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Abstract. This paper deals with the bilinear symmetrization problem associated with Sobolev
inner products. Let {Qn}∞

n=0 be the sequence of monic polynomials orthogonal with respect to
a Sobolev inner product of order 1 when one of the measures is discrete and the other one is a
nondiscrete positive Borel measure. Furthermore, assume that the supports of such measures are
symmetric with respect to the origin so that the corresponding odd moments vanish. We consider
the orthogonality properties of the sequences of monic polynomials {Pn}∞

n=0 and {Rn}∞
n=0 such

that Q2n(x) = Pn(x2), Q2n+1(x) = xRn(x2). Moreover, recurrence relations for {Pn}∞
n=0 and

{Rn}∞
n=0 are obtained as well as explicit algebraic relations between them.
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1. Introduction

Let U be a quasi-definite linear functional defined in the linear space P of polyno-
mials with real coefficients. Then, there exists a Borel measure µ supported on the
real line such that

U(p) =
∫

R

p dµ.

The linear functional U is said to be symmetric if U(x2n+1) = 0 for n � 0. In
particular, if U is positive definite and symmetric, the support of the measure µ is a
symmetric set with respect to the origin on the real line. Let {Qn} be the sequence
of monic polynomials orthogonal with respect to U. If U is a symmetric linear
functional, then there exists a sequence of monic polynomials {Pn} such that

Q2n(x) = Pn(x
2), Q2n+1(x) = xP ∗

n (x2), (1)
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where {P ∗
n } denotes the sequence of monic kernel polynomials of parameter 0 as-

sociated with the sequence {Pn}. It is well known (Chihara, 1978) that the sequence
{Pn} is orthogonal with respect to the linear functional L given by

L(xn) := U(x2n), n � 0.

Moreover, the sequence {P ∗
n } is orthogonal with respect to the linear functional L∗

defined as

L∗(p) := (xL)(p) = L(xp).

More explicitly, if the functionals L and L∗ can be expressed, respectively, in terms
of the Borel measures dµ1 and dµ2 then,

dµ1(x) = dµ(x1/2), dµ2(x) = x dµ1(x).

If µ is an absolutely continuous measure, i.e., dµ(x) = ω(x) dx, then µ1 is also an
absolutely continuous measure and the corresponding weight function ω1 satisfies

ω1(x) = x−1/2ω(x1/2).

It is also well known that the following explicit algebraic relation between the
sequences {Pn} and {P ∗

n } holds

xP ∗
n (x) = Pn+1(x) − Pn+1(0)

Pn(0)
Pn(x), n � 0. (2)

Furthermore, since the sequences {Pn} and {P ∗
n } are orthogonal with respect to

linear functionals, both satisfy a three-term recurrence relation.
This linear symmetrization process was extensively studied by Chihara (1978).

A similar process can be considered related to bilinear functionals. Let U be a
quasi-definite bilinear functional and let {Qn} be the corresponding sequence of
monic orthogonal polynomials. The functional U is said to be a symmetrized func-
tional if U(xn, xm) = 0 when n + m is an odd number. Notice that now we do not
use the term symmetric, since it is already associated with another concept when
dealing with bilinear functionals. In such a case, it can be proven that there exist
two sequences of polynomials {Pn} and {Rn} such that

Q2n(x) = Pn(x
2), Q2n+1(x) = xRn(x

2), n � 0. (3)

Then, the following questions arise in a natural way:

1. What are the bilinear functionals such that {Pn} and {Rn} are the corresponding
sequences of monic orthogonal polynomials?

2. Does there exist any explicit algebraic relation between the sequences {Pn} and
{Rn}?

3. Do the sequences {Pn} and {Rn} satisfy any kind of recurrence relation with a
finite number of terms?
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The answers to the previous questions constitute the so-called bilinear symmetriza-
tion process.

In this paper we consider a particular case of symmetrized bilinear functional,
the so-called symmetrized Sobolev inner products of order 1 defined as

〈p, q〉s =
∫

R

p(x)q(x) dµ0 +
∫

R

p′(x)q ′(x) dµ1, p, q ∈ P, (4)

where µ0 and µ1 are Borel measures supported on symmetric sets with respect to
the origin on the real line so that∫

R

x2n+1 dµk = 0, k = 0, 1, n � 0.

In a previous paper (Bueno and Marcellán, 2003) we studied the symmetriza-
tion process related to (4) when µ0 and µ1 are nondiscrete positive Borel measures.
The aim of the present contribution is the analysis of the corresponding sym-
metrization process when either µ0 or µ1 is a symmetric discrete measure while
the other one is symmetric and continuous.

There is a set of papers dealing with the analytic properties of the sequences
of orthogonal polynomials associated with (4) when µ1 is a discrete measure and
µ0 is a nondiscrete measure. In (Bavinck and Meijer, 1989, 1990), the authors
essentially deal with the case

dµ0 = χ[−1,1](1 − x2)α dx + M0[δ(x + 1) + δ(x − 1)] dx

(the Gegenbauer type measure) and

dµ1 = M1[δ(x + 1) + δ(x − 1)] dx,

while in (Alfaro et al., 1994) a more general situation is considered: µ0 is a sym-
metric measure and dµ1 = Mδ(x) dx. These kinds of inner products are said
to be Sobolev-type inner products. An extensive analysis of the recurrence rela-
tions that the sequences of corresponding orthogonal polynomials satisfy, is done
in (Evans et al., 1995).

A first example of a Sobolev inner product of order 1 where µ0 is a discrete mea-
sure and µ1 is nondiscrete is considered in (Pérez and Piñar, 1996). In particular,
they study Laguerre polynomials of parameter −1, L(−1)

n , as a canonical example
of polynomials orthogonal with respect to such a kind of inner product. Notice that
they are not orthogonal with respect to a positive Borel measure. Nevertheless, they
are orthogonal with respect to the Sobolev inner product given by

〈p, q〉s = Mp(0)q(0) +
∫ ∞

0
p′(x)q ′(x)e−x dx.

