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Abstract. LetA > 0,a > 1, and let W(X) = exp(—|x|*), X € R.Let ¥ € Lo(R)

be positive on a set of positive measure. For n > 1, one may form Sobolev orthonormal
polynomials (qgn), associated with the Sobolev inner product

<f,g>=/ fg<wW>2+A/ f'gw2.
R R

We establish strong asymptotics for the (gn) in terms of the ordinary orthonormal
polynomials (ppn) for the weight W2, on and off the real line. More generally, we
establish aclose asymptotic rel ationship between (pn) and (gy) for exponential weights
W = exp(—Q) on ared interva |, under mild conditions on Q. The method is new
and will apply to many situations beyond that treated in this paper.

1. Introduction

Let
| =(c,d)

be ared interval, finite or infinite, and let Q : | — [0, oo) be convex. We also assume
that Q(X) - oo asx — ¢+ or x — d—. The weight

W = exp(—Q)

isthen called an exponential weight. Provided all power moments exist, we may define
orthonormal polynomials

Pn(X) = pn(WZ X), n>0,
satisfying

/ Pn me2 = 8mn~
|
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The leading coefficient of p, isdenoted by y, = y(W?) and assumed positive:
Pr(W2 X) = (WX  + -+, yn(W?) > 0.

Analysis of orthonormal polynomials for exponential weights has been a mgjor theme
in orthogonal polynomialsfor at least thelast 30 years[4], [5], [9], [12], [14], [15], [18],
[24], [28], [33]. Asymptotics for p,(x) asthe degree n — oo have been established for
large classes of exponential weights, including

W, (X) = exp(—[x|*) onl =R,

for any « > 0. The case « = 2 isthe classical Hermite weight. See, for example, [14],
[15], [32].

Another theme in orthogonal polynomials that is attracting much interest is that of
Sobolev orthogonal polynomials (g,) associated with a Sobolev inner product. Let W
be aweight as above, and let v : | — [0, o) be measurable, and positive on a set of
positive measure. Let A > 0, and define the Sobolev inner product

(1) (f,g) =/fgw2W2+A/ f'g'W2,
| |

for al functions f, g for which the inner product is meaningful. Provided al monomials
are integrable with respect to W? and y?W?, this inner product generates orthonormal
polynomials (q,) satisfying

(2) (Qn, qm) = Smn-
We shall denote the leading coefficient of g, by «y,, So that

On(X) =knX"+---,  Kkn>0.
The leading coefficient «, admits a key extremal property
(3) k% = inf{(P, P) : P monic of degreen}.

Sobolev orthogonal polynomials have found application in anumber of contexts. See,
for instance, the survey papers [19], [23], aswell as[16]. In particular in [13], a study
of Fourier series of Sobolev orthogonal polynomialswas initiated for smooth functions.
Legendre and Sobolev—Legendre Fourier series were compared numerically. The mea-
suresinvolved in theinner product satisfied asimple algebraic relation, and were closeto
classical (Jacobi and L egendre) measures. Consequently, the analytical properties of the
Sobolev orthogonal polynomials could be determined from those of classical orthogonal
polynomials. Thisinvestigation was continued in [23] for the bounded (Jacobi) case and
in [20] for the unbounded Laguerre case.

For more general measures with bounded support, a key contribution was given by
Martinez—Finkelshtein [22]. There the support of the measures is a C?* Jordan curve,
and the main regquirement is that the measure in the derivative term satisfies a Szegd
condition, while the other measure is arbitrary. Only the derivative part of the inner
product has a significant impact on the asymptotic behavior of the Sobolev orthogonal



polynomials. Indeed ¢, behaves very much likeamultiple of p,_; intheexterior domain
of the curve. If the first measure also belongs to the Szegb class, then there are relative
asymptoticsfor g, interms of p, in the exterior domain of the curve.

In the unbounded case, the first example, different from the Laguerre case, was con-
sidered in[1], with

W(x) =exp(—3x3)  and ¥ (x)=/*x2+¢2 onR.

Ratio asymptotics were given for g, in terms of the Hermite polynomials. Aninteresting
feature is that the asymptotics depend on the parameter 2, a notable difference from the
bounded case. For

W(x) = exp(—3x*) and Y(x)=1 onR,

a similar approach was taken in [3], using known asymptotics for Freud orthogonal
polynomials.

In this paper, we shall seethat g, behaveslike (1/+/A) pn_1 for fairly general weights
on an unbounded interval, but some growth restriction on v is necessary. If ¢ grows
too fast at oo, then the first term in the inner product will swamp the derivative term.
Our first result involves Freud weights, and for these, we need to define the Mhaskar—
Rakhmanov—Saff number [25], [26], [31]: for Q even and convex on R, and for n > 1,
we let a, denote the positive root of the equation

n—-zflmﬂiwﬂ) a
R J1i—tZ
For example, if Q(x) = |x|*, then

an=Cn"*  nx>1,

where the constant C may be expressed in terms of gamma functions. We note that in
all the cases that we consider,

lim & —o,

n—oo N

We also need the conformal map

02 =z+V22 -1, ze C\[-1,1],

of the exterior of [—1, 1] onto the exterior of the unit disk, and the Szegd function [34]

of ameasurable function f : [—m, 7] — [0, co) satisfying Szegé's condition
4 / log f (6)d6 > —oo0.
It is defined by

o 1 (7 i €t+z
(5) D(f, Z) = exp <E /7n|0g f(el )elt——zdt) s |Z| < 1,



and has boundary values on the unit circle that satisfy
ID(f; €)= @) aebel[-mn 7]
We shall also need the argument of D( f; €?) on the unit circle. We write (whenever
meaningful),
D(f; €% = f(0)Y2exp(il'(f;0)).
An explicit representation for I'(f; 0) is
1
rcf;0) = EPV/

-7

b2

log f (1) cot <9%t) dt,
where PV denotes the Cauchy principa value integral.

Theorem1.1. Let Q : R — R be even and continuous in R. Assume that Q” is
continuousin (0, co),and Q' > 0in (0, co). Assume, furthermore, that for somec, 8 >
01

xQ"(x)
6 o S
© Q'(x)
Let W = e~ Q, and let (p,) denote the orthonormal polynomials for W2. Let » > 0 and

¥ € Loo(R) be positive on a set of positive measure. Let (g,) denote the orthonormal
polynomial s associated with the Sobolev inner product (1). Then, asn — oo,

<8, X € (0, 00).

(1)
1 an
7 AR RV, —of(2)=oa
™ H(Cln ﬁp l) Ly(R) (n) o
and
1 X an

8 ' n— = — n— :O — .
©) H(1+|Q|)<q =/ 1)WLZ(R) ( n)
(1
© H(q/—ip )w —o( ﬁ)

n \/X n—1 LM(R)— n
and

, 1 _ a
(10) ”(1+IQI)<qn = pn_l)wLw(R) o( n).
(1) Let

(NN W, (6) = W(a, cosh), 0 e[—m m].
Uniformly in closed subsets of C\[—1, 1],

@, — (1/v2) pn_1)(@n2)

12
(12 @(@"1D2(Wh; 1/9(2))

—o(¥).

n



Uniformly in closed subsets of C\[—1, 1],

(G (@2) — (1/V2) 57 Pn-1)

13
= 9(@"D~2(Wh; 1/9(2))

3/2
an
=0 (T) :

Remarks. (&) Condition (6) alows

Q) = x|

ifa > 1.

(b) What is surprising is the degree of closeness of ¢/, to (1/+/%) pn_1. The L, asymp-
totics are sufficiently strong to imply the uniform bound in (I1) with the aid of asimple
Nikolskii inequality.

