Δ-Sobolev orthogonal polynomials of Meixner type: asymptotics and limit relation

I. Area ${ }^{\text {a }}$, E. Godoy ${ }^{\text {b }}$, F. Marcellán ${ }^{\text {c }}$, J.J. Moreno-Balcázar ${ }^{\text {d,* }}$
${ }^{\text {a }}$ Departamento de Matemática Aplicada II, E.T.S.E. de Telecomunicación, Universidade de Vigo,Campus Lagoas-Marcosende, 36200 Vigo, Spain
${ }^{\mathrm{b}}$ Departamento de Matemática Aplicada II, E.T.S.I. Industriales, Universidade de Vigo, Lagoas-Marcosende, 36200 Vigo, Spain
${ }^{\text {c }}$ Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III, Avenida de la Universidad, 30, 28911 Leganés-Madrid, Spain
${ }^{\mathrm{d}}$ Departamento de Estadística y Matemática Aplicada, Edificio Científico Técnico III, Universidad de Almería, 04120 Almería, Spain, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Spain

Abstract

Let $\left\{Q_{n}(x)\right\}_{n}$ be the sequence of monic polynomials orthogonal with respect to the Sobolev-type inner product $$
\langle p(x), r(x)\rangle_{\mathrm{S}}=\left\langle\boldsymbol{u}_{0}, p(x) r(x)\right\rangle+\lambda\left\langle\boldsymbol{u}_{1},(\Delta p)(x)(\Delta r)(x)\right\rangle,
$$ where $\lambda \geqslant 0,(\Delta f)(x)=f(x+1)-f(x)$ denotes the forward difference operator and $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ is a Δ-coherent pair of positive-definite linear functionals being \boldsymbol{u}_{1} the Meixner linear functional. In this paper, relative asymptotics for the $\left\{Q_{n}(x)\right\}_{n}$ sequence with respect to Meixner polynomials on compact subsets of $\mathbb{C} \backslash[0,+\infty)$ is obtained. This relative asymptotics is also given for the scaled polynomials. In both cases, we deduce the same asymptotics as we have for the self- Δ-coherent pair, that is, when $\boldsymbol{u}_{0}=\boldsymbol{u}_{1}$ is the Meixner linear functional. Furthermore, we establish a limit relation between these orthogonal polynomials and the Laguerre-Sobolev orthogonal polynomials which is analogous to the one existing between Meixner and Laguerre polynomials in the Askey scheme.

Keywords: Orthogonal polynomials; Sobolev orthogonal polynomials; Meixner polynomials; Δ-coherent pairs; Asymptotics; Linear functionals

[^0]
1. Introduction

The study of polynomials orthogonal with respect to an inner product involving differences was started in two papers $[7,8]$ by Bavinck. There, the inner product

$$
\begin{equation*}
\langle p, q\rangle=\int_{\mathbb{R}} p(t) q(t) \mathrm{d} \mu(t)+\lambda(\Delta p)(c)(\Delta q)(c) \tag{1.1}
\end{equation*}
$$

was introduced, where p, q are polynomials with real coefficients, $c \in \mathbb{R}, \mu$ is a distribution function with infinite support such that μ has no points of increase in the interval $(c, c+1), \lambda \in \mathbb{R}_{+}$and $(\Delta p)(c)=$ $p(c+1)-p(c)$ denotes the forward difference operator.

Some algebraic and analytic results for the polynomials orthogonal with respect to (1.1) were obtained in $[7,8]$, with special emphasis on the location of their zeros. Furthermore, when μ is the Meixner weight function and $c=0$, spectral properties were deduced. Later on, in [9] the authors obtained a difference operator of infinite order for which these orthogonal polynomials (called Sobolev-type Meixner polynomials) are eigenfunctions. The name Sobolev-type is justified from the analogy with the case

$$
\begin{equation*}
\langle p, q\rangle=\int_{\mathbb{R}} p(t) q(t) \mathrm{d} \mu(t)+M p^{\prime}(c) q^{\prime}(c) \tag{1.2}
\end{equation*}
$$

which has been widely considered in the literature (for example, see the survey in Sobolev polynomials [13]). Note that (1.2) can be considered as a limit case of (1.1). Later on, under the influence of the developments in the so-called continuous case, i.e., inner products of the form

$$
\langle p, q\rangle=\int_{\mathbb{R}} p(t) q(t) \mathrm{d} \mu_{0}(t)+\lambda \int_{\mathbb{R}} p^{\prime}(t) q^{\prime}(t) \mathrm{d} \mu_{1}(t),
$$

where μ_{0} and μ_{1} are nonatomic measures satisfying some extra conditions (the so-called coherence, see [12,14]), the research is focused on the analysis of polynomials orthogonal with respect to the inner product

$$
\begin{equation*}
\langle p, q\rangle=\int_{\mathbb{R}} p(t) q(t) \mathrm{d} \mu_{0}(t)+\lambda \int_{\mathbb{R}}(\Delta p)(t)(\Delta q)(t) \mathrm{d} \mu_{1}(t), \tag{1.3}
\end{equation*}
$$

where μ_{0}, μ_{1} are measures with a countable set as its support. In that case, the concept of Δ-coherent pair was introduced as a discrete analogue of the continuous case (see [4]) and a classification of such Δ-coherent pairs was given (see [2]). One of the measures μ_{0}, μ_{1} must be classical, i.e., correspond to Charlier, Kravchuk, Meixner, or Hahn polynomials. In particular, the Meixner linear functional is self-Δ-coherent. If $\mu_{0}=\mu_{1}$ is the Meixner weight function, the relative asymptotics for these polynomials orthogonal with respect to (1.3) in terms of the Meixner polynomials has been analyzed in [5] as well as some analytic properties of their zero distribution (see [3]).

In this paper we study the asymptotic properties for polynomials orthogonal with respect to a Δ Sobolev inner product built from a Δ-coherent pair of measures (μ_{0}, μ_{1}) of type I, that is, assuming that μ_{1} is the Meixner weight function and therefore, according to the classification of the Δ-coherent pairs given in [2], μ_{0} is a polynomial modification of degree one of the measure μ_{1}. We will establish that this polynomial modification does not influence the asymptotic behavior of the Δ-Sobolev orthogonal polynomials. Another goal of this paper is to show that one family of continuous Sobolev orthogonal
polynomials can be seen as a limit of the Δ-Sobolev polynomials introduced in this work. In this way, we obtain some results contained in [15] for the Laguerre-Sobolev orthogonal polynomials.

The structure of the paper is the following: In Section 2, we introduce very well-known properties of Meixner polynomials which will be very useful along this paper and some notions about Δ-coherence. In Section 3, the outer relative asymptotics and the outer Plancherel-Rotach type asymptotics for polynomials orthogonal with respect to the inner product (1.3) when $\left(\mu_{0}, \mu_{1}\right)$ is a Δ-coherent pair of type I in terms of Meixner polynomials are deduced. Finally, in Section 4, we establish a limit relation between these orthogonal polynomials and the Laguerre-Sobolev orthogonal polynomials which is analogous to the one existing between Meixner and Laguerre polynomials in the Askey scheme and we recover some results given in [15] for Laguerre-Sobolev orthogonal polynomials.