A natural extension of this inner product is given in (Jung et al., 1997), where
some analytic properties of the sequences of polynomials orthogonal with respect
to the bilinear functional

〈p, q〉s = Mp(c)q(c) + L(p′q ′)
are studied.
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For a unified approach to these cases, see (Alfaro et al., 1999).
The structure of the paper is the following: In Section 3, we analyze the case

when the measure µ0 is discrete and µ1 is absolutely continuous. It is proven that
the sequence {Pn} that satisfies (3) can be expressed in terms of another sequence
{Sn} in the following way: Pn(x) = xSn−1(x). First, we determine the bilinear
functionals such that {Sn} and {Rn} are the corresponding sequences of orthogonal
polynomials. Then, in the particular case when the measure µ1 is semiclassical, we
give some explicit algebraic relations between them and we obtain some recurrence
relations that they satisfy. We also apply our results to the Hermite case. In Section
4 we consider the case when µ0 is absolutely continuous and µ1 is discrete. In
particular, we distinguish between the case when µ1 is supported at zero and µ1 is
supported at a finite subset of the real line symmetric with respect to the origin. As
an example we consider such questions for dµ0 = e−x4

dx.

2. Symmetrized Sobolev Inner Products of Order 1

Consider two positive Borel measures µ0 and µ1 supported on the real line such
that ∣∣∣∣

∫
R

xn dµi

∣∣∣∣ < ∞, i = 0, 1, n � 0.

Furthermore, assume that µ0 and µ1 are supported on subsets of the real line which
are symmetric with respect to the origin so that the corresponding sequences of
moments

c(i)
n =

∫
R

xn dµi, i = 0, 1,

satisfy c
(i)

2n+1 = 0, i = 0, 1, n � 0. We introduce the symmetrized Sobolev inner
product of order 1 defined in (4). Under these conditions, if we denote by {Qn}
the corresponding sequence of monic polynomials orthogonal with respect to (4),
then (3) holds. We are interested in the study of the orthogonality properties of the
sequences {Pn} and {Rn} given in (3).

In the sequel, we will analyze the particular case when µ0 and µ1 are, respec-
tively, a discrete and a nondiscrete measure as well as the situation when µ0 and
µ1 are, respectively, a nondiscrete and a discrete measure. More precisely

− We will specify the orthogonality measures for the sequences {Pn} and {Rn}.
− We will look for explicit algebraic relations between {Pn} and {Rn}.
− Finally, we will determine recurrence relations that such sequences satisfy.

3. Model 1: µ0 Is Discrete and µ1 Is an Absolutely Continuous Measure

In this section, we study the symmetrization process related to a symmetrized
Sobolev inner product of order 1 such that the measure µ0 is discrete and µ1 is
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an absolutely continuous measure, i.e., dµ1 = ω(x) dx. First, we prove that the
sequence of polynomials {Qn} orthogonal with respect to the symmetrized inner
product can be expressed in the following way:

Q2n(x) = Pn(x
2) = x2Sn−1(x

2), Q2n+1(x) = xRn(x
2), n � 0.

Then, we find the inner products such that {Sn} and {Rn} are the corresponding
sequences of monic orthogonal polynomials. Afterwards, assuming that the weight
function ω is semiclassical, we determine an explicit algebraic relation between the
sequences {Sn} and {Rn} as well as certain recurrence relations that they satisfy.

Consider the inner product given in (4). Suppose that µ0 is a discrete measure
supported at {0} and µ1 is a nondiscrete measure. Therefore, the inner product we
are considering is

〈p, q〉s = λp(0)q(0) +
∫

R

p′q ′ dµ1, λ ∈ R+. (5)

We assume that µ1 is a measure supported on an interval of the real line which
is symmetric with respect to the origin and such that the moments of odd order
vanish, i.e., 〈x2n, x2m+1〉s = 0 for all n,m � 0. In other words, the entries (i, j) of
the Gram matrix associated with (5) vanish when i + j is an odd integer.

Let {Qn} be the sequence of monic polynomials orthogonal with respect to (5).
Observe that, from (5) we get


〈1, 1〉s = λ,

〈Qn, 1〉s = λQn(0) = 0, i.e. Qn(0) = 0, n � 1,
〈Qn,Qm〉s = ∫

R
Q′

nQ
′
m dµ1, n,m � 1.

From the previous expressions, we deduce

〈Qn, p〉s =
∫

R

Q′
np

′ dµ1, n � 1, p ∈ P.

Furthermore,{
Q2n(x) = Pn(x

2) = x2Sn−1(x
2), n � 1,

Q2n+1(x) = xRn(x
2), n � 0.

Q0(x) = P0(x) = 1, (6)

Notice that we have introduced a new sequence of polynomials {Sn} since the
corresponding sequence {Pn} satisfies Pn(x) = xSn−1(x).

Because of the orthogonality conditions of the sequence {Qn}, for n �= m, with
n,m � 1,

0 = 〈Q2n,Q2m〉s
= 4

∫ ∞

0
[xSn−1(x)Sm−1(x)+

+ x2Sn−1(x)S ′
m−1(x) + x2S ′

n−1(x)Sm−1(x) + x3S ′
n−1(x)S ′

m−1(x)] dµ̂1,
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where dµ̂1 = 2 dµ1(t
1/2). Hence, {Sn} is the sequence of monic polynomials

orthogonal with respect to the nondiagonal Sobolev inner product

〈p, q〉1 = 4
∫ ∞

0
[ p p′ ]

[
1 x

x x2

][
q

q ′

]
x dµ̂1. (7)

On the other hand, for n �= m

0 = 〈Q2n+1,Q2m+1〉s =
∫ ∞

0
[Rn(x) + 2xR′

n(x)][Rm(x) + 2xR′
m(x)] dµ̂1.