(c) The result holds assuming less smoothness of Q, namely for Freud weightsin the
class F (Dini), defined in [15]. Likewise the corollary below holds for Freud weights
in the class }‘(Iip%), defined in [15]. One may also allow non-Freud Q, the chief
requirement being that, for each ¢ > 0,

XQ'(x)
=0 €
0 QX))

as x approachesthe endpoints of theinterval of orthogonality. However, theformulations
become more technical, so we omit them.

(d) We note that one can replace [ pn_1 by Pnyh—1(W?)/(Nyn(W2)) in (8), but with
aworse error term. This may be achieved with the aid of Lemma 2.3 below.

(e) We shall prove Theorem 1.1 in Section 5. Because of known asymptoticsfor (py)
[15] on and off the real line, we can deduce:

Corollary 1.2.
(@ Asn — oo,
11 fa, "2 2 ! Qans)

(b) Wehave, asn — oo,

o [

2/

VAangg(@nx)W(anx) — m

2

1
X cos[(n - 5) arccosx + 2I'(W,; arccosx) — %] dx = o(1).

(c) Uniformly for zin closed subsets of C\[—1, 1], we have, asn — oo,

1
1— -2 1/2}
W(Z)> 1=9@™)

(16) VAanap(an2)/ {¢(z)“1D2 (Wn;
1

= /= (1+ o(1)).



(d) Thereexistsn > Osuchthatasn — oo, wehave, uniformlyfor x| < 1-n"", x =
cosf,

(17) VA8n ) (@ X)W (@nX) (1 — x*)/*

= @cos((n — D)0+ 2 (Wy; 0) — %) + O(n™).

We note that for exp(—|x|*), @ > 1, more precise asymptoticsfollow from the results
of Kriecherbauer and McLaughlin [14]. For example, one can give asymptotics for g,
even around the endpoints +a,, of the M haskar—Rakhmanov—Saff interval.

For afairly general class of weights, for which asymptotics for the polynomials (p,)
have not been established, we can at least prove that ¢, behaves like (1/+/1) pn_1. TO
state part of the asymptotics, we need the Mhaskar—Rakhmanov—Saff numbers for a
nonsymmetric interval or non-even Q, generalizing that above [15, p. 13], [33, Theo-
rem 1.11, p. 201]. For Q convex on a (not necessarily symmetric) interval |, there are
unique numbers a..,, the so-called Mhaskar—Rakhmanov—Saff numbers a..p,, satisfying

cC<an<0<a,<d

and
20 /
19 "= % a, V(X —angt;n ) o
A Q')
T Ja, VX —an) (@ —X)
We also let
(19) 8n = 3(@ + laal),

and let L, denote the linear map of [a_n, a,] onto [—1, 1] so that

(20) Lo = —1+ 220
n

Itsinverselinear mapisdenoted LY. Amongst the propertiesof a,., isthe M haskar—Saff
identity [24], [25], [26], [33],

IPWIilL. ) = IPWIlL [an.a1
valid for polynomials P of degree < n.
Theorem 1.3. Let | = (c, d) be a finite or infinite interval containing 0. Let Q :
I — [0,00) and let Q" be an increasing absolutely continuous function in |, with

Q'(0) = 0= Q(0) and Q positivein 1\{0}. Assume also that, for j =0, 1,

lim QW (x)| =00 = lim |QU(x)|.
X—C+ X—d—



Let W = e @, and let (p,) denote the orthonormal polynomials for W2, Let » > O,
¥ € Lo (R) bepositive on a set of positive measure, and let (g,) denote the orthonormal
polynomial s associated with the Sobolev inner product (1). Then

)
(22) lim H(q’ - ip W =0
n— 00 n ﬁ n-1 L) ’
If we assume in addition that
, Q"(x)
3 R Q02
then
1 X
23 ||m 1+ / <n— no—_ n_)W =O.
(23) an( QD (o=@ = | s )W)
(I1) Let
(24) Wi (0) = W(LLY(cosh)), 0 € [-m, 7].
Uniformly in closed subsets of C\[—1, 1],
12,/ _ [-1]
(25) lim 8@ — (/v p-) (LY (2) _
n—o0 @(29"1D~2(Wh; 1/9(2))
Let
(26) W (6) = (14 |Q'(LE T (cos)) ) Wa(6), 6 e [—m, 7.
If we also assume (22) then, uniformly in closed subsets of C\[—1, 1],
1/2 _ _ Ln(2)
@27) lim 30 “(On(Ln(2)) — an(0) (1/\/x)f0 Pn-1) _o.
n—00 @(2"D~2(W; 1/9(2))

Remarks. (@) Notethat since Q' grows to infinity as we approach the endpoints of 1,
(23) actualy gives arate of convergence for the limit.

(b) The restriction (22) is a regularity condition, rather than a growth one. If we do
not assumeit, we can till prove aversion of (23) inwhich | Q | isreplaced by afunction
that grows more slowly as we approach the endpoints of | .

One of our main tools is an estimate relating the leading coefficient «, of gy to the
leading coefficient yn_1(W?) of ph_1(W?; ). Its formulation involves the weighted L »
error of approximation

(28) Enl f; W] = inf{||(f — P)W|[,q), : deg(P) < n}

and the linear operator

(29) ITRI(X) = W(x) 2 / ROWZ Y2, x e (c.d),

C

defined on suitably restricted classes of functions R. We prove:



Theorem 1.4. Let| beafiniteor infiniteinterval, andlet W : | — R beameasurable
function such that W? has all finite power moments and corresponding orthonormal
polynomials (p,). Let ¥+ : | — R be a measurable function such that (W)? has
all finite power moments, and assume that v is positive on a set of positive measure.
Let A > 0, and let (g,) denote the orthonormal polynomials associated with the inner
product (1), with leading coefficients (). Then

ot W2 \2 [ WP\
(30 0= ("207) | (rsigwon) +]

sup EZ_,[I[R]; W],

IA

where the sup is taken over all polynomials R of degree < n — 1 satisfying both

(31) IRWY[[L,a) =1

and

(32) f R(Wv)? = 0.
|

To estimate the error in approximation, one needs a Jackson-type estimate. This re-
duces the right-hand side in (30) to abound on the weighted derivative | [R]’, and stan-
dard methods enabl e one to prove weighted boundednessof | [R]” at least for exponential
weights.

Theorem 1.5. Let | = (c, d) be a finite or infinite interval containing 0. Let Q :
I — [0,00) and let Q" be an increasing absolutely continuous function in |, with
Q'(0) = 0= Q(0) and Q positivein I \{0}. Let » > Oand let ¥ € L (R) be positive
on a set of positive measure. Assume also that there exists a sequence of positive numbers
(nn) such that W admits the Jackson estimate

(33) En[f: W] < nnll f/W|||_2(|)

for all n > 1 and absolutely continuous functions f : | — R. Then

o [y

2
Vn—l(Wz) 2
= <|W||Loo(|) Ny (W2) ) + Lo

The constant C; isindependent of n, A but dependson W, .

Under the conditions on Q in Theorem 1.3, we shall establish the Jackson estimate
(33) in Section 3. We now show that some restriction on the growth of v is necessary
near the endpoints of |.

