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Abstract

Let L be a quasi-definite linear functional defined on the linear space of polynomials with
real coefficients. In the literature, three canonical transformations of this functional are stud-
ied: xL, L + Cδ(x) and 1

x L + Cδ(x) where δ(x) denotes the linear functional (δ(x))(xk) =
δk,0, and δk,0 is the Kronecker symbol. Let us consider the sequence of monic polynomials
orthogonal with respect to L. This sequence satisfies a three-term recurrence relation whose
coefficients are the entries of the so-called monic Jacobi matrix. In this paper we show how to
find the monic Jacobi matrix associated with the three canonical perturbations in terms of the
monic Jacobi matrix associated with L. The main tools are Darboux transformations. In the
case that the LU factorization of the monic Jacobi matrix associated with xL does not exist
and Darboux transformation does not work, we show how to obtain the monic Jacobi matrix
associated with x2L as a limit case. We also study perturbations of the functional L that are
obtained by combining the canonical cases. Finally, we present explicit algebraic relations
between the polynomials orthogonal with respect to L and orthogonal with respect to the
perturbed functionals.
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1. Introduction

Let L be a linear functional defined on the linear space P of polynomials with real
coefficients. We call lk = L(xk), k = 0, 1, 2, . . . the kth moment associated with L.
Moreover, the matrix M = (li+j )

∞
i,j=0 is said to be the matrix of moments associated

with L. The functional L is said to be quasi-definite if the principal submatrices Mn

of the matrix of moments M are nonsingular for every n.
If L is quasi-definite, then there exists a sequence of monic polynomials {Pn} [4]

such that

(1) deg(Pn) = n,
(2) L(Pn(x)Pm(x)) = Knδn,m, with Kn /= 0, where δn,m is the “Kronecker delta”

defined by

δn,m =
{

0 if m /= n,
1 if m = n.

Several examples of perturbations of a quasi-definite linear functional have been
studied in the literature [4,5,16,18,20,22]. In particular, three canonical cases are
considered.

(1) The original functional L is transformed into L̃1 = xL, where

(xL)(p) := L(xp),

for any polynomial p.
(2) The original functional is transformed into L̃2 = L + Cδ(x), where

(L + Cδ(x))(p) := L(p) + Cp(0).

(3) The original functional is transformed into L̃3 = 1
xL + Cδ(x), where(

1

x
L + Cδ(x)

)
(p) := L

(
p(x) − p(0)

x

)
+ Cp(0).

Then, it seems to be natural to give an answer to the following questions: (1) Is the
perturbed linear functional a quasi-definite functional? (2) If it is the case, does exist
a relation between the sequence {P̃n} of monic polynomials orthogonal with respect
to the perturbed functional and the sequence {Pn}?

Necessary and sufficient conditions for the quasi-definiteness of L̃1 are given in
[4,18]. There, the representation of {P̃n} in terms of {Pn} is also obtained. In [20,22]
this kind of perturbation is said to be a basic Christoffel transformation.

Necessary and sufficient conditions for the quasi-definiteness of L̃2 are given in
[5,16,18], where the representation of {P̃n} in terms of {Pn} is obtained. Notice that
xL = L̃1 = xL̃2. In [20,22] this kind of perturbation is said to be a Uvarov transfor-
mation.
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A natural perturbation appears when we try to solve the equation xL̃3 = L. This
means that L̃3(x

k) = L(xk−1), k = 1, 2, . . ., as well as L̃3(1) = C. In [17], nec-
essary and sufficient conditions for L̃3 to be a quasi-definite linear functional are
studied. Moreover, a representation of {P̃n} in terms of {Pn} is given. In [20,22] this
kind of perturbation is said to be a Geronimus transformation.

The aim of our work is to analyze these kind of perturbations from a different
point of view.

It is well known that the sequence of monic polynomials {Pn} orthogonal with
respect to a quasi-definite linear functional L satisfies a three-term recurrence rela-
tion [4]

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), n = 1, 2, . . . , (1.1)

with initial conditions P0(x) = 1, P1(x) = x − β0, and γn /= 0, n = 1, 2, . . . Thus,
there exists a semi-infinite tridiagonal matrix J given by

J =




β0 1 0 0 · · ·
γ1 β1 1 0 · · ·
0 γ2 β2 1 · · ·
...

...
...

...
. . .


 , (1.2)

such that xp = Jp, with p = [P0(x), P1(x), P2(x), . . .]t. The matrix J is said to be
the monic Jacobi matrix associated with the functional L.

Our approach is based in the relation between the matrices J̃i , i = 1, 2, 3 associ-
ated with the linear functionals L̃i , i = 1, 2, 3, and the matrix J .

The process to compute the monic Jacobi matrix associated with L̃1 in terms of the
monic Jacobi matrix associated with L is based on one step of the LR-algorithm or
Darboux transformation without parameter. There are several contributions in such
a direction; for instance, the works by Galant [7,8], Golub and Kautsky [10,15], and
Gautschi [9]. Suppose that a given linear functional L is defined in terms of a weight
function ω in the following way:

L(p) =
∫

R

p(x)ω(x) dx.

The work by Galant, Golub, and Kautsky is focused on the computation of the
coefficients of the three-term recurrence relation satisfied by the sequence of monic
polynomials orthogonal with respect to a linear perturbation of ω, i.e., ω̃ = k(x −
α)ω, assuming that ω̃ is again a weight function, which means that ω̃ is a positive
and L1-integrable function in the support of ω. Gautschi extended this result for
quasi-definite measures, i.e., measures µ such that the associated linear functional
L defined by L(p(x)) = ∫

R
p(x) dµ is quasi-definite. In matrix context, the Dar-

boux transformation without parameter applied to the monic Jacobi matrix associ-
ated with a linear functional L generates the monic Jacobi matrix associated with
the functional xL. The main application of the above results is the evaluation of
Gaussian knots in the presence of fixed knots [10]. Our main contribution to the
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previous issues is the following: given a symmetric linear functional U, i.e., a lin-
ear functional such that U(x2k+1) = 0 for k � 0, the corresponding monic Jacobi
matrix has no LU factorization. In such a case, it is not possible to find the monic
Jacobi matrix associated with the functional xL applying the Darboux transformation
without parameter. However, we prove that it is possible to find the monic Jacobi
matrix associated with x2L (another symmetric functional) by the application of two
Darboux transformations without parameter and with shift, as a limit case.

Grünbaum and Haine considered the monic Jacobi matrix associated with L̃2 =
L + Cδ(x) [12,13] in the context of the spectral analysis of fourth-order linear
differential equations with polynomial coefficients. They were interested in the poly-
nomial solutions of such differential equations, the so-called Krall orthogonal poly-
nomials (see also [1]). They obtained those polynomials from some instances of the
classical orthogonal polynomials by a combination of two processes called Darboux
transformation and Darboux transformation without parameter. One of our goals
is to extend their results for Krall polynomials to the general case when L is any
quasi-definite linear functional. The Darboux transformation was introduced in the
classical monograph [6], although only the case of a (continuous) Sturm–Liouville
operator is discussed there. Discrete versions were introduced later and their system-
atic study was undertaken by Matveev and Salle [19], who are responsible for the
name “Darboux transformation”.