Hence, {Rn} is the sequence of monic polynomials orthogonal with respect to the
nondiagonal Sobolev inner product

〈p, q〉2 =
∫ ∞

0
[ p p′ ]

[
1 2x

2x 4x2

] [
q

q ′

]
dµ̂1. (8)

3.1. EXPLICIT ALGEBRAIC RELATIONS BETWEEN {Sn} AND {Rn} AND

RECURRENCE RELATIONS

Since µ1 is an absolutely continuous measure, it can be expressed in terms of a
weight function, dµ1 = ω(x) dx. The weight function ω is said to be semiclassical
(Maroni, 1991; Arvesú et al., 2002) if there exist two polynomials φ and ψ such
that

(φω)′ = ψω, (9)

where φ and ψ are the polynomials with minimum degree that satisfy the previous
equation, deg(φ) = k1 � 0, deg(ψ) = k2 > 0, and φ is a monic polynomial.
Furthermore, ω satisfies some boundary conditions, that is, φ(x)p(x)ω(x)|ba = 0
for any polynomial p. The linear functional L defined as

L(p) =
∫

R

p(x)ω(x) dx,

is a semiclassical linear functional if ω(x) is a semiclassical weight function. The
functional L is said to be of class s if s = max{deg(φ) − 2, deg(ψ) − 1}, where φ

and ψ are the polynomials of minimum degree that satisfy (9).
From now on we assume that ω is a semiclassical weight function.
Next two propositions are the key to find the recurrence relations that {Sn} and

{Rn} satisfy as well as to establish explicit algebraic relations between them.

PROPOSITION 1. If s is the class of the semiclassical linear functional defined
by ω(x), for n � s + 2, we get

φ(x)Q′
n(x) = nQn+k1−1(x) +

n+k1−2∑
j=n−s−1

αn,jQj (x) + αn,0Q0(x). (10)
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Proof. Let φ(x)Q′
n(x) = ∑n+k1−1

j=0 αn,jQj(x) be the Fourier expansion of
φ(x)Q′

n(x) in terms of the polynomials {Qn}. Then we have

αn,j = 〈φQ′
n,Qj 〉s

〈Qj,Qj 〉s ,

where

〈φQ′
n,Qj 〉s =

{ ∫
R
(φ′Q′

n + φQ′′n)Q′
j dµ1, for j > 0,

λφ(0)Q′
n(0), j = 0.

Then, for j > 0

〈φQ′
n,Qj 〉s =

∫
R

Q′
nφ

′Q′
jω(x) dx +

∫
R

Q′′
nφQ′

jω(x) dx.

Applying integration by parts to the second integral in the previous expression and
taking into account (9), we get

〈φQ′
n,Qj 〉s = −

∫
R

Q′
nφQ′′

jω(x) dx −
∫

R

Q′
nQ

′
j (ψ − φ′)ω(x) dx.

The polynomial φQ′′
j is the derivative of a polynomial of degree j + k1 − 1.

Therefore, the first integral will be zero if j < n − k1 + 1. In an analog way, the
second integral vanishes if j < n−s−1, where s+1 = max{k1−1, k2}. Therefore,
n − k1 + 1 � n − s − 1. As a consequence, if 1 � j < n − s − 1, then

〈φQ′
n,Qj 〉s = 0. �

PROPOSITION 2. If s is the class of the semiclassical linear functional defined
by dµ1 = ω(x) dx, for n � s + 2, then we get

xφ(x)Q′
n(x) = nQn+k1(x) +

n+k1−1∑
j=n−s−2

αn,jQj(x). (11)

Proof.

〈xφQ′
n,Qj 〉s =

∫
R

[xφQ′
n]′Q′

jω(x) dx

=
∫

R

φQ′
nQ

′
jω(x) dx +

∫
R

xφ′Q′
nQ

′
jω(x) dx +

+
∫

R

xφQ′′
nQ

′
jω(x) dx

applying integration by parts to the third integral, we obtain

= −
∫

R

[xφQ′
nQ

′′
j + xQ′

nQ
′
j (ψ − φ′)]ω(x) dx.
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Similar arguments to those given in the proof of Proposition 1 lead us to deduce
that the previous integral vanishes if j < n−s−2, which proves the proposition. �

Now we introduce a lemma from a previous paper that will be very useful to
prove Proposition 4 and Proposition 5.

LEMMA 3 (Bueno and Marcellán, 2003). Let L be a symmetric semiclassical lin-
ear functional satisfying D(φL) = ψL. If s denotes the class of L, then

(1) If s is an even number, then φ is an even function.
(2) If s is an odd number, then φ is an odd function.

In the sequel, when s is an even number, we write s = 2r, k1 = 2k, and φ(x) =
φ̃(x2). When s is odd, we write s = 2r + 1, k1 = 2k + 1, and φ(x) = xφ̂(x2).

PROPOSITION 4. Consider a symmetrized Sobolev inner product as in (5) and
suppose that dµ1 = ω(x) dx is an absolutely continuous semiclassical measure
that satisfies (9). Let {Qn} be the sequence of monic polynomials orthogonal with
respect to (5). Assume that {Sn} and {Rn} are the sequences such that (6) holds.
If s denotes the class of the semiclassical linear functional defined by ω, then, the
following algebraic relations between {Sn} and {Rn} take place.