Example1.6. InTheorems1.1and 1.3, we assumed that v is bounded. We now show
by example, that if ¢ grows faster than +/Q’ near the endpoints of |, then thelimit (21)
can fail. Observe that

n ﬁ n—-1 ]/n_l(Wz) \/x n—1 'y



where Shasdegree < n — 2, and hence

(35) /<q/ 1 p (X))ZWZ > [ nKn 1 }2
AV T LlmawW? il
Let W be the Hermite weight
W(x) = exp(—3x%),  X€R,

let A > 1, and let
y(x)=Ix|*, xeR

We shall show that
, Nkn
Iim ——=
Nn—o0,N even Vn—l(Wz)
so (35) gives
1 2 1
liminf P W? > =
Imin | (qn ﬁpn 1(X)) > o 0,

n—o0,n even

so (21) fails. By the left inequality in (30),

NG _ (WD)
Vn—l(Wz) B anl(Wz) ’

We can use explicit formulas for the leading coefficients in this last right-hand side to
show that it decaysto O. First, [34, pp. 105-106],

(36)

Yn(W2) = 742" /nh1/2,

Next,
WW)?(x) = |x|** exp(—x?)

is the symmetrized form of the Laguerre weight t—1/2t2 exp(—t), under the transfor-
mation t = x? in the integral defining orthonormality. Representations for Laguerre
polynomials [34, pp. 100-101] give, for n = 2m,

1/2

(YW)?) = ! ! L

o - F(%+A)(m+A—%) m”
m

Substituting these representations into (36) and applying Stirling’'s formula, gives, for
evenn,

Nin 1-A\1/2
——— < C(nT )7~
anl(Wz)

Thisdecaysto O if A > 1.



At least for Freud weights, it seemslikely that (21) will persist if we ensure that
Jim 200/Q 00 =

However the growth of v affects the error term in (7), and we no longer necessarily
obtain the uniform asymptotic (9).

We note finally that in the limit case A = 1, the results of [1] imply that there exist
Ci1, C, > Osuch that, for n large enough andfordl A > 0O,

Ci/vo(l+20) < < Co/ o1+ 2),

so the ratio does not decay to O.
Asafina examplein this section, we apply Theorem 1.1 to orthonormal expansions.

Yn— 1(W2)

Application 1.7. Let W = exp(—Q) beasin Theorem 1.1andlet f : R — R be
differentiable a.e. with (f, f) finite. Assume for simplicity that = 1. We may then
form the Sobolev orthonormal expansion

> (f. G0,
n=0

We shall show that there is a close relationship between the term-by-term derivative of
this series, namely,

o0

> (L ang),
n=0
and the standard orthonormal expansion of f’ in (p,). More precisely, we shall show
that
(37) [Z(f, Gn)Cn — < / f’ an2> pn]
n=m n=m-1 L2(R)

o 2\ 12
aj
sc(f,f>1/2(§ ﬁ) ,

where C isindependent of f and m. If, for example, Q(x) = |x|*, wherea > 2, then
this series converges, and the right-hand side of (37) is O(nY/*~/2). To establish (37),
we write

1
+ _( fs Qn) pn—l

(1 Qe = (1,0 | 6~ 7= o
> On qn_ > On qn ﬁpn—l \/X

and
1 1
ﬁ(van)pnfl =7 </R anwz) Pn_1
/ / 1
([ [ G W) e
+ </ f,pnlv\lz) Pn-1.
R



Using these last two identities, we see that the left-hand side in (37) is bounded above

by
+— /fq WZ]
(Bl
00 1 2 12
+\/X<Z|:/ f/|:qa_ﬁpn—1:|w2:|> =T+ T+ Ts.
n=m L/R

Here, by (7), the triangle inequality, and Bessel’s inequality,

o 12 /o o\ 12
C<Z|<f,qn>|2> ( %)

n=m

o o\ 1/2
C(f, HY2 (Z%) .

] =[f o] ] <c.0e(3)

see (78), (88) below. Then T, admitsasimilar estimate to T;. Finaly, as

[ Jma]we] = [ [ [o- Zooa] w]
%(f, f)C@)z,

by (7) again, T3 also admits an estimate similar to that for T;. Then (37) follows.

o 1
Z [(f, an)l H |:qr/1 - ﬁpnl] w

T

IA

IA

Next,

IA

IA

2. Proof of Theorems 1.4 and 1.5

Throughout, we assume the hypotheses of Theorem 1.4. We also let P denote the set
of monic polynomials of degreen.

Proof of Theorem 1.4. First,

_2 _ .
(38) %° = jnt (P.P)

v

inf /P2(¢W)2+A inf /(P’)2W2
PePy J) PePy J,
= ¥ 2A(WW)D) + Any A (W),

as P € P implies that P’/n € P";, and by the extremal property of the leading
coefficient of orthonormal polynomials. In the other direction, fix a € |, and define a



monic polynomial P, by

P h_1(W2; t)dt + C,
(xX) = e 1(W2)/ Pn-1( )dt +
where the constant of integration C is chosen so that
(39) | Popotcrw Wy —0
Observe that
2

40 A P/2W2=A<7n )
(“0) [( 2 Vn—l(Wz)
Now expand in terms of the orthonormal polynomials for the weight (yW)2:

n-1 1
41 P. =Y b p(WW)?) + ———— pa((YW)?),
(41) ;l P (WD) + s Pal(VW)?)
S0
42) | Prww = Zb2+yn 2((y WD),

(The coefficient of po((¥W)?) is zero by (39).) An integration by parts gives

(43) by f P, pj (Y W)P) (¥ W)?

v 1(W2)/ P2 (W x){/ P (WW)Z D) (Y W) (t)dt}

To see that the first termsin the integration by parts, namely,
x=d

[P*<x> / pj<<wW>2;t)(wW>2<t)dt] ,

X=C

do indeed vanish, we note that it istrivial if c, d arefinite. Suppose now that ¢ = —oo
It suffices to show that for each pair of nonnegative integers (k, ¢), we have

X
Jim |x|k[ [t]f (v W)2(t) dt = 0.
— —00 c
Theintegral inthislast limit is bounded above for x < 0 by

/ ' It (W) (1) dt

and that decays to 0 as x — —oo by convergence of the power moments of (yW)?2.

Similarly, we may handle the case d = oo, also using that

X d
/ P (YW D (Y W)2(t) dt = — f P (YW)Z; 1) (Y W)2(t) dt.



So (43) is correct as stated. Next, we use the dual formulation,
n-1 1/2 n-1 n-1
(ijz) =sup{2c,—b,—:2012=1}.
j=1 j=1 j=1
For any such {c; }J 5, set

n—1
R=Y ¢p((yW)?,

i=1

docb = = 1(w2) / Pn-1(W?; x>{ f R(t><wW)2<t)dt}dx
j=l n— Cc

_ ) 2
B 1(W2)/ Pn-1 (W2 X) 1 [R] () W?(x) dx

withthe notation (29). If Sisany polynomial of degree < n— 2, wecan use orthogonality
to continue this as

n—-1
Z Cj bj =
j=1

v 1(w2) / Pn-1 (W2 X) (1 [R] (x) — S(0)W?(x) dx

d 1/2
< — |RX—SX2W2XdX} .
< an(wz){/cu () — S00)2W2(x)
Since Sis any such polynomial, we obtain
-1

Z mEn—Z[l[RLW]-

=1

Finally the only restrictlon on R, apart from having degree < n — 1 and that the sum of
the squares of the coefficientsis 1, isthat its coefficient of po((yW)?) is zero, that is,

/. Rpo((y W)?) (¥ W)? = 0.

Since py is a constant, this reduces to (32). Hence, taking sup over al (c; )?;11 whose
sum of squaresis 1, we obtain

n-1 \ 2 n
b? —  supE,o[I[R]; W,
(; ,) < Wz MPEnl [REW]

where the sup is taken over al polynomials R of degree < n — 1 satisfying both (31)
and (32). Combining this with (40) and (42) gives

k2 < (P*, P%)

n 2
Vn—l(Wz) > ’
Rearranging this and using (38) gives the result. ]

2
: <ﬁ) (sup En-2[1 [RT; WD) + v, (4 W)?) +x(



In the course of the above proof, we actually proved:

Lemma2.1. Assume the hypotheses of Theorem 1.4. Leta € |, n > 1, and let by
denote the coefficient of po((y¥»W)?; x) in the orthonormal expansion of the polynomial
(N/yn—1(W?)) [ pn_1(W?) with respect to the polynomials { p; (v W)?; X)}_o- Then

2 2
(44) H(V T / Bn-1(W2) — bopo((y W)?)

pn(wW)Z)) YW

o
(Y W)2)

La(l)

n
_ En_o[I[R]; W],
= }/nfl(Wz) sup 2[ [ ] ]

wherethe sup istaken over all polynomials R of degree < n — 1 satisfying both (31) and
(32).