2. Basic definitions and notations

2.1. Δ-coherent pairs of linear functionals

Let \mathbb{P} be the linear space of polynomials with complex coefficients and let \mathbb{P}^{\prime} be its algebraic dual space. We denote $\langle\boldsymbol{u}, p\rangle$ the duality bracket for $\boldsymbol{u} \in \mathbb{P}^{\prime}$ and $p \in \mathbb{P}$, and $(\boldsymbol{u})_{n}=\left\langle\boldsymbol{u}, x^{n}\right\rangle$ with $n \geqslant 0$ are the canonical moments of \boldsymbol{u}.

Definition 2.1. A linear functional \boldsymbol{u} is said to be quasi-definite if all the principal submatrices $H_{k}=$ $\left[(\boldsymbol{u})_{i+j}\right]_{i, j=0}^{k}, k \geqslant 0$, of the Hankel moment matrix associated with \boldsymbol{u} are nonsingular.

Given a quasi-definite linear functional \boldsymbol{u}, there exists a family of monic polynomials $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ orthogonal with respect to \boldsymbol{u}, i.e. $P_{n}(x)=x^{n}+$ terms of lower degree, for every $n \geqslant 0$, and $\left\langle\boldsymbol{u}, P_{n} P_{m}\right\rangle=$ $\Gamma_{n} \delta_{n, m}, \Gamma_{n} \neq 0$, for every $n, m \geqslant 0$. Such a sequence is said to be a monic orthogonal polynomial sequence (MOPS) associated with the linear functional \boldsymbol{u}.

Next, we introduce the concept of positive-definite linear functional [10, p. 13].
Definition 2.2. A linear functional \boldsymbol{u} is said to be positive-definite if its moments are all real and $\operatorname{det}\left(H_{k}\right)>0$, for every $k \geqslant 0$.

Definition 2.3. Given a complex number c, the Dirac functional $\boldsymbol{\delta}(x-c)$ is defined by

$$
\langle\boldsymbol{\delta}(x-c), p\rangle:=p(c), \quad \text { for every } p \in \mathbb{P} .
$$

Definition 2.4. Let \boldsymbol{u} be a linear functional and p be a fixed polynomial. We define the linear functional $p(x) \boldsymbol{u}$ as follows:

$$
\langle p \boldsymbol{u}, q\rangle:=\langle\boldsymbol{u}, p q\rangle, \quad \text { for every } q \in \mathbb{P} .
$$

For each complex number c we introduce the linear functional $(x-c)^{-1} \boldsymbol{u}$ such that

$$
\left\langle(x-c)^{-1} \boldsymbol{u}, q\right\rangle:=\left\langle\boldsymbol{u}, \frac{q(x)-q(c)}{x-c}\right\rangle, \quad \text { for every } q \in \mathbb{P} .
$$

Note that

$$
(x-c)^{-1}((x-c) \boldsymbol{u})=\boldsymbol{u}-(\boldsymbol{u})_{0} \boldsymbol{\delta}(x-c),
$$

while $(x-c)\left((x-c)^{-1} \boldsymbol{u}\right)=\boldsymbol{u}$.
Definition 2.5. The forward difference operator Δ and the backward difference operator ∇ are defined by

$$
(\Delta f)(x):=f(x+1)-f(x), \quad(\nabla f)(x):=f(x)-f(x-1) .
$$

Definition 2.6. For $\boldsymbol{u} \in \mathbb{P}^{\prime}$, we introduce the linear functional $\Delta \boldsymbol{u}$ as

$$
\langle\Delta \boldsymbol{u}, p\rangle=-\langle\boldsymbol{u}, \Delta p\rangle, \quad \text { for every } p \in \mathbb{P} .
$$

Definition 2.7. A linear functional \boldsymbol{u} is said to be a classical discrete linear functional if \boldsymbol{u} is quasi-definite and there exist polynomials ϕ and ψ, with $\operatorname{deg}(\phi) \leqslant 2$ and $\operatorname{deg}(\psi)=1$ such that

$$
\begin{equation*}
\Delta[\phi \boldsymbol{u}]=\psi \boldsymbol{u} . \tag{2.1}
\end{equation*}
$$

The corresponding MOPS associated with \boldsymbol{u} is said to be a classical discrete MOPS.
The Meixner linear functional $\boldsymbol{u}^{(\gamma, \mu)}$, defined by

$$
\begin{equation*}
\left\langle\boldsymbol{u}^{(\gamma, \mu)}, p\right\rangle:=\sum_{x=0}^{\infty} p(x) \frac{\mu^{x} \Gamma(x+\gamma)(1-\mu)^{\gamma}}{\Gamma(\gamma) \Gamma(x+1)}, \quad \gamma>0, \quad 0<\mu<1, \quad p \in \mathbb{P} \tag{2.2}
\end{equation*}
$$

is a classical discrete linear functional since it satisfies the distributional equation (2.1) with

$$
\phi(x):=\mu(x+\gamma), \quad \psi(x):=\gamma \mu-x(1-\mu) .
$$

Definition 2.8. Let \boldsymbol{u}_{0} and \boldsymbol{u}_{1} be two quasi-definite linear functionals, and let $\left\{P_{n}(x)\right\}_{n}$ and $\left\{T_{n}(x)\right\}_{n}$ be the MOPS associated with \boldsymbol{u}_{0} and \boldsymbol{u}_{1}, respectively. We say that $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ is a Δ-coherent pair of linear functionals if

$$
\begin{equation*}
T_{n}(x)=\frac{\left(\Delta P_{n+1}\right)(x)}{n+1}-\sigma_{n} \frac{\left(\Delta P_{n}\right)(x)}{n}, \quad n \geqslant 1 \tag{2.3}
\end{equation*}
$$

where $\left\{\sigma_{n}\right\}_{n}$ is a sequence of nonzero complex numbers.
In [4] we have proved that if $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ is a Δ-coherent pair of linear functionals, then at least one of them must be a classical discrete linear functional (Charlier, Meixner).

2.2. Δ-coherent pairs of Meixner type

Definition 2.9. Let $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ be a Δ-coherent pair of linear functionals. If \boldsymbol{u}_{0} or \boldsymbol{u}_{1} is the Meixner linear functional $\boldsymbol{u}^{(\gamma, \mu)}$ defined in (2.2), then $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ is said to be a Δ-coherent pair of Meixner type.