(1) If s is even, then φ(x) = φ̃(x2) and

2φ̃(x)[Sm−1(x) + xS ′
m−1(x)]

= 2mRm+k−1(x) +
m+k−2∑

j=m−r−1

α2m,2j+1Rj(x), (12)

φ̃(x)[Rm(x) + 2xR′
m(x)]

= (2m + 1)xSm+k−1(x) +
m+k−2∑

j=m−r−1

α2m+1,2j+2xSj (x) + α2m+1,0. (13)

(2) If s is odd, then φ(x) = xφ̂(x2) and

2φ̂(x)[xSm−1(x) + x2S ′
m−1(x)]

= 2mRm+k(x) +
m+k−1∑

j=m−r−2

α2m,2j+1Rj(x), (14)

φ̂(x)[Rm(x) + 2xR′
m(x)]

= (2m + 1)Sm+k(x) +
m+k−1∑

j=m−r−2

α2m+1,2j+2Sj (x). (15)
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Proof. For n = 2m, (10) becomes

φ(x)Q′
2m(x) = 2mQ2m+k1−1(x) +

2m+k1−2∑
j=2m−s−1

α2m,jQj(x) + α2m,0. (16)

Assume that the class s of the semiclassical functional associated with ω is
even. From Lemma 3, φ is an even function and φ(x) = φ̃(x2). Moreover, we
write k1 = 2k and s = 2r. In such a case, taking into account (6), the expression
(16) can be written in the following way

2xφ̃(x2)[Sm−1(x
2) + x2S ′

m−1(x
2)]

= 2mRm+k−1 +
m+k−2∑

i=m−r−1

α2m,2j+1xRj(x
2)

and the result in (12) follows.
If we rewrite (10) for n = 2m + 1, (13) can be obtained in a similar way.
The previous reasoning is also valid to deduce the algebraic relations in (14)

and (15) if (11) is considered instead of (10). �
PROPOSITION 5. Consider a symmetrized Sobolev inner product as in (5) and
suppose that dµ1 = ω(x) dx is an absolutely continuous semiclassical measure
that satisfies (9). Let {Qn} be the sequence of monic polynomials orthogonal with
respect to (5). Assume that {Sn} and {Rn} are the sequences such that (6) holds.
If s denotes the class of the semiclassical linear functional defined by ω, then, the
following recurrence relations for {Sn} and {Rn} are obtained.

(1) If s is even, then φ(x) = φ̃(x2) and

2φ̃(x)[Sm−1(x) + xS ′
m−1(x)]

= 2mSm+k−1(x) +
m+k−2∑

j=m−r−2

α2m,2j+2Sj (x), (17)

φ̃(x)[Rm(x) + 2xR′
m(x)]

= (2m + 1)Rm+k(x) +
m+k−1∑

j=m−r−1

α2m+1,2j+1Rj(x). (18)

(2) If s is odd, then φ(x) = xφ̂(x2) and

2φ̂(x)[Sm−1(x) + xS ′
m−1(x)]

= 2mSm+k−1(x) +
m+k−2∑

j=m−r−2

α2m,2j+2Sj (x) + α2m,0, (19)
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φ̂(x)[Rm(x) + 2xR′
m(x)]

= (2m + 1)Rm+k(x) +
m+k−1∑

j=m−r−1

α2m+1,2j+1Rj(x). (20)

Proof. For n = 2m, (11) becomes

xφ(x)Q′
2m(x) = 2mQ2m+k1(x) +

2m+k1−1∑
j=2m−s−2

α2m,jQj(x). (21)

Assume that s is even. Then, from Lemma 3, φ is an even function and φ(x) =
φ̃(x2). Taking into account (6), the expression (21) can be written in the following
way

2x2φ̃(x2)[Sm−1(x
2) + x2S ′

m−1(x
2)]

= 2mx2Sm+k−1(x
2) +

m+k−2∑
j=m−r−2

α2m,2j x
2Sj (x

2),

and the result in (17) follows. The remaining recurrence relations are obtained in a
similar way. �

3.2. THE HERMITE CASE

It has been proven that, if {Qn} is the sequence of monic polynomials orthogonal
with respect to (5), then

〈Qn,Qm〉s =
∫

R

Q′
nQ

′
m dµ1, for n + m � 1.

Therefore, {Q′
n}∞

n=1 is a sequence of polynomials orthogonal with respect to the
inner product

〈p, q〉 =
∫

R

pq dµ1.

If dµ1 = e−x2
dx then

Q′
n(x) = nHn−1(x), n � 1,

where Hn(x) denotes the nth monic Hermite polynomial. In such a case and taking
into account that Qn(0) = 0 for n � 1, we get

Qn(x)

n
=

∫ x

0
Hn−1(t) dt. (22)

10



Applying integration by parts in the previous integral and taking into account that
H ′

n(x) = nHn−1(x),

Qn(x)

n
= xHn−1(x) −

∫ x

0
(n − 1)tHn−2(t) dt.

From the three-term recurrence relation for Hermite polynomials (Chihara, 1978),
we get

Qn(x)

n
= xHn−1(x) −

∫ x

0
(n − 1)

[
Hn−1(t) + n − 2

2
Hn−3(t)

]
dt

= xHn−1(x) − (n − 1)
Qn(x)

n
− n − 1

2
Qn−2(x).

Hence,

xHn−1(x) = Qn(x) + n − 1

2
Qn−2, n � 3. (23)

Applying the three-term recurrence relation again

Hn(x) + n − 1

2
Hn−2(x) = Qn(x) + n − 1

2
Qn−2(x), n � 3.

Notice that this expression has the same structure as in the case of symmetric
coherent pairs (Kim et al., 2002; Meijer, 1997), but this concept has a sense only
for the continuous case.

On the other hand, from (22)

Qn(x) = Hn(x) − Hn(0),

i.e.,

Q2n(x) = H2n(x) − H2n(0), Q2n+1(x) = H2n+1(x).