For the proof of Theorem 1.5, we need alemma, which follows the classical ideas of
Freud. It is presented in Mhaskar’s book [24, p. 84 ff.] for Freud weights.

Lemma22. Assumetheconditionson W and ¢ in Theorem1.5.Let1 < p < co. Let
h: 1 — R bemeasurable, with

(45) / h(yW)%2 =0
|
Then
(46) I[P WilL,a) < CollhWY L, a1y

where C, depends only on p, W, and .

Proof. We prove thisfirst for p = oo, then p = 1, and then use interpolation to do
1< p<oo.

Step 1: p = oo.
Assume first X € (c, 0) and recall that we are assuming that Q'(x) < Q’(0) = 0 for
such x. Now
X
100 =2 [ he 2020 dt.
C

so, for ae. x € (c, 0),
IN'(x) = 2Q'(x)e*?™ / ht)e My 2(t)dt + h(x)¥?(x)
= [1[h] COW(x)|
< ||thp||Lm<|)||wan(|){2|Q’(x>|eQ<X> / e-Q<‘>dt+1}.



Because Q' isincreasing, and negativein (c, 0),

X

c

/ e W Q(t) dt‘ =1

C
So, for x < 0,

] GOWEOT < 3 ey IhW Ty
Next, for x > 0, we use (45) to deduce that

d
I[h](x) = —e??™ / h(t)e 20 y2(t) dt

X

and proceed similarly. In summary,
AWy < 3IY L. IhWY L ).

Step2: p=1.
Now

0
IR WilL o = / TR GOW (0 dx

0
/ 2 |Q/} (X)eQ(X)

IA

/ h(t)e‘zQ‘”wz(t)dt' dx

0
0 / Ih(x) e~ 2™ y2(x) dx

0 0
2 / Ih(t)|e 220y (t) [ / 1Q'I(x)e?™ dx} dt
| RV | FED) ¢ t

IA

0

+ f Ih()1e™ % [y (x)] dx
Cc

Here,as Q' < 0in (c, 0), intheintegral,

0
t

' WiLco < GlYiiLoa) IhW L, c.o)-
Similarly, using (45), we deduce that

TN WilLie < Gl L a) IhW Ly 0.0)-

In summary,
INN'WiLew < GlY e a) IhWY Il ca)-

Step3:l<p<oo.
Wewould liketointerpolate thisinequality to get an estimate of thenorm of (3||y [/ ¢1))



inany L, space. However, the standard interpolation theorems do not seem to apply to
a space of functions restricted by the condition (45). Accordingly, we define (as did
Mhaskar [24, p. 86 f.])

dth] = [ harw?/ [wy?
and
L[h] = I[h = Ao[h]]".
Note that h — A[h] satisfies (45), that i,
[ 0= Aol wy? =0,
The above estimates show that, for p = 1and p = oo,

IL[MWIiL,ca = Gl lleea)lith = AhDWY L c.0)
= Gl le.a) UMWY liL,ea + [AhITIWY L, c.a)

Gl L a) 1WA L. <1+ ||W¢||Lq<c,d>//l(¢W)2> ,

IA

where q is the dual parameter of p. The standard form of the Riesz—Thorin theorem
gives, for 1 < p < oo and some C depending on p, W, v,

IL[NWIIL,c.a) < Cpl ' WY [ILyca)-
Then for functions h satisfying (45), which is equivalent to Aq[h] = 0, we have L[h] =
I [h]” and so obtain (46). ]
Weturnto
Proof of Theorem 1.5. Let R be apolynomial satisfying (31) and (32). The Jackson
inequality (33), followed by the lemma above gives
En2[I[R]; W] < nn2lll [R]/W”Lz“)
< Conn_2RW¥||L,ay = Conn—oz.
Thus (30) gives

2 2
0< (—ynl(w2)> —~ {<4y“1(wz) ) +/\} < Cinp_o-

Nin Nyn((YW)?)
Here
Vo 2((WW)H) = inf | PX(yW)?
PePy J)
< ”W”Em(I)P!gnm/;PZWZ
= 11 q)vn 2(W?).
Combining these last inequalities and rearranging gives (34). ]



We record for future use

Lemma2.3. Assume the hypotheses of Theorem 1.5. Then

n X 1
a8 o (W2) o1(W?) — ———p, W2> W
‘o H(an(wz)/o Prs(W2) = iy (W) ) ¥

[Un—z + ‘ f. Pr—1(W?) sign(-)W?

La(h)

]

Proof. Inview of LemmaZ2.1, we must estimate the term bg po((v W)?) that appearsin
theleft-hand side of (44). We showed in the above proof that theright-hand side of (44) in
Lemma 2.1 is bounded above by Conn_2(n/yn—1(W?)). In estimating by, we can follow
similar stepsto that for by, j > 1, inthe proof of Theorem 1.4, but extra difficulties arise
because

n
<Cp—n—
= (W2

where the constant C; is independent of n but dependson W, .

(49) /| Po((WW)?) (¥ W)? # 0.
Now as po((W)?) is constant,
e WZ 0 d t
12 = poiow) | [ ][ [ prescwoa] cowz o

Po((YW)?)(T1 + T,

say. Integration by parts gives
0 X
T = —/ Pr-1(W?; X) [/ (¢W)2(t)dt} dx,
Cc [

d d
T2 = / Pr-1(W? %) [/ (Y W)(t) dt} dx.
0 X
(It is here that we have to proceed differently fromb;, j > 1, to circumvent (49).) Let

W2y de, x e (0,d),

f — W—Z
(X) = sgn(x) (X) {fcx(wW)Z(t) dt, xe(c0].

Then
Vn—l(WZ)
Npo((¥W)?2)
Observe that, since W(0) = 1,

d
bo=/ Pn_1(W?; x) f (X)W2(x) dx.

d 0
FO4) = / WW?  and  f0-) = — / WW)2.
0 c



To take account of thisjump discontinuity at 0, we defineafunction h such that h(0+) =

f(04), by
1 . ir rd 0
h(x) = [5 / (¢W>2}sgn<x)+§[ fo (YW)2 — / (wWﬂ.
| c

Then f — h haslimit O at 0, so is continuous there. Also, for ae. x > 0,

d
(f —h)Y/(x) = f'(x) = 2Q'(x)e?W f WW)2 — y4(x)

and, for ae. x < 0O,
(f —hY(x) = f'(x) = —2Q/(x)e??™ / WYW)2 — y4(x).

So (f — h)’ + 2 has essential limit 0 at 0, and then f — h is absolutely continuous.
Moreover, the convexity of Q gives, as at (47),

(50) I(F =l <2lvlif ),  aexel.
Next, split

Yn_1(W?) e ) i
Wbo - /c Pr-1(W? x)(f — h) () W?(x) dx

d
+f pn_l(WZ; X)hOW?(X) dX = 71 + .
C
Here

71l < Enal f —h; W] < mnall (F = hYWilL,a) < 22l IE o) W00

by our Jackson estimate (33) and our bound (50). Next, the definition of h and orthogo-
nality of p,_1 to constants gives

1
Il = [5 /. (xpwf}

Combining these last two relations, and that from Lemma 2.1 gives the resullt. ]

d
/ Pn_1(W?2; X) sign(x)W?(x) dx| .

