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Abstract

Let {Qn(x)}n be the sequence of monic polynomials orthogonal with respect to the Sobolev-type inner product
〈p(x), r(x)〉S= 〈u0, p(x)r(x)〉 + �〈u1, (�p)(x)(�r)(x)〉,

where��0, (�f )(x)= f (x + 1)− f (x) denotes the forward difference operator and(u0, u1) is a�-coherent pair
of positive-definite linear functionals beingu1 the Meixner linear functional. In this paper, relative asymptotics for
the {Qn(x)}n sequence with respect to Meixner polynomials on compact subsets ofC\[0,+∞) is obtained. This
relative asymptotics is also given for the scaled polynomials. In both cases, we deduce the same asymptotics as we
have for the self-�-coherent pair, that is, whenu0 = u1 is the Meixner linear functional. Furthermore, we establish
a limit relation between these orthogonal polynomials and the Laguerre–Sobolev orthogonal polynomials which is
analogous to the one existing between Meixner and Laguerre polynomials in the Askey scheme.
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1. Introduction

The study of polynomials orthogonal with respect to an inner product involving differences was started
in two papers[7,8] by Bavinck. There, the inner product

〈p, q〉 =
∫

R

p(t)q(t)d�(t) + �(�p)(c)(�q)(c) (1.1)

was introduced, wherep, q are polynomials with real coefficients,c ∈ R, � is a distribution function with
infinite support such that� has no points of increase in the interval(c, c + 1), � ∈ R+ and(�p)(c) =
p(c + 1)− p(c) denotes the forward difference operator.
Some algebraic and analytic results for the polynomials orthogonal with respect to (1.1) were obtained

in [7,8], with special emphasis on the location of their zeros. Furthermore, when� is the Meixner
weight function andc = 0, spectral properties were deduced. Later on, in[9] the authors obtained a
differenceoperator of infinite order forwhich theseorthogonal polynomials (calledSobolev-typeMeixner
polynomials) are eigenfunctions. The name Sobolev-type is justified from the analogy with the case

〈p, q〉 =
∫

R

p(t)q(t)d�(t) + Mp′(c)q ′(c), (1.2)

which has been widely considered in the literature (for example, see the survey in Sobolev polynomials
[13]). Note that (1.2) can be considered as a limit case of (1.1). Later on, under the influence of the
developments in the so-called continuous case, i.e., inner products of the form

〈p, q〉 =
∫

R

p(t)q(t)d�0(t) + �

∫
R

p′(t)q ′(t)d�1(t),

where�0 and�1 are nonatomic measures satisfying some extra conditions (the so-called coherence, see
[12,14]), the research is focused on the analysis of polynomials orthogonal with respect to the inner
product

〈p, q〉 =
∫

R

p(t)q(t)d�0(t) + �

∫
R

(�p)(t)(�q)(t)d�1(t), (1.3)

where�0, �1 are measures with a countable set as its support. In that case, the concept of�-coherent
pair was introduced as a discrete analogue of the continuous case (see[4]) and a classification of such
�-coherent pairs was given (see[2]). One of the measures�0, �1 must be classical, i.e., correspond to
Charlier, Kravchuk, Meixner, or Hahn polynomials. In particular, the Meixner linear functional is self-
�-coherent. If�0 = �1 is the Meixner weight function, the relative asymptotics for these polynomials
orthogonal with respect to (1.3) in terms of the Meixner polynomials has been analyzed in[5] as well as
some analytic properties of their zero distribution (see[3]).
In this paper we study the asymptotic properties for polynomials orthogonal with respect to a�-

Sobolev inner product built from a�-coherent pair of measures(�0, �1) of type I, that is, assuming that
�1 is the Meixner weight function and therefore, according to the classification of the�-coherent pairs
given in [2], �0 is a polynomial modification of degree one of the measure�1. We will establish that
this polynomial modification does not influence the asymptotic behavior of the�-Sobolev orthogonal
polynomials. Another goal of this paper is to show that one family of continuous Sobolev orthogonal
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polynomials can be seen as a limit of the�-Sobolev polynomials introduced in this work. In this way, we
obtain some results contained in[15] for the Laguerre–Sobolev orthogonal polynomials.
The structure of the paper is the following: In Section 2, we introduce very well-known properties of