Finally, the perturbation L̃3 is related with an extension of the classical Christoffel
formula. In the case of positive measures, there are many contributions (see [7–9,21])
when rational perturbations ω̃(x) = p(x)

q(x)
ω(x) of a weight function are considered.

Grünbaum and Haine introduced a modification of such algorithms which allows to
find the sequence of monic polynomials orthogonal with respect to L̃3 in an alter-
native way to the approach by Maroni [17]. They use such an algorithm for some
particular cases of linear functionals (Laguerre and Jacobi, classical linear function-
als). In our work, we consider the general problem and we introduce in a natural
way the so-called Darboux transformation in order to find J̃3 from J . The Darboux
transformation is related with bispectral problems [11,12,14], as well as with dif-
ferential evolution equations [19]. More recently, the analysis of rational spectral
transformations, self-similarity, and orthogonal polynomials has been considered in
[20,22].

The structure of the paper is the following: In Section 2 we introduce the LU and
UL factorizations of a tridiagonal matrix J , as well as the Darboux transformation
and the Darboux transformation without parameter. In Section 3 we show how to
find the tridiagonal matrix J̃1 associated with the linear functional L̃1 = xL in terms
of the matrix J by the application of the Darboux transformation without parameter.
The main result is Theorem 3.4. The case of symmetric linear functionals is also
studied as a limit case. In Section 4, the tridiagonal matrix J̃2 associated with the
linear functional L̃2 = L + Cδ(x) is obtained from J by the application of a Dar-
boux transformation without parameter combined with a Darboux transformation. In
Section 5, the Darboux transformation appears in a natural way in order to compute
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the tridiagonal matrix J̃3 associated with the linear functional L̃3 = 1
xL + Cδ(x). We

also consider a combination of Darboux transformations and Darboux transforma-
tions without parameter that generates the monic Jacobi matrices associated with the
linear functionals L̃4 = 1

xL + C1δ(x) + C2δ
′(x) and L̃5 = L + C1δ(x) + C2δ

′(x),
where δ′(x) denotes the first derivative of the linear functional δ(x). Finally, if {P̃n}
denotes the sequence of monic polynomials orthogonal with respect to L + Cδ(x)

or 1
xL + Cδ(x), then we give an alternative approach to that used by other authors

as Maroni, to obtain {P̃n} in terms of {Pn} taking into account the algorithm that
computes the Darboux transformation.

2. Darboux transformation and functionals perturbation

In this section, we define the Darboux transformation as well as the Darboux
transformation without parameter, and give some auxiliary lemmas that will be very
useful in next sections.

Consider a quasi-definite linear functional L as well as the sequence of monic
polynomials {Pn} orthogonal with respect to such a functional. This sequence of
polynomials satisfies the three-term recurrence relation given in (1.1). Let J be the
corresponding monic Jacobi matrix as in (1.2). We introduce the following transfor-
mation on J ,

J = LU, J (p) := UL, (2.1)

where J = LU denotes the LU factorization without pivoting of J . Notice that J

has an unique LU factorization if and only if the leading principal submatrices of J

are nonsingular. Furthermore,

L =




1 0 0 · · ·
l1 1 0 · · ·
0 l2 1 · · ·
...

...
...

. . .


 , U =




u1 1 0 · · ·
0 u2 1 · · ·
0 0 u3 · · ·
...

...
...

. . .


 . (2.2)

The matrix J (p) is semi-infinite, tridiagonal and the entries in the positions (i, i +
1) are ones. The transformation given in (2.1) is the so-called Darboux transforma-
tion without parameter. Observe that the application of a Darboux transformation
without parameter to a monic Jacobi matrix generates a new monic Jacobi matrix
(recall Favard’s Theorem). The matrix J (p) is said to be the Darboux transform
without parameter of J .

In the same way, if we express J as the product of U times L, where U and L are
given in (2.2), and consider the process

J = UL, J (d) := LU,

the matrix J (d) is again a monic Jacobi matrix. The previous process is known as
Darboux transformation and J (d) is said to be the Darboux transform of J . Notice
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that, while the LU factorization of a monic Jacobi matrix is unique, it is not the case
with the UL factorization. It depends on a free parameter as we will prove later on.

In next lemma, we express the elements uk in the main diagonal of the upper
triangular matrix U obtained from the LU factorization of J , given in (2.2), in terms
of the elements lk in the subdiagonal of L and the entries βk in the main diagonal
of J . Moreover, we give an alternative expression of the elements uk in terms of the
values Pn(0), and obtain a recursive formula for the computation of the elements lk .

Lemma 2.1. Let {Pn} be the sequence of monic polynomials defined by the monic
Jacobi matrix J given in (1.2). Assume that Pn(0) /= 0, n � 1. If J = LU denotes
the LU factorization of J, then

un = − Pn(0)

Pn−1(0)
. (2.3)

Moreover,{
u1 = β0,

un = βn−1 − ln−1, n � 2,
(2.4)

where the elements ln can be computed in a recursive way as follows:
l1 = γ1

β0
, ln = γn

βn−1 − ln−1
, n � 2. (2.5)

Proof. The product of L times U gives

LU =




u1 1 0 · · ·
u1l1 u2 + l1 1 · · ·

0 u2l2 u3 + l2 · · ·
...

...
...

. . .


 . (2.6)

Comparing the elements in the same positions of matrices J and LU , the result in
(2.4) is obtained, as well as

γk = lkuk for all k � 1. (2.7)

The result (2.3) is deduced by induction on k, taking into account the three-term
recurrence relation (1.1) that {Pm} satisfies. Since P1(0) = −β0 and P0(0) = 1,

u1 = β0 = −P1(0)

P0(0)
.

Assume that uk = − Pk(0)
Pk−1(0)

for k � n. Then, taking into account (1.1),

Pn+1(0) = −βnPn(0) − γnPn−1(0).

Dividing the previous expression by Pn(0), and applying the induction hypothesis as
well as (2.4) and (2.7), we get

−Pn+1(0)

Pn(0)
= βn − γn

un

= βn − ln = un+1. (2.8)

6



Finally, considering again (2.4) and taking into account (2.7), the result in (2.5) is
obtained. �

Remark 2.2. From Lemma 2.1, the LU factorization without pivoting of a monic
Jacobi matrix J exists if and only if Pn(0) /= 0, n � 1. Moreover,

L =




1 0 0 · · ·
l1 1 0 · · ·
0 l2 1 · · ·
...

...
...

. . .


 , U =




β0 1 0 · · ·
0 β1 − l1 1 · · ·
0 0 β2 − l2 · · ·
...

...
...

. . .


 , (2.9)

where

l1 = γ1

β0
, ln = γn

βn−1 − ln−1
, n � 2.

It should also be noticed that, since the elements in the main diagonal of L are equal
to 1, the LU factorization of the monic Jacobi matrix J is unique.