3. A General Jackson Inequality

We shall deduce Theorem 1.3 from Theorem 1.5 and the following crude, but general,
Jackson inequality. M ore preci se Jackson theoremsfor morerestricted classes of weights
can befoundin[7], [8], [24]. In this section only, we use the notation

Enplf; W] =inf{||(f — P)W[_,q) : deg(P) < n}.
In the notation of the Introduction, of course,

En[f; W] = En,2[f§ W]



Theorem 3.1. Let| = (c, d) beafiniteor infiniteinterval containing 0. Let Q : | —
[0, 00) be convex and let Q' be absolutely continuousin |, with Q’(0) = 0 = Q(0) and
Q positivein 1'\{0}. Assume also that, for j =0, 1,

(51) Jim 1QP ()| =00 = lim |QVx)].

LetW = e Qand1 < p < oo. Then there exists a decreasing sequence (1,,) of positive
numberswith limit O such that for every absolutely continuous function f : | — R with
f'W e Ly(l), we have

(52 En.p[f§W] =< 77n||f/W||Lp(I)-
We shall provethisin a series of lemmas. We may assume, by dilating I, that
I D (-2,2).

Throughout thissection, we use special notation. We shall useintegersn > 1andm <« n,
aswell as parameters

(53) amnm<i <-1 and 1<y <am

We denote by p(m) an increasing function that depends on m and W, whileo (A_, A )
denotes a function increasing in A, and decreasing in A_. These functions change in
different occurrences. Themainfeatureisthat o isindependent of m, n, and functions f,
while p isindependent of .., and functions f. At the end, we choose m to grow slowly
enough as a function of n, and then 1. aso to approach the endpoints of | sufficiently
slowly.

Our strategy is to use the usual Jackson’s theorem to approximate f on [A_, A.],
and then to “damp down” this polynomial on [a_n,, am]\[A_, A] using fast-decreasing
polynomials. Restricted range (or infinite-finite range) inequalities give the rest. We
begin with atechnical lemma.

Lemma3.2. Assume the hypotheseson Q in Theorem 3.1. Then:
(8 For 0 < p < oo and polynomials P of degree < n — 2/p,
IPWIIL, ) < 2YPIPWIILay.a0-
(b)

lima,=c and lima, =d.

n—o0 n—o0
(©

lim 8,/n=0.
n—oo



Proof. (@) Thisis part of Theorem 4.1in[15, p. 95].

(b) Thisfollowsfrom the convexity of Q. See, for example, Theorem2.4in[15, p. 41].
(c) If | isfinite, then (8,) is bounded and the result isimmediate. Now assume that |
isunbounded. Let n > 1 and assume a, > |a_,|, so that a, > §,. Then, from (18), as

XQ'(x) > 0inl,and as Q" isnondecreasing in |,

n > 1a,Q'(3an) ) dx
-2 2 A/2a, X —a_n)(@ — X)
&n dx
> 380Q'(580)
27 nem /28, v (X + an)(@n — X)
L dt
= 35,Q'(35n0) :
27 t2m /2 V/1—12
Similarly, if a, < |a_n|, we obtain
71/2 dt
1 / 1
nZ§5n|Q(_§5n)|/;1 i
Since §, — oo ash — oo, and since Q" becomes unbounded at both endpoints of I,
we then obtain the desired limit. [ |

Lemma3.3.

(8 Thereisafunctiono : (c,0] x [0,d) — [0, 00), decreasing in thefirst variable,
and increasing in the second variable, with the following properties: let m > 1
and A, satisfy (53). For all absolutely continuous f with f'W e Ly(l), there
exists a polynomial Ry, of degree < m such that

O'(}"79 )"Jr)

(54) I(f = R)WIlL 2, < I "Wl a)-

(b) Moreover, thereis an increasing function p : Z, — (0, co) depending only on
W such that

(55) IRaWIllL,) + IRaWllLoay = oMATFWIIL,a) + T WilLa)-

Proof. (@) By theclassical form of Jackson’stheorem [6, Theorem 6.2, p. 219], trans-
lated from [—1, 1] to [A_, A, ], there exists Ry, with

Al — A

(56) If — RmllL,pnoa < Co (RN EESRE
Here Cy is an absolute constant, independent of f, m, A.. Then

Ay — A

I(f — RWIlL 2,1 < Co W

I ' WIIL ).
Loc[)Lfv)‘+]

WL a2

So we can take

o (A, 2y) = Co(hs — ADNWIIL [2- 24

w

an[)\—a)“+]

20



(b) By therestricted range inequalitiesin Lemma 3.2,

(67)  IRaWIlLyi) + IReWIlL ) < 2Pl RaWIlLyfa el + I RaWIILfa
< 2P IRt man (WL + IWILL0)).

Recall the Chebyshev inequality [6, Proposition 2.3, p. 101], valid for polynomials P of
degree < m:

[POOI = MmO Pl -1, x| > 1.

Here Ty, is the classical Chebyshev polynomial of the first kind. By trandating and
dilating this, and using the bound

T < (2IXD™, x| > 1,
we obtain for some absolute constant C,

m

am — a_
||Rm||Loc[aLm,am] = (COi)L
L=

m
)\_ ) | RmllLfre i

Using the Nikolskii inequalities [6, Theorem 2.6, p. 102], we continue this for some
absolute constant C; as

1/p
am — a_ m C1m2
IRltonan = (ST 25") (505) IRl iy

(Codm)™(C1M)? P RllL, ]

(Cobm)™(C1m)?/P (n fllLp s + Co

IA

Ay — A

IA

[ f/lle[x_,x+]) ,

by the fact that |1..| > 1 and by (56). Using our bound (53) on A, we continue this as
IRmlILota man < (Codm)™C1MZPIW L fa o]

25 ,
X (1+ Coﬁ) U FWIIL g + 1 F WL a0
Combining this and (57) gives the result. ]

Tohandlethenorm of f W away from 0, weusethefollowinglemma. Itisan extension
of one that Mhaskar used extensively [24, pp. 75-76)].

Lemma34. Letl < p < oo,andletW beasin Theorem3.1. Assumein addition that

, Q"(X)
58 I
( ) x—>c-lrrr(?)l’g;l£>d— QI(X)Z

(a) There exists C > 0 such that, for x € 1,

(59) ‘Q’(X)W(x) f XW‘l(t)dt <C.
0

21



(b) There exists C,, depending only on p, W such that

(60) IQIWIIL,ay < CpllgWilL,a)s

for all g : I — R absolutely continuous, with g(0) = 0 and g'W € Ly(I).
(c) Moreover under the same conditions on g, there exists C, depending only on p
and W such that

(61) 14QT+ DWIliL,ay < Collg Wi,y

Proof. (@) Choosee € (0, 1) and A € [0, d) such that

Q" (x)

QX2 <1l-—s.

xe(Ad =

An integration by parts shows that

X X d
/ eV dt = f Q) —(e*™)dt
A dt

A

B B X // t)
— O'(x) 1M _ /(AL Q(A)+/ Q"M Low 4
Q(x)""e QA e A —Q/(t)ze

IA

X
Q) e 4+ (1—¢) f e dt.
A

X
/ eV dt < ¢71Q/ (x)"1eRW.
A

Note that, for X € (A, d),
Q'(x)?

%[Q’(x)‘leQ<X>] — QW [1 _ Q”(X)} o

s0 Q'(x)~1eR™ jsincreasing there. Then there exists C > 0 such that, for x € [A, d),

A
/ e dt < CQ'(x)1e™.
0

So, for x € [A, d) and some C; independent of x,

X
/ e?W dt < C;Q'(x) e,
0

Since the left-hand side is an increasing function of x, while Q'(x)~! is a decreasing
function of x, thisinequality also holdsfor x € [0, A]. So we have (59) for x > 0. The
case X < Oissimilar.

