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Abstract. Let λ > 0, α > 1, and let W (x) = exp(−|x |α), x ∈ R. Let ψ ∈ L∞(R)
be positive on a set of positive measure. For n ≥ 1, one may form Sobolev orthonormal
polynomials (qn), associated with the Sobolev inner product

( f, g) =
∫

R
f g(ψW )2 + λ

∫
R

f ′g′W 2.

We establish strong asymptotics for the (qn) in terms of the ordinary orthonormal
polynomials (pn) for the weight W 2, on and off the real line. More generally, we
establish a close asymptotic relationship between (pn) and (qn) for exponential weights
W = exp(−Q) on a real interval I , under mild conditions on Q. The method is new
and will apply to many situations beyond that treated in this paper.

1. Introduction

Let

I = (c, d)

be a real interval, finite or infinite, and let Q : I → [0,∞) be convex. We also assume
that Q(x)→∞ as x → c+ or x → d−. The weight

W = exp(−Q)

is then called an exponential weight. Provided all power moments exist, we may define
orthonormal polynomials

pn(x) = pn(W
2; x), n ≥ 0,

satisfying ∫
I

pn pm W 2 = δmn.
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The leading coefficient of pn is denoted by γn = γn(W 2) and assumed positive:

pn(W
2; x) = γn(W

2)xn + · · · , γn(W
2) > 0.

Analysis of orthonormal polynomials for exponential weights has been a major theme
in orthogonal polynomials for at least the last 30 years [4], [5], [9], [12], [14], [15], [18],
[24], [28], [33]. Asymptotics for pn(x) as the degree n→∞ have been established for
large classes of exponential weights, including

Wα(x) = exp(−|x |α) on I = R,

for any α > 0. The case α = 2 is the classical Hermite weight. See, for example, [14],
[15], [32].

Another theme in orthogonal polynomials that is attracting much interest is that of
Sobolev orthogonal polynomials (qn) associated with a Sobolev inner product. Let W
be a weight as above, and let ψ : I → [0,∞) be measurable, and positive on a set of
positive measure. Let λ > 0, and define the Sobolev inner product

( f, g) =
∫

I
f gψ2W 2 + λ

∫
I

f ′g′W 2,(1)

for all functions f, g for which the inner product is meaningful. Provided all monomials
are integrable with respect to W 2 and ψ2W 2, this inner product generates orthonormal
polynomials (qn) satisfying

(qn, qm) = δmn.(2)

We shall denote the leading coefficient of qn by κn , so that

qn(x) = κn xn + · · · , κn > 0.

The leading coefficient κn admits a key extremal property

κ−2
n = inf{(P, P) : P monic of degree n}.(3)

Sobolev orthogonal polynomials have found application in a number of contexts. See,
for instance, the survey papers [19], [23], as well as [16]. In particular in [13], a study
of Fourier series of Sobolev orthogonal polynomials was initiated for smooth functions.
Legendre and Sobolev–Legendre Fourier series were compared numerically. The mea-
sures involved in the inner product satisfied a simple algebraic relation, and were close to
classical (Jacobi and Legendre) measures. Consequently, the analytical properties of the
Sobolev orthogonal polynomials could be determined from those of classical orthogonal
polynomials. This investigation was continued in [23] for the bounded (Jacobi) case and
in [20] for the unbounded Laguerre case.

For more general measures with bounded support, a key contribution was given by
Martinez–Finkelshtein [22]. There the support of the measures is a C2+ Jordan curve,
and the main requirement is that the measure in the derivative term satisfies a Szegő
condition, while the other measure is arbitrary. Only the derivative part of the inner
product has a significant impact on the asymptotic behavior of the Sobolev orthogonal
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polynomials. Indeed q ′n behaves very much like a multiple of pn−1 in the exterior domain
of the curve. If the first measure also belongs to the Szegő class, then there are relative
asymptotics for qn in terms of pn in the exterior domain of the curve.

In the unbounded case, the first example, different from the Laguerre case, was con-
sidered in [1], with

W (x) = exp(− 1
2 x2) and ψ(x) =

√
x2 + ζ 2 on R.

Ratio asymptotics were given for qn in terms of the Hermite polynomials. An interesting
feature is that the asymptotics depend on the parameter λ, a notable difference from the
bounded case. For

W (x) = exp(− 1
2 x4) and ψ(x) = 1 on R,

a similar approach was taken in [3], using known asymptotics for Freud orthogonal
polynomials.

In this paper, we shall see that q ′n behaves like (1/
√
λ) pn−1 for fairly general weights

on an unbounded interval, but some growth restriction on ψ is necessary. If ψ grows
too fast at ∞, then the first term in the inner product will swamp the derivative term.
Our first result involves Freud weights, and for these, we need to define the Mhaskar–
Rakhmanov–Saff number [25], [26], [31]: for Q even and convex on R, and for n ≥ 1,
we let an denote the positive root of the equation

n = 2

π

∫ 1

0
ant Q′(ant)

dt√
1− t2

.

For example, if Q(x) = |x |α , then

an = Cn1/α, n ≥ 1,

where the constant C may be expressed in terms of gamma functions. We note that in
all the cases that we consider,

lim
n→∞

an

n
= 0.

We also need the conformal map

ϕ(z) = z +
√

z2 − 1, z ∈ C\[−1, 1],

of the exterior of [−1, 1] onto the exterior of the unit disk, and the Szegő function [34]
of a measurable function f : [−π, π ]→ [0,∞) satisfying Szegő’s condition∫ π

−π
log f (θ)dθ > −∞.(4)

It is defined by

D( f ; z) = exp

(
1

4π

∫ π

−π
log f (eit )

eit + z

eit − z
dt

)
, |z| < 1,(5)
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and has boundary values on the unit circle that satisfy

|D( f ; eiθ )|2 = f (θ) a.e. θ ∈ [−π, π ].

We shall also need the argument of D( f ; eiθ ) on the unit circle. We write (whenever
meaningful),

D( f ; eiθ ) = f (θ)1/2 exp(i�( f ; θ)).
An explicit representation for �( f ; θ) is

�( f ; θ) = 1

4π
PV

∫ π

−π
log f (t) cot

(
θ − t

2

)
dt,

where PV denotes the Cauchy principal value integral.

Theorem 1.1. Let Q : R → R be even and continuous in R. Assume that Q′′ is
continuous in (0,∞), and Q′ > 0 in (0,∞). Assume, furthermore, that for some α, β >
0,

α ≤ x Q′′(x)
Q′(x)

≤ β, x ∈ (0,∞).(6)

Let W = e−Q , and let (pn) denote the orthonormal polynomials for W 2. Let λ > 0 and
ψ ∈ L∞(R) be positive on a set of positive measure. Let (qn) denote the orthonormal
polynomials associated with the Sobolev inner product (1). Then, as n→∞,

(I) ∥∥∥∥(q ′n −
1√
λ

pn−1

)
W

∥∥∥∥
L2(R)
= O

(
an

n

)
= o(1)(7)

and ∥∥∥∥(1+ |Q′|)(qn − 1√
λ

∫ x

0
pn−1

)
W

∥∥∥∥
L2(R)
= O

(√
an

n

)
.(8)

(II) ∥∥∥∥(q ′n −
1√
λ

pn−1

)
W

∥∥∥∥
L∞(R)

= O

(√
an

n

)
(9)

and ∥∥∥∥(1+ |Q′|)(qn − 1√
λ

∫ x

0
pn−1

)
W

∥∥∥∥
L∞(R)

= O

(√
an

n

)
.(10)

(III) Let

Wn(θ) = W (an cos θ), θ ∈ [−π, π ].(11)

Uniformly in closed subsets of C\[−1, 1],∣∣∣∣∣ (q ′n − (1/
√
λ)pn−1)(anz)

ϕ(z)n−1 D−2(Wn; 1/ϕ(z))

∣∣∣∣∣ = O

(√
an

n

)
.(12)
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Uniformly in closed subsets of C\[−1, 1],∣∣∣∣∣ (qn(anz)− (1/√λ) ∫ an z
0 pn−1)

ϕ(z)n D−2(Wn; 1/ϕ(z))

∣∣∣∣∣ = O

(
a3/2

n

n2

)
.(13)

Remarks. (a) Condition (6) allows

Q(x) = |x |α

if α > 1.
(b) What is surprising is the degree of closeness of q ′n to (1/

√
λ)pn−1. The L2 asymp-

totics are sufficiently strong to imply the uniform bound in (II) with the aid of a simple
Nikolskii inequality.