Meixner polynomials which will be very useful along this paper and some notions about�-coherence.
In Section 3, the outer relative asymptotics and the outer Plancherel–Rotach type asymptotics for poly-
nomials orthogonal with respect to the inner product (1.3) when(�0, �1) is a�-coherent pair of type I in
terms of Meixner polynomials are deduced. Finally, in Section 4, we establish a limit relation between
these orthogonal polynomials and the Laguerre–Sobolev orthogonal polynomials which is analogous to
the one existing between Meixner and Laguerre polynomials in the Askey scheme and we recover some
results given in[15] for Laguerre–Sobolev orthogonal polynomials.

2. Basic definitions and notations

2.1. �-coherent pairs of linear functionals

Let P be the linear space of polynomials with complex coefficients and letP′ be its algebraic dual
space. We denote〈u, p〉 the duality bracket foru ∈ P′ andp ∈ P, and(u)n = 〈u, xn〉 with n�0 are the
canonical moments ofu.

Definition 2.1. A linear functionalu is said to be quasi-definite if all the principal submatricesHk =
[(u)i+j ]ki,j=0, k�0, of the Hankel moment matrix associated withu are nonsingular.

Given a quasi-definite linear functionalu, there exists a family of monic polynomials{Pn(x)}∞n=0
orthogonal with respect tou, i.e.Pn(x) = xn+ terms of lower degree, for everyn�0, and〈u, PnPm〉 =
�n�n,m,�n �= 0, for everyn,m�0. Such a sequence is said to be amonic orthogonal polynomial sequence
(MOPS) associated with the linear functionalu.
Next, we introduce the concept of positive-definite linear functional[10, p. 13].

Definition 2.2. A linear functionalu is said to be positive-definite if its moments are all real and
det(Hk)>0, for everyk�0.

Definition 2.3. Given a complex numberc, the Dirac functional�(x − c) is defined by

〈�(x − c), p〉 : =p(c), for everyp ∈ P.

Definition 2.4. Let u be a linear functional andp be a fixed polynomial. We define the linear functional
p(x)u as follows:

〈pu, q〉 : =〈u, pq〉, for everyq ∈ P.

For each complex numbercwe introduce the linear functional(x − c)−1u such that

〈(x − c)−1u, q〉 : =
〈
u,

q(x) − q(c)

x − c

〉
, for everyq ∈ P.

3



Note that

(x − c)−1((x − c)u) = u − (u)0�(x − c),

while (x − c)((x − c)−1u) = u.

Definition 2.5. The forward difference operator� and the backward difference operator∇ are
defined by

(�f )(x) : =f (x + 1)− f (x), (∇f )(x) : =f (x) − f (x − 1).

Definition 2.6. Foru ∈ P′, we introduce the linear functional�u as

〈�u, p〉 = −〈u,�p〉, for everyp ∈ P.

Definition 2.7. A linear functionalu is said to be a classical discrete linear functional ifu is quasi-definite
and there exist polynomials� and�, with deg(�)�2 and deg(�) = 1 such that

�[�u] = �u. (2.1)

The corresponding MOPS associated withu is said to be a classical discrete MOPS.

The Meixner linear functionalu(�,�), defined by

〈u(�,�), p〉 : =
∞∑
x=0

p(x)
�x�(x + �) (1− �)�

�(�)�(x + 1)
, �> 0, 0< �< 1, p ∈ P (2.2)

is a classical discrete linear functional since it satisfies the distributional equation (2.1) with

�(x) : =�(x + �), �(x) : =�� − x(1− �).