Furthermore, we deduced in [2] the following:
Proposition 2.10. Let $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ be a Δ-coherent pair of positive-definite linear functionals of Meixner type.
(1) If \boldsymbol{u}_{1} is the Meixner linear functional $\boldsymbol{u}^{(\gamma, \mu)}$, then
(a) If $\gamma>1$, then

$$
\begin{equation*}
\boldsymbol{u}_{0}=(1-\mu)\left(\frac{x+a}{\gamma-1}\right) \boldsymbol{u}^{(\gamma-1, \mu)}=\boldsymbol{u}^{(\gamma, \mu)}+\frac{(1-\mu)(1-\gamma+a)}{\gamma-1} \boldsymbol{u}^{(\gamma-1, \mu)}, \quad a \geqslant 0 . \tag{2.4}
\end{equation*}
$$

(b) If $\gamma=1$, then $\boldsymbol{u}_{0}=\boldsymbol{u}^{(1, \mu)}+K \boldsymbol{\delta}(x)$, with $K \geqslant 0$.
(c) If $0<\gamma<1$, then $\boldsymbol{u}_{0}=\boldsymbol{u}^{(\gamma, \mu)}$.
(2) If \boldsymbol{u}_{0} is the Meixner linear functional $\boldsymbol{u}^{(\gamma, \mu)}$, then

$$
\begin{equation*}
\boldsymbol{u}_{1}=\frac{\gamma}{(1-\mu)(x+a)} \boldsymbol{u}^{(\gamma+1, \mu)}+K \boldsymbol{\delta}(x+a), \quad K>0, \quad a \geqslant 0 . \tag{2.5}
\end{equation*}
$$

2.3. Monic Meixner polynomials

Monic Meixner orthogonal polynomials denoted by $\left\{M_{n}^{(\gamma, \mu)}(x)\right\}_{n}$ are the polynomial solution of a second-order linear difference equation of hypergeometric type $[11,16]$

$$
\begin{align*}
& \sigma(x)(\Delta \nabla y)(x)+\tau(x)(\Delta y)(x)+\lambda_{n} y(x)=0, \\
& \sigma(x):=x, \quad \tau(x):=\gamma \mu-x(1-\mu), \quad \lambda_{n}:=n(1-\mu) . \tag{2.6}
\end{align*}
$$

These polynomials $\left\{M_{n}^{(\gamma, \mu)}(x)\right\}_{n}$ are orthogonal on $\mathbb{N} \cup\{0\}$ with respect to the linear functional (2.2).
For monic Meixner orthogonal polynomials we get $[6,11,16]$.

2.3.1. Three-term recurrence relation

$$
\begin{align*}
& x M_{n}^{(\gamma, \mu)}(x)=M_{n+1}^{(\gamma, \mu)}(x)+B_{n}^{(\gamma, \mu)} M_{n}^{(\gamma, \mu)}(x)+C_{n}^{(\gamma, \mu)} M_{n-1}^{(\gamma, \mu)}(x), \quad n \geqslant 1, \tag{2.7}\\
& B_{n}^{(\gamma, \mu)}=\frac{\gamma \mu+n(1+\mu)}{1-\mu}, \quad C_{n}^{(\gamma, \mu)}=\frac{\mu n(\gamma+n-1)}{(1-\mu)^{2}} \tag{2.8}
\end{align*}
$$

with the initial conditions $M_{-1}^{(\gamma, \mu)}(x):=0$ and $M_{0}^{(\gamma, \mu)}(x):=1$. Furthermore, for $n \geqslant 0$,

$$
\begin{equation*}
M_{n}^{(\gamma, \mu)}(0)=\left(\frac{\mu}{\mu-1}\right)^{n}(\gamma)_{n}, \quad M_{n}^{(1, \mu)}(0)+n \frac{\mu}{1-\mu} M_{n-1}^{(1, \mu)}(0)=0, \tag{2.9}
\end{equation*}
$$

where $(a)_{s}$ denotes the Pochhammer symbol, $(a)_{0}=1,(a)_{s}=a(a+1) \cdots(a+s-1), s \geqslant 1$.

2.3.2. Squared norm

From (2.8)

$$
\begin{equation*}
k_{n}^{(\gamma, \mu)}:=\left\langle\boldsymbol{u}^{(\gamma, \mu)},\left(M_{n}^{(\gamma, \mu)}(x)\right)^{2}\right\rangle=\frac{n!(\gamma)_{n} \mu^{n}}{(1-\mu)^{2 n}}, \quad n \geqslant 0 . \tag{2.10}
\end{equation*}
$$

The following relations can be easily derived from the definition of $k_{n}^{(\gamma, \mu)}$:

$$
\begin{equation*}
k_{0}^{(\gamma, \mu)}=1, \quad k_{n}^{(\gamma, \mu)}=\frac{(\gamma+n-1) \mu n}{(1-\mu)^{2}} k_{n-1}^{(\gamma, \mu)}, \quad n \geqslant 1 . \tag{2.11}
\end{equation*}
$$

2.3.3. Difference representations

We have

$$
\begin{equation*}
M_{n}^{(\gamma, \mu)}(x)=\frac{\left(\Delta M_{n+1}^{(\gamma, \mu)}\right)(x)}{n+1}+\frac{\mu}{1-\mu}\left(\Delta M_{n}^{(\gamma, \mu)}\right)(x), \quad n \geqslant 0 . \tag{2.12}
\end{equation*}
$$

The following relation between two different sequences of Meixner polynomials holds:

$$
\begin{equation*}
M_{n}^{(\gamma+1, \mu)}(x)=\frac{\left(\Delta M_{n+1}^{(\gamma, \mu)}\right)(x)}{n+1}, \quad n \geqslant 0 . \tag{2.13}
\end{equation*}
$$

From the above relation and (2.12), we get

$$
\begin{equation*}
M_{n}^{(\gamma-1, \mu)}(x)=M_{n}^{(\gamma, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(\gamma, \mu)}(x), \quad n \geqslant 0, \tag{2.14}
\end{equation*}
$$

which is valid for $\gamma>1$.

2.3.4. Asymptotic property

From (2.7) and using Poincaré's Theorem the relative asymptotics

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{M_{n+1}^{(\gamma, \mu)}(x)}{n M_{n}^{(\gamma, \mu)}(x)}=\frac{1}{\mu-1} \tag{2.15}
\end{equation*}
$$

holds uniformly on compact subsets of $\mathbb{C} \backslash[0,+\infty)$.

3. Asymptotics of Δ-Meixner-Sobolev orthogonal polynomials of type I

We shall denote $\left\{Q_{n}(x ; \gamma, \mu ; \lambda, K, a) \equiv Q_{n}(x)\right\}_{n}$ the sequence of monic polynomials orthogonal with respect to the Sobolev type inner product

$$
\begin{equation*}
\langle p(x), r(x)\rangle_{\mathrm{S}}^{\mathrm{M}}:=\left\langle\boldsymbol{u}_{0}, p(x) r(x)\right\rangle+\lambda\left\langle\boldsymbol{u}_{1},(\Delta p)(x)(\Delta r)(x)\right\rangle, \tag{3.1}
\end{equation*}
$$

where $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ be a Δ-coherent pair of linear functionals with $\boldsymbol{u}_{1}=\boldsymbol{u}^{(\gamma, \mu)}$ and we shall refer to this as Δ-coherent pairs of Meixner type I. Moreover, we shall denote

$$
\begin{equation*}
\tilde{k}_{n}^{\mathrm{M}}:=\left\langle Q_{n}(x), Q_{n}(x)\right\rangle_{\mathrm{S}}^{\mathrm{M}}, \quad n \geqslant 0 . \tag{3.2}
\end{equation*}
$$

We can summarize the asymptotic behavior of polynomials orthogonal with respect to (3.1) in the following:

Theorem 3.1 (Relative asymptotics). Let $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ be a Δ-coherent pair of linear functionals of Meixner type I. Let us denote $\left\{Q_{n}(x)\right\}_{n}$ the MOPS with respect to (3.1) and

$$
\begin{equation*}
\eta:=\frac{\mu(1+\mu)+\lambda(1-\mu)^{2}+\sqrt{\left(\mu(1+\mu)+\lambda(1-\mu)^{2}\right)^{2}-4 \mu^{3}}}{2 \mu} \tag{3.3}
\end{equation*}
$$

The following limit relation holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{Q_{n}(x)}{M_{n}^{(\gamma, \mu)}(x)}=\frac{\eta(1-\mu)}{\eta-\mu} \tag{3.4}
\end{equation*}
$$

uniformly on compact subsets of $\mathbb{C} \backslash[0,+\infty)$.
In order to prove the above theorem we need some analytic and algebraic results.
Lemma 3.2. Let $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ be a Δ-coherent pair of linear functionals, with $\boldsymbol{u}_{1}=\boldsymbol{u}^{(\gamma, \mu)}$. Then,

$$
\begin{equation*}
M_{n}^{(\gamma, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(\gamma, \mu)}(x)=Q_{n}(x)+n \frac{\mu}{1-\mu} \frac{k_{n-1}^{(\gamma, \mu)}}{\tilde{k}_{n-1}^{M}} Q_{n-1}(x), \quad n \geqslant 1, \tag{3.5}
\end{equation*}
$$

where $k_{n}^{(\gamma, \mu)}$ and \tilde{k}_{n}^{M} are given in (2.10) and (3.2), respectively, and $Q_{0}(x)=1$.
Proof. (1) If $\gamma>1$, then \boldsymbol{u}_{0} is given in (2.4). If we consider the expansion

$$
M_{n}^{(\gamma, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(\gamma, \mu)}(x)=Q_{n}(x)+\sum_{i=0}^{n-1} f_{i, n} Q_{i}(x)
$$

then, from (2.12) and (2.14), we get, for $0 \leqslant i \leqslant n-1$,

$$
\begin{aligned}
f_{i, n}= & \frac{1}{\tilde{k}_{i}^{M}}\left\langle M_{n}^{(\gamma, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(\gamma, \mu)}(x), Q_{i}(x)\right\rangle_{\mathrm{S}}^{\mathrm{M}} \\
= & \frac{1}{\tilde{k}_{i}^{M}}\left\{\left\langle\boldsymbol{u}_{0},\left(M_{n}^{(\gamma, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(\gamma, \mu)}(x)\right) Q_{i}(x)\right\rangle\right. \\
& \left.+\lambda\left\langle\boldsymbol{u}^{(\gamma, \mu)},\left(\left(\Delta M_{n}^{(\gamma, \mu)}\right)(x)+n \frac{\mu}{1-\mu}\left(\Delta M_{n-1}^{(\gamma, \mu)}\right)(x)\right)\left(\Delta Q_{i}\right)(x)\right\rangle\right\} \\
= & \frac{1}{\tilde{k}_{i}^{M}}\left\langle\boldsymbol{u}_{0}, M_{n}^{(\gamma-1, \mu)}(x) Q_{i}(x)\right\rangle .
\end{aligned}
$$

Taking into account (2.4), $f_{i, n}=0$ for $0 \leqslant i \leqslant n-2$. Finally, if $i=n-1$,

$$
\begin{aligned}
f_{n-1, n} & =\frac{\left\langle\boldsymbol{u}_{0}, M_{n}^{(\gamma-1, \mu)}(x) Q_{n-1}(x)\right\rangle}{\tilde{k}_{n-1}^{M}} \\
& =\frac{1}{\tilde{k}_{n-1}^{M}}\left\langle\boldsymbol{u}^{(\gamma, \mu)}+\frac{(1-\gamma+a)(1-\mu)}{\gamma-1} \boldsymbol{u}^{(\gamma-1, \mu)}, M_{n}^{(\gamma-1, \mu)}(x) Q_{n-1}(x)\right\rangle \\
& =\frac{1}{\tilde{k}_{n-1}^{M}}\left\langle\boldsymbol{u}^{(\gamma, \mu)}, M_{n}^{(\gamma-1, \mu)}(x) Q_{n-1}(x)\right\rangle \\
& =\frac{1}{\tilde{k}_{n-1}^{M}}\left\langle\boldsymbol{u}^{(\gamma, \mu)},\left(M_{n}^{(\gamma, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(\gamma, \mu)}(x)\right) Q_{n-1}(x)\right\rangle \\
& =n \frac{\mu}{1-\mu} \frac{k_{n-1}^{(\gamma, \mu)}}{\tilde{k}_{n-1}^{M}} .
\end{aligned}
$$

(2) If $\gamma=1$, then $\boldsymbol{u}_{0}=\boldsymbol{u}^{(1, \mu)}+K \boldsymbol{\delta}(x)$, with $K \geqslant 0$. Thus

$$
M_{n}^{(1, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(1, \mu)}(x)=Q_{n}(x)+\sum_{i=0}^{n-1} g_{i, n} Q_{i}(x), \quad n \geqslant 1,
$$

and the coefficients $g_{i, n}$, for $0 \leqslant i \leqslant n-1$, can be computed by using (2.12) and (2.9). Indeed

$$
\begin{aligned}
g_{i, n}= & \frac{\left\langle M_{n}^{(1, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(1, \mu)}(x), Q_{i}(x)\right\rangle_{\mathrm{S}}^{\mathrm{M}}}{\tilde{k}_{i}^{\mathrm{M}}} \\
= & \frac{1}{\tilde{k}_{i}^{M}}\left\{\left\langle\boldsymbol{u}_{0},\left(M_{n}^{(1, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(1, \mu)}(x)\right) Q_{i}(x)\right\rangle\right. \\
& \left.+\lambda\left\langle\boldsymbol{u}_{1},\left(\left(\Delta M_{n}^{(1, \mu)}\right)(x)+n \frac{\mu}{1-\mu}\left(\Delta M_{n-1}^{(1, \mu)}\right)(x)\right)\left(\Delta Q_{i}\right)(x)\right\rangle\right\} \\
= & \frac{1}{\tilde{k}_{i}^{M}}\left\{\left\langle\boldsymbol{u}^{(1, \mu)},\left(M_{n}^{(1, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(1, \mu)}(x)\right) Q_{i}(x)\right\rangle\right. \\
& +K\left(M_{n}^{(1, \mu)}(0)+n \frac{\mu}{1-\mu} M_{n-1}^{(1, \mu)}(0)\right) Q_{i}(0) \\
& \left.+\lambda\left\langle\boldsymbol{u}^{(1, \mu)}, n M_{n-1}^{(1, \mu)}(x) \Delta Q_{i}(x)\right\rangle\right\} \\
= & \frac{1}{\tilde{k}_{i}^{M}}\left\langle\boldsymbol{u}^{(1, \mu)},\left(M_{n}^{(1, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(1, \mu)}(x)\right) Q_{i}(x)\right\rangle .
\end{aligned}
$$

Thus $g_{i, n}=0$ for $0 \leqslant i \leqslant n-2$. Furthermore,

$$
g_{n-1, n}=n \frac{\mu}{1-\mu} \frac{k_{n-1}^{(1, \mu)}}{\tilde{k}_{n-1}^{M}}
$$

(3) If $0<\gamma<1$, then $\boldsymbol{u}_{0}=\boldsymbol{u}_{1}=\boldsymbol{u}^{(\gamma, \mu)}$ and (3.5) was already obtained in [3].