Thus, since (6) holds, and taking into account that H2m(x) = L
(−1/2)
m (x2), and

H2m+1(x) = xL
(1/2)
m (x2), we deduce

Pn(x) = xSn−1(x) = L(−1/2)
n (x) − L(−1/2)

n (0), (24)

Rn(x) = L(1/2)
n (x). (25)

3.2.1. Orthogonality Measures for {Sn} and {Rn}
According to (7), {Sn} is orthogonal with respect to the nondiagonal Sobolev inner
product

〈p, q〉1 = 4
∫ ∞

0
[ p p′ ]

[
1 t

t t2

][
q

q ′

]
t1/2e−t dt.
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Nevertheless, applying integration by parts, the previous inner product can be re-
duced to a diagonal form although the measure involved in the standard part is a
signed measure.

〈p, q〉1 = 4
∫ ∞

0
[ p p′ ]

[
t − 1/2 0

0 t2

][
q

q ′

]
t1/2e−t dt.

From (8), {Rn} is orthogonal with respect to the nondiagonal Sobolev inner
product

〈p, q〉2 =
∫ ∞

0
[ p p′ ]

[
1 2t

2t 4t2

] [
q

q ′

]
t−1/2e−t dt.

Again, taking into account an integration by parts, the inner product 〈 , 〉2 can
be given by

〈p, q〉2 =
∫ ∞

0
[ p p′ ]

[
2 0
0 4t

] [
q

q ′

]
t1/2e−t dt,

that is, it can be reduced to a diagonal form.

3.2.2. Recurrence Relations and Explicit Algebraic Relations

Since {Rn} is the sequence of Laguerre polynomials of parameter 1/2, we only
deduce recurrence relations for the sequences {Sn} and {Qn}. We also deduce two
explicit algebraic relations between the sequences {Rn} and {Sn}.

Consider the equation given in (23) for n = 2m. Then, taking into account (6),
we obtain

L(1/2)
n (x) = Sn(x) + 2n + 1

2
Sn−1(x), n � 1. (26)

The three-term recurrence relation that Laguerre polynomials of parameter 1/2
satisfy (Chihara, 1978) is

L(1/2)
n (x) =

(
x − 2n + 1

2

)
L

(1/2)

n−1 (x) − (n − 1)

(
n − 1

2

)
L

(1/2)

n−2 (x),

n � 2. (27)

Substituting (26) in (27) and simplifying the result, we deduce a four-term recur-
rence relation for {Sn}.

Sn(x) = (x − 3n)Sn−1(x) +
+

(
n − 1

2

)[
x − 3

(
n − 1

2

)]
Sn−2(x) −

− (n − 1)

(
n − 1

2

)(
n − 3

2

)
Sn−3(x), n � 3. (28)
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We deduce now the recurrence relation that the polynomials {Qn} satisfy. Tak-
ing into account the three-term recurrence relation that Hermite polynomials satisfy

Hn(x) = xHn−1(x) − 1

2
(n − 1)Hn−2(x), n � 2,

and plugging the expression (23) in it, we obtain a five-term recurrence relation for
{Qn}.

Qn+1(x) = xQn(x) +
(

1

2
− n

)
Qn−1(x)+

+
(

n − 1

2

)
xQn−2(x) − (n − 1)(n − 2)

4
Qn−3(x),

n � 3. (29)

Finally, we deduce explicit algebraic relations between the sequences {Sn} and
{Rn}. Notice that (26) can be rewritten in the following way

Rn(x) = Sn(x) + 2n + 1

2
Sn−1(x), n � 1,

which gives us an explicit algebraic relation between the two sequences in consid-
eration.

On the other hand, expressing (29) for n = 2m + 1, and from (6) we get

Sm(x) +
(

2m + 1

2

)
Sm−1(x) + m(2m − 1)

2
Sm−2(x)

= Rm(x) + mRm−1(x), m � 1, (30)

or, equivalently,

Sm(x) +
(

2m + 1

2

)
Sm−1(x) + m(2m − 1)

2
Sm−2(x)

= L(1/2)
m (x) + mL

(1/2)

m−1 (x), m � 1. (31)

4. Model 2: µ0 Absolutely Continuous and µ1 Discrete

Next we deal with the study of the symmetrization process related to symmetrized
Sobolev inner products of order 1

〈p, q〉s =
∫

R

pq dµ0 +
∫

R

p′q ′ dµ1,

where µ1 is a discrete measure and µ0 is a nondiscrete positive Borel measure.
We consider two different situations. First, we assume that µ1 is supported at zero.
Secondly, we study the general case when µ1 is supported on a finite subset of the
real line symmetric with respect to the origin containing more than one point.

13



4.1. µ1 IS SUPPORTED AT ZERO

We first analyze the case when µ1 is supported at {0}. Consider the product

〈p, q〉s =
∫

R

pq dµ0 + λp′(0)q ′(0), (32)

where λ is a positive real number. We assume that µ0 is a nondiscrete measure
supported on a subset of the real line symmetric with respect to the origin, and
such that the corresponding odd moments vanish, i.e.,

c2n+1 =
∫

R

x2n+1 dµ0 = 0, for all n � 0.

Such a kind of inner products are called Sobolev type inner products (Alfaro et al.,
1994).

4.1.1. Orthogonality Measures for {Pn} and {Rn}

Let {Qn} be the sequence of monic polynomials orthogonal with respect to (32).
Then, (3) holds for certain sequences of monic polynomials {Pn} and {Rn}. For
n �= m,

0 = 〈Q2n,Q2m〉s = 2
∫ ∞

0
Pn(x)Pm(x) dµ0(x

1/2).

Hence, {Pn} is the sequence of monic polynomials orthogonal with respect to the
standard inner product

〈p, q〉1 =
∫ ∞

0
pq dµ̂0, (33)

where dµ̂0 = 2 dµ0(x
1/2). On the other hand, if n �= m, then

0 = 〈Q2n+1,Q2m+1〉s = 2
∫ ∞

0
xRn(x)Rm(x) dµ0(x

1/2) + λRn(0)Rm(0).