Now we express the monic Jacobi matrix (1.2) as a product of an upper triangular
matrix times a lower triangular matrix, i.e., J = UL, where the factors L and U

are as in (2.2). In this case, the factorization is not unique and depends on a free
parameter, S0. We will call such a kind of factorization, UL factorization, although
it is not the classical one.

Definition 2.3. Let {Pn} be a sequence of polynomials orthogonal with respect to
a linear functional L and assume that {Pn} satisfies a recurrence relation as in (1.1).
Let S0 ∈ C. Then, {P̂n} is said to be the sequence of co-recursive polynomials with
parameter S0 associated with the linear functional L if this sequence satisfies the
recurrence relation given by

P̂n+1(x) = (x − β̂n)P̂n(x) − γ̂nP̂n−1(x), (2.10)

where

β̂0 = β0 − S0, β̂n = βn, n � 1,

γ̂n = γn for all n.

Proposition 2.4. Let J be the monic Jacobi matrix associated with a quasi-definite
linear functional L and let {Pn} be the sequence of monic polynomials orthogonal
with respect to L. Assume that J = UL denotes the UL factorization of J and Si

denotes the entry in the position (i + 1, i + 1) of U, i.e., Si := ui+1 for i � 0, where
the element S0 is a free parameter generated in the factorization (since it is not
unique). If {P̂n} denotes the sequence of co-recursive polynomials with parameter
S0 associated with L, and P̂n(0) /= 0 for all n, then

ln = − P̂n(0)

P̂n−1(0)
. (2.11)
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Furthermore,

ln = βn−1 − Sn−1, n � 1, (2.12)

and Sn can be calculated in a recursive way

Sn = γn

βn−1 − Sn−1
, n � 1. (2.13)

Proof. If U and L are matrices as in (2.2), then

UL =




u1 + l1 1 0 0 · · ·
u2l1 u2 + l2 1 0 · · ·

0 u3l2 u3 + l3 1 · · ·
...

...
...

...
. . .


 . (2.14)

Comparing the elements of the matrices UL and J , we get

l1 = β0 − u1.

Let us consider u1 a free parameter, which we denote by S0. Notice that S0 can
take any complex value as long as P̂n(0) /= 0 for all n. Then, l1 can be expressed in
terms of S0 in the obvious way. Assume that, for some k, lk = βk−1 − Sk−1 /= 0 and
Sk−1 := uk . Then, since uk+1lk = γk ,

Sk := uk+1 = γk

βk−1 − Sk−1
.

On the other hand, uk+1 + lk+1 = βk and we get

lk+1 = βk − Sk.

The result in (2.11) is obtained by induction and taking into account the recurrence
relation that the co-recursive polynomials satisfy (2.10). �

Remark 2.5. From Proposition 2.4, we deduce that the UL factorization of a monic
Jacobi matrix J exists if and only if the free parameter S0 takes a value such that
the corresponding sequence of co-recursive polynomials satisfies P̂n(0) /= 0 for all
n. Moreover,

L =




1 0 0 · · ·
β0 − S0 1 0 · · ·

0 β1 − S1 1 · · ·
...

...
...

. . .


 , U =




S0 1 0 · · ·
0 S1 1 · · ·
0 0 S2 · · ·
...

...
...

. . .


 ,

(2.15)

where

Sn = γn

βn−1 − Sn−1
, n � 1.
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3. Transformation of the functional L into xL

In the sequel, we will prove that the application of a Darboux transformation
without parameter to the monic Jacobi matrix associated with the linear functional
L, transforms this matrix into the monic Jacobi matrix associated with the functional
xL. This result will be extended in a straightforward way to obtain the monic Jacobi
matrix associated with (x − α)L, α ∈ C.

Next lemma gives a finite version of the Darboux transformation without para-
meter. We use the following notation: for any square matrix A, (A)n denotes the
principal submatrix of order n of A.

Lemma 3.1. Suppose that L̃Ũ and LU are the LU factorizations without pivoting
of (J )n and J, respectively. Then,

(L)n = L̃, (U)n = Ũ .

Furthermore, if J (p) is the Darboux transform without parameter of J, then

(J (p))n = (U)n(L)n + lnene
t
n,

where en = [0, . . . ,
(n)

1 ]t. We say that (J (p))n is the Darboux transform without para-
meter of (J )n.

Proof. It suffices to take into account (2.2) and the corresponding principal sub-
matrices of order n of L and U to obtain the result in a straightforward way. �

Proposition 3.2. Let (J )n be the principal submatrix of order n of the monic Jacobi
matrix associated with a quasi-definite linear functional L. If we apply a Darboux
transformation without parameter to (J )n, i.e.,

(J )n = (L)n(U)n, (J (p))n = (U)n(L)n + lnene
t
n,

then, the matrix (J (p))n is the principal submatrix of order n of the monic Jacobi
matrix associated with the functional xL.

Proof. Taking into account (2.9), we get

(J (p))n =




β0 + l1 1 · · · 0 0
l1(β1 − l1) β1 + l2 − l1 · · · 0 0

...
...

...
...

...

0 0 · · · ln−1(βn−1 − ln−1) βn−1 + ln − ln−1


 .

Assume that {Qn} is the sequence of monic polynomials orthogonal with respect to
the functional xL and assume that it satisfies the three-term recurrence relation given
by

Qn+1(x) = (x − δn)Qn(x) − knQn−1(x), n � 0. (3.1)
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Assuming that l0 = 0, we will prove that{
δn = βn + ln+1 − ln, n � 0,

kn = ln(βn − ln), n � 1.
(3.2)

It is well known that {Qn} is the sequence of kernel polynomials associated with
{Pn} [4]. Moreover, the following explicit algebraic relation holds

Qn(x) = 1

x

[
Pn+1(x) − Pn+1(0)

Pn(0)
Pn(x)

]
. (3.3)

Replacing (3.3) in (3.1), and taking into account (2.3),

Pn+2(x) = [x − δn − un+2]Pn+1(x) + [un+1(x − δn) − kn]Pn(x)

− knunPn−1(x).

Since {Pn} satisfies the recurrence relation given in (1.1), we get

[δn + un+2 − βn+1]Pn+1(x) = [γn+1 + un+1(x − δn) − kn]Pn(x)

− knunPn−1(x). (3.4)

Comparing the previous expression with (1.1), the following relation is obtained:

δn = βn+1 − un+2 + un+1.

And taking into account (2.4), we get

δn = βn + ln+1 − ln.

On the other hand, from (1.1) and (3.4), the following relation also follows:

kn = γn

un+1

un

.

Notice that we get γn = ln(βn−1 − ln−1) from (2.5). Then, taking into account (2.4)

kn = ln(βn − ln). �

Remark 3.3. Observe from the previous proposition that the linear functional xL is
quasi-definite if and only if the LU factorization of J exists which is equivalent to
say that Pn(0) /= 0 for all n.

From the previous proposition, it is immediate to obtain the corresponding result
in the infinite case.