(c) The result holds assuming less smoothness of Q, namely for Freud weights in the
class F (Dini), defined in [15]. Likewise the corollary below holds for Freud weights
in the class F (lip 1

2 ), defined in [15]. One may also allow non-Freud Q, the chief
requirement being that, for each ε > 0,

x Q′(x)
Q(x)

= O(Q(x)ε)

as x approaches the endpoints of the interval of orthogonality. However, the formulations
become more technical, so we omit them.

(d) We note that one can replace
∫ x

0 pn−1 by pnγn−1(W 2)/(nγn(W 2)) in (8), but with
a worse error term. This may be achieved with the aid of Lemma 2.3 below.

(e) We shall prove Theorem 1.1 in Section 5. Because of known asymptotics for (pn)

[15] on and off the real line, we can deduce:

Corollary 1.2.

(a) As n→∞,

κn = 1

n

1√
2πλ

(
an

2

)−n+1/2

exp

(
2

π

∫ 1

0

Q(ans)√
1− s2

ds

)
(1+ o(1)).(14)

(b) We have, as n→∞,∫ 1

−1

∣∣∣∣√λanq ′n(an x)W (an x)−
√

2/π

(1− x2)1/4
(15)

× cos

[(
n − 1

2

)
arccos x + 2�(Wn; arccos x)− π

4

]∣∣∣∣2dx = o(1).

(c) Uniformly for z in closed subsets of C\[−1, 1], we have, as n→∞,√
λanq ′n(anz)/

{
ϕ(z)n−1 D−2

(
Wn; 1

ϕ(z)

)
(1− ϕ(z)−2)−1/2

}
(16)

= 1√
π
(1+ o(1)).
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(d) There exists η > 0 such that as n→∞, we have, uniformly for |x | ≤ 1−n−η, x =
cos θ , √

λanq ′n(an x)W (an x)(1− x2)1/4(17)

=
√

2

π
cos

(
(n − 1

2 )θ + 2�(Wn; θ)− π
4

)
+ O(n−η).

We note that for exp(−|x |α), α > 1, more precise asymptotics follow from the results
of Kriecherbauer and McLaughlin [14]. For example, one can give asymptotics for q ′n
even around the endpoints ±an of the Mhaskar–Rakhmanov–Saff interval.

For a fairly general class of weights, for which asymptotics for the polynomials (pn)

have not been established, we can at least prove that q ′n behaves like (1/
√
λ) pn−1. To

state part of the asymptotics, we need the Mhaskar–Rakhmanov–Saff numbers for a
nonsymmetric interval or non-even Q, generalizing that above [15, p. 13], [33, Theo-
rem 1.11, p. 201]. For Q convex on a (not necessarily symmetric) interval I , there are
unique numbers a±n , the so-called Mhaskar–Rakhmanov–Saff numbers a±n , satisfying

c < a−n < 0 < an < d

and

n = 1

π

∫ an

a−n

x Q′(x)√
(x − a−n)(an − x)

dx,(18)

0 = 1

π

∫ an

a−n

Q′(x)√
(x − a−n)(an − x)

dx .

We also let

δn = 1
2 (an + |a−n|),(19)

and let Ln denote the linear map of [a−n, an] onto [−1, 1] so that

Ln(z) = −1+ z − a−n

δn
.(20)

Its inverse linear map is denoted L [−1]
n . Amongst the properties of a±n is the Mhaskar–Saff

identity [24], [25], [26], [33],

‖PW‖L∞(I ) = ‖PW‖L∞[a−n ,an ],

valid for polynomials P of degree ≤ n.

Theorem 1.3. Let I = (c, d) be a finite or infinite interval containing 0. Let Q :
I → [0,∞) and let Q′ be an increasing absolutely continuous function in I , with
Q′(0) = 0 = Q(0) and Q positive in I\{0}. Assume also that, for j = 0, 1,

lim
x→c+ |Q

( j)(x)| = ∞ = lim
x→d−

|Q( j)(x)|.
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Let W = e−Q , and let (pn) denote the orthonormal polynomials for W 2. Let λ > 0,
ψ ∈ L∞(R) be positive on a set of positive measure, and let (qn) denote the orthonormal
polynomials associated with the Sobolev inner product (1). Then

(I)

lim
n→∞

∥∥∥∥(q ′n − 1√
λ

pn−1)W

∥∥∥∥
L2(I )

= 0.(21)

If we assume in addition that

lim sup
x→c+ or x→d−

Q′′(x)
Q′(x)2

< 1,(22)

then

lim
n→∞

∥∥∥∥(1+ |Q′|)(qn − qn(0)− 1√
λ

∫ x

0
pn−1

)
W

∥∥∥∥
L2(I )

= 0.(23)

(II) Let

Wn(θ) = W (L [−1]
n (cos θ)), θ ∈ [−π, π ].(24)

Uniformly in closed subsets of C\[−1, 1],

lim
n→∞

∣∣∣∣∣δ
1/2
n (q ′n − (1/

√
λ)pn−1)(L [−1]

n (z))

ϕ(z)n−1 D−2(Wn; 1/ϕ(z))

∣∣∣∣∣ = 0.(25)

Let

W ∗n (θ) = (1+ |Q′(L [−1]
n (cos θ))|)Wn(θ), θ ∈ [−π, π ].(26)

If we also assume (22) then, uniformly in closed subsets of C\[−1, 1],

lim
n→∞

∣∣∣∣∣δ
1/2
n (qn(Ln(z))− qn(0)− (1/

√
λ)
∫ Ln(z)

0 pn−1)

ϕ(z)n D−2(W ∗n ; 1/ϕ(z))

∣∣∣∣∣ = 0.(27)

Remarks. (a) Note that since Q′ grows to infinity as we approach the endpoints of I ,
(23) actually gives a rate of convergence for the limit.

(b) The restriction (22) is a regularity condition, rather than a growth one. If we do
not assume it, we can still prove a version of (23) in which

∣∣Q′∣∣ is replaced by a function
that grows more slowly as we approach the endpoints of I .

One of our main tools is an estimate relating the leading coefficient κn of qn to the
leading coefficient γn−1(W 2) of pn−1(W 2; x). Its formulation involves the weighted L2

error of approximation

En[ f ;W ] = inf{‖( f − P)W‖L2(I ) : deg(P) ≤ n}(28)

and the linear operator

I [R](x) = W (x)−2
∫ x

c
R(t)W 2(t)ψ2(t)dt, x ∈ (c, d),(29)

defined on suitably restricted classes of functions R. We prove:
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Theorem 1.4. Let I be a finite or infinite interval, and let W : I → R be a measurable
function such that W 2 has all finite power moments and corresponding orthonormal
polynomials (pn). Let ψ : I → R be a measurable function such that (ψW )2 has
all finite power moments, and assume that ψ is positive on a set of positive measure.
Let λ > 0, and let (qn) denote the orthonormal polynomials associated with the inner
product (1), with leading coefficients (κn). Then

0 ≤
(
γn−1(W 2)

nκn

)2

−
{(

γn−1(W 2)

nγn((ψW )2)

)2

+ λ
}

(30)

≤ sup E2
n−2[I [R];W ],

where the sup is taken over all polynomials R of degree ≤ n − 1 satisfying both

‖RWψ‖L2(I ) = 1(31)

and ∫
I

R(Wψ)2 = 0.(32)

To estimate the error in approximation, one needs a Jackson-type estimate. This re-
duces the right-hand side in (30) to a bound on the weighted derivative I [R]′, and stan-
dard methods enable one to prove weighted boundedness of I [R]′ at least for exponential
weights.

Theorem 1.5. Let I = (c, d) be a finite or infinite interval containing 0. Let Q :
I → [0,∞) and let Q′ be an increasing absolutely continuous function in I , with
Q′(0) = 0 = Q(0) and Q positive in I\{0}. Let λ > 0 and let ψ ∈ L∞(R) be positive
on a set of positive measure. Assume also that there exists a sequence of positive numbers
(ηn) such that W admits the Jackson estimate

En[ f ;W ] ≤ ηn‖ f ′W‖L2(I )(33)

for all n ≥ 1 and absolutely continuous functions f : I → R. Then∣∣∣∣(γn−1(W 2)

nκn

)2

− λ
∣∣∣∣ ≤ (‖ψ‖L∞(I )

γn−1(W 2)

nγn(W 2)

)2

+ C1η
2
n−2.(34)

The constant C1 is independent of n, λ but depends on W, ψ .

Under the conditions on Q in Theorem 1.3, we shall establish the Jackson estimate
(33) in Section 3. We now show that some restriction on the growth of ψ is necessary
near the endpoints of I .