(b) We do thisfirst for p = oo, then for p = 1, and then interpolate, as did Mhaskar.
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Step 1. p = 0.
Assume x € (0, d). Then, by (a),

|Q"gWI(x) ‘Q'(X)W(X) /0 (@W)(OW () dt‘

C”g/W”Lx(I)-

A

Step2: p=1.
Now as above

d d
f QgW|(x) dx = f
0 0

d d
< / W) ( / Q’(X)W(X)dX>W1(t)dt
0 t

dx

QOWX) [ /0 GW)OW (D) dt}

d
= / lg'W|(t) dt.

0
A similar inequality holdsin (c, 0), so we obtain

1Q AW,y < IG'WIIL,a)-

Step 3:1 < p < oo.
We have effectively shown that if we define the linear operator £ on L (1) by

LIh](x) = Q' (Xx)W(x) f htyW—(t) dt
0
(above h = g'W), then, for p = 1and p = oo,

IL0]1IL,a) < CollhllL,a)-
Now the Riesz—Thorin theorem [2, Theorem 3.6, p. 213] showsthat this holdsin L (1)
forany 1 < p < oo. Taking h = g'W then gives (60).
(c) Because Q" becomes unbounded at ¢ or d, while W*! are bounded in any compact

subinterval of |, it sufficesto show that for finitec <r < 0 < s < d, thereexistsC > 0
(depending onr, s, and p) such that

N9l < Cp gl Lplr.s]-

S X p 1/p
I9lLrg = ( / / g (bt dx)
r 0
S 1/p
(/ ”g/”Ep[rs] |X|p_1 dX) .
r

the desired inequality follows. ]

Since

IA
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Since we do not assume (58) in Theorem 3.1, we aso need a weaker version of
Lemma 3.4 that avoids that hypothesis.

Lemma3.5. AssumeW isasinTheorem3.1. Thereexistsapositiveincreasing function
@ : |1 — [0, oo) such that

(62) lim |®(X)| = o0,

X—C+ or X—>d—

andwiththefollowing properties: Letg : | — R beabsolutely continuous, withg(0) = 0
and g'W € Ly(l).

(8 ThereexistsC > 0suchthat, for x € I,
X
(63) |D(x)|e” Q™ / eQW dt < C.
0

(b) Thereexists C, depending only on p and W such that

(64) (@] + DIWIlL,a) < CpllgWilL,a)-

Proof. (@) Letx > 0 be such that

(65) Q(X) > 2Q(1)

and choose A = A(X) > 1 to bethe smallest number such that
Q(A) = 3 Q(X).

(Thiswill be possible as Q is continuous and increasing.) Since Q' isincreasing,

" 6Q0 g /Xw QM gt
/Ae = /i e’

Q (A1 — %) < Q'(A) e,

Also,

A
/ QW gt < Q'(1)~1eQA — @'(1)ed2A0.
1

Then
1
(66) e QX /X eQM gt < e*Q(X)/‘ QM gt + Q’(l)e*(l/Z)Q(X) + Q/(A)—l.
0 0

Let Qﬂfl] denote the lower inverse function of Q when restricted to [0, d), so that
Q™" : [0, 00) — [0, d) and

QU (y) = minfx € [0,d) : Qx) = y}.
Then
A= Q).
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Let
1
(IJ(X)_]' — e—Q(X)/ eQ(t) dt + Q/(l)e—(l/Z) Q(x) + Q/(Q[J:l](%Q(X)))_l.
0

Then we have, by (66),

X
d(x)e” ™ / eQtdt < 1.
0

Also
Qe = QLY = x,
SO
(67) o)t > QY3 QN = QL.

Moreover, we see that @ isincreasing to co as x — d with limit oo there. For x > 0
for which (65) fails, we use the fact that =™ [*eR® dt is bounded in a compact
subinterval of [0, d), and can just define @ to be constant there. Similarly, we handle
X < 0.

(b) One proceeds much asin Lemma 3.4. For p = oo, theinequality (63) ensures (as
in Lemma 3.4) that

IA®l+DgWIlL a1y = CpllgWilL -

Next, notethat for p = 1inLemma3.4, wedid not use (58). Using (67) and itsanal ogues
for other ranges of x, we have

@] <C(Q'|+1)
and then the case p = 1 of Lemma 3.4(b), (c) give
1@l + DIWilL,a) < CpllgWilL,a)-

Now interpolation for 1 < p < oo givestherest. [ |

Next, we need fast decreasing polynomials. xs denotes the characteristic function of
aset S

Lemma3.6. Let
—-1<r<s<l1l

There exists C > 0, and for n > 1, polynomials U, of degree < n/2 such that, for
x € [-1,1],

n 1/2
[Un(X) = xrg (X)) < C eXD(—[g min{[x —r|, |X — SI}} >

Here C isindependent of n, x, r, S.
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Proof. Nevai and Totik [30, Coroallary 2, p. 117] showed that there exist polynomials
P, of degree < n/4 such that, for x € [—1, 1],

n 1/2
[Pr(X) —sign|(x) <C eer(—[ZIXI] )

The constant C isindependent of n and x. For a € [0, 1], we set

1 X—a
$1000 = (1+ P, <—1+a)> .

Sincex € [-1,1] = (x —a)/(1+ a) € [—1, 1], and since (except at X = a),

(x)—_1 1+ sign X
X@.00) 2 g l1+a
X—a

CeXp(_ [2 1+a ]12/2)
co o]

Sa(X) =1—§ _a(—X),
and see that it admits a similar estimate. Now we set

we have

[Sh,a(X) = X@,00) (X)]

A

IA

Fora e [-1, 0), we set

Un(X) = Sir ()1 — S5(X))
and use

Xr.s1 (X) = X100 X) (1 = X(s.00) (X))
(except at x = r) to deduce that

n 1/2 n 1/2
|Un(X)_X[r,s](X)|SceXp<_|:§|X_r|] +exp<—[§|x—s|} )) u

From this, we conclude:

Lemma3.7. Wththerestrictionson A, in (53), there exist polynomials V,, of degree
< n/2suchthat, for x € [a_on — 1, apn + 1],

1/2
XD 1 (X) = V()| < C exp<— [ min{[x — A_|, [X — ?»+|}] )

_n
8(d2n + 1)

Here C isindependent of n and x.
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Proof. Let ¢, denotethelinear map of [a_,, — 1, agn + 1] onto [—1, 1], so that

X — (a—2n - l)

(X)) = -1
n(X) + S+ 1

Let
r =4£4n(A) and s=4{n(Ay),
and
Vh(X) = Up(€n(X)).
Then (except possibly at A_, A,),
X021 = Va ()| = [ X1r,s1 (€n (X)) — Un(€n(X))]

n 1/2
C exp(—[g min{[£n(X) — €n(A-)], [€n(X) — En()‘+)|}i| )

n . v
con(~ g gk i=ra] ).