Theorem 3.4. Let J be the monic Jacobi matrix associated with a quasi-definite
linear functional L. If {Pn} is the sequence of monic polynomials orthogonal with
respect to L, and we assume that Pn(0) /= 0, for n � 1, then the Darboux trans-
form without parameter of J, J (p), is the monic Jacobi matrix associated with the
functional xL.
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Proof. Since L and U are bidiagonal matrices, in both LU and UL products, the
elements are computed from finite sums. Therefore, the proof of Proposition 3.2 can
be extended to the infinite case without any problem of convergence. �

As we mentioned at the beginning of this section, the result given in Theorem 3.4
can be easily extended to the more general case (x − α)L, with α ∈ C. The following
lemma is the key for this extension.

Lemma 3.5. Let J be the monic Jacobi matrix associated with the quasi-definite
linear functional L. Then, the matrix J − αI, where I denotes the identity matrix,
is the monic Jacobi matrix associated with the linear functional L̃ given by

L̃[p(x)] = L[p(x − α)], (3.5)

where p(x) denotes any polynomial.

Proof. Let {Pn} be the sequence of monic polynomials orthogonal with respect to
L. Then, it satisfies a three-term recurrence relation as in (1.1). If we introduce the
change of variable x → x + α, then we get

Pn+1(x + α) = [x − (βn − α)]Pn(x + α) − γnPn−1(x + α), n � 0.

(3.6)

If P̃n(x) := Pn(x + α), then {P̃n} is the sequence of monic orthogonal polynomi-
als associated with the monic Jacobi matrix J − αI . Moreover, such a sequence is
orthogonal with respect to the linear functional L̃ defined in the statement of the
proposition, i.e.,

L̃[P̃n(x)P̃m(x)] = L[P̃n(x − α)P̃m(x − α)] = L[Pn(x)Pm(x)]
= Knδn,m. �

Proposition 3.6. Let J be the monic Jacobi matrix associated with L, {Pn} the
sequence of monic polynomials orthogonal with respect to L, and α ∈ C such that
Pn(α) /= 0, for n � 1. If we apply the following transformation:

J − αI = LU, J̃ := UL + αI,

then, J̃ is the monic Jacobi matrix associated with the functional (x − α)L. The
previous transformation is said to be a Darboux transformation without parameter
and with shift α.

Proof. From Lemma 3.5, J − αI is the monic Jacobi matrix associated with the
functional L1 defined by

L1[p(x)] = L[p(x − α)]. (3.7)
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The application of a Darboux transformation without parameter to J − αI generates
a new monic Jacobi matrix T . From Theorem 3.4, T is the monic Jacobi matrix
associated with the functional xL1. Then, again from Lemma 3.5, T + αI is the
monic Jacobi matrix associated with the functional L2 given by

L2[p(x)] = (xL1)[p(x + α)].
Hence,

L2[p(x)] = (xL1)[p(x + α)] = L1[xp(x + α)] = L[(x − α)p(x)]
= (x − α)L[p(x)]. �

Iterating the previous result, we get the following corollary.

Corollary 3.7. Let J be the monic Jacobi matrix associated with the quasi-definite
linear functional L, and let {Pn} be the sequence of monic polynomials orthogonal
with respect to L. Consider α1, α2, . . . , αr ∈ C. We apply the following transforma-
tions to J :

T1 := J − α1I = L1U1, T̃1 := U1L1 + α1I,

T2 := T̃1 − α2I = L2U2, T̃2 := U2L2 + α2I,
...

Tr := T̃r−1 − αrI = LrUr, T̃r := UrLr + αrI.

If {P (i)
n } is the sequence of monic orthogonal polynomials associated with the matrix

T̃i , i ∈ {1, 2, . . . , r − 1}, and we assume that

Pn(α1) /= 0, Pn(αi+1; i) /= 0, n � 1, i ∈ {1, 2, . . . , r − 1},
then T̃r is the monic Jacobi matrix associated with the functional

(x − αr) · · · (x − α2)(x − α1)L.

This is the so-called Christoffel transform of L.

3.1. Darboux transformation without parameter for symmetric linear functionals

Consider a positive definite linear functional U. It is said to be symmetric if the
odd moments associated with U vanish, i.e.,

U(x2k+1) = 0, k � 0.

In such a case, the monic Jacobi matrix associated with U, J0, has zeros as entries
in the main diagonal and the LU factorization without pivoting of J0 does not exist
which means that there is no Darboux transform without parameter of J0 and the
functional xU is not quasi-definite.

In this subsection, we are interested in perturbations of a symmetric positive
definite linear functional that generate new symmetric positive definite linear
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functionals. Notice that, if U is a symmetric linear functional, xU is not a symmetric
functional anymore. However, it happens to be that x2U is a new symmetric linear
functional. Based on previous results, the most obvious way to obtain the monic
Jacobi matrix associated with x2U should be the application of two consecutive
Darboux transformations without parameter to J0. Nevertheless, if

J0 =




0 1 0 · · ·
ξ1 0 1 · · ·
0 ξ2 0 · · ·
...

...
...

. . .




is the monic Jacobi matrix associated with a symmetric linear functional U, since
β0 = 0, then the LU factorization of J0 does not exist and we cannot consider the
Darboux transform without parameter of J0. In the rest of this subsection, we will
prove that the monic Jacobi matrix associated with x2U can be obtained from the
monic Jacobi matrix associated with U applying two consecutive Darboux transfor-
mations without parameter with shifts −ε and ε, and taking limits when ε tends to
zero. This problem was considered by Buhmann and Iserles [3] in a more general
context. They considered a positive definite linear functional L and the symmetric
Jacobi matrix associated with the orthonormal sequence of polynomials associated
with L, and proved that one step of the QR method applied to the Jacobi matrix corre-
sponds to finding the Jacobi matrix of the orthonormal polynomial system associated
with x2L.

Let us apply a Darboux transformation without parameter with shift −ε to the
monic Jacobi matrix J0, where ε is any positive number. If J0 + εI = L1U1 denotes
the LU factorization of J0 + εI then, from (2.9),

L1 =




1 0 0 · · ·
l1(ε) 1 0 · · ·

0 l2(ε) 1 · · ·
...

...
...

. . .


 , U1 =




ε 1 0 · · ·
0 ε − l1(ε) 1 · · ·
0 0 ε − l2(ε) · · ·
...

...
...

. . .


,

(3.8)

with l1(ε) = ξ1
ε

, ln(ε) = ξn

ε−ln−1(ε)
.

Now we compute J1 := U1L1 − εI . Thus we get

J1 =




l1(ε) 1 0 · · ·
l1(ε)(ε − l1(ε)) l2(ε) − l1(ε) 1 · · ·

0 l2(ε)(ε − l2(ε)) l3(ε) − l2(ε) · · ·
...

...
...

. . .


 .

Then, from Proposition 3.6, J1 is the monic Jacobi matrix associated with the func-
tional (x + ε)L. Now, apply a Darboux transformation without parameter with shift
ε to J1, i.e.,
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J1 − εI = L2U2, J2 := U2L2 + εI.