Example 1.6. In Theorems 1.1 and 1.3, we assumed that ψ is bounded. We now show
by example, that if ψ grows faster than

√
Q′ near the endpoints of I , then the limit (21)

can fail. Observe that

q ′n −
1√
λ

pn−1 =
[

nκn

γn−1(W 2)
− 1√

λ

]
pn−1 + S,
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where S has degree ≤ n − 2, and hence∫
I

(
q ′n −

1√
λ

pn−1(x)

)2

W 2 ≥
[

nκn

γn−1(W 2)
− 1√

λ

]2

.(35)

Let W be the Hermite weight

W (x) = exp(− 1
2 x2), x ∈ R,

let � > 1, and let

ψ(x) = |x |�, x ∈ R.

We shall show that

lim
n→∞,n even

nκn

γn−1(W 2)
= 0

so (35) gives

lim inf
n→∞,n even

∫
I

(
q ′n −

1√
λ

pn−1(x)

)2

W 2 ≥ 1

λ
> 0,

so (21) fails. By the left inequality in (30),

nκn

γn−1(W 2)
≤ nγn((ψW )2)

γn−1(W 2)
.(36)

We can use explicit formulas for the leading coefficients in this last right-hand side to
show that it decays to 0. First, [34, pp. 105–106],

γn(W
2) = π−1/4(2n/n!)1/2.

Next,

(ψW )2(x) = |x |2� exp(−x2)

is the symmetrized form of the Laguerre weight t−1/2+� exp(−t), under the transfor-
mation t = x2 in the integral defining orthonormality. Representations for Laguerre
polynomials [34, pp. 100–101] give, for n = 2m,

γn((ψW )2) =


1

�( 1
2 +�)

1(
m +�− 1

2

m

)


1/2

1

m!
.

Substituting these representations into (36) and applying Stirling’s formula, gives, for
even n,

nκn

γn−1(W 2)
≤ C(n1−�)1/2.

This decays to 0 if � > 1.
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At least for Freud weights, it seems likely that (21) will persist if we ensure that

lim
|x |→∞

ψ2(x)/Q′(x) = 0.

However the growth of ψ affects the error term in (7), and we no longer necessarily
obtain the uniform asymptotic (9).

We note finally that in the limit case � = 1, the results of [1] imply that there exist
C1,C2 > 0 such that, for n large enough and for all λ > 0,

C1/
√
ϕ(1+ 2λ) ≤ nκn

γn−1(W 2)
≤ C2/

√
ϕ(1+ 2λ),

so the ratio does not decay to 0.
As a final example in this section, we apply Theorem 1.1 to orthonormal expansions.

Application 1.7. Let W = exp(−Q) be as in Theorem 1.1 and let f : R → R be
differentiable a.e. with ( f, f ) finite. Assume for simplicity that ψ ≡ 1. We may then
form the Sobolev orthonormal expansion

∞∑
n=0

( f, qn)qn.

We shall show that there is a close relationship between the term-by-term derivative of
this series, namely,

∞∑
n=0

( f, qn)q
′
n,

and the standard orthonormal expansion of f ′ in (pn). More precisely, we shall show
that ∥∥∥∥∥

[ ∞∑
n=m

( f, qn)q
′
n −

∞∑
n=m−1

(∫
R

f ′ pn W 2

)
pn

]
W

∥∥∥∥∥
L2(R)

(37)

≤ C( f, f )1/2
( ∞∑

n=m

a2
n

n2

)1/2

,

where C is independent of f and m. If, for example, Q(x) = |x |α , where α > 2, then
this series converges, and the right-hand side of (37) is O(n1/α−1/2). To establish (37),
we write

( f, qn)q
′
n = ( f, qn)

[
q ′n −

1√
λ

pn−1

]
+ 1√

λ
( f, qn)pn−1

and

1√
λ
( f, qn)pn−1 = 1√

λ

(∫
R

f qn W 2

)
pn−1

+
√
λ

(∫
R

f ′
[

q ′n −
1√
λ

pn−1

]
W 2

)
pn−1

+
(∫

R
f ′ pn−1W 2

)
pn−1.
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Using these last two identities, we see that the left-hand side in (37) is bounded above
by

∞∑
n=m

|( f, qn)|
∥∥∥∥[q ′n −

1√
λ

pn−1

]
W

∥∥∥∥
L2(R)
+ 1√

λ

( ∞∑
n=m

[∫
R

f qn W 2

]2
)1/2

+
√
λ

( ∞∑
n=m

[∫
R

f ′
[

q ′n −
1√
λ

pn−1

]
W 2

]2
)1/2

=: T1 + T2 + T3.

Here, by (7), the triangle inequality, and Bessel’s inequality,

T1 ≤ C

( ∞∑
n=m

|( f, qn)|2
)1/2 ( ∞∑

n=m

a2
n

n2

)1/2

≤ C( f, f )1/2
( ∞∑

n=m

a2
n

n2

)1/2

.

Next, [∫
R

f qn W 2

]2

≤
[∫

R
f 2W 2

] [∫
R

q2
n W 2

]
≤ ( f, f )C

(
an

n

)2

,

see (78), (88) below. Then T2 admits a similar estimate to T1. Finally, as[∫
R

f ′
[

q ′n −
1√
λ

pn−1

]
W 2

]2

≤
[∫

R
f ′2W 2

] [∫
R

[
q ′n −

1√
λ

pn−1

]2

W 2

]
≤ 1

λ
( f, f )C

(
an

n

)2

,

by (7) again, T3 also admits an estimate similar to that for T1. Then (37) follows.

2. Proof of Theorems 1.4 and 1.5

Throughout, we assume the hypotheses of Theorem 1.4. We also let Pm
n denote the set

of monic polynomials of degree n.

Proof of Theorem 1.4. First,

κ−2
n = inf

P∈Pm
n

(P, P)(38)

≥ inf
P∈Pm

n

∫
I

P2(ψW )2 + λ inf
P∈Pm

n

∫
I
(P ′)2W 2

= γ−2
n ((ψW )2)+ λn2γ−2

n−1(W
2),

as P ∈ Pm
n implies that P ′/n ∈ Pm

n−1, and by the extremal property of the leading
coefficient of orthonormal polynomials. In the other direction, fix a ∈ I , and define a
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monic polynomial P∗ by

P∗(x) = n

γn−1(W 2)

∫ x

a
pn−1(W

2; t) dt + C,

where the constant of integration C is chosen so that∫
I

P∗ p0((ψW )2)(ψW )2 = 0.(39)

Observe that

λ

∫
I
(P ′∗)

2W 2 = λ
(

n

γn−1(W 2)

)2

.(40)

Now expand in terms of the orthonormal polynomials for the weight (ψW )2:

P∗ =
n−1∑
j=1

bj pj ((ψW )2)+ 1

γn((ψW )2)
pn((ψW )2),(41)

so ∫
I

P2
∗ (ψW )2 =

n−1∑
j=1

b2
j + γ−2

n ((ψW )2).(42)

(The coefficient of p0((ψW )2) is zero by (39).) An integration by parts gives

bj =
∫

I
P∗ pj ((ψW )2)(ψW )2(43)

= − n

γn−1(W 2)

∫ d

c
pn−1(W

2; x)
{∫ x

c
pj ((ψW )2; t)(ψW )2(t) dt

}
dx .

To see that the first terms in the integration by parts, namely,[
P∗(x)

∫ x

c
pj ((ψW )2; t)(ψW )2(t) dt

]x=d

x=c

,

do indeed vanish, we note that it is trivial if c, d are finite. Suppose now that c = −∞.
It suffices to show that for each pair of nonnegative integers (k, �), we have

lim
x→−∞ |x |

k
∫ x

c
|t |�(ψW )2(t) dt = 0.

The integral in this last limit is bounded above for x < 0 by∫ x

c
|t |�+k(ψW )2(t) dt

and that decays to 0 as x → −∞ by convergence of the power moments of (ψW )2.
Similarly, we may handle the case d = ∞, also using that∫ x

c
pj ((ψW )2; t)(ψW )2(t) dt = −

∫ d

x
pj ((ψW )2; t)(ψW )2(t) dt.

12



So (43) is correct as stated. Next, we use the dual formulation,(
n−1∑
j=1

b2
j

)1/2

= sup

{
n−1∑
j=1

cj bj :
n−1∑
j=1

c2
j = 1

}
.