Thus {Rn} is the sequence of monic polynomials orthogonal with respect to the
standard inner product

〈p, q〉2 =
∫ ∞

0
xpq dµ̂0 + λp(0)q(0). (34)

4.1.2. Explicit Algebraic Relations between {Pn} and {Rn}
In this case, Proposition 7 gives an algebraic relation between the sequences {Pn}
and {Rn}. Notice that the polynomial Rn is expressed in terms of the polynomi-
als P ∗

n and P ∗∗
n−1, i.e., in terms of the sequences of the monic kernel polynomials
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with parameter 0 associated with {Pn} and {P ∗
n }, respectively. However, taking into

account (2), it is straightforward to obtain the explicit algebraic relation we were
looking for.

Consider now the standard inner product

〈p, q〉 =
∫

R

pq dµ0, (35)

and let {Tn} be the corresponding sequence of monic orthogonal polynomials.
Then, the following relation holds.

PROPOSITION 6. Assume that {Qn} is the sequence of monic polynomials or-
thogonal with respect to (32), {Pn} is the sequence of polynomials such that Q2n(x)

= Pn(x
2), {P ∗

n } is the sequence of monic kernel polynomials with parameter 0
associated with {Pn}, and {Tn} is the sequence of monic polynomials orthogonal
with respect to the inner product given in (35), then

T2n(x) = Pn(x
2) = Q2n(x), T2n+1(x) = xP ∗

n (x2), n � 0. (36)

Proof. Let us take into account the Fourier expansion of Qn in terms of {Tn}

Qn(x) = Tn(x) +
n−1∑
j=0

αnjTj (x), n � 1. (37)

Then, for 0 � j < n, and from (32)

αn,j = 〈Qn, Tj 〉
〈Tj , Tj 〉 =

∫
R

QnTj dµ0

‖Tj‖2
= −λQ′

n(0)T ′
j (0)

‖Tj‖2
.

Plugging the previous expression in (37) we obtain

Qn(x) = Tn(x) −
n−1∑
j=0

λQ′
n(0)T ′

j (0)

‖Tj‖2
Tj (x), n � 1. (38)

Since Q2m(x) = Pm(x2), Q′
2m(0) = 0. Thus, for n = 2m, (38) becomes

Q2m(x) = T2m(x), m � 0,

or, equivalently,

T2m(x) = Pm(x2), m � 0.

Moreover, taking into account that (35) is a standard inner product

T2m+1(x) = xP ∗
m(x2), m � 0. �
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PROPOSITION 7. Let {Qn} be the sequence of monic polynomials orthogonal
with respect to (32). If {Pn} and {Rn} are the sequences of polynomials such that
(3) is satisfied, then the following relations hold.

R0(x) = P ∗
0 (x), Rn(x) = P ∗

n (x) + αnP
∗∗
n−1(x), n � 1,

αn = −λRn(0)P ∗
n−1(0)

‖P ∗
n−1‖2∗

, (39)

with ‖P ∗
n ‖∗ = ‖xP ∗

n ‖. Moreover, {P ∗∗
n } denotes the sequence of kernel polynomials

with parameter 0 associated with {P ∗
n }.

Proof. Put n = 2m + 1 in (38) to obtain

Q2m+1(x) = T2m+1(x) −
2m∑
j=0

λQ′
2m+1(0)T ′

j (0)

‖Tj‖2
Tj (x), m � 0. (40)

But Q′
2m+1(x) = Rm(x2) + 2x2R′

m(x2), hence we deduce

Q′
2m+1(0) = Rm(0), m � 0.

On the other hand, from Proposition 6

T ′
2j (x) = 2xP ′

j (x
2), j � 1,

T ′
2j+1(x) = P ∗

j (x2) + 2x2(P ∗
j )′(x2), j � 0,

and hence

T ′
j (0) =

{ 0 if j is even,
P ∗

j−1
2

(0) if j is odd.

From (40) we get

Rm(x2) = P ∗
m(x2) − Rm(0)

m−1∑
j=0

λP ∗
j (0)P ∗

j (x2)

‖xP ∗
j (x2)‖2

, m � 1.

Recall that, given a sequence of polynomials {Vn}, the sequence {V ∗
n } of monic

kernel polynomials with parameter 0 associated with {Vn} satisfies

Vn(0)V ∗
n (x)

‖Vn‖2
=

n∑
k=0

Vk(x)Vk(0)

‖Vk‖2
, n � 0.

Then, taking into account the previous definition

Rm(x) = P ∗
m(x) − λRm(0)P ∗

m−1(0)

‖P ∗
m−1‖2∗

P ∗∗
m−1(x), m � 1,

and the result follows. �
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4.1.3. Recurrence Relations

In this subsection, we give the three-term recurrence relations that the sequences
{Qn}, {Pn}, and {Rn} satisfy.

PROPOSITION 8. Consider a symmetrized Sobolev inner product as in (32). Let
{Qn} be the corresponding sequence of monic orthogonal polynomials. Assume
that {Sn} and {Rn} are the sequences such that (6) holds. Then, the following
recurrence relations are obtained.

Qn+2(x) = (x2 − βn,n)Qn(x) − βn,n−2Qn−2(x), n � 2, (41)

Pn+1(x) = (x − β2n,2n)Pn(x) − β2n,2n−2Pn−1(x), n � 1, (42)

Rn+1(x) = (x − β2n+1,2n+1)Rn(x) − β2n+1,2n−1Rn−1(x), n � 1. (43)

Proof. The multiplication by x2 is a symmetric operator with respect to the inner
product (32), i.e.,

〈x2Qn,Qj 〉s = 〈Qn, x
2Qj 〉s .