Definition 2.8. Let u0 andu1 be two quasi-definite linear functionals, and let{Pn(x)}n and{Tn(x)}n be
the MOPS associated withu0 andu1, respectively. We say that(u0, u1) is a�-coherent pair of linear
functionals if

Tn(x) = (�Pn+1)(x)
n + 1

− �n
(�Pn)(x)

n
, n�1, (2.3)

where{�n}n is a sequence of nonzero complex numbers.
In [4] we have proved that if(u0, u1) is a�-coherent pair of linear functionals, then at least one of

them must be a classical discrete linear functional (Charlier, Meixner).

2.2. �-coherent pairs of Meixner type

Definition 2.9. Let (u0, u1) be a�-coherent pair of linear functionals. Ifu0 or u1 is the Meixner linear
functionalu(�,�) defined in (2.2), then(u0, u1) is said to be a�-coherent pair of Meixner type.
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Furthermore, we deduced in[2] the following:

Proposition 2.10. Let (u0, u1) be a�-coherent pair of positive-definite linear functionals of Meixner
type.

(1) If u1 is the Meixner linear functionalu(�,�), then

(a) If �> 1, then

u0 = (1− �)

(
x + a

� − 1

)
u(�−1,�) = u(�,�) + (1− �)(1− � + a)

� − 1
u(�−1,�), a�0. (2.4)

(b) If � = 1, thenu0 = u(1,�) + K�(x), withK�0.
(c) If 0< �< 1, thenu0 = u(�,�).

(2) If u0 is the Meixner linear functionalu(�,�), then

u1 = �

(1− �)(x + a)
u(�+1,�) + K�(x + a), K >0, a�0. (2.5)

2.3. Monic Meixner polynomials

Monic Meixner orthogonal polynomials denoted by{M(�,�)
n (x)}n are the polynomial solution of a

second-order linear difference equation of hypergeometric type[11,16]

�(x)(�∇y)(x) + 	(x)(�y)(x) + �ny(x) = 0,

�(x) : =x, 	(x) : =�� − x(1− �), �n : =n(1− �). (2.6)

These polynomials{M(�,�)
n (x)}n are orthogonal onN ∪ {0} with respect to the linear functional (2.2).

For monic Meixner orthogonal polynomials we get[6,11,16].

2.3.1. Three-term recurrence relation
xM(�,�)

n (x) = M
(�,�)
n+1 (x) + B(�,�)

n M(�,�)
n (x) + C(�,�)

n M
(�,�)
n−1 (x), n�1, (2.7)

B(�,�)
n = �� + n(1+ �)

1− �
, C(�,�)

n = �n(� + n − 1)

(1− �)2
(2.8)

with the initial conditionsM(�,�)
−1 (x) : =0 andM(�,�)

0 (x) : =1. Furthermore, forn�0,

M(�,�)
n (0) =

(
�

� − 1

)n

(�)n, M(1,�)
n (0) + n

�

1− �
M

(1,�)
n−1 (0) = 0, (2.9)

where(a)s denotes the Pochhammer symbol,(a)0 = 1, (a)s = a(a + 1) · · · (a + s − 1), s�1.

2.3.2. Squared norm
From (2.8)

k(�,�)n : =〈u(�,�), (M(�,�)
n (x))2〉 = n!(�)n�n

(1− �)2n
, n�0. (2.10)
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The following relations can be easily derived from the definition ofk
(�,�)
n :

k
(�,�)
0 = 1, k(�,�)n = (� + n − 1)�n

(1− �)2
k
(�,�)
n−1 , n�1. (2.11)

2.3.3. Difference representations
We have

M(�,�)
n (x) = (�M(�,�)

n+1 )(x)
n + 1

+ �

1− �
(�M(�,�)

n )(x), n�0. (2.12)

The following relation between two different sequences of Meixner polynomials holds:

M(�+1,�)
n (x) = (�M(�,�)

n+1 )(x)
n + 1

, n�0. (2.13)

From the above relation and (2.12), we get

M(�−1,�)
n (x) = M(�,�)

n (x) + n
�

1− �
M

(�,�)
n−1 (x), n�0, (2.14)

which is valid for�> 1.

2.3.4. Asymptotic property
From (2.7) and using Poincaré’s Theorem the relative asymptotics

lim
n→∞

M
(�,�)
n+1 (x)

nM
(�,�)
n (x)

= 1

� − 1
, (2.15)

holds uniformly on compact subsets ofC\[0,+∞).