For any such {cj }n−1
j=1 , set

R =
n−1∑
j=1

cj pj ((ψW )2),

so
n−1∑
j=1

cj bj = − n

γn−1(W 2)

∫ d

c
pn−1(W

2; x)
{∫ x

c
R(t)(ψW )2(t) dt

}
dx

= − n

γn−1(W 2)

∫ d

c
pn−1(W

2; x)I [R](x)W 2(x) dx

with the notation (29). If S is any polynomial of degree≤ n−2, we can use orthogonality
to continue this as

n−1∑
j=1

cj bj = − n

γn−1(W 2)

∫ d

c
pn−1(W

2; x)(I [R](x)− S(x))W 2(x) dx

≤ n

γn−1(W 2)

{∫ d

c
(I [R](x)− S(x))2W 2(x) dx

}1/2

.

Since S is any such polynomial, we obtain

n−1∑
j=1

cj bj ≤ n

γn−1(W 2)
En−2[I [R];W ].

Finally the only restriction on R, apart from having degree ≤ n − 1 and that the sum of
the squares of the coefficients is 1, is that its coefficient of p0((ψW )2) is zero, that is,∫

I
Rp0((ψW )2)(ψW )2 = 0.

Since p0 is a constant, this reduces to (32). Hence, taking sup over all (cj )
n−1
j=1 whose

sum of squares is 1, we obtain(
n−1∑
j=1

b2
j

)1/2

≤ n

γn−1(W 2)
sup En−2[I [R];W ],

where the sup is taken over all polynomials R of degree ≤ n − 1 satisfying both (31)
and (32). Combining this with (40) and (42) gives

κ−2
n ≤ (P∗, P∗)

≤
(

n

γn−1(W 2)

)2

(sup En−2[I [R];W ])2 + γ−2
n ((ψW )2)+ λ

(
n

γn−1(W 2)

)2

.

Rearranging this and using (38) gives the result.

13



In the course of the above proof, we actually proved:

Lemma 2.1. Assume the hypotheses of Theorem 1.4. Let a ∈ I , n ≥ 1, and let b0

denote the coefficient of p0((ψW )2; x) in the orthonormal expansion of the polynomial
(n/γn−1(W 2))

∫ x
a pn−1(W 2) with respect to the polynomials {pj ((ψW )2; x)}nj=0. Then∥∥∥∥∥
(

n

γn−1(W 2)

∫ x

a
pn−1(W

2)− b0 p0((ψW )2)(44)

− 1

γn((ψW )2)
pn((ψW )2)

)
ψW

∥∥∥∥∥
L2(I )

≤ n

γn−1(W 2)
sup En−2[I [R];W ],

where the sup is taken over all polynomials R of degree≤ n−1 satisfying both (31) and
(32).

For the proof of Theorem 1.5, we need a lemma, which follows the classical ideas of
Freud. It is presented in Mhaskar’s book [24, p. 84 ff.] for Freud weights.

Lemma 2.2. Assume the conditions on W and ψ in Theorem 1.5. Let 1 ≤ p ≤ ∞. Let
h : I → R be measurable, with ∫

I
h(ψW )2 = 0.(45)

Then

‖I [h]′W‖L p(I ) ≤ Cp‖hWψ‖L p(I ),(46)

where Cp depends only on p,W , and ψ .

Proof. We prove this first for p = ∞, then p = 1, and then use interpolation to do
1 < p <∞.

Step 1: p = ∞.
Assume first x ∈ (c, 0) and recall that we are assuming that Q′(x) ≤ Q′(0) = 0 for
such x . Now

I [h](x) = e2Q(x)
∫ x

c
h(t)e−2Q(t)ψ2(t) dt,

so, for a.e. x ∈ (c, 0),

I [h]′(x) = 2Q′(x)e2Q(x)
∫ x

c
h(t)e−2Q(t)ψ2(t)dt + h(x)ψ2(x)

⇒ |I [h]′(x)W (x)|
≤ ‖hWψ‖L∞(I )‖ψ‖L∞(I )

{
2|Q′(x)|eQ(x)

∫ x

c
e−Q(t) dt + 1

}
.
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Because Q′ is increasing, and negative in (c, 0),

|Q′(x)|eQ(x)
∫ x

c
e−Q(t) dt ≤ eQ(x)

∣∣∣∣∫ x

c
e−Q(t)Q′(t) dt

∣∣∣∣ = 1.(47)

So, for x < 0,

|I [h]′(x)W (x)| ≤ 3‖ψ‖L∞(I )‖hWψ‖L∞(I ).

Next, for x > 0, we use (45) to deduce that

I [h](x) = −e2Q(x)
∫ d

x
h(t)e−2Q(t)ψ2(t) dt

and proceed similarly. In summary,

‖I [h]′W‖L∞(I ) ≤ 3‖ψ‖L∞(I )‖hWψ‖L∞(I ).

Step 2: p = 1.
Now

‖I [h]′W‖L1(c,0) =
∫ 0

c
|I [h]′(x)W (x)| dx

≤
∫ 0

c
2
∣∣Q′∣∣ (x)eQ(x)

∣∣∣∣∫ x

c
h(t)e−2Q(t)ψ2(t) dt

∣∣∣∣ dx

+
∫ 0

c
|h(x)|e−Q(x)ψ2(x) dx

≤ ‖ψ‖L∞(I )

2
∫ 0

c
|h(t)|e−2Q(t)ψ(t)

[∫ 0

t
|Q′|(x)eQ(x) dx

]
dt

+
∫ 0

c
|h(x)|e−Q(x)|ψ(x)| dx

 .
Here, as Q′ ≤ 0 in (c, 0), in the integral,∫ 0

t
|Q′|(x)eQ(x) dx = eQ(t) − eQ(0) ≤ eQ(t),

so

‖I [h]′W‖L1(c,0) ≤ (3‖ψ‖L∞(I ))‖hWψ‖L1(c,0).

Similarly, using (45), we deduce that

‖I [h]′W‖L1(0,d) ≤ (3‖ψ‖L∞(I ))‖hWψ‖L1(0,d).

In summary,

‖I [h]′W‖L1(c,d) ≤ (3‖ψ‖L∞(I ))‖hWψ‖L1(c,d).

Step 3: 1 < p <∞.
We would like to interpolate this inequality to get an estimate of the norm of (3‖ψ‖L∞(I ))

15



in any L p space. However, the standard interpolation theorems do not seem to apply to
a space of functions restricted by the condition (45). Accordingly, we define (as did
Mhaskar [24, p. 86 ff.])

A0[h] =
∫

I
h(ψW )2/

∫
I
(ψW )2

and

L[h] = I [h − A0[h]]′.

Note that h − A0[h] satisfies (45), that is,∫
I
(h − A0[h])(ψW )2 = 0.

The above estimates show that, for p = 1 and p = ∞,
‖L[h]W‖L p(c,d) ≤ (3‖ψ‖L∞(I ))‖(h − A0[h])Wψ‖L p(c,d)

≤ (3‖ψ‖L∞(I ))(‖hWψ‖L p(c,d) + |A0[h]|‖Wψ‖L p(c,d))

≤ (3‖ψ‖L∞(I ))‖hWψ‖L p(c,d)

(
1+ ‖Wψ‖Lq (c,d)/

∫
I
(ψW )2

)
,

where q is the dual parameter of p. The standard form of the Riesz–Thorin theorem
gives, for 1 < p <∞ and some C depending on p,W, ψ,

‖L[h]W‖L p(c,d) ≤ Cp‖hWψ‖L p(c,d).

Then for functions h satisfying (45), which is equivalent to A0[h] = 0, we have L[h] =
I [h]′ and so obtain (46).

We turn to

Proof of Theorem 1.5. Let R be a polynomial satisfying (31) and (32). The Jackson
inequality (33), followed by the lemma above gives

En−2[I [R];W ] ≤ ηn−2‖I [R]′W‖L2(I )

≤ C2ηn−2‖RWψ‖L2(I ) = C2ηn−2.

Thus (30) gives

0 ≤
(
γn−1(W 2)

nκn

)2

−
{(

γn−1(W 2)

nγn((ψW )2)

)2

+ λ
}
≤ C2

2η
2
n−2.

Here

γ−2
n ((ψW )2) = inf

P∈Pm
n

∫
I

P2(ψW )2

≤ ‖ψ‖2
L∞(I ) inf

P∈Pm
n

∫
I

P2W 2

= ‖ψ‖2
L∞(I )γ

−2
n (W 2).