Lemma 3.3. The following recurrence relation for \tilde{k}_{n}^{M} holds:
(1) If $\gamma>1$, then for $n \geqslant 1$

$$
\begin{align*}
\tilde{k}_{n}^{M}= & k_{n}^{(\gamma, \mu)}+n^{2}\left(\left(\frac{\mu}{1-\mu}\right)^{2}+\lambda\right) k_{n-1}^{(\gamma, \mu)}+\frac{(1-\gamma+a)(1-\mu)}{\gamma-1} k_{n}^{(\gamma-1, \mu)} \\
& -\left(n \frac{\mu}{1-\mu}\right)^{2} \frac{\left(k_{n-1}^{(\gamma, \mu)}\right)^{2}}{\tilde{k}_{n-1}^{M}} \tag{3.6}
\end{align*}
$$

with the initial condition

$$
\tilde{k}_{0}^{M}:=\frac{(\gamma-1) \mu+a(1-\mu)}{\gamma-1} .
$$

(2) If $0<\gamma \leqslant 1$, then for $n \geqslant 1$

$$
\begin{equation*}
\tilde{k}_{n}^{M}=k_{n}^{(\gamma, \mu)}+n^{2}\left(\left(\frac{\mu}{1-\mu}\right)^{2}+\lambda\right) k_{n-1}^{(\gamma, \mu)}-\left(n \frac{\mu}{1-\mu}\right)^{2} \frac{\left(k_{n-1}^{(\gamma, \mu)}\right)^{2}}{\tilde{k}_{n-1}^{M}} \tag{3.7}
\end{equation*}
$$

with the initial condition

$$
\tilde{k}_{0}^{M}= \begin{cases}K+1, & \gamma=1 \\ 1, & 0<\gamma<1 .\end{cases}
$$

Proof. (1) From (2.14), (2.4) and (3.5),

$$
\begin{aligned}
\tilde{k}_{n}^{M}= & \left\langle Q_{n}(x), Q_{n}(x)\right\rangle_{\mathrm{S}}^{\mathrm{M}}=\left\langle Q_{n}(x), M_{n}^{(\gamma-1, \mu)}(x)\right\rangle_{\mathrm{S}}^{\mathrm{M}} \\
= & \left\langle\boldsymbol{u}_{0}, Q_{n}(x) M_{n}^{(\gamma-1, \mu)}(x)\right\rangle+\lambda n^{2} k_{n-1}^{(\gamma, \mu)} \\
= & \left\langle\boldsymbol{u}^{(\gamma, \mu)}, Q_{n}(x) M_{n}^{(\gamma-1, \mu)}(x)\right\rangle+\lambda n^{2} k_{n-1}^{(\gamma, \mu)}+\frac{(1-\gamma+a)(1-\mu)}{\gamma-1} k_{n}^{(\gamma-1, \mu)} \\
= & \left\langle\boldsymbol{u}^{(\gamma, \mu)},\left(M_{n}^{(\gamma, \mu)}(x)+n \frac{\mu}{1-\mu}\left(M_{n-1}^{(\gamma, \mu)}(x)-\frac{k_{n-1}^{(\gamma, \mu)}}{\tilde{k}_{n-1}^{M}} Q_{n-1}(x)\right)\right)\right. \\
& \left.\times\left(M_{n}^{(\gamma, \mu)}(x)+n \frac{\mu}{1-\mu} M_{n-1}^{(\gamma, \mu)}(x)\right)\right\rangle \\
& +\lambda n^{2} k_{n-1}^{(\gamma, \mu)}+\frac{(1-\gamma+a)(1-\mu)}{\gamma-1} k_{n}^{(\gamma-1, \mu)} .
\end{aligned}
$$

Thus, (3.6) follows.
(2) If $0<\gamma<1$, (3.7) was obtained in [3]. In the case $\gamma=1$, it is enough to take into account the relation (2.9) and use the same technique as in [3].

The initial condition can be deduced in the three above cases from the definition of the Sobolev inner product.

Remark 1. Note that case $\gamma=1$ in (3.7) is a consequence of (3.6) taking into account (2.10) as a limit case, since $\lim _{\gamma \downarrow 1} k_{n}^{(\gamma-1, \mu)}=0, n \geqslant 1$.

Now, we obtain the asymptotic behavior of the squared Δ-Sobolev norms.

Lemma 3.4.

$$
\begin{equation*}
\eta=\lim _{n \rightarrow \infty} \frac{\tilde{k}_{n}^{M}}{k_{n}^{(\gamma, \mu)}}=\frac{\mu(1+\mu)+\lambda(1-\mu)^{2}+\sqrt{\left(\mu(1+\mu)+\lambda(1-\mu)^{2}\right)^{2}-4 \mu^{3}}}{2 \mu}>1 \tag{3.8}
\end{equation*}
$$

Proof. First, we assume $\gamma>1$. If we divide (3.6) by $k_{n}^{(\gamma, \mu)}$, by using (2.11) we get

$$
\frac{\tilde{k}_{n}^{M}}{k_{n}^{(\gamma, \mu)}}=A(n)+B(n)-C(n) \frac{k_{n-1}^{(\gamma, \mu)}}{\tilde{k}_{n-1}^{M}},
$$

where

$$
A(n)=1+\frac{\left(\lambda(\mu-1)^{2}+\mu^{2}\right) n}{\mu(\gamma+n-1)}, \quad B(n)=\frac{(1-\gamma+a)(1-\mu)}{\gamma+n-1}, \quad C(n)=\frac{\mu n}{n+\gamma-1} .
$$

Let us define

$$
s_{n+1}:=s_{n} \frac{\tilde{k}_{n}^{M}}{k_{n}^{(\gamma, \mu)}}
$$

with the initial condition $s_{0}=1$. Thus, we can write the above expression as

$$
\begin{equation*}
s_{n+1}=(A(n)+B(n)) s_{n}-C(n) s_{n-1}, \tag{3.9}
\end{equation*}
$$

where $s_{0}=1$ and $s_{1}=\tilde{k}_{0}^{M} / k_{0}^{(\gamma, \mu)}$. Taking into account

$$
\lim _{n \rightarrow \infty} A(n)=\frac{\mu^{2}+\mu+\lambda(1-\mu)^{2}}{\mu}, \quad \lim _{n \rightarrow \infty} B(n)=0, \quad \lim _{n \rightarrow \infty} C(n)=\mu
$$

the roots of the limit characteristic equation of (3.9)

$$
z^{2}-\frac{\mu^{2}+\mu+\lambda(1-\mu)^{2}}{\mu} z+\mu=0
$$

are

$$
\begin{aligned}
& z_{1}=\frac{\mu(1+\mu)+\lambda(1-\mu)^{2}+\sqrt{\left(\mu(1+\mu)+\lambda(1-\mu)^{2}\right)^{2}-4 \mu^{3}}}{2 \mu}, \\
& z_{2}=\frac{\mu(1+\mu)+\lambda(1-\mu)^{2}-\sqrt{\left(\mu(1+\mu)+\lambda(1-\mu)^{2}\right)^{2}-4 \mu^{3}}}{2 \mu} .
\end{aligned}
$$