3. Asymptotics of�-Meixner–Sobolev orthogonal polynomials of type I

We shall denote{Qn(x; �, �; �,K, a) ≡ Qn(x)}n the sequence of monic polynomials orthogonal with
respect to the Sobolev type inner product

〈p(x), r(x)〉MS : =〈u0, p(x)r(x)〉 + �〈u1, (�p)(x)(�r)(x)〉, (3.1)

where(u0, u1) be a�-coherent pair of linear functionals withu1 = u(�,�) and we shall refer to this as
�-coherent pairs of Meixner type I. Moreover, we shall denote

k̃Mn : =〈Qn(x),Qn(x)〉MS , n�0. (3.2)

We can summarize the asymptotic behavior of polynomials orthogonal with respect to (3.1) in the
following:
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Theorem 3.1(Relative asymptotics).Let (u0, u1) be a�-coherent pair of linear functionals of Meixner
type I. Let us denote{Qn(x)}n the MOPS with respect to(3.1)and


 : =�(1+ �) + �(1− �)2 +
√
(�(1+ �) + �(1− �)2)2 − 4�3

2�
. (3.3)

The following limit relation holds:

lim
n→∞

Qn(x)

M
(�,�)
n (x)

= 
(1− �)


 − �
, (3.4)

uniformly on compact subsets ofC\[0,+∞).

In order to prove the above theorem we need some analytic and algebraic results.

Lemma 3.2. Let (u0, u1) be a�-coherent pair of linear functionals,with u1 = u(�,�). Then,

M(�,�)
n (x) + n

�

1− �
M

(�,�)
n−1 (x) = Qn(x) + n

�

1− �

k
(�,�)
n−1
k̃Mn−1

Qn−1(x), n�1, (3.5)

wherek(�,�)n and k̃Mn are given in(2.10)and(3.2),respectively,andQ0(x) = 1.

Proof. (1) If �> 1, thenu0 is given in (2.4). If we consider the expansion

M(�,�)
n (x) + n

�

1− �
M

(�,�)
n−1 (x) = Qn(x) +

n−1∑
i=0

fi,nQi(x),

then, from (2.12) and (2.14), we get, for 0�i�n − 1,

fi,n = 1

k̃Mi

〈M(�,�)
n (x) + n

�

1− �
M

(�,�)
n−1 (x),Qi(x)〉MS

= 1

k̃Mi

{〈
u0,

(
M(�,�)

n (x) + n
�

1− �
M

(�,�)
n−1 (x)

)
Qi(x)

〉

+ �

〈
u(�,�),

(
(�M(�,�)

n )(x) + n
�

1− �
(�M(�,�)

n−1 )(x)
)
(�Qi)(x)

〉}

= 1

k̃Mi

〈u0,M(�−1,�)
n (x)Qi(x)〉.

7



Taking into account (2.4),fi,n = 0 for 0�i�n − 2. Finally, if i = n − 1,

fn−1,n = 〈u0,M(�−1,�)
n (x)Qn−1(x)〉

k̃Mn−1

= 1

k̃Mn−1

〈
u(�,�) + (1− � + a)(1− �)

� − 1
u(�−1,�),M(�−1,�)

n (x)Qn−1(x)
〉

= 1

k̃Mn−1
〈u(�,�),M(�−1,�)

n (x)Qn−1(x)〉

= 1

k̃Mn−1

〈
u(�,�),

(
M(�,�)

n (x) + n
�

1− �
M

(�,�)
n−1 (x)

)
Qn−1(x)

〉

= n
�

1− �

k
(�,�)
n−1
k̃Mn−1

.