Furthermore, 〈x2Qn,Qj 〉s = 0, for 0 � j < n − 2, and, as a consequence,

x2Qn(x) = Qn+2(x) + βn,nQn(x) + βn,n−2Qn−2(x), n � 1.

From (41), for n = 2m and n = 2m + 1, respectively, the recurrence relations
for {Pn} and {Rn} are obtained. �

4.1.4. Particular Case: dµ0 = e−x4
dx

Consider the inner product

〈p, q〉s =
∫

R

pqe−x4
dx + λp′(0)q ′(0). (44)

Let {Qn} be the sequence of monic polynomials orthogonal with respect to (44).
Consider the sequences {Pn} and {Rn} such that (3) holds.

From (33), {Pn} is the sequence of monic polynomials orthogonal with respect
to the standard inner product

〈p, q〉1 =
∫ ∞

0
pqx−1/2e−x2

dx. (45)

Similarly, from (34), {Rn} is the sequence of monic polynomials orthogonal
with respect to the standard inner product

〈p, q〉2 =
∫ ∞

0
pqx1/2e−x2

dx + λp(0)q(0). (46)
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Taking into account (2) and Proposition 7, an explicit algebraic relation between
{Pn} and {Rn} is obtained.

x2Rn(x) = (x + αn)Pn+1(x)−
[
(x + αn)

Pn+1(0)

Pn(0)
+ P ∗

n (0)

P ∗
n−1(0)

αn

]
Pn(x) +

+ P ∗
n (0)Pn(0)

P ∗
n−1(0)Pn−1(0)

αnPn−1(x), n � 1,

where αn is given in (39). Since {Pn} and {Rn} are orthogonal with respect to stan-
dard inner products, they satisfy three-term recurrence relations whose parameters
can be calculated by Stieltjes formulas (Gautschi, 1982).

Finally, we express the parameters in the recurrence relation that the sequence
{Qn} satisfies in terms of the parameters of the three-term recurrence relation that
Freud polynomials satisfy.

Let us consider the standard inner product

〈p, q〉 =
∫

R

pqe−x4
dx. (47)

Let {Fn} be the sequence of monic polynomials orthogonal with respect to (47).
It is a basic example of Freud Polynomials. It is well known (Nevai, 1983, 1984;
Cachafeiro et al., 2003) that {Fn} satisfies a three-term recurrence relation

Fn+1(x) = xFn(x) − cnFn−1(x), n � 1, (48)

with initial conditions

F0(x) = 1, F1(x) = x,

and

c0 = 0, c1 = 	(3/4)

	(1/4)
, n = 4cn(cn+1 + cn + cn−1), n � 1.

For n = 2m − 1, (48) becomes

F2m(x) = xF2m−1(x) − c2m−1F2m−2(x), m � 1.

Taking into account (36), we get

Pm(x) = xP ∗
m−1(x) − c2m−1Pm−1(x), m � 1.

From (2), we obtain

c2m−1 = − Pm(0)

Pm−1(0)
, m � 1. (49)

For n = 2m, (48) becomes

F2m+1(x) = xF2m(x) − c2mF2m−1(x), m � 1.
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Again from (36), we get

P ∗
m(x) = Pm(x) − c2mP ∗

m−1(x), m � 1.

From (2) and (49), we obtain

Pm+1(x) = [x − c2m+1 − c2m]Pm(x) − c2mc2m−1Pm−1(x), m � 1. (50)

Finally, taking into account (42), from (49) and (50) we get

β2m,2m = c2m + c2m+1, β2m,2m−2 = c2mc2m−1, m � 1. (51)

Assume that {ξm} and {γm} are the sequences of parameters of the three-term
recurrence relation that the sequence {P ∗

m} satisfies, i.e.,

P ∗
m+1(x) = (x − ξm)P ∗

m(x) − γmP ∗
m−1(x), m � 1. (52)

Taking into account the definition of kernel polynomials, (50), and (49) we get

ξm = c2m+1 + c2m+2, m � 0,

γm = c2mc2m+1, m � 1. (53)

On the other hand, we know that {Rn} satisfies the three-term recurrence relation
given in (43). Taking into account Proposition 7 and (52), we get

β1,1 = c1 + c2 − α1,

β2m+1,2m+1 = αm − αm+1 + c2m+1 + c2m+2, m � 1,

β3,1 = c2 + c3 + α1 + α2

[
c3 + c4 − P ∗

2 (0)

P ∗
1 (0)

]
,

β2m+1,2m−1 = c2m−1c2m−2P
∗
m−2(0)

αm−1P
∗
m−1(0)

[
αm+1

(
c2m+1 + c2m+2 + P ∗

m+1(0)

P ∗
m(0)

)
−

− αm(αm − αm−1 + c2m+1 + c2m+2)

]
, m � 2.

4.2. µ1 IS SUPPORTED AT A FINITE SUBSET OF THE REAL LINE SYMMETRIC

WITH RESPECT TO THE ORIGIN

For a sake of simplicity, we will consider the set {0} ∪ {± c} as support of the
measure µ1. The results obtained in this section can be extended in a natural way
to {0} ∪ {± ck}N

k=1.

Consider the inner product

〈p, q〉s =
∫

R

pq dµ0 + λ1p
′(0)q ′(0) + λ2[p′(c)q ′(c) + p′(−c)q ′(−c)], (54)
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where µ0 is a nondiscrete measure supported in an interval of the real line sym-
metric with respect to the origin so that the corresponding moments of odd order
vanish.

Let {Qn} be the sequence of monic polynomials orthogonal with respect to (54).
Let {Pn} and {Rn} be the sequences satisfying (3).

4.2.1. Orthogonality Measures Associated with {Pn} and {Rn}

For n �= m,

0 = 〈Q2n,Q2m〉s = 2
∫ ∞

0
Pn(x)Pm(x) dµ0(x

1/2) + 8c2λ2P
′
n(c

2)P ′
m(c2).