Because of Poincaré's Theorem, the sequence $\tilde{k}_{n}^{M} / k_{n}^{(\gamma, \mu)}=s_{n+1} / s_{n}$ converges to z_{1} or z_{2}. On the other hand, using the extremal property of the monic polynomials and the expression of \boldsymbol{u}_{0} given in (2.4) we get

$$
\tilde{k}_{n}^{M}=\left\langle Q_{n}(x), Q_{n}(x)\right\rangle_{\mathrm{S}}^{\mathrm{M}} \geqslant \frac{1-\mu}{\gamma-1}\left\langle\boldsymbol{u}^{(\gamma-1, \mu)},(x+a) R_{n}^{2}(x)\right\rangle+\lambda n^{2} k_{n-1}^{(\gamma, \mu)},
$$

where R_{n} is the monic polynomial of degree n, orthogonal with respect to the positive definite functional $[(\gamma-1) /(1-\mu)] \boldsymbol{u}_{0}$. Taking into account (see [10, p. 35])

$$
(x+a) R_{n}(x)=M_{n+1}^{(\gamma-1, \mu)}(x)-\frac{M_{n+1}^{(\gamma-1, \mu)}(-a)}{M_{n}^{(\gamma-1, \mu)}(-a)} M_{n}^{(\gamma-1, \mu)}(x),
$$

and so

$$
\left\langle\boldsymbol{u}^{(\gamma-1, \mu)},(x+a) R_{n}^{2}(x)\right\rangle=-\frac{M_{n+1}^{(\gamma-1, \mu)}(-a)}{M_{n}^{(\gamma-1, \mu)}(-a)} k_{n}^{(\gamma-1, \mu)} .
$$

Thus,

$$
\tilde{k}_{n}^{M} \geqslant \lambda n^{2} k_{n-1}^{(\gamma, \mu)}-\frac{M_{n+1}^{(\gamma-1, \mu)}(-a)}{M_{n}^{(\gamma-1, \mu)}(-a)} \frac{1-\mu}{\gamma-1} k_{n}^{(\gamma-1, \mu)} .
$$

Now, using (2.10) and (2.11) we get

$$
\frac{\tilde{k}_{n}^{M}}{k_{n}^{(\gamma, \mu)}} \geqslant \frac{n}{n+\gamma-1}\left(\lambda \frac{(1-\mu)^{2}}{\mu}-(1-\mu) \frac{M_{n+1}^{(\gamma-1, \mu)}(-a)}{n M_{n}^{(\gamma-1, \mu)}(-a)}\right) .
$$

Taking into account the ratio asymptotic (2.15), we get that the sequence $\tilde{k}_{n}^{M} / k_{n}^{(\gamma, \mu)}$ is bounded from below by a sequence which converges to $1+\lambda(1-\mu)^{2} / \mu$. This means, taking into account $\tilde{k}_{n}^{M} / k_{n}^{(\gamma, \mu)}$ converges, that $\lim _{n \rightarrow \infty} \tilde{k}_{n}^{M} / k_{n}^{(\gamma, \mu)}=z_{1}>1$.

When $0<\gamma \leqslant 1$, we can divide (3.7) by $k_{n}^{(\gamma, \mu)}$ and we get

$$
\frac{\tilde{k}_{n}^{M}}{k_{n}^{(\gamma, \mu)}}=A(n)-C(n) \frac{k_{n-1}^{(\gamma, \mu)}}{\tilde{k}_{n-1}^{M}}
$$

Following the same reasoning as in the case $\gamma>1$, we can prove the result in a more easy way because now for each $n \geqslant 0, \tilde{k}_{n}^{M} \geqslant k_{n}^{(\gamma, \mu)}$, that is, $\tilde{k}_{n}^{M} / k_{n}^{(\gamma, \mu)} \geqslant 1$.

Now we can prove Theorem 3.1.
Proof of Theorem 3.1. If we divide (3.5) by $M_{n}^{(\gamma, \mu)}(x)$ we obtain

$$
\begin{equation*}
1+n \frac{\mu}{1-\mu} \frac{M_{n-1}^{(\gamma, \mu)}(x)}{M_{n}^{(\gamma, \mu)}(x)}=C_{n}(x)+n \frac{\mu}{1-\mu} \frac{k_{n-1}^{(\gamma, \mu)}}{\tilde{k}_{n-1}^{M}} \frac{M_{n-1}^{(\gamma, \mu)}(x)}{M_{n}^{(\gamma, \mu)}(x)} C_{n-1}(x), \quad n \geqslant 1, \tag{3.10}
\end{equation*}
$$

where

$$
C_{n}(x):=\frac{Q_{n}(x)}{M_{n}^{(\gamma, \mu)}(x)}, \quad n \geqslant 0 .
$$

From (2.15) and Lemma 3.4

$$
\lim _{n \rightarrow \infty} n \frac{\mu}{1-\mu} \frac{k_{n-1}^{(\gamma, \mu)}}{\tilde{k}_{n-1}^{M}} \frac{M_{n-1}^{(\gamma, \mu)}(x)}{M_{n}^{(\gamma, \mu)}(x)}=-\frac{\mu}{\eta},
$$

holds uniformly on compact subsets of $\mathbb{C} \backslash[0, \infty)$.
Now, we are in the same conditions as in the proof of Theorem 6 in [5]. Therefore, we can deduce the result in the same way as in [5].

If we want to obtain a more detailed asymptotic information about the Δ-Sobolev polynomials, we must give the Plancherel-Rotach type asymptotics of these polynomials.

Theorem 3.5 (Relative Plancherel-Rotach-type asymptotics). It holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{Q_{n}(n x)}{M_{n}^{(\gamma, \mu)}(n x)}=\frac{\eta\left[\varphi\left(\frac{(1-\mu) x-(1+\mu)}{2 \sqrt{\mu}}\right)+\sqrt{\mu}\right]}{\eta \varphi\left(\frac{(1-\mu) x-(1+\mu)}{2 \sqrt{\mu}}\right)+\sqrt{\mu}} \tag{3.11}
\end{equation*}
$$

uniformly on compact subsets of $\mathbb{C} \backslash\left[0,(1+\sqrt{\mu})^{2} /(1-\mu)\right]$, where $\varphi(x)=x+\sqrt{x^{2}-1}$ with $\sqrt{x^{2}-1}>0$ if $x>1$, i.e., the conformal mapping of $\mathbb{C} \backslash[-1,1]$ onto the exterior of the closed unit disk.