(2) If � = 1, thenu0 = u(1,�) + K�(x), withK�0. Thus

M(1,�)
n (x) + n

�

1− �
M

(1,�)
n−1 (x) = Qn(x) +

n−1∑
i=0

gi,nQi(x), n�1,

and the coefficientsgi,n, for 0�i�n − 1, can be computed by using (2.12) and (2.9). Indeed

gi,n = 〈M(1,�)
n (x) + n

�
1−�M

(1,�)
n−1 (x),Qi(x)〉MS

k̃Mi

= 1

k̃Mi

{〈
u0,

(
M(1,�)

n (x) + n
�

1− �
M

(1,�)
n−1 (x)

)
Qi(x)

〉

+ �

〈
u1,

(
(�M(1,�)

n )(x) + n
�

1− �
(�M(1,�)

n−1 )(x)
)
(�Qi)(x)

〉}

= 1

k̃Mi

{〈
u(1,�),

(
M(1,�)

n (x) + n
�

1− �
M

(1,�)
n−1 (x)

)
Qi(x)

〉

+ K

(
M(1,�)

n (0) + n
�

1− �
M

(1,�)
n−1 (0)

)
Qi(0)

+ �〈u(1,�), nM
(1,�)
n−1 (x)�Qi(x)〉

}
= 1

k̃Mi

〈
u(1,�),

(
M(1,�)

n (x) + n
�

1− �
M

(1,�)
n−1 (x)

)
Qi(x)

〉
.

Thusgi,n = 0 for 0�i�n − 2. Furthermore,

gn−1,n = n
�

1− �

k
(1,�)
n−1
k̃Mn−1

.

(3) If 0< �< 1, thenu0 = u1 = u(�,�) and (3.5) was already obtained in[3]. �

8



Lemma 3.3. The following recurrence relation for̃kMn holds:

(1) If �> 1, then forn�1

k̃Mn = k(�,�)n + n2

((
�

1− �

)2
+ �

)
k
(�,�)
n−1 + (1− � + a)(1− �)

� − 1
k(�−1,�)n

−
(
n

�

1− �

)2 (k(�,�)n−1 )
2

k̃Mn−1
(3.6)

with the initial condition

k̃M0 : =(� − 1)� + a(1− �)

� − 1
.

(2) If 0< ��1, then forn�1

k̃Mn = k(�,�)n + n2

((
�

1− �

)2
+ �

)
k
(�,�)
n−1 −

(
n

�

1− �

)2 (k(�,�)n−1 )
2

k̃Mn−1
(3.7)

with the initial condition

k̃M0 =
{
K + 1, � = 1,
1, 0< �< 1.

Proof. (1) From (2.14), (2.4) and (3.5),

k̃Mn = 〈Qn(x),Qn(x)〉MS = 〈Qn(x),M
(�−1,�)
n (x)〉MS

= 〈u0,Qn(x)M
(�−1,�)
n (x)〉 + �n2k(�,�)n−1

= 〈u(�,�),Qn(x)M
(�−1,�)
n (x)〉 + �n2k(�,�)n−1 + (1− � + a)(1− �)

� − 1
k(�−1,�)n

=
〈

u(�,�),

(
M(�,�)

n (x) + n
�

1− �

(
M

(�,�)
n−1 (x) − k

(�,�)
n−1
k̃Mn−1

Qn−1(x)
))

×
(
M(�,�)

n (x) + n
�

1− �
M

(�,�)
n−1 (x)

)〉

+ �n2k(�,�)n−1 + (1− � + a)(1− �)

� − 1
k(�−1,�)n .

Thus, (3.6) follows.
(2) If 0< �< 1, (3.7) was obtained in[3]. In the case�=1, it is enough to take into account the relation

(2.9) and use the same technique as in[3].
The initial condition can be deduced in the three above cases from the definition of the Sobolev inner

product. �

Remark 1. Note that case� = 1 in (3.7) is a consequence of (3.6) taking into account (2.10) as a limit
case, since lim�↓1 k(�−1,�)n = 0, n�1.
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Now, we obtain the asymptotic behavior of the squared�-Sobolev norms.

Lemma 3.4.