Combining these last inequalities and rearranging gives (34).
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We record for future use

Lemma 2.3. Assume the hypotheses of Theorem 1.5. Then∥∥∥∥( n

γn−1(W 2)

∫ x

0
pn−1(W

2)− 1

γn((ψW )2)
pn((ψW )2)

)
ψW

∥∥∥∥
L2(I )

(48)

≤ C3
n

γn−1(W 2)

[
ηn−2 +

∣∣∣∣∫
I

pn−1(W
2) sign(·)W 2

∣∣∣∣] ,
where the constant C3 is independent of n but depends on W, ψ .

Proof. In view of Lemma 2.1, we must estimate the term b0 p0((ψW )2) that appears in
the left-hand side of (44). We showed in the above proof that the right-hand side of (44) in
Lemma 2.1 is bounded above by C2ηn−2(n/γn−1(W 2)). In estimating b0, we can follow
similar steps to that for bj , j ≥ 1, in the proof of Theorem 1.4, but extra difficulties arise
because ∫

I
p0((ψW )2)(ψW )2 �= 0.(49)

Now as p0((ψW )2) is constant,

γn−1(W 2)

n
b0 = p0((ψW )2)

[∫ 0

c
+
∫ d

0

] [∫ t

0
pn−1(W

2; x)dx

]
(ψW )2(t) dt

= p0((ψW )2)(T1 + T2),

say. Integration by parts gives

T1 = −
∫ 0

c
pn−1(W

2; x)
[∫ x

c
(ψW )2(t) dt

]
dx,

T2 =
∫ d

0
pn−1(W

2; x)
[∫ d

x
(ψW )2(t) dt

]
dx .

(It is here that we have to proceed differently from bj , j ≥ 1, to circumvent (49).) Let

f (x) = sign(x)W−2(x)

{∫ d
x (ψW )2(t) dt, x ∈ (0, d),∫ x
c (ψW )2(t) dt, x ∈ (c, 0].

Then

γn−1(W 2)

np0((ψW )2)
b0 =

∫ d

c
pn−1(W

2; x) f (x)W 2(x) dx .

Observe that, since W (0) = 1,

f (0+) =
∫ d

0
(ψW )2 and f (0−) = −

∫ 0

c
(ψW )2.
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To take account of this jump discontinuity at 0, we define a function h such that h(0±) =
f (0±), by

h(x) =
[

1

2

∫
I
(ψW )2

]
sign(x)+ 1

2

[∫ d

0
(ψW )2 −

∫ 0

c
(ψW )2

]
.

Then f − h has limit 0 at 0, so is continuous there. Also, for a.e. x > 0,

( f − h)′(x) = f ′(x) = 2Q′(x)e2Q(x)
∫ d

x
(ψW )2 − ψ2(x)

and, for a.e. x < 0,

( f − h)′(x) = f ′(x) = −2Q′(x)e2Q(x)
∫ x

c
(ψW )2 − ψ2(x).

So ( f − h)′ + ψ2 has essential limit 0 at 0, and then f − h is absolutely continuous.
Moreover, the convexity of Q gives, as at (47),

|( f − h)′(x)| ≤ 2‖ψ‖2
L∞(I ), a.e. x ∈ I.(50)

Next, split

γn−1(W 2)

np0((ψW )2)
b0 =

∫ d

c
pn−1(W

2; x)( f − h)(x)W 2(x) dx

+
∫ d

c
pn−1(W

2; x)h(x)W 2(x) dx = τ1 + τ2.

Here

|τ1| ≤ En−2[ f − h;W ] ≤ ηn−2‖( f − h)′W‖L2(I ) ≤ 2ηn−2‖ψ‖2
L∞(I )‖W‖L2(I ),

by our Jackson estimate (33) and our bound (50). Next, the definition of h and orthogo-
nality of pn−1 to constants gives

|τ2| =
[

1

2

∫
I
(ψW )2

] ∣∣∣∣∫ d

c
pn−1(W

2; x) sign(x)W 2(x) dx

∣∣∣∣ .
Combining these last two relations, and that from Lemma 2.1 gives the result.

3. A General Jackson Inequality

We shall deduce Theorem 1.3 from Theorem 1.5 and the following crude, but general,
Jackson inequality. More precise Jackson theorems for more restricted classes of weights
can be found in [7], [8], [24]. In this section only, we use the notation

En,p[ f ;W ] = inf{‖( f − P)W‖L p(I ) : deg(P) ≤ n}.
In the notation of the Introduction, of course,

En[ f ;W ] = En,2[ f ;W ].
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Theorem 3.1. Let I = (c, d) be a finite or infinite interval containing 0. Let Q : I →
[0,∞) be convex and let Q′ be absolutely continuous in I , with Q′(0) = 0 = Q(0) and
Q positive in I\{0}. Assume also that, for j = 0, 1,

lim
x→c+ |Q

( j)(x)| = ∞ = lim
x→d−

|Q( j)(x)|.(51)

Let W = e−Q and 1 ≤ p <∞. Then there exists a decreasing sequence (ηn) of positive
numbers with limit 0 such that for every absolutely continuous function f : I → R with
f ′W ∈ L p(I ), we have

En,p[ f ;W ] ≤ ηn‖ f ′W‖L p(I ).(52)

We shall prove this in a series of lemmas. We may assume, by dilating I, that

I ⊃ (−2, 2).

Throughout this section, we use special notation. We shall use integers n ≥ 1 and m � n,
as well as parameters

a−m ≤ λ− < −1 and 1 < λ+ ≤ am .(53)

We denote by ρ(m) an increasing function that depends on m and W , while σ(λ−, λ+)
denotes a function increasing in λ+ and decreasing in λ−. These functions change in
different occurrences. The main feature is that σ is independent of m, n, and functions f ,
while ρ is independent of λ±, and functions f . At the end, we choose m to grow slowly
enough as a function of n, and then λ± also to approach the endpoints of I sufficiently
slowly.

Our strategy is to use the usual Jackson’s theorem to approximate f on [λ−, λ+],
and then to “damp down” this polynomial on [a−m, am]\[λ−, λ+] using fast-decreasing
polynomials. Restricted range (or infinite-finite range) inequalities give the rest. We
begin with a technical lemma.

Lemma 3.2. Assume the hypotheses on Q in Theorem 3.1. Then:

(a) For 0 < p ≤ ∞ and polynomials P of degree ≤ n − 2/p,

‖PW‖L p(I ) ≤ 21/p‖PW‖L p[a−n ,an ].

(b)

lim
n→∞ a−n = c and lim

n→∞ an = d.

(c)

lim
n→∞ δn/n = 0.
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Proof. (a) This is part of Theorem 4.1 in [15, p. 95].
(b) This follows from the convexity of Q. See, for example, Theorem 2.4 in [15, p. 41].
(c) If I is finite, then (δn) is bounded and the result is immediate. Now assume that I

is unbounded. Let n ≥ 1 and assume an ≥ |a−n|, so that an ≥ δn . Then, from (18), as
x Q′(x) ≥ 0 in I , and as Q′ is nondecreasing in I ,

n ≥ 1
2 an Q′( 1

2 an)

∫ an

(1/2)an

dx√
(x − a−n)(an − x)

≥ 1
2δn Q′( 1

2δn)

∫ an

(1/2)an

dx√
(x + an)(an − x)

= 1
2δn Q′( 1

2δn)

∫ 1

(1/2)

dt√
1− t2

.

Similarly, if an < |a−n|, we obtain

n ≥ 1
2δn|Q′(− 1

2δn)|
∫ −1/2

−1

dt√
1− t2

.

Since δn → ∞ as n → ∞, and since Q′ becomes unbounded at both endpoints of I ,
we then obtain the desired limit.

Lemma 3.3.

(a) There is a function σ : (c, 0]× [0, d)→ [0,∞), decreasing in the first variable,
and increasing in the second variable, with the following properties: let m ≥ 1
and λ± satisfy (53). For all absolutely continuous f with f ′W ∈ L p(I ), there
exists a polynomial Rm of degree ≤ m such that

‖( f − Rm)W‖L p[λ−,λ+] ≤ σ(λ−, λ+)
m

‖ f ′W‖L p(I ).(54)

(b) Moreover, there is an increasing function ρ : Z+ → (0,∞) depending only on
W such that

‖Rm W‖L p(I ) + ‖Rm W‖L∞(I ) ≤ ρ(m)(‖ f W‖L p(I ) + ‖ f ′W‖L p(I )).(55)

Proof. (a) By the classical form of Jackson’s theorem [6, Theorem 6.2, p. 219], trans-
lated from [−1, 1] to [λ−, λ+], there exists Rm with

‖ f − Rm‖L p[λ−,λ+] ≤ C0
λ+ − λ−

m
‖ f ′‖L p[λ−,λ+].(56)

Here C0 is an absolute constant, independent of f,m, λ±. Then

‖( f − Rm)W‖L p[λ−,λ+] ≤ C0
λ+ − λ−

m
‖W‖L∞[λ−,λ+]

∥∥∥∥ 1

W

∥∥∥∥
L∞[λ−,λ+]

‖ f ′W‖L p(I ).