Proof. Making the change of variable $x \rightarrow n x$ in (3.5), using this relation for the scaled polynomials in a recursive way and dividing by $M_{n}^{(\gamma, \mu)}(n x)$ we get

$$
\begin{equation*}
\frac{Q_{n}(n x)}{M_{n}^{(\gamma, \mu)}(n x)}=\sum_{j=0}^{n}(-1)^{j} b_{n-j}^{(n)} \frac{M_{n-j}^{(\gamma, \mu)}(n x)+(n-j) \frac{\mu}{1-\mu} M_{n-j-1}^{(\gamma, \mu)}(n x)}{M_{n}^{(\gamma, \mu)}(n x)} \tag{3.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& b_{n}^{(n)}=1 \\
& b_{n-j}^{(n)}=\left(\frac{\mu}{1-\mu}\right)^{j} \prod_{i=1}^{j}(n-i+1) \frac{k_{n-i}^{(\gamma, \mu)}}{\tilde{k}_{n-i}^{M}}, \quad j=1, \ldots, n
\end{aligned}
$$

Now, we are in a similar situation as in the proof of Theorem 7 in [5] and like for that proof, we need again a dominant for (3.12) in order to apply Lebesgue's dominated convergence theorem. The key to the proof of Theorem 7 in [5] is that the sequence $k_{n}^{(\gamma, \mu)} / \tilde{k}_{n}^{M} \leqslant \mathscr{C}<1$ for all $n \geqslant 1$ (see [5, f.(14)]), but in general this is not true in our situation as we have observed by numerical computations for certain values of $\gamma>1$ and n being small. However, in [1] a technical result was established in order to solve a similar problem. This result can be rewritten as

Lemma 3.6. There exist constants C and r with $C>1$ and $0<r<1$ such that $d_{i}^{(n)}=k_{n-i}^{(\gamma, \mu)} / \tilde{k}_{n-i}^{M}$ verify $0<d_{i}^{(n)}<C r^{i}$ for all $n \geqslant 0$ and $0 \leqslant i \leqslant n$.

Proof. The proof is the same as the one of the Lemma 3.2 in [1] but now taking into account Lemma 3.4.

Using the above lemma, we can obtain a dominant for (3.12) and therefore, we get Theorem 3.5 following the same steps as in the proof of Theorem 7 in [5].

Obviously, the Corollaries 8 and 9 in [5] remain true for the Δ-Meixner-Sobolev orthogonal polynomials associated to Δ-coherent pairs of type I.

4. Laguerre-Sobolev as limit case of Meixner-Sobolev

In [15], the authors obtained asymptotic properties for coherent pairs of positive-definite linear functionals of Laguerre type. In this section, we shall recover some of these results using another approach via limit relations by using the asymptotic properties for Δ-coherent pairs of positive-definite linear functionals of Meixner type obtained in the previous section.

Monic Laguerre polynomials $\left\{L_{n}^{(\alpha)}(x)\right\}_{n}$ are orthogonal with respect to the Laguerre linear functional $\boldsymbol{u}^{(\alpha)}$ defined by

$$
\left\langle\boldsymbol{u}^{(\alpha)}, p\right\rangle:=\int_{0}^{+\infty} p(x) \frac{x^{\alpha} \mathrm{e}^{-x}}{\Gamma(\alpha+1)} \mathrm{d} x, \quad \alpha>-1, \quad p \in \mathbb{P} .
$$

We shall denote

$$
\begin{equation*}
k_{n}^{(\alpha)}:=\left\langle\boldsymbol{u}^{(\alpha)},\left(L_{n}^{(\alpha)}(x)\right)^{2}\right\rangle=n!\frac{\Gamma(n+\alpha+1)}{\Gamma(\alpha+1)}, \quad n \geqslant 0 . \tag{4.1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\lim _{\mu \uparrow 1}(1-\mu)^{2 n} k_{n}^{(\alpha+1, \mu)}=k_{n}^{(\alpha)}, \quad n \geqslant 0 \tag{4.2}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\lim _{\mu \uparrow 1}(1-\mu)^{n} M_{n}^{(\alpha+1, \mu)}\left(\frac{x}{1-\mu}\right)=L_{n}^{(\alpha)}(x), \quad n \geqslant 0 . \tag{4.3}
\end{equation*}
$$

In [14] Meijer obtained
Theorem 4.1. Let $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ be a coherent pair of positive-definite linear functionals of Laguerre type. If $\boldsymbol{u}_{1}=\boldsymbol{u}^{(\alpha)}$ is the Laguerre linear functional, then
(a) If $\alpha>0$, then

$$
\boldsymbol{u}_{0}=\frac{(x+a)}{\alpha} \boldsymbol{u}^{(\alpha-1)}, \quad a \geqslant 0 .
$$

(b) If $\alpha=0$, then $\boldsymbol{u}_{0}=\boldsymbol{u}^{(0)}+M \boldsymbol{\delta}(x)$, where $M \geqslant 0$.
(c) If $-1<\alpha<0$, then $\boldsymbol{u}_{0}=\boldsymbol{u}^{(\alpha)}$.

We shall refer to a coherent pair of linear functionals, where \boldsymbol{u}_{1} is the Laguerre linear functional as a coherent pair of linear functionals of Laguerre type I.

Let $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ be a coherent pair of positive-definite linear functionals of Laguerre type I, and let us denote

$$
\begin{equation*}
\langle p, r\rangle_{\mathrm{S}}^{\mathrm{L}}:=\left\langle\boldsymbol{u}_{0}, p r\right\rangle+\lambda\left\langle\boldsymbol{u}^{(\alpha)}, p^{\prime} r^{\prime}\right\rangle, \quad \lambda \geqslant 0 . \tag{4.4}
\end{equation*}
$$

Let $\left\{Q_{n}(x ; \alpha, \lambda, M, a)\right\}_{n}$ be the MOPS associated with the above inner product. We shall denote

$$
\begin{equation*}
\tilde{k}_{n}^{L}=\left\langle Q_{n}(x ; \alpha, \lambda, M, a), Q_{n}(x ; \alpha, \lambda, M, a)\right\rangle_{\mathrm{S}}^{\mathrm{L}} \tag{4.5}
\end{equation*}
$$

Lemma 4.2 (Meijer et al., Lemma 3.1). Let $\left(\boldsymbol{u}_{0}, \boldsymbol{u}_{1}\right)$ be a coherent pair of positive-definite linear functionals of Laguerre type I. Then,

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)+n L_{n-1}^{(\alpha)}(x)=Q_{n}(x ; \alpha, \lambda, M, a)+n \frac{k_{n-1}^{(\alpha)}}{\tilde{k}_{n-1}^{L}} Q_{n-1}(x ; \alpha, \lambda, M, a), \quad n \geqslant 1, \tag{4.6}
\end{equation*}
$$

where $k_{n}^{(\alpha)}$ and \tilde{k}_{n}^{L} are given in (4.1) and (4.5), respectively, and $Q_{0}(x ; \alpha, \lambda, M, a)=1$.
Lemma 4.3 (Meijer et al., Lemma 3.2). (1) If $\alpha>0$, then

$$
\begin{equation*}
\tilde{k}_{n}^{L}=k_{n}^{(\alpha)}+(\lambda+1) n^{2} k_{n-1}^{(\alpha)}+\frac{a}{\alpha} k_{n}^{(\alpha-1)}-n^{2} \frac{\left(k_{n-1}^{(\alpha)}\right)^{2}}{\tilde{k}_{n-1}^{L}}, \quad n \geqslant 1, \quad \tilde{k}_{0}^{L}:=\frac{\alpha+a}{\alpha} \tag{4.7}
\end{equation*}
$$