If the hypotheses of Corollary 3.7 are satisfied, then J2 is the monic Jacobi matrix
associated with the functional (x2 − ε2)L. Moreover,

J2 =




0 1 0 · · ·
l1(ε)(ε − l2(ε)) 0 1 · · ·

0 l2(ε)(ε − l3(ε)) 0 · · ·
...

...
...

. . .


 .

Notice that J2 is the monic Jacobi matrix associated with a symmetric linear func-
tional since the entries in the main diagonal are all zeros. If ε tends to zero, then we
get

Proposition 3.8

lim
ε→0

|ln(ε)[ε − ln+1(ε)]| < ∞.

Therefore, if we denote by T := limε→0 J2, then T is the monic Jacobi matrix
associated with the symmetric linear functional x2L.

In order to prove Proposition 3.8, we introduce the following lemmas:

Lemma 3.9. If {Rn} is the sequence of monic polynomials associated with J0 + εI,

then

ln(ε) = −ξn

Rn−1(0)

Rn(0)
, n � 1.

Proof. Assume that J0 + εI = LU is the LU factorization without pivoting of
J0 + εI . Taking into account (2.7), ξn = ln(ε)un(ε), where un(ε) = ε − ln−1(ε) and
l0(ε) = 0. Considering (2.3), the result follows in a straightforward way. �

Lemma 3.10. Taking into account that the polynomials {Rn} are functions of ε, the
following statements hold.
• The polynomials of even degree satisfy

lim
ε→0

R2n(0) /= 0 for n � 1.

• The polynomials of odd degree satisfy

R2n+1(0) = εK2n+1(ε),

for a certain polynomial in ε, K2n+1(ε), such that limε→0 K2n+1(ε) /= 0 for
n � 0.

Proof. The matrix J0 + εI contains the parameters of the recurrence relation that
the polynomials Rn satisfy, then
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Rn+1(x) = (x − ε)Rn(x) − ξnRn−1(x). (3.9)

Since the linear functional U is positive definite, ξn > 0 for n � 1. Moreover, R1(0) =
−ε and R2(0) = ε2 − ξ1. Notice that limε→0 R2(0) /= 0 since ξ1 /= 0. Assume that
limε→0 R2n−2(0) /= 0. Then, from (3.9),

lim
ε→0

R2n(0) = lim
ε→0

[−εR2n−1(0) − ξ2n−1R2n−2(0)] /= 0.

On the other hand,

R1(0) = −ε = εK1(ε), where K1(ε) := −1.

Assume that R2n−1(0) = εK2n−1(ε). Then, from (3.9),

R2n+1(0) = −εR2n(0) − ξ2nR2n−1(0) = −εR2n(0) − εξ2nK2n−1(ε).

Hence,

R2n+1(0) = εK2n+1(ε), for n � 1, (3.10)

where

K2n+1(ε) = −R2n(0) − ξ2nK2n−1(ε). (3.11)

We must prove that limε→0 K2n+1(ε) /= 0. First of all, observe that

lim
ε→0

R2(0) < 0, lim
ε→0

R4(0) = lim
ε→0

(−ε2K3(ε) − ξ3R2(0)) > 0. (3.12)

We will prove by induction that the limits, when ε tends to zero, of two consecutive
polynomials of even degree evaluated in zero, have opposite signs. In fact,

lim
ε→0

R2n(0) = −ξ2n−1 lim
ε→0

R2n−2(0), (3.13)

and the previous assertion follows in a straightforward way. On the other hand, taking
into account that K1(ε) = −1 < 0, from (3.11) we get

lim
ε→0

K3(ε) = lim
ε→0

[−R2(0) − ξ2K1(ε)] > 0,

since limε→0 R2(0) and limε→0 K1(ε) have the same sign and ξ2 > 0. Assume that
limε→0 R2n−2(0) and limε→0 K2n−3(ε) have the same sign. Then, limε→0 K2n−1(ε)

= limε→0[−R2n−2(0) − ξ2n−2K2n−3(ε)] have the opposite sign that limε→0 R2n−2(0)

which, from (3.13), implies that limε→0 K2n−1 and limε→0 R2n(0) have the same
sign, and finally, from (3.11), we conclude that limε→0 K2n+1(ε) /= 0. �

Next we prove Proposition 3.8 taking into account Lemmas 3.9 and 3.10.

Proof of Proposition 3.8. From Lemma 3.9 we get

l2n(ε)(ε − l2n+1(ε)) = −ξ2nR2n−1(0)

R2n(0)

[
ε + ξ2n+1R2n(0)

R2n+1(0)

]
,
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and, from Lemma 3.10,

l2n(ε)(ε − l2n+1(ε)) = −ξ2nεK2n−1(ε)

R2n(0)

[
ε + ξ2n+1R2n(0)

εK2n+1(ε)

]

= −ξ2nK2n−1(ε)

R2n(0)

[
ε2 + ξ2n+1R2n(0)

K2n+1(ε)

]
.

From Lemma 3.10 again, limε→0 R2n(0) /= 0 and limε→0 K2n+1(ε) /= 0. Therefore,

lim
ε→0

|l2n(ε)(ε − l2n+1(ε))| < ∞.

Equivalently,

l2n+1(ε)(ε − l2n+2(ε)) = −ξ2n+1R2n(0)

εK2n+1(ε)

[
ε + ξ2n+2εK2n+1(ε)

R2n+2(0)

]

= −ξ2n+1R2n(0)

K2n+1(ε)

[
1 + ξ2n+2K2n+1(ε)

R2n+2(0)

]
.

Therefore, since limε→0 R2n+2(0) /= 0 and limε→0 K2n+1(ε) /= 0, it follows that

lim
ε→0

|l2n+1(ε)(ε − l2n+2(ε))| < ∞. �

4. Transformation of the functional L into L + Cδ(x)

In this section, we will prove that the application of a Darboux transformation
without parameter followed by a Darboux transformation to the monic Jacobi matrix
associated with a linear functional L, yields the monic Jacobi matrix associated with
the functional L + Cδ(x). This result can be extended in a simple way to obtain the
monic Jacobi matrix associated with

L +
k∑

i=1

Ciδ(x − ai ), ai ∈ C.

Next, we define the concept of symmetrizable functional. This definition will be
useful to prove the main result in this section.

Definition 4.1. Let L be a quasi-definite linear functional. The functional L is said
to be symmetrizable if the linear functional U defined by

U(x2n) = L(xn), U(x2n+1) = 0, n � 0,

is also quasi-definite.

Lemma 4.2. A linear functional L is symmetrizable if and only if Pn(0) /= 0 for
all n � 1, where {Pn} is the sequence of monic polynomials orthogonal with respect
to L.
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The following proposition is the main result in this section.