So we can take

σ(λ−, λ+) = C0(λ+ − λ−)‖W‖L∞[λ−,λ+]

∥∥∥∥ 1

W

∥∥∥∥
L∞[λ−,λ+]

.
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(b) By the restricted range inequalities in Lemma 3.2,

‖Rm W‖L p(I ) + ‖Rm W‖L∞(I ) ≤ 21/p‖Rm W‖L p[a−m ,am ] + ‖Rm W‖L∞[a−m ,am ](57)

≤ 21/p‖Rm‖L∞[a−m ,am ](‖W‖L p(I ) + ‖W‖L∞(I )).

Recall the Chebyshev inequality [6, Proposition 2.3, p. 101], valid for polynomials P of
degree ≤ m:

|P(x)| ≤ |Tm(x)|‖P‖L∞[−1,1], |x | > 1.

Here Tm is the classical Chebyshev polynomial of the first kind. By translating and
dilating this, and using the bound

|Tm(x)| ≤ (2|x |)m, |x | > 1,

we obtain for some absolute constant C0,

‖Rm‖L∞[a−m ,am ] ≤
(

C0
am − a−m

λ+ − λ−

)m

‖Rm‖L∞[λ−,λ+].

Using the Nikolskii inequalities [6, Theorem 2.6, p. 102], we continue this for some
absolute constant C1 as

‖Rm‖L∞[a−m ,am ] ≤
(

C0
am − a−m

λ+ − λ−

)m ( C1m2

λ+ − λ−

)1/p

‖Rm‖L p[λ−,λ+]

≤ (C0δm)
m(C1m)2/p‖Rm‖L p[λ−,λ+]

≤ (C0δm)
m(C1m)2/p

(
‖ f ‖L p[λ−,λ+] + C0

λ+ − λ−
m

‖ f ′‖L p[λ−,λ+]

)
,

by the fact that |λ±| ≥ 1 and by (56). Using our bound (53) on λ±, we continue this as

‖Rm‖L∞[a−m ,am ] ≤ (C0δm)
m(C1m)2/p‖W−1‖L∞[a−m ,am ]

×
(

1+ C0
2δm

m

)
(‖ f W‖L p[λ−,λ+] + ‖ f ′W‖L p[λ−,λ+]).

Combining this and (57) gives the result.

To handle the norm of f W away from 0, we use the following lemma. It is an extension
of one that Mhaskar used extensively [24, pp. 75–76].

Lemma 3.4. Let 1 ≤ p ≤ ∞, and let W be as in Theorem 3.1. Assume in addition that

lim sup
x→c+ or x→d−

Q′′(x)
Q′(x)2

< 1.(58)

(a) There exists C > 0 such that, for x ∈ I ,∣∣∣∣Q′(x)W (x)
∫ x

0
W−1(t)dt

∣∣∣∣ ≤ C.(59)
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(b) There exists Cp depending only on p,W such that

‖Q′gW‖L p(I ) ≤ Cp‖g′W‖L p(I ),(60)

for all g : I → R absolutely continuous, with g(0) = 0 and g′W ∈ L p(I ).
(c) Moreover under the same conditions on g, there exists Cp depending only on p

and W such that

‖(|Q′| + 1)gW‖L p(I ) ≤ Cp‖g′W‖L p(I ).(61)

Proof. (a) Choose ε ∈ (0, 1) and A ∈ [0, d) such that

x ∈ (A, d) ⇒ Q′′(x)
Q′(x)2

< 1− ε.

An integration by parts shows that∫ x

A
eQ(t) dt =

∫ x

A
Q′(t)−1 d

dt
(eQ(t)) dt

= Q′(x)−1eQ(x) − Q′(A)−1eQ(A) +
∫ x

A

Q′′(t)
Q′(t)2

eQ(t) dt

≤ Q′(x)−1eQ(x) + (1− ε)
∫ x

A
eQ(t) dt.

So ∫ x

A
eQ(t) dt ≤ ε−1 Q′(x)−1eQ(x).

Note that, for x ∈ (A, d),

d

dx
[Q′(x)−1eQ(x)] = eQ(x)

[
1− Q′′(x)

Q′(x)2

]
> 0,

so Q′(x)−1eQ(x) is increasing there. Then there exists C > 0 such that, for x ∈ [A, d),∫ A

0
eQ(t) dt ≤ C Q′(x)−1eQ(x).

So, for x ∈ [A, d) and some C1 independent of x,∫ x

0
eQ(t) dt ≤ C1 Q′(x)−1eQ(x).

Since the left-hand side is an increasing function of x , while Q′(x)−1 is a decreasing
function of x , this inequality also holds for x ∈ [0, A]. So we have (59) for x > 0. The
case x < 0 is similar.

(b) We do this first for p = ∞, then for p = 1, and then interpolate, as did Mhaskar.
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Step 1: p = ∞.
Assume x ∈ (0, d). Then, by (a),

|Q′gW |(x) =
∣∣∣∣Q′(x)W (x)

∫ x

0
(g′W )(t)W−1(t) dt

∣∣∣∣
≤ C‖g′W‖L∞(I ).

Step 2: p = 1.
Now as above∫ d

0
|Q′gW |(x) dx =

∫ d

0

∣∣∣∣Q′(x)W (x)

[∫ x

0
(g′W )(t)W−1(t) dt

]∣∣∣∣ dx

≤
∫ d

0
|g′W |(t)

(∫ d

t
Q′(x)W (x)dx

)
W−1(t) dt

=
∫ d

0
|g′W |(t) dt.

A similar inequality holds in (c, 0), so we obtain

‖Q′gW‖L1(I ) ≤ ‖g′W‖L1(I ).

Step 3: 1 < p <∞.
We have effectively shown that if we define the linear operator L on L p(I ) by

L[h](x) = Q′(x)W (x)
∫ x

0
h(t)W−1(t) dt

(above h = g′W ), then, for p = 1 and p = ∞,

‖L[h]‖L p(I ) ≤ Cp‖h‖L p(I ).

Now the Riesz–Thorin theorem [2, Theorem 3.6, p. 213] shows that this holds in L p(I )
for any 1 < p <∞. Taking h = g′W then gives (60).

(c) Because Q′ becomes unbounded at c or d, while W±1 are bounded in any compact
subinterval of I , it suffices to show that for finite c < r < 0 < s < d, there exists C > 0
(depending on r, s, and p) such that

‖g‖L p[r,s] ≤ Cp‖g′‖L p[r,s].

Since

‖g‖L p[r,s] =
(∫ s

r

∣∣∣∣∫ x

0
g′(t)dt

∣∣∣∣p dx

)1/p

≤
(∫ s

r
‖g′‖p

L p[r,s] |x |p−1 dx

)1/p

,

the desired inequality follows.
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Since we do not assume (58) in Theorem 3.1, we also need a weaker version of
Lemma 3.4 that avoids that hypothesis.

Lemma 3.5. Assume W is as in Theorem 3.1. There exists a positive increasing function
� : I → [0,∞) such that

lim
x→c+ or x→d−

|�(x)| = ∞,(62)

and with the following properties: Let g : I → R be absolutely continuous, with g(0) = 0
and g′W ∈ L p(I ).

(a) There exists C > 0 such that, for x ∈ I,

|�(x)|e−Q(x)
∫ x

0
eQ(t) dt ≤ C.(63)

(b) There exists Cp depending only on p and W such that

‖(|�| + 1)gW‖L p(I ) ≤ Cp‖g′W‖L p(I ).(64)

Proof. (a) Let x > 0 be such that

Q(x) > 2Q(1)(65)

and choose A = A(x) > 1 to be the smallest number such that

Q(A) = 1
2 Q(x).

(This will be possible as Q is continuous and increasing.) Since Q′ is increasing,∫ x

A
eQ(t) dt ≤

∫ x

A

Q′(t)
Q′(A)

eQ(t) dt

= Q′(A)−1(eQ(x) − eQ(A)) ≤ Q′(A)−1eQ(x).

Also, ∫ A

1
eQ(t) dt ≤ Q′(1)−1eQ(A) = Q′(1)e(1/2)Q(x).