Then {Pn} is the sequence of monic polynomials orthogonal with respect to the
inner product

〈p, q〉1 =
∫ ∞

0
pq dµ̂0 + 8c2λ2p

′(c2)q ′(c2), (55)

where dµ̂0 = 2 dµ0(x
1/2).

In the same way, for n �= m

0 = 〈Q2n+1,Q2m+1〉s
=

∫ ∞

0
xRn(x)Rm(x) dµ̂0 + λ1Rn(0)Rm(0) + 2λ2Rn(c

2)Rm(c2) +
+ 4λ2c

2[R′
n(c

2)Rm(c2) + Rn(c
2)R′

m(c2)] + 8λ2c
4R′

n(c
2)R′

m(c2)].
Then {Rn} is the sequence of monic polynomials orthogonal with respect to the

Sobolev inner product

〈p, q〉2 =
∫ ∞

0
xp(x)q(x) dµ̂0(x) + λ1p(0)q(0) + 2λ2p(c2)q(c2) +

+ 4λ2c
2[p′(c2)q(c2) + p(c2)q ′(c2)] + 8λ2c

4p′(c2)q ′(c2). (56)

The inner product in (56) can be written in an alternative way as

〈p, q〉2 =
∫ ∞

0
xp(x)q(x) dµ̂0(x) + λ1p(0)q(0) +

+ 2λ2 [ p(c2) p′(c2) ]

[
1 2c2

2c2 4c4

][
q(c2)

q ′(c2)

]
. (57)

4.2.2. Algebraic Relations between {Pn} and {Rn}
For j < 2n − 4, we get
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〈(
x5 − 5

3
c2x3

)
Q2n+1(x),Qj (x)

〉
s

=
〈
Q2n+1(x),

(
x5 − 5

3
c2x3

)
Qj(x)

〉
s

= 0,

and, as a consequence,

(
x5 − 5

3
c2x3

)
Q2n+1(x) = Q2n+6(x) +

n+2∑
j=n−2

α2n+1,2jQ2j (x), m � 1. (58)

Taking into account (3), from (58) we deduce an algebraic relation between the
polynomials {Pn} and {Rn}

(
x3 − 5

3
c2x2

)
Rm(x) = Pm+3(x) +

m+2∑
j=m−2

α2m+1,2jPj (x), m � 1. (59)

4.2.3. Recurrence Relations

Next we prove a result that will be useful to deduce the recurrence relations that
the sequences {Pn} and {Rn} satisfy.

PROPOSITION 9. The multiplication by x4 − 2c2x2 is a symmetric operator with
respect to the inner product (54). Furthermore, it is the polynomial of minimum
degree that satisfies such a property.

Proof. The multiplication by a polynomial h(x) is a symmetric operator with
respect to the inner product (54) if

〈hp, q〉s = 〈p, hq〉s .
Namely,

λ1[h′(0)p(0) + h(0)p′(0)]q ′(0) + λ2[h′(c)p(c) + h(c)p′(c)]q ′(c)+
+ λ2[h′(−c)p(−c) + h(−c)p′(−c)]q ′(−c)

= λ1p
′(0)[h′(0)q(0) + h(0)q ′(0)] + λ2p

′(c)[h′(c)q(c) + h(c)q ′(c)]+
+ λ2p

′(−c)[h′(−c)q(−c) + h(−c)q ′(−c)],
for any polynomials p, q. This means that

λ1h
′(0)[p(0)q ′(0) − p′(0)q(0)] + λ2h

′(c)[p(c)q ′(c) − p′(c)q(c)]+
+ λ2h

′(−c)[p(−c)q ′(−c) − p′(−c)q(−c)] = 0, (60)

for any polynomials p and q. When p(x) = 1, (60) becomes

λ1h
′(0)q ′(0) + λ2h

′(c)q ′(c) + λ2h
′(−c)q ′(−c) = 0.

Taking q(x) = x, x2, x3, respectively, we get
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1. λ1h
′(0) + λ2h

′(c) + λ2h
′(−c) = 0,

2. 2cλ2[h′(c) − h′(−c)] = 0,

3. 3c2λ2[h′(c) + h′(−c)] = 0.

Hence

h′(c) = h′(−c) = h′(0) = 0.

This means that the polynomial h(x) of minimal degree satisfies

h′(x) = x(x − c)(x + c),

and, as a consequence,

h(x) = x4

4
− c2x2

2
.

If h is chosen to be monic, then

h(x) = x4 − 2c2x2. �
PROPOSITION 10. Consider a symmetrized Sobolev inner product as in (54). Let
{Qn} be the corresponding sequence of monic orthogonal polynomials. Assume
that {Sn} and {Rn} are the sequences such that (6) holds. Then, the following
recurrence relations are obtained.

(x4 − 2c2x2)Qn(x) = Qn+4(x) +
n+3∑

j=n−4

αnjQj(x), n � 4, (61)

(x2 − 2c2x)Pn(x) = Pn+2(x) +
3∑

j=0

α2n,2(n−2+j)Pn−2+j (x), n � 2, (62)

(x2 − 2c2x)Rn(x) = Rn+2(x) +
3∑

j=0

α2n+1,2(n−2+j)+1Rn−2+j (x), n � 2.

(63)

Proof. From Proposition 9, for 0 � j < n − 4, we get

〈(x4 − 2c2x2)Qn,Qj 〉s = 〈Qn, (x
4 − 2c2x2)Qj 〉s = 0, (64)

which yields (61).
For n = 2m, (61) becomes (62). For n = 2m + 1 (61) becomes (63).
Therefore, the symmetric components {Pn} and {Rn} are Sobolev polynomials

and they satisfy the five-term recurrence relations given in (62) and (63). �
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