 = lim
n→∞

k̃Mn

k
(�,�)
n

= �(1+ �) + �(1− �)2 +
√
(�(1+ �) + �(1− �)2)2 − 4�3

2�
> 1. (3.8)

Proof. First, we assume�> 1. If we divide (3.6) byk(�,�)n , by using (2.11) we get

k̃Mn

k
(�,�)
n

= A(n) + B(n) − C(n)
k
(�,�)
n−1
k̃Mn−1

,

where

A(n) = 1+ (�(� − 1)2 + �2)n

�(� + n − 1)
, B(n) = (1− � + a)(1− �)

� + n − 1
, C(n) = �n

n + � − 1
.

Let us define

sn+1 : =sn
k̃Mn

k
(�,�)
n

with the initial conditions0 = 1. Thus, we can write the above expression as

sn+1 = (A(n) + B(n))sn − C(n)sn−1, (3.9)

wheres0 = 1 ands1 = k̃M0 /k
(�,�)
0 . Taking into account

lim
n→∞ A(n) = �2 + � + �(1− �)2

�
, lim

n→∞ B(n) = 0, lim
n→∞ C(n) = �,

the roots of the limit characteristic equation of (3.9)

z2 − �2 + � + �(1− �)2

�
z + � = 0

are

z1 = �(1+ �) + �(1− �)2 +
√
(�(1+ �) + �(1− �)2)2 − 4�3

2�
,

z2 = �(1+ �) + �(1− �)2 −
√
(�(1+ �) + �(1− �)2)2 − 4�3

2�
.

Because of Poincaré’s Theorem, the sequencek̃Mn /k
(�,�)
n = sn+1/sn converges toz1 or z2. On the other

hand, using the extremal property of the monic polynomials and the expression ofu0 given in (2.4) we
get

k̃Mn = 〈Qn(x),Qn(x)〉MS �
1− �

� − 1
〈u(�−1,�), (x + a)R2n(x)〉 + �n2k(�,�)n−1 ,

10



whereRn is the monic polynomial of degreen, orthogonal with respect to the positive definite functional
[(� − 1)/(1− �)]u0. Taking into account (see[10, p. 35])

(x + a)Rn(x) = M
(�−1,�)
n+1 (x) − M

(�−1,�)
n+1 (−a)

M
(�−1,�)
n (−a)

M(�−1,�)
n (x),

and so

〈u(�−1,�), (x + a)R2n(x)〉 = −M
(�−1,�)
n+1 (−a)

M
(�−1,�)
n (−a)

k(�−1,�)n .

Thus,

k̃Mn ��n2k(�,�)n−1 − M
(�−1,�)
n+1 (−a)

M
(�−1,�)
n (−a)

1− �

� − 1
k(�−1,�)n .

Now, using (2.10) and (2.11) we get

k̃Mn

k
(�,�)
n

�
n

n + � − 1

(
�
(1− �)2

�
− (1− �)

M
(�−1,�)
n+1 (−a)

nM
(�−1,�)
n (−a)

)
.

Taking into account the ratio asymptotic (2.15), we get that the sequencek̃Mn /k
(�,�)
n is bounded from

below by a sequence which converges to 1+ �(1− �)2/�. This means, taking into accountk̃Mn /k
(�,�)
n

converges, that limn→∞ k̃Mn /k
(�,�)
n = z1> 1.

When 0< ��1, we can divide (3.7) byk(�,�)n and we get

k̃Mn

k
(�,�)
n

= A(n) − C(n)
k
(�,�)
n−1
k̃Mn−1

.

Following the same reasoning as in the case�> 1, we can prove the result in a more easy way because
now for eachn�0, k̃Mn �k

(�,�)
n , that is,k̃Mn /k

(�,�)
n �1. �

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. If we divide (3.5) byM(�,�)
n (x) we obtain

1+ n
�

1− �

M
(�,�)
n−1 (x)

M
(�,�)
n (x)

= Cn(x) + n
�

1− �

k
(�,�)
n−1
k̃Mn−1

M
(�,�)
n−1 (x)

M
(�,�)
n (x)

Cn−1(x), n�1, (3.10)

where

Cn(x) := Qn(x)

M
(�,�)
n (x)

, n�0.