Then

e−Q(x)
∫ x

0
eQ(t) dt ≤ e−Q(x)

∫ 1

0
eQ(t) dt + Q′(1)e−(1/2)Q(x) + Q′(A)−1.(66)

Let Q[−1]
+ denote the lower inverse function of Q when restricted to [0, d), so that

Q[−1]
+ : [0,∞)→ [0, d) and

Q[−1]
+ (y) = min{x ∈ [0, d) : Q(x) = y}.

Then

A = Q[−1]
+ ( 1

2 Q(x)).
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Let

�(x)−1 = e−Q(x)
∫ 1

0
eQ(t) dt + Q′(1)e−(1/2) Q(x) + Q′(Q[−1]

+ ( 1
2 Q(x)))−1.

Then we have, by (66),

�(x)e−Q(x)
∫ x

0
eQ(t) dt ≤ 1.

Also

Q[−1]
+ ( 1

2 Q(x)) ≤ Q[−1]
+ (Q(x)) ≤ x,

so

�(x)−1 ≥ Q′(Q[−1]
+ ( 1

2 Q(x)))−1 ≥ Q′(x)−1.(67)

Moreover, we see that � is increasing to∞ as x → d with limit∞ there. For x > 0
for which (65) fails, we use the fact that e−Q(x)

∫ x
0 eQ(t) dt is bounded in a compact

subinterval of [0, d), and can just define � to be constant there. Similarly, we handle
x < 0.

(b) One proceeds much as in Lemma 3.4. For p = ∞, the inequality (63) ensures (as
in Lemma 3.4) that

‖(|�| + 1)gW‖L∞(I ) ≤ Cp‖g′W‖L∞(I ).

Next, note that for p = 1 in Lemma 3.4, we did not use (58). Using (67) and its analogues
for other ranges of x , we have

|�| ≤ C(|Q′| + 1)

and then the case p = 1 of Lemma 3.4(b), (c) give

‖(|�| + 1)gW‖L1(I ) ≤ Cp‖g′W‖L1(I ).

Now interpolation for 1 < p <∞ gives the rest.

Next, we need fast decreasing polynomials: χS denotes the characteristic function of
a set S.

Lemma 3.6. Let

−1 ≤ r < s ≤ 1.

There exists C > 0, and for n ≥ 1, polynomials Un of degree ≤ n/2 such that, for
x ∈ [−1, 1],

|Un(x)− χ[r,s](x)| ≤ C exp

(
−
[

n

8
min{|x − r |, |x − s|}

]1/2)
.

Here C is independent of n, x, r, s.
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Proof. Nevai and Totik [30, Corollary 2, p. 117] showed that there exist polynomials
Pn of degree ≤ n/4 such that, for x ∈ [−1, 1],

|Pn(x)− sign|(x) ≤ C exp

(
−
[

n

4
|x |
]1/2)

.

The constant C is independent of n and x . For a ∈ [0, 1], we set

Sn,a(x) = 1

2

(
1+ Pn

(
x − a

1+ a

))
.

Since x ∈ [−1, 1]⇒ (x − a)/(1+ a) ∈ [−1, 1], and since (except at x = a),

χ(a,∞)(x) = 1

2

(
1+ sign

(
x − a

1+ a

))
we have

|Sn,a(x)− χ(a,∞)(x)| ≤ C exp

(
−
[

n

4

∣∣∣∣ x − a

1+ a

∣∣∣∣]1/2)
≤ C exp

(
−
[

n

8
|x − a|

]1/2)
.

For a ∈ [−1, 0), we set

Sn,a(x) = 1− Sn,−a(−x),

and see that it admits a similar estimate. Now we set

Un(x) = Sn,r (x)(1− Sn,s(x))

and use

χ[r,s](x) = χ(r,∞)(x)(1− χ(s,∞)(x))
(except at x = r ) to deduce that

|Un(x)− χ[r,s](x)| ≤ C exp

(
−
[

n

8
|x − r |

]1/2

+ exp

(
−
[

n

8
|x − s|

]1/2))
.

From this, we conclude:

Lemma 3.7. With the restrictions on λ± in (53), there exist polynomials Vn of degree
≤ n/2 such that, for x ∈ [a−2n − 1, a2n + 1],

|χ[λ−,λ+](x)− Vn(x)| ≤ C exp

(
−
[

n

8(δ2n + 1)
min{|x − λ−|, |x − λ+|}

]1/2)
.

Here C is independent of n and x .
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Proof. Let �n denote the linear map of [a−2n − 1, a2n + 1] onto [−1, 1], so that

�n(x) = −1+ x − (a−2n − 1)

δ2n + 1
.

Let

r = �n(λ−) and s = �n(λ+),

and

Vn(x) = Un(�n(x)).

Then (except possibly at λ−, λ+),

|χ[λ−,λ+](x)− Vn(x)| = |χ[r,s](�n(x))−Un(�n(x))|

≤ C exp

(
−
[

n

8
min{|�n(x)− �n(λ−)|, |�n(x)− �n(λ+)|}

]1/2)
≤ C exp

(
−
[

n

8(δ2n + 1)
min{|x − λ−|, |x − λ+|}

]1/2)
.

Finally, we can give

Proof of Theorem 3.1. We may assume that f (0) = 0. (If not, replace f by f − f (0)
and absorb the constant f (0) into the approximating polynomial.) We choose n ≥ 1
and 1 ≤ m ≤ n/2, and let λ± satisfy (53). Let Rm and Vn denote the polynomials of
Lemma 3.3 and 3.7, respectively, and let

Pn = Rm Vn.

Then Pn is a polynomial of degree ≤ n, and

En,p[ f ;W ] ≤ ‖( f − Pn)W‖L p(I )(68)

≤ ‖( f − Pn)W‖L p[λ−,λ+] + ‖ f W‖L p(I\[λ−,λ+])

+ ‖Pn W‖L p(I\[λ−,λ+])

=: T1 + T2 + T3.

First,

T1 ≤ ‖( f − Rm)W‖L p[λ−,λ+] + ‖Rm(1− Vn)W‖L p[λ−,λ+](69)

≤ ‖( f − Rm)W‖L p[λ−,λ+] + ‖Rm W‖L∞[λ−,λ+]‖1− Vn‖L p[λ−,λ+]

≤ σ(λ−, λ+)
m

‖ f ′W‖L p(I )

+ ρ(m)(‖ f W‖L p(I ) + ‖ f ′W‖L p(I ))‖1− Vn‖L p[λ−,λ+],

by Lemma 3.3(a), (b). Here by Lemma 3.5(b), for some C independent of f,m, n, λ±,

‖ f W‖L p(I ) ≤ C‖ f ′W‖L p(I ).(70)
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Moreover, by Lemma 3.7,

‖1− Vn‖p
L p[λ−,λ+] ≤ C

∫ λ+

λ−
exp

(
−p

[
n

8(δ2n + 1)
min{|x − λ−|, |x − λ+|}

]1/2)
dx

≤ C

(
δ2n + 1

n

)
,

with C independent of f,m, n, λ±. Combining all these gives

T1 ≤ ‖ f ′W‖L p(I )

{
σ(λ−, λ+)

m
+ ρ(m)(δ2n + 1

n
)1/p

}
.(71)

The crucial thing here is that σ and ρ are independent of f, n. Next, if � is as in
Lemma 3.5,

T2 ≤ ‖� f W‖L p(I\[λ−,λ+])

∥∥∥∥ 1

�

∥∥∥∥
L∞(I\[λ−,λ+])

(72)

≤ ‖ f ′W‖L p(I\[λ−,λ+])

∥∥∥∥ 1

�

∥∥∥∥
L∞(I\[λ−,λ+])

by Lemma 3.5(b). Finally,

T3 ≤ ‖Pn W‖L p([a−2n−1,a2n+1]∩I\[λ−,λ+]) + ‖Pn W‖L p(I\[a−2n−1,a2n+1])

=: T31 + T32.

Here

T31 ≤ ‖Rm W‖L∞(I )‖Vn‖L p([a−2n−1,a2n+1]∩I\[λ−,λ+]).

For the first term in the product on the right-hand side, we can use Lemma 3.3(b) and
(70). For the second term, we can use Lemma 3.7:

‖Vn‖p
L p([a−2n−1,a2n+1]∩I\[λ−,λ+])

≤ C
∫

I\[λ−,λ+]
exp

(
−p

[
n

8(δ2n + 1)
min{|x − λ−|, |x − λ+|}

]1/2)
dx

≤ C1
δ2n + 1

n
.