IA

Finaly, we can give

Proof of Theorem 3.1. Wemay assumethat f (0) = 0. (If not, replace f by f — f (0)
and absorb the constant f (0) into the approximating polynomial.) We choose n > 1
and1l < m < n/2, and let A, satisfy (53). Let Ry, and V;,, denote the polynomials of
Lemma 3.3 and 3.7, respectively, and let

F)n = RmVn-

Then P, isapolynomia of degree < n, and

(68) En.p[f§ W] < |I(f - Pn)W”Lp(I)
< ICF = POWIIL ooy + TFWIL o
+ [IPaWIlL oD
= T1+ T+ Ts.
First,
(69) T < ICF = R)WIlL i1 + IR = V)WL a2
< ICf = RWIlL ) + TRaWI L a1 12 = Vel o
oA, Ay) .,
< =Wl

+ oM FWIILay + 1T WILa) 1L = Vallip s
by Lemma 3.3(a), (b). Here by Lemma 3.5(b), for some C independent of f, m, n, AL,

(70) I fWIIL,ay < ClIHEF'WIlL,a)-
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Moreover, by Lemma 3.7,

Ay

1/2
0 n .
I1=Walll,psg = C eXP(—P[m mln{|X—A_|,|x—A+|}:| )dx

A

< C<52n+1>7
- n

with C independent of f, m, n, A... Combining all these gives

(71) To < [ F'WilL,a) +p(m)(———

U()\—’ )\+) 62n + 1)1/p

— .
The crucia thing here is that ¢ and p are independent of f,n. Next, if ® isasin
Lemma 3.5,

(72) T2 S

IA

IPFWIIL, 0\ 2D

Lo (N\[A-. 24D

IA

WL ®

Lo (N\[A-. 24D

by Lemma 3.5(b). Finally,

Tz < [IPaWIlL qam-tam+1nn\p_ii]) T I PaWIIL 0\[azn—1.200+11)
= Tz + Ta.

Here

Tar < IRaWIIL, () IV llLpqa o —1.a0+2001\ D21 ]) -

For the first term in the product on the right-hand side, we can use Lemma 3.3(b) and
(70). For the second term, we can use Lemma 3.7:

IVall?

p([a_an—1,an+1NIN\[A_,A4])

n 1/2
=C exp( —p| ==————min{|x —A_|, |[x — & dx
B fl\[/\,u] p( P [8(82n +1) {l s | +|}} >

< C152n ki 1-
n
Thus
) S +1 1/p
(73) Tar < p(m)|| f WIILp<|>< = ) :

Next, let ¢,, denote the linear map of [a_zn, azn] onto [—1, 1], so that

X —a_
la(X) = -1+ —— =20
82n
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We see that, for x > as, + 1,

1 1
Zn(X) > En(aZn) +—=1+—
d2n don

N 1\" n
ox)>(1+-—) >exp|{C—|.
82n 52n

A similar estimate holdsfor x < a_,, — 1. Then

T

IA

n
exp (—C 6_> 168 PaWII L1\ [a_20— 1.0 +1))

2n

IA

n
21/p exp (-C—> ||€2 PnW” Lp[a_2n.a2n]>
82n

by therestricted rangeinequality inLemma3.2(a). Thenas|¢,| < lin[a_zn, azx], while
V,, is bounded (independent of n there), we obtain

Ts2

IA

n
Cexp (-C g) I RmW”Lp[ianaZn]
n

A

n
< exp (—C—) pM| F'WilLa)-

d2n
Combining all the estimates (namely, (68), (71), (72), (73)) gives

o, ry) |1

m Pl

1/p
{52 "o 2
n don

The functions o and p obey the conventions listed at the beginning of this section, and
are independent of f. For agiven large enough n > 1, we choose m = m(n) to be the
largest integer < n/2 such that

Son + 1 1/p n Son 1/(2p)
o (235) ren(-e )] = (%)

Since (by Lemma 3.2(c)) 8,,/n — 0asn — oo, necessarily m = m(n) approaches oo
asn — oo. Next, for the given m = m(n), we choose the largest t < m such that

(74 Enplf: W] < 1 f'WllL,a)

o(@at.a) <+/m
andthensetA_ = a_ and A, = a&. Then (at least for large n and m = m(n)), (53) will
be satisfied, and

o ry) _ 1

m —Jm
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Aso isfinite valued, necessarily ., — dand A_ — casn — oo, so (recal (62))

s

— 0, n— oo.
Loo (I\[A=,24])

Then denoting thetermin { } in (74) by n,, we have that (1) haslimit0asn — oo, and

isindependent of f. By astraightforward argument, we may modify them so that they
are decreasing. [ |

4. Proof of Theorem 1.3

Proof of (21) of Theorem 1.3. First, recall the estimate (34) of Theorem 1.5:

2 2
Vn—l(WZ) )/n—l(Wz) 2
o) - — .
‘( e ) < (IIWIIme Ny (W) + Canp_y
We shall show that
anl(Wz)
75 = < 44,
) n(W2) "
and then using Theorem 3.1, and Lemma 3.2(c),
La(W2)\? 8\
(76) ‘(LH) - x‘ -0 (—“) + 03 =o(l).
Nk n

To prove (75), we use the well-known identity

n—1 (W2
yyzi\(NZ)) N /. XPn-1.00 Pa(OW?(x) dx.

If we apply the restricted range inequality in Lemma 3.2(a), applied with p = 1 and to
W?2 rather than W, and if we use the fact that a.o, for W2 isa., for W, we obtain

n— W2 an
)/)/27\(/\/2)) = 2/ IXPn_1(X) Pn(X)W2(X)| dx

an
2max{an, [anl} | 1Pn—1(X) pa(X)W2(X)| dx

an

IA

IA

43n,

as desired.
Next, define a polynomial 7,(x) of degree < n — 2 by

Kn

n(X) =¢, —n——V
00 =0 N W)

Pn-1-
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We see that by orthogonality of p,_1W? to polynomials of degree < n — 2,

(77) /l.n,fwz = /I<qr/1 - nﬁ pnl) (X) 70 (X)W2(x) dx
= f a, ()T () W2(X) dx
|

_ V2W2 _n Kn / "0 W2
/I(qn) anl(Wz) | On Pn—1

1 K 2
o o] o)
[ faow?]- (o

Here we have used the definition of the inner product, the normalization (g, n) = 1,
and orthogonality. The identity (77) aso implies, asits left-hand side is nonnegative,

2
78 21 W)?2 1—x( L) .
(78) f. G = N 1 (W2)
Now we continue (77) as
N . . >2W2 S (7)
A% T ) Pt =2 Mawe
= oD,

by (76). Then orthogonality of p,_; to polynomials of degree < n — 2 gives

(80) [ (%~ pn_l)zwz

2

/ Kn 2

= —n—" _p 4 W
/. (q“ Va1 (W2) " 1)

n 1)?
+ /I (niyn_f(WZ) — ﬁ) B2 W2 = o(D). n

Proof of (23) of Theorem 1.3 assuming (22). Since

1 X
n - no—— n— =0,
[q (X) — an(0) N v 1L_0

Lemma 3.4(c) gives

1 X
' 1 n—no—_ n— W
H(|Q|+)[q 0n(0) ﬁfop 1}

1
=C H [q*‘ ﬁp“-l}w

For the asymptoticsin the plane, we need an estimate for polynomialsin the plane, in
terms of their values on a segment.

La(l)

= 0(1). [ |
La(1)

31



Lemma4.l Letl< p<ocandletw e Lp[—1, 1] beanonnegative function. Let
W) = |sing|YPw(cosh), 0 e[—m, n],

satisfy Szeg6's condition (4). Let P be a polynomial of degree < m. Then, for z €
C\[_:I" 1]7

P(z _ D2 w; 1/¢(2)
‘ @ | Pl g yryp | 22D
¢(2) 1-1]e@|
Proof. See, for example, Lemma 14.6 in [15, p. 395]. [ |

Proof of (25). Let L, denotethe linear map of [a_n, a,] onto [—1, 1], let LL-Y denote
itsinverse, and let, as at (24),

Wi (0) = W(LEY(cosh)), 0 € [—m, n],
and
Wh(0) = Wh(0)|sSin0[Y2, 6 e[-x, 7).
Thenthelemmagives(withp=2m=n—-1,w =W,)
(@, — (1/vVHpa-D(LE T (@)
92" 1D-2(Wh; 1/9(2))

1
[(qé Vi p“) ° L[“_ll] Woli™
=0(8, ).

1
L —1/20-172 /
= V2% (q ——pn_1>w
" RRRV/Y Lafan.n]

In each closed subset of C\[—1, 1], thereexistsr > 1 such that in that set
lp| >r1 > 1.

