (in terms of cu­
mulative probability of success) for longer than Kadf (see figure 4). 
Kadfs rate diminishes by generation 30 whilst ladf continues im­
proving at a good pace for much longer. Again, this is even more 
noticeable in the EVEN-6-PARITY problem (see figure 5). 

5 Future Work 

In this article we have studied the effects of transferring improvements 
immediately to a whole population. Our expectations were that this 
might be useful in terms of computational effort, and it happened to 
be case for the EVEN-5,6-PARITY problems. However, in other prob­
lems it might happen that an improvement for an individual A could not 
always be accepted as such by another individual B and in the worst case, 
it will hinder that individual. Many other individuals could be hindered 
in such a way, being their evolutionary pathways lost as a result. 
In that case, a softer way of transferring improvements might be useful. 
Instead of transferring the best individual of a whole population PI to 
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another whole population P2, the former population could be divided into 
subpopulations Pll, P12, ... , each one of them having a best individual of 
their own. The receiving population P2 could be divided similarly. Then, 
the best individual of Pll would be transferred to P21 (and vice versa) 
and so on. It is a softer approach because improvements only affect a 
few individuals of a population and therefore, dammaging effects would 
be restricted to them. In an extreme case, each P1i would be exactly 
one individual, linked to its co-individual P2i, which is exactly Koza's 
ADF approach. Thus, it seems that Koza's ADFs lies in an extreme 
of a gradation, and our approach lies in the opposite extreme. Testing 
approaches between both e>..i;remes will be our next step. 

6 Related Work 

lad! originated in an idea that emerged from previous work done by the 
author. In [2], it was indirectly shown how fixing part of a program and 
letting the rest evolve, could 'be an interesting way for a programmer 
to introduce background knowledge into GP and to reduce the search 
space. This article is an offshoot of that idea, although it is an evolving 
population best individual (instead of the programmer) which fixes part 
of the program for the rest of the evolving populations. 
The system we have studied in this paper can be considered as an ex­
treme case of co-evolution [3], albeit a strange one, because interaction 
between populations happens only through the best individual of each 
population. Co-evolution of a main program and several independent 
ADF populations has already been dealt with in [1]. Both approaches 
differ in perspective, though: we are more interested in the simultane­
ous transfer of information from one population to all individuals in the 
other populations than in studying general ADF co-evolution. In their 
approach, in order to evaluate a main program, ADF individuals are 
selected from the ADF sub-populations. They tested several selection 
policies, being "the best individual" policy very similar to our o'wn ap­
proach. However, in their work this policy doesn't fare well compared to 
GP+ADF, which is the opposite of the results obtained in our paper. 
Other differences are that we use a generational model for all evolving 
populations instead of a steady-state model and that we favor program­
level fitness evaluation instead of evaluating directly the individuals in 
the ADF sUb-populations. Finally, our results are in terms of compu­
tational effort to solve the problem rather than of average results per 
generation, as in their case. 
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7 Conclusions 

This paper started by posing the question of whether it would be useful 
that improvements in a part of an individual (a subroutine, for instance) 
would be transferred to all members of the population as soon as they 
were found. We then proposed a system to test this idea and utilized it 
for the EVEN-5,6-PARlTY problems. A comparison of our results 'with 
Koza's ADF applied to the same problem shows that performance (in 
terms of minimum computational effort) is better. Thus, there seems 
to be an advantage by immediately transferring improvements to all 
individuals, at least in this case. 
Our approach is another way to parallelize GP, 'with the advantage that 
communication between populations happens at a very small rate: all the 
information populations need to exchange is the best individual obtained 
so far, which changes rather slowly. This kind of parallelism would be 
useful for problems requiring many different ADFs. 
Our system shows a curious effect: the cumulative probability of success 
keeps increasing at a good rate for longer than Kadf That is, it doesn't 
seem to stagnate as soon as GP (or GP+ADF) does. 
The approach scales well, obtaining better results for the more complex 
problem than for the simpler one. 
It has been shown that our approach and Koza's ADFs lie in opposite 
extremes of a gradation. Thus, our work suggests that testing approaches 
between both extremes might be an interesting line of research. 
Finally, we are well aware that in order to draw general conclusions 
beyond the problems studied in this article, many more experiments 
must be carried out for different problems and different parameters. 
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