11



From (2.15) and Lemma 3.4

lim
n→∞ n

�

1− �

k
(�,�)
n−1
k̃Mn−1

M
(�,�)
n−1 (x)

M
(�,�)
n (x)

= −�



,

holds uniformly on compact subsets ofC\[0,∞).
Now, we are in the same conditions as in the proof of Theorem 6 in[5]. Therefore, we can deduce the

result in the same way as in[5]. �

If we want to obtain a more detailed asymptotic information about the�-Sobolev polynomials, we
must give the Plancherel–Rotach type asymptotics of these polynomials.

Theorem 3.5(Relative Plancherel–Rotach-type asymptotics).It holds

lim
n→∞

Qn(nx)

M
(�,�)
n (nx)

=

[�( (1−�)x−(1+�)

2
√

� ) + √
�]


�( (1−�)x−(1+�)
2
√

� ) + √
�

, (3.11)

uniformly on compact subsets ofC\[0, (1+√
�)2/(1−�)],where�(x)=x+√

x2 − 1with
√
x2 − 1> 0

if x >1, i.e., the conformal mapping ofC\[−1,1] onto the exterior of the closed unit disk.

Proof. Making the change of variablex → nx in (3.5), using this relation for the scaled polynomials in
a recursive way and dividing byM(�,�)

n (nx) we get

Qn(nx)

M
(�,�)
n (nx)

=
n∑

j=0
(−1)j b(n)n−j

M
(�,�)
n−j (nx) + (n − j)

�
1−�M

(�,�)
n−j−1(nx)

M
(�,�)
n (nx)

, (3.12)

where

b(n)n = 1,

b
(n)
n−j =

(
�

1− �

)j j∏
i=1

(n − i + 1)
k
(�,�)
n−i

k̃Mn−i

, j = 1, . . . , n.

Now, we are in a similar situation as in the proof of Theorem 7 in[5] and like for that proof, we need
again a dominant for (3.12) in order to apply Lebesgue’s dominated convergence theorem. The key to
the proof of Theorem 7 in[5] is that the sequencek(�,�)n /k̃Mn �C< 1 for all n�1 (see[5, f.(14)]), but in
general this is not true in our situation as we have observed by numerical computations for certain values
of �> 1 andn being small. However, in[1] a technical result was established in order to solve a similar
problem. This result can be rewritten as

Lemma 3.6. There exist constants C and r withC >1 and0<r <1 such thatd(n)
i = k

(�,�)
n−i /k̃

M
n−i verify

0<d
(n)
i <Cri for all n�0 and0�i�n.

Proof. The proof is the same as the one of the Lemma 3.2 in[1] but now taking into account Lemma
3.4. �

12



Using the above lemma, we can obtain a dominant for (3.12) and therefore, we get Theorem 3.5 following
the same steps as in the proof of Theorem 7 in[5]. �
Obviously, theCorollaries8and9 in[5] remain true for the�-Meixner–Sobolevorthogonalpolynomials

associated to�-coherent pairs of type I.

4. Laguerre–Sobolev as limit case of Meixner–Sobolev

In [15], the authors obtained asymptotic properties for coherent pairs of positive-definite linear func-
tionals of Laguerre type. In this section, we shall recover some of these results using another approach
via limit relations by using the asymptotic properties for�-coherent pairs of positive-definite linear
functionals of Meixner type obtained in the previous section.
Monic Laguerre polynomials{L(�)

n (x)}n are orthogonal with respect to the Laguerre linear functional
u(�) defined by

〈u(�), p〉 : =
∫ +∞

0
p(x)

x�e−x

�(� + 1)
dx, �> − 1, p ∈ P.

We shall denote

k(�)n : =〈u(�), (L(�)
n (x))2〉 = n!�(n + � + 1)

�(� + 1)
, n�0. (4.1)

Note that

lim
�↑1(1− �)2nk(�+1,�)n = k(�)n , n�0 (4.2)

as well as

lim
�↑1(1− �)nM(�+1,�)

n

(
x

1− �

)
= L(�)

n (x), n�0. (4.3)

In [14] Meijer obtained

Theorem 4.1. Let (u0, u1) be a coherent pair of positive-definite linear functionals of Laguerre type. If
u1 = u(�) is the Laguerre linear functional,then

(a) If �> 0, then

u0 = (x + a)

�
u(�−1), a�0.