3)|= o (e )
¢ (2)

~ 1
D2<W; ) D2<W;
‘ ")’ " 9(2)
is bounded above and below in such a set. Then (25) follows. [ |

(81) A-lp@™

<12

Lo[—1,1]

Moreover,

Proof of (27). Thisisvery similar to that above, just apply Lemma4.1 to

1 (L@
Qn(l—n(z)) - Qn(o) - ﬁ 0 Pn-1
and with W replacing W,. We obtain
th(Ln(@) = 0n(0) = (/YD) 5™ pra o
82 1—
2 P @ D2(Wy; 1/p(2) A-lv@l
1 X
< a2 1+ ’)( h— (0 — —= | Pn- )w
IQD{an—qa N Pn-1 ea
= 0(1). [ ]
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5. Proof of Theorem 1.1 and Corollary 1.2
We begin with atechnical lemma:

Lemmab5.1l. Assumethat Q isasin Theorem 1.1:
@
Q')
len;'o Q(x)2
(b) For n > 1 and polynomials P of degree < n,

n\ /2
(83) IPWL.r =C (%) IPWIlL,®)-
(c) Letn > 1landlet
(84) On(0) = 1+ |Q'(ancosh), 0 € [—m, n].
Let0O <r < 1. ThereexistsC > 1 suchthat, for |zl <r andn > 1,
(85) C™' < ID(gh: 2/v/Q'(an)| = C.
(d)
(86) C < Q/(an)/% <Co.

Proof. (@) By (6) and the unboundedness of Q' at co,
QW _ B
Q(x)? ~ xQ'(x)
(b) Thisisaspecial case of the Nikolskii inequalities. See, for example, [24, p. 94] or

[15, p. 295].
(c) Now, if v > u > 0,

[0 _ [T /
—dt =l
Yow =L o™, alog ;

by (6). Similarly, we obtain an upper bound, and hence,
v _ Q@ _ (v)’
Then, fort € [—x, 7],

[1og(gn (1)) — log Q' (an)|
e l)

=
og(Q(an) Q'(an)

< max{log(Q/(lal) + 1> N Iog|cost|5|}.

X — 0.
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Then, for |z] <1 < 1,
Ilog |D(gn; 2)/v/ Q' (an)l|
1 [ et
= |4 [ toe® - toa Qani Re( 52 ) o

et —z

11+4r [T 1
< -1 max {lo 1), |log|cost|?|} dt.
A N O { g(Q’(al)Jr ) A H}

(d) As Q' isincreasing,

2 (ratQ(ant)
=2 gt ‘(@)
n/O N <anQ'(an)
Also,
2 (1 (@/2Q((@n/2) 1 /1 1 N
2 XX A g '(ag) = dt(1)1+8,
nz— " T ZanQ(an)n_ e VI (3)
by (87). [ ]

Proof of (7) of Theorem 1.1. Theweight W = exp(— Q) iseven, so the numbersa..,
become just +a,, while §,, = a,. We apply Theorem 1.5 and note that, from (75),

Vn-1
n
while we may take as the number 5, in the Jackson inequality (33),

< 4a,,

an
N = Cﬁo

See [24, p. 81] or [7]. Then (76) becomes

(250 -o(3)’

Nicn n

so, from (79),

(5 o =003
AR Twy ) =T\ owe ) TR e )

Then also,

-2 of)
Vn—l(Wz) \/X B n '

[ gmfooos) s

Next, we estimate g, (0).

s0 (80) yields

34



Lemmab5.2. Assume the hypotheses of Theorem 1.1. Then

(89) o (0)] < C\/%.

Proof. Firstlet usdenotethe Sobolev orthogonal polynomial for thespecial caseyr = 1
by q;. By Lemma5.1(b),

, N a
(90) (GAWIO) = C\ |-l Wil = C\J 2.

by (78), with v = 1 and the estimates (88) above. Now we return to general v, denoting
asusual the corresponding Sobolev orthogonal polynomialsby q,. Thetriangleinequality
gives

91) [ (0) — G OIYWllL,® = (G — ANV WIL,®)
+ I[@n — d7) — (@ — I O]YWlL,wR).-

Here by (78) and (88) applied to g, and g,

* * an
(92) 1@ — A Y WILwR) < G0 WlLw) + G Y WllL®) < CF'
Next, by Lemma 3.4(c),

[ — a7) — (@ — 9D O]V Wl L,r)
< ¥l ®Call @ — o) WllL,r®

1 1

< C r_ = _ _ * T _ W

= 2||1/f|||_x(R) |:<qn \/X pﬂ l) (qn \/X pn 1)} LZ(R)

<cX

n
by (7) applied to g, and g;;. Combining the last inequality and (91), (92) gives
X an

(93) [0n(0) — g, (0)| < CF-
Then (90) givesthe result. ]

Proof of (8). This follows from what we have just proved, (7), and Lemma 3.4(c).
More precisaly, Lemma 3.4(c) gives (recall that (58) isvalid by Lemma5.1 above)

X
an
wjw] <o(®).
Lo(R) n

G O+ [QDWIlL,®) = CE.

Note that Lemma5.1(a) impliesthat for each ¢ > 0, Q”?W¢ isdecreasing for large x, so
the norm in the last |eft-hand side isfinite. Then (8) follows. ]

1
94 1 D gn = gn0) — —
(94) H(+|QI)(q an(0) 7o

By Lemmab.2,
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Proof of (9) and (10). The Nikolskii inequality in Lemma5.1(b) and (7) gives

1 , 1 an
q’——p->W (q ——p_>W <C,/—.
H(" S SV, e L) n

Then Lemma 3.4 gives
(%)
La(®) n

1 X
H A+1QD (qn -0 - /0 pn_l) w
Our estimate above for g, (0) then gives the result. [ |

<C£

La(R) n

Proof of (12) and (13). Firgt, (12) follows from (7), (81), and the fact that LL-1(2) =
anz in thiseven case. For (13), we use (82) and (94) to obtain, uniformly for zin closed
subsets of C\[—1, 1],

Un(@n2) — Gn(0) — (1/+/2) f3"* Pn-1

95
) ¢(2"D~2(Wy; 1/9(2)

1-le@|™

< ijl/Zanfl/Z

:o(@)

n

1 X
1+ D) (0 — gn(0) — — -1 | W
(1Q1 )(q n(0) ﬁopl>

Lo[a n,an]

Here by (26) and Lemma5.1(c), (d),
n

o (o ) 0 (v )| oo )
(2 @ (2) an @ (2)

is bounded above and below for z in closed subsets of C\[—1, 1]. Also, as logW, < 0,

n

ID2(Wn;w)l <1, ul <1,
Hence the term
1 n 1
o (w0002 (w5 22|« @ o2 (s ) rvcor
an(0)/ (fp( ) " @) [an( )Ian " @) /e
decays geometrically, in view of the decay (89) of g,(0), and the geometric growth of
the denominator. We can then drop g, (0) in (95) and (13) follows. ]

Proof of Corollary 1.2.  From [15, Theorem 15.1, p. 402],

1 (a\ "M (2 (7 Qe )
n1(W2) = —( = — ———=ds |1 1)).
= (%) (2 [* 20 ) van

Then (76) givestheresult. Similarly, the L, asymptotics (15) follow directly from (7) of
Theorem 1.1 and the L, asymptotics for pn_1 givenin [15, Theorem 15.1, p. 402]. The
asymptotics in the plane (16) follow from (12) and asymptotics in the plane for p,_1
given in [15, Theorem 15.1, p. 402]. Finally the pointwise asymptotics on the segment
[—an, an] follow from (9) and Theorem 15.3 in [15, p. 403]. (We warn the reader that
the notation used there is alittle different.) ]
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