Proposition 4.3. Let J0 be the monic Jacobi matrix associated with the quasi-defi-
nite linear functional L. Assume that {Pn} is the sequence of monic polynomials
orthogonal with respect to L, and Pn(0) /= 0 for all n � 1. If we apply the following
transformations to J0:

J0 = L1U1, J1 := U1L1,

J1 = U2L2, J2 := L2U2,

then J2 is the monic Jacobi matrix associated with the functional L + Cδ(x), where

C = µ0(β0 − s)

s
.

Here µ0 = L(1), β0 = L(x)
L(1)

and s denotes the free parameter associated with the UL
factorization of J1.

Proof. Considering (2.9), the matrix J1 can be expressed in the following way:

J1 =




β0 + l1 1 0 · · ·
l1(β1 − l1) β1 + l2 − l1 1 · · ·

0 l2(β2 − l2) β2 + l3 − l2 · · ·
...

...
...

. . .


 .

Consider now the UL factorization of J1 (which depends on a free parameter s).
From Proposition 2.4,

J1 =




s 1 0 · · ·
0 S1 1 · · ·
0 0 S2 · · ·
...

...
...

. . .




×




1 0 0 · · ·
β0 + l1 − s 1 0 · · ·

0 β1 + l2 − l1 − S1 1 · · ·
0 0 β2 + l3 − l2 − S2 · · ·
...

...
...

. . .


 ,

where S1 = l1(β1−l1)
β0+l1−s

, Sn = ln(βn−ln)
βn−1+ln−ln−1−Sn−1

, for all n � 2. Then, the matrix J2 :=
L2U2 is given by

J2 =




s 1 0 · · ·
s(β0 + l1 − s) β0 + l1 − s + S1 1 · · ·

0 S1(β1 + l2 − l1 − S1) β1 + l2 − l1 + S2 − S1 · · ·
0 0 S2(β2 + l3 − l2 − S2) · · ·
...

...
...

. . .


 .
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We must prove that J2 is the monic Jacobi matrix associated with the linear func-
tional

L̃ = L + Cδ(x),

where C = µ0(β0−s)
s

, with µ0 = L(1).
Notice that L is a symmetrizable functional since Pn(0) /= 0 (recall Definition

4.1 and Lemma 4.2). Let U be the symmetric linear functional associated with L. Let
{Qn} be the sequence of monic polynomials orthogonal with respect to U and {ξn}
the sequence of parameters given by the three-term recurrence relation that {Qn}
satisfies, i.e.,

Qn+1(x) = xQn(x) − ξnQn−1(x), n � 0.

It is well known [2] that{
β0 = ξ1,

βn = ξ2n + ξ2n+1, n � 1,

γn = ξ2n−1ξ2n, n � 1.

(4.1)

Assuming that l0 = 0, we prove by induction that

ξ2n = ln, ξ2n+1 = βn − ln, n � 1. (4.2)

From (2.5) and (4.1),

ξ1 = β0 − l0, ξ2 = γ1

β0
= l1.

Assume that ξ2n−1 = βn−1 − ln−1. Then, from (2.5) and (4.1), we get

ξ2n = γn

βn−1 − ln−1
= ln.

On the other hand, from (4.1),

ξ2n+1 = βn − ln.

Suppose now that {β̃n} and {γ̃n} are the sequences of parameters associated with
the recurrence relation that the polynomials orthogonal with respect to L̃ satisfy. It is
easy to prove that L̃ is also a symmetrizable functional. Let Ũ be the symmetric linear
functional associated with L̃ and let {Q̃n} be the sequence of monic polynomials
orthogonal with respect to Ũ. If {ξ̃n} denotes the sequence of parameters given by
the three-term recurrence relation that {Q̃n} satisfies, then


β̃0 = ξ̃1,

β̃n = ξ̃2n + ξ̃2n+1, n � 1,

γ̃n = ξ̃2n−1ξ̃2n, n � 1.

(4.3)

Moreover [2,4]


ξ̃1 = ξ1

1+ C
µ0

,

ξ̃2m = ξ2m−1 + ξ2m − ξ̃2m−1, m � 1,

ξ̃2m+1 = ξ2mξ2m+1

ξ̃2m
, m � 1.

(4.4)
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In the sequel, we state the relation between β̃n and βn as well as the relation
between γ̃n and γn. From (4.1), (4.3), and (4.4)

β̃0 = ξ̃1 = ξ1µ0

µ0 + C
= β0µ0

µ0 + C
= s,

γ̃1 = ξ̃2ξ̃1 = (ξ1 + ξ2 − ξ̃1)β̃0 = β̃0(β0 + ξ2 − β̃0).

Taking into account (4.2), the previous result can be read as

γ̃1 = s(β0 + l1 − s).

Taking into account that l0 = 0 and denoting S0 := s, we will prove that

ξ̃2n = βn−1 + ln − ln−1 − Sn−1, ξ̃2n−1 = Sn−1, n � 1.

We have already proven that ξ̃1 = s = S0. From (4.4), ξ̃2 = ξ1 + ξ2 − ξ̃1, and we get
ξ̃2 = β0 − l0 + l1 − S0.

Assume that ξ̃2n−1 = Sn−1, then

ξ̃2n = ξ2n−1 + ξ2n − ξ̃2n−1 = βn−1 − ln−1 + ln − Sn−1.

On the other hand, from (4.2) and (4.4)

ξ̃2n+1 = ξ2nξ2n+1

ξ̃2n

= ln(βn − ln)

βn−1 + ln − ln−1 − Sn−1
= Sn.

Hence,

β̃k = ξ̃2k + ξ̃2k+1 = βk−1 − lk−1 + lk − Sk−1 + Sk,

γ̃k = ξ̃2kξ̃2k−1 = Sk−1(βk−1 − lk−1 + lk − Sk−1). �

Next we give the shifted version of Proposition 4.3.

Corollary 4.4. Let J0 be the monic Jacobi matrix associated with a quasi-definite
linear functional L. Consider the following transformations on the matrix J0:

J0 − αI = L1U1, J1 := U1L1,

J1 = U2L2, J2 := L2U2 + αI.

Then, J2 is the monic Jacobi matrix associated with the functional L + Cδ(x − α),

where

C = µ0(β0 − α − s)

s
,

with µ0 = L(1), β0 = L(x)
L(1)

, and s is the parameter associated with the UL factor-
ization of J1.
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Proof. Denote by T0 := J0 − αI . From Lemma 3.5, T0 is the monic Jacobi matrix
associated with the linear functional L1 given by

L1[p(x)] = L[p(x − α)].
From Proposition 4.3, the matrix T1 = L2U2 is the monic Jacobi matrix associ-

ated with the linear functional L2 = L1 + Cδ(x), where

C = µ̃0(β̃0 − s)

s
= µ0(β0 − α − s)

s
, with µ̃0 = L1(1), β̃0 = L1(x)

L1(1)
.

Finally, J2 = T1 + αI is the monic Jacobi matrix associated with the linear func-
tional L3 given by

L3[p(x)] = L2[p(x + α)]
and, hence

L3[p(x)] = L2[p(x + α)] = L1[p(x + α)] + Cp(α) = L[p(x)] + Cp(α),

or, equivalently,

L3 = L + Cδ(x − α). �

Next corollary shows how to include a mass point in two points symmetric with
respect to the origin.