(b) If � = 0, thenu0 = u(0) + M�(x), whereM�0.
(c) If −1< �< 0, thenu0 = u(�).

We shall refer to a coherent pair of linear functionals, whereu1 is the Laguerre linear functional as a
coherent pair of linear functionals of Laguerre type I.

13



Let (u0, u1) be a coherent pair of positive-definite linear functionals of Laguerre type I, and let us
denote

〈p, r〉LS : =〈u0, pr〉 + �〈u(�), p′r ′〉, ��0. (4.4)

Let {Qn(x; �, �,M, a)}n be the MOPS associated with the above inner product. We shall denote
k̃Ln = 〈Qn(x; �, �,M, a),Qn(x; �, �,M, a)〉LS. (4.5)

Lemma 4.2(Meijer et al., Lemma 3.1).Let (u0, u1) be a coherent pair of positive-definite linear func-
tionals of Laguerre type I. Then,

L(�)
n (x) + nL

(�)
n−1(x) = Qn(x; �, �,M, a) + n

k
(�)
n−1
k̃Ln−1

Qn−1(x; �, �,M, a) , n�1, (4.6)

wherek(�)n and k̃Ln are given in(4.1)and(4.5),respectively,andQ0(x; �, �,M, a) = 1.

Lemma 4.3(Meijer et al., Lemma 3.2).(1) If �> 0, then

k̃Ln = k(�)n + (� + 1)n2k(�)n−1 + a

�
k(�−1)n − n2

(k
(�)
n−1)

2

k̃Ln−1
, n�1 , k̃L0 : =� + a

�
. (4.7)

(2) If −1< ��0, then

k̃Ln = k(�)n + (� + 1)n2k(�)n−1 − n2
(k

(�)
n−1)

2

k̃Ln−1
, n�1, k̃L0 : =

{
1, −1< �< 0,
1+ M, � = 0.

(4.8)

Proposition 4.4. Let {Qn(x; �; �,M, a)}n be the MOPS associated with the inner product(4.4)and let
{Qn(x; �, �; �,M, a)}n be the MOPS associated with the inner product(3.1).Then,

lim
�↑1(1− �)nQn

(
x

1− �
; � + 1,�; �

(1− �)2
,M,

a

1− �

)
= Qn(x; �; �,M, a). (4.9)

Proof. If �> 0, first note that the following limit holds:

lim
�↑1 (1− �)2nk̃Mn

(
� + 1,�; �

(1− �)2
,

a

1− �

)
= k̃Ln (�, �, a) (4.10)

as consequence of

lim
�↑1 k̃

M
0

(
� + 1,�; �

(1− �)2
,

a

1− �

)
= k̃L0 (�, �, a) = 1+ a

�
,

and (4.2). The limit relation (4.9) follows from (3.5), (4.3), (4.10) and

Q0

(
x

1− �
; � + 1,�; �

(1− �)2
,M,

a

1− �

)
= Q0(x; �, �; �,M, a) = 1.

If −1< ��0, the proof follows as in the previous case from (4.8).�
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Corollary 4.5. Let{L(�)
n (x)}n be the Laguerre MOPS and let{Qn(x; �, �,M, a)}n be the MOPS associ-

ated with(4.4).Then,

lim
n→∞

Qn(x; �, �,M, a)

L
(�−1)
n (x)

= � + √
�(4+ �)

2�
, (4.11)

uniformly on compact subsets ofC\[0,+∞).

Proof. In order to recover (4.11) from theasymptotic properties ofMeixner type,we can compute directly
the limit as� ↑ 1 in (3.4), with� → �/(1− �)2 (see 4.9), since all the steps given in order to obtain the
asymptotic behavior (3.4) for�-coherent pairs of linear functionals of Meixner type I, are valid if we first
compute an appropriate limit when� ↑ 1. �
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