(2) If $-1<\alpha \leqslant 0$, then

$$
\tilde{k}_{n}^{L}=k_{n}^{(\alpha)}+(\lambda+1) n^{2} k_{n-1}^{(\alpha)}-n^{2} \frac{\left(k_{n-1}^{(\alpha)}\right)^{2}}{\tilde{k}_{n-1}^{L}}, \quad n \geqslant 1, \quad \tilde{k}_{0}^{L}:= \begin{cases}1, & -1<\alpha<0 \tag{4.8}\\ 1+M, & \alpha=0\end{cases}
$$

Proposition 4.4. Let $\left\{Q_{n}(x ; \alpha ; \lambda, M, a)\right\}_{n}$ be the MOPS associated with the inner product (4.4) and let $\left\{Q_{n}(x ; \gamma, \mu ; \lambda, M, a)\right\}_{n}$ be the MOPS associated with the inner product (3.1). Then,

$$
\begin{equation*}
\lim _{\mu \uparrow 1}(1-\mu)^{n} Q_{n}\left(\frac{x}{1-\mu} ; \alpha+1, \mu ; \frac{\lambda}{(1-\mu)^{2}}, M, \frac{a}{1-\mu}\right)=Q_{n}(x ; \alpha ; \lambda, M, a) . \tag{4.9}
\end{equation*}
$$

Proof. If $\alpha>0$, first note that the following limit holds:

$$
\begin{equation*}
\lim _{\mu \uparrow 1}(1-\mu)^{2 n} \tilde{k}_{n}^{M}\left(\alpha+1, \mu ; \frac{\lambda}{(1-\mu)^{2}}, \frac{a}{1-\mu}\right)=\tilde{k}_{n}^{L}(\alpha, \lambda, a) \tag{4.10}
\end{equation*}
$$

as consequence of

$$
\lim _{\mu \uparrow 1} \tilde{k}_{0}^{M}\left(\alpha+1, \mu ; \frac{\lambda}{(1-\mu)^{2}}, \frac{a}{1-\mu}\right)=\tilde{k}_{0}^{L}(\alpha, \lambda, a)=1+\frac{a}{\alpha},
$$

and (4.2). The limit relation (4.9) follows from (3.5), (4.3), (4.10) and

$$
Q_{0}\left(\frac{x}{1-\mu} ; \alpha+1, \mu ; \frac{\lambda}{(1-\mu)^{2}}, M, \frac{a}{1-\mu}\right)=Q_{0}(x ; \gamma, \mu ; \lambda, M, a)=1
$$

If $-1<\alpha \leqslant 0$, the proof follows as in the previous case from (4.8).

Corollary 4.5. Let $\left\{L_{n}^{(\alpha)}(x)\right\}_{n}$ be the Laguerre MOPS and let $\left\{Q_{n}(x ; \alpha, \lambda, M, a)\right\}_{n}$ be the MOPS associated with (4.4). Then,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{Q_{n}(x ; \alpha, \lambda, M, a)}{L_{n}^{(\alpha-1)}(x)}=\frac{\lambda+\sqrt{\lambda(4+\lambda)}}{2 \lambda}, \tag{4.11}
\end{equation*}
$$

uniformly on compact subsets of $\mathbb{C} \backslash[0,+\infty)$.
Proof. In order to recover (4.11) from the asymptotic properties of Meixner type, we can compute directly the limit as $\mu \uparrow 1$ in (3.4), with $\lambda \rightarrow \lambda /(1-\mu)^{2}$ (see 4.9), since all the steps given in order to obtain the asymptotic behavior (3.4) for Δ-coherent pairs of linear functionals of Meixner type I, are valid if we first compute an appropriate limit when $\mu \uparrow 1$.

Acknowledgements

The work by I.A. and E.G. was partially supported by Ministerio de Ciencia y Tecnología of Spain under grant BFM2002-04314-C02-01. The work by F.M. has been supported by Dirección General de Investigación (Ministerio de Ciencia y Tecnología) of Spain under grant BFM2003-06335-C03-02 as well as by the NATO collaborative grant PST.CLG. 979738. The work by J.J.M.B has been supported by Dirección General de Investigación of Spain under grant BFM2001-3878-C02-02 as well as by Junta de Andalucía (research group FQM0229).

References

[1] M. Alfaro, J.J. Moreno-Balcázar, M.L. Rezola, Laguerre-Sobolev orthogonal polynomials: asymptotics for coherent pairs of type II, J. Approx. Theory 122 (2003) 79-96.
[2] I. Area, E. Godoy, F. Marcellán, Classification of all Δ-coherent pairs, Integral Transforms Special Functions 9 (1) (2000) 1-18.
[3] I. Area, E. Godoy, F. Marcellán, Inner products involving differences: the Meixner-Sobolev polynomials, J. Difference Equations Appl. 6 (2000) 1-31.
[4] I. Area, E. Godoy, F. Marcellán, Δ-coherent pairs and orthogonal polynomials of a discrete variable, Integral Transforms Special Functions 14 (1) (2003) 31-57.
[5] I. Area, E. Godoy, F. Marcellán, J.J. Moreno-Balcázar, Ratio and Plancherel-Rotach asymptotics for Meixner-Sobolev polynomials, J. Comput. Appl. Math. 116 (1) (1999) 63-75.
[6] I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: discrete case, J. Comput. Appl. Math. 89 (2) (1998) 309-325.
[7] H. Bavinck, On polynomials orthogonal with respect to an inner product involving differences, J. Comput. Appl. Math. 57 (1995) 17-27.
[8] H. Bavinck, On polynomials orthogonal with respect to an inner product involving differences (The general case), Appl. Anal. 59 (1995) 233-240.
[9] H. Bavinck, R. Koekoek, Difference operators with Sobolev-type Meixner polynomials as eigenfunctions, Comput. Math. Appl. 36 (10-12) (1998) 163-177.
[10] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[11] A.G. García, F. Marcellán, L. Salto, A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math. 57 (1995) 147-162.
[12] A. Iserles, P.E. Koch, S.P. Nørsett, J.M. Sanz-Serna, On polynomials orthogonal with respect to certain Sobolev inner products, J. Approx. Theory 65 (2) (1991) 151-175.
[13] A. Martínez-Finkelshtein, Analytic aspects of Sobolev orthogonality revisited, J. Comput. Appl. Math. 127 (2001) 255-266.
[14] H.G. Meijer, Determination of all coherent pairs, J. Approx. Theory 89 (3) (1997) 321-343.
[15] H.G. Meijer, T.E. Pérez, M.A. Piñar, Asymptotics of Sobolev orthogonal polynomials for coherent pairs of Laguerre type, J. Math. Anal. Appl. 245 (2) (2000) 528-546.
[16] A.F. Nikiforov, S.K. Suslov, V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991.

[^0]: * Corresponding author. Tel.: +34 950 015661; fax: +34 950015167.

 E-mail addresses: area@dma.uvigo.es (I. Area), egodoy@dma.uvigo.es (E. Godoy), pacomarc@ing.uc3m.es (F. Marcellán), balcazar@ual.es (J.J. Moreno-Balcázar).