Corollary 4.5. Consider the monic Jacobi matrix J0 associated with the quasi-
definite linear functional L. Let us apply the following transformations to J0

J0 − αI = L1U1, J1 := U1L1,

J1 = U2L2, J2 := L2U2 + αI,

J2 + αI = L3U3, J3 := U3L3,

J3 = U4L4, J4 := L4U4 − αI.

If the necessary conditions for the existence of the LU factorizations of J0 − αI and
J2 + αI hold, then J4 is the monic Jacobi matrix associated with the functional

L2 = L + C1δ(x − α) + C2δ(x + α),

where

C1 = µ0(β0 − α − s1)

s1
, C2 = µ0(β0 + α − s2) + C1(2α − s2)

s2
,

with µ0 = L(1), β0 = L(x)
L(1)

, and s1, s2 are the free parameters associated with the
UL factorization of J1 and J3, respectively.

Proof. From Corollary 4.4, the matrix J2 is associated with the linear functional

L1 = L + C1δ(x − α),
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where

C1 = µ0(β0 − α − s1)

s1
.

From Corollary 4.4 again, the matrix J4 is associated with the linear functional

L2 = L1 + C2δ(x + α),

where

C2 = µ̃0(β̃0 + α − s2)

s2
,

Notice that

µ̃0 = L1[1] = µ0 + C1, β̃0 = L1(x)

L1(1)
= µ1 + C1α

µ0 + C1
= β0µ0 + C1α

µ0 + C1
.

If p denotes any polynomial, then

L2[p(x)] = L1[p(x)]C2p(−α) = L[p(x)] + C1p(α) + C2p(−α),

or, equivalently,

L2 = L + C1δ(x − α) + C2δ(x + α).

Moreover,

C2 =
(µ0 + C1)

(
β0µ0+C1α

µ0+C1
+ α − s2

)
s2

= µ0(β0 + α − s2) + C1(2α − s2)

s2
. �

5. Transformation of the functional L into 1
xL + Cδ(x)

Finally, we analyze the case when the initial linear functional L is transformed
into 1

xL + Cδ(x) by the application of a Darboux transformation to the monic Jac-
obi matrix associated with L. Moreover, we consider appropriate combinations of
Darboux transformations and Darboux transformations without parameter in order
to obtain the monic Jacobi matrix associated with the linear functionals 1

x

( 1
xL

) +
C1δ(x) + C2δ

′(x) and L + C1δ(x) + C2δ
′(x).

Proposition 5.1. Let J1 be the monic Jacobi matrix associated with the linear func-
tional L̃. Suppose that there exists a linear functional L such that L̃ = xL. Consider
a Darboux transformation applied to J1,

J1 = U1L1, J2 := L1U1.
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Then, J2 is the monic Jacobi matrix associated with the linear functional H, where

H = 1
x L̃ + Cδ(x) and C = L̃(1)

s
. In other words, H is the Geronimus transform

of L̃.

Proof. From Proposition 4.3, the application of a Darboux transformation without
parameter followed by a Darboux transformation to the monic Jacobi matrix J0 asso-
ciated with the linear functional L, yields the matrix J2, which is the monic Jacobi
matrix associated with the linear functional L + C1δ(x), where C1 = µ0(β0−s)

s
with

µ0 = L(1), β0 = L(x)
L(1)

, and s is the free parameter of the corresponding UL fac-
torization. On the other hand, if J1 is the monic Jacobi matrix obtained after the
application of a Darboux transformation without parameter to the matrix J0, J1 is
associated with the linear functional L̃ = xL. Then, let us prove that applying a Dar-
boux transformation to J1, the matrix J2 is the monic Jacobi matrix associated with
1
x L̃ + Cδ(x), i.e.,[

1

x
L̃ + Cδ(x)

]
(p) = [L + C1δ(x)](p).

Taking into account the definition of the linear functionals involved in the left
hand side of the above expression, we get(

1

x
L̃

)
(p) + Cp(0) = L̃

(
p(x) − p(0)

x

)
+ Cp(0)

= L(p(x) − p(0)) + Cp(0)

= L(p(x)) + p(0)(C − µ0).

Then,

C − L(1) = L̃(1)

s
− L(1) = L(x)

s
− L(1) = µ0(β0 − s)

s
= C1.

Notice that C must be different from zero for any choice of the parameter s. �

An alternative proof of the previous proposition can be found in [13]. The finite
version of Proposition 5.1 is presented below.

Proposition 5.2. Let (J1)n be the principal submatrix of order n of the monic Jacobi
matrix associated with a quasi-definite linear functional L̃. Assume that there exists
a linear functional L that satisfies L̃ = xL. Apply the following transformations to
(J1)n:

(J1)n = (U)n(L)n, (J2)n := (L)n(U)n.

Then, (J2)n is the principal submatrix of order n of the monic Jacobi matrix asso-
ciated with the functional 1

x L̃ + Cδ(x), where C = µ̃0
s

with µ̃0 = L̃(1), and s is the
free parameter associated with the corresponding UL factorization.
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Next we give the shifted version of Proposition 5.1.

Corollary 5.3. Let J1 be the monic Jacobi matrix associated with the functional L̃.
Suppose that there exists a linear functional L such that L̃ = (x − α)L. Apply the
following transformations to J1:

J1 − αI = U1L1, J2 := L1U1 + αI.

Then, J2 is the monic Jacobi matrix associated with the linear functional L3 =
1

x−α
L̃ + Cδ(x − α), where C = L̃[1]

s
, and s is the free parameter associated with

the corresponding UL factorization.

Proof. The proof is similar to the proof of Corollary 4.4. �

The application of two consecutive Darboux transformations to a monic Jacobi
matrix include a new term in the transformed functional. In fact, this term is the
derivative of a Dirac’s delta function.

Corollary 5.4. Let J1 be the monic Jacobi matrix associated with the linear func-
tional L1. If we apply two consecutive Darboux transformations to the matrix J1,

i.e.,

J1 = U1L1, J2 := L1U1,

J2 = U2L2, J3 := L2U2,

then, J3 is the monic Jacobi matrix associated with the linear functional

L3 = 1

x

[
1

x
L1

]
+ C1δ(x) + C2δ

′(x),

where

C1 = µ̃0

s2
, C2 = µ0

s1
,

with µ0 = L1(1), µ̃0 = L2(1), and s1, s2 are the free parameters associated with
the UL factorization of J1 and J2, respectively.

Proof. From Proposition 5.1, J2 is the monic Jacobi matrix associated with the
linear functional

L2 = 1

x
L1 + C2δ(x),

where C2 = L1(1)
s1

. Considering again Proposition 5.1, J3 is the monic Jacobi matrix
associated with the linear functional

L3 = 1

x
L2 + C1δ(x),

and C1 = L2[1]
s2

= µ0
s1s2

.
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For any p ∈ P, we get

L3(p) =
(

1

x
L2

)
(p) + C1p(0) = 1

x

[
1

x
L1 + C2δ(x)

]
(p) + C1p(0)

= 1

x

[
1

x
L1

]
(p) − C2p

′(0) + C1p(0). �

The situation discussed in the previous corollary, with moment functionals
involving not only Dirac’s delta functions but also any of its derivatives, was first
considered in [13]. Finally, we obtain the monic Jacobi matrix associated with the
functional L + C1δ(x) + C2δ

′(x) in terms of the monic Jacobi matrix associated
with L.

Corollary 5.5. Let J0 be the monic Jacobi matrix associated with the quasi-defi-
nite linear functional L. Assume that {Pn} is the sequence of monic polynomials
orthogonal with respect to L, and Pn(0) /= 0 for all n � 1. Apply the following trans-
formations

J0 = L1U1, J1 := U1L1,

J1 = L2U2, J2 := U2L2,

J2 = U3L3, J3 := L3U3,

J3 = U4L4, J4 := L4U4,

whenever the LU factorization of J1 exists. Then, J4 is the monic Jacobi matrix
associated with the linear functional

L + C1δ(x) + C2δ
′(x),

where C1 = L(x2)
s1s2

− L(1) and C2 = −L(x2)
s1

+ L(x). Here s1 and s2 are the free
parameters associated with the UL factorization of J2 and J3, respectively.

Proof. Notice that

1

x
[xL] = L − L(1)δ(x) and

1

x
δ(x) = −δ′(x). (5.1)

Then, from Theorem 3.4 and Proposition 5.1, we get

• J1 is the monic Jacobi matrix associated with the linear functional xL.
• J2 is the monic Jacobi matrix associated with the linear functional x2L.
• J3 is the monic Jacobi matrix associated with the linear functional xL + Cδ(x),

where C = L(x2)
s1

− L(x). Here s1 is the free parameter associated with the UL
factorization of J2.

• J4 is the monic Jacobi matrix associated with the linear functional L + C1δ(x) +
C2δ

′(x).
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From Proposition 5.1, the linear functional associated with J4 is

1

x
[xL + Cδ(x)] + Dδ(x),

with D = L(x2)
s1s2

. Taking into account (5.1), our statement follows. �

6. Explicit algebraic relation between the polynomials orthogonal with respect
to a linear functional L and the polynomials orthogonal with respect to the
linear functional 1

xL + Cδ(x)

Let {Pn} be the sequence of monic polynomials orthogonal with respect to the
quasi-definite linear functional L. Assuming that the linear functional 1

xL + Cδ(x)

is quasi-definite, let {Qn} be the corresponding sequence of monic orthogonal poly-
nomials. If J1 denotes the monic Jacobi matrix associated with {Pn}, and J2 denotes
the monic Jacobi matrix associated with {Qn}, then, from Proposition 5.1, we get

J2L = LJ1, (6.1)

where L denotes the lower triangular matrix corresponding to the UL factorization
of J1.

Moreover, if p and q denote, respectively, the column vectors whose compo-
nents are the polynomials {Pn} and {Qn}, i.e., p = [P0(x), P1(x), . . .]t and q =
[Q0(x), Q1(x), . . .]t, taking into account that both sequences constitute a monic
polynomial basis, then there exists a unique lower triangular matrix L̃, with ones
in the main diagonal, such that

q = L̃p. (6.2)

We will prove that L̃ = L. From the definition of monic Jacobi matrix,

tp = J1p, (6.3)

as well as

tq = J2q. (6.4)

Replace (6.2) in (6.4). Next, multiply (6.3) by L̃ on the left and subtract the resulting
equations. Then we get J2L̃ = L̃J1. Comparing this result with (6.1), we obtain L̃ =
L because, if L and L̃ were different, then J2(L̃ − L) = (L̃ − L)J1. Since L̃ − L is
a strictly lower triangular matrix, it is straightforward to prove that L̃ − L = 0 or, in
other words, L̃ = L.

From Propositions 2.4 and 5.1, taking into account that q = Lp, it follows that

Qn(x) = Pn(x) + (βn−1 − Sn−1)Pn−1(x), (6.5)

where S0 = L[1]
C

. Recall that lk = βk−1 − Sk−1 denotes the entry in the position (k +
1, k) of the lower triangular matrix L, obtained from the UL factorization of the
monic Jacobi matrix J1. Let us prove that
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lk = βk−1 − Sk−1 = − P̂k(0)

P̂k−1(0)
, (6.6)

where the new polynomials P̂k are obtained changing the parameters in the three-
term recurrence relation that {Pn} satisfies invariant. These polynomials are said to be
the co-recursive polynomials with parameter S0 associated with the linear functional
L (see [4]). Since P̂1(x) = x − β0 + S0 and P̂0(x) = 1,

l1 = β0 − S0 = − P̂1(0)

P̂0(0)
.

Assume that lk = − P̂k(0)

P̂k−1(0)
. From Proposition 2.4, since P̂k+1(x) = (x − βk) ×

P̂k(x) − γkP̂k−1(x) for k � 1, we get

lk+1 = βk − Sk = βk − γk

lk
= βkP̂k(0) + γkP̂k−1(0)

P̂k(0)
= − P̂k+1(0)

P̂k(0)
.

Finally, replacing (6.6) into (6.5), we obtain

Qn(x) = Pn(x) − P̂n(0)

P̂n−1(0)
Pn−1(x). (6.7)

This expression has also been obtained in [17] using a different approach.

7. Explicit algebraic relation between the polynomials orthogonal with respect
to a linear functional L and the polynomials orthogonal with respect to the
linear functional L + Cδ(x)

Let {Pn} and {Qn} be the sequences of monic polynomials orthogonal with re-
spect to the linear functionals L and L + Cδ(x), respectively. Let J0 be the monic
Jacobi matrix associated with L. Then, from Proposition 4.3, the matrix J2 such that

J0 = L1U1, J1 := U1L1,

J1 = U2L2, J2 := L2U2,

is the monic Jacobi matrix associated with L + Cδ(x), where C can be expressed
in terms of the free parameter s associated with the UL factorization of J1. From
Theorem 3.4, we also know that J1 is the monic Jacobi matrix associated with the
linear functional xL. If {P ∗

n } denotes the sequence of kernel polynomials associated
with {Pn} (recall that {P ∗

n } is also the sequence of monic orthogonal polynomials
associated with J1) then, taking into account the results in the previous section and
(6.7), in particular,

Qn(x) = P ∗
n (x) − P̂ ∗

n (0)

P̂ ∗
n−1(0)

P ∗
n−1(x), n � 1.
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Considering the definition of kernel polynomials, we get

xQn(x) = Pn+1(x) −
[

Pn+1(0)

Pn(0)
+ P̂ ∗

n (0)

P̂ ∗
n−1(0)

]
Pn(x)

+ Pn(0)P̂ ∗
n (0)

Pn−1(0)P̂ ∗
n−1(0)

Pn−1(x),

which is equivalent to the expression obtained in [1].
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