Thus

T31 ≤ ρ(m)‖ f ′W‖L p(I )

(
δ2n + 1

n

)1/p

.(73)

Next, let �n denote the linear map of [a−2n, a2n] onto [−1, 1], so that

�n(x) = −1+ x − a−2n

δ2n
.
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We see that, for x ≥ a2n + 1,

�n(x) ≥ �n(a2n)+ 1

δ2n
= 1+ 1

δ2n
,

so

�n
n(x) ≥

(
1+ 1

δ2n

)n

≥ exp

(
C

n

δ2n

)
.

A similar estimate holds for x ≤ a−2n − 1. Then

T32 ≤ exp

(
−C

n

δ2n

)
‖�n

n Pn W‖L p(I\[a−2n−1,a2n+1])

≤ 21/p exp

(
−C

n

δ2n

)
‖�n

n Pn W‖L p[a−2n ,a2n ],

by the restricted range inequality in Lemma 3.2(a). Then as |�n| ≤ 1 in [a−2n, a2n], while
Vn is bounded (independent of n there), we obtain

T32 ≤ C exp

(
−C

n

δ2n

)
‖Rm W‖L p[a−2n ,a2n ]

≤ exp

(
−C

n

δ2n

)
ρ(m)‖ f ′W‖L p(I ).

Combining all the estimates (namely, (68), (71), (72), (73)) gives

En,p[ f ;W ] ≤ ‖ f ′W‖L p(I )


σ(λ−, λ+)

m
+
∥∥∥∥ 1

�

∥∥∥∥
L∞(I\[λ−,λ+])

+ρ(m)
[(
δ2n + 1

n

)1/p

+ exp

(
−C

n

δ2n

)]
 .(74)

The functions σ and ρ obey the conventions listed at the beginning of this section, and
are independent of f . For a given large enough n ≥ 1, we choose m = m(n) to be the
largest integer ≤ n/2 such that

ρ(m)

[(
δ2n + 1

n

)1/p

+ exp

(
−C

n

δ2n

)]
≤
(
δ2n

n

)1/(2p)

.

Since (by Lemma 3.2(c)) δ2n/n → 0 as n →∞, necessarily m = m(n) approaches∞
as n→∞. Next, for the given m = m(n), we choose the largest t ≤ m such that

σ(a−t , at ) ≤
√

m

and then set λ− = a−t and λ+ = at . Then (at least for large n and m = m(n)), (53) will
be satisfied, and

σ(λ−, λ+)
m

≤ 1√
m
.
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As σ is finite valued, necessarily λ+ → d and λ− → c as n→∞, so (recall (62))∥∥∥∥ 1

�

∥∥∥∥
L∞(I\[λ−,λ+])

→ 0, n→∞.

Then denoting the term in { } in (74) by ηn , we have that (ηn) has limit 0 as n→∞, and
is independent of f . By a straightforward argument, we may modify them so that they
are decreasing.

4. Proof of Theorem 1.3

Proof of (21) of Theorem 1.3. First, recall the estimate (34) of Theorem 1.5:∣∣∣∣(γn−1(W 2)

nκn

)2

− λ
∣∣∣∣ ≤ (‖ψ‖L∞(I )

γn−1(W 2)

nγn(W 2)

)2

+ C1η
2
n−2.

We shall show that

γn−1(W 2)

γn(W 2)
≤ 4δn,(75)

and then using Theorem 3.1, and Lemma 3.2(c),

∣∣∣∣(γn−1(W 2)

nκn

)2

− λ
∣∣∣∣ = O

(
δn

n

)2

+ O(η2
n) = o(1).(76)

To prove (75), we use the well-known identity

γn−1(W 2)

γn(W 2)
=
∫

I
xpn−1(x)pn(x)W

2(x) dx .

If we apply the restricted range inequality in Lemma 3.2(a), applied with p = 1 and to
W 2 rather than W , and if we use the fact that a±2n for W 2 is a±n for W , we obtain

γn−1(W 2)

γn(W 2)
≤ 2

∫ an

a−n

|xpn−1(x)pn(x)W
2(x)| dx

≤ 2 max{an, |a−n|}
∫ an

a−n

|pn−1(x)pn(x)W
2(x)| dx

≤ 4δn,

as desired.
Next, define a polynomial πn(x) of degree ≤ n − 2 by

πn(x) = q ′n − n
κn

γn−1(W 2)
pn−1.
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We see that by orthogonality of pn−1W 2 to polynomials of degree ≤ n − 2,∫
I
π2

n W 2 =
∫

I

(
q ′n − n

κn

γn−1(W 2)
pn−1

)
(x)πn(x)W

2(x) dx(77)

=
∫

I
q ′n(x)πn(x)W

2(x) dx

=
∫

I
(q ′n)

2W 2 − n
κn

γn−1(W 2)

∫
I

q ′n pn−1W 2

= 1

λ

[
1−

∫
I

q2
n (ψW )2

]
−
(

n
κn

γn−1(W 2)

)2

.

Here we have used the definition of the inner product, the normalization (qn, qn) = 1,
and orthogonality. The identity (77) also implies, as its left-hand side is nonnegative,∫

I
q2

n (ψW )2 ≤ 1− λ
(

n
κn

γn−1(W 2)

)2

.(78)

Now we continue (77) as∫
I

(
q ′n − n

κn

γn−1(W 2)
pn−1

)2

W 2 ≤ 1

λ
−
(

n
κn

γn−1(W 2)

)2

(79)

= o(1),

by (76). Then orthogonality of pn−1 to polynomials of degree ≤ n − 2 gives∫
I

(
q ′n −

1√
λ

pn−1

)2

W 2(80)

=
∫

I

(
q ′n − n

κn

γn−1(W 2)
pn−1

)2

W 2

+
∫

I

(
n

κn

γn−1(W 2)
− 1√

λ

)2

p2
n−1W 2 = o(1).

Proof of (23) of Theorem 1.3 assuming (22). Since[
qn(x)− qn(0)− 1√

λ

∫ x

0
pn−1

]
|x=0

= 0,

Lemma 3.4(c) gives∥∥∥∥(|Q′| + 1)

[
qn − qn(0)− 1√

λ

∫ x

0
pn−1

]
W

∥∥∥∥
L2(I )

≤ C

∥∥∥∥[q ′n −
1√
λ

pn−1

]
W

∥∥∥∥
L2(I )

= o(1).

For the asymptotics in the plane, we need an estimate for polynomials in the plane, in
terms of their values on a segment.
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Lemma 4.1. Let 1 ≤ p ≤ ∞ and let w ∈ L p[−1, 1] be a nonnegative function. Let

w̃(θ) = |sin θ |1/pw(cos θ), θ ∈ [−π, π ],

satisfy Szegő’s condition (4). Let P be a polynomial of degree ≤ m. Then, for z ∈
C\[−1, 1], ∣∣∣∣ P(z)

ϕ(z)m

∣∣∣∣ ≤ ‖Pw‖L p[−1,1]π
−1/p

∣∣∣∣D−2(w̃; 1/ϕ(z))
1− |ϕ(z)|−1

∣∣∣∣ .
Proof. See, for example, Lemma 14.6 in [15, p. 395].

Proof of (25). Let Ln denote the linear map of [a−n, an] onto [−1, 1], let L [−1]
n denote

its inverse, and let, as at (24),

Wn(θ) = W (L [−1]
n (cos θ)), θ ∈ [−π, π ],

and

W̃n(θ) = Wn(θ)|sin θ |1/2, θ ∈ [−π, π ].

Then the lemma gives (with p = 2,m = n − 1, w = Wn)∣∣∣∣∣ (q ′n − (1/
√
λ)pn−1)(L [−1]

n (z))

ϕ(z)n−1 D−2(W̃n; 1/ϕ(z))

∣∣∣∣∣ (1− |ϕ(z)|−1)(81)

≤ π−1/2

∥∥∥∥[(q ′n −
1√
λ

pn−1

)
◦ L [−1]

n

]
W ◦ L [−1]

n

∥∥∥∥
L2[−1,1]

= π−1/2δ−1/2
n

∥∥∥∥(q ′n −
1√
λ

pn−1

)
W

∥∥∥∥
L2[a−n ,an ]

= o(δ−1/2
n ).

In each closed subset of C\[−1, 1], there exists r > 1 such that in that set

|ϕ| ≥ r > 1.

Moreover,∣∣∣∣D−2

(
W̃n; 1

ϕ(z)

)
/D−2

(
Wn; 1

ϕ(z)

)∣∣∣∣ = ∣∣∣∣D−2

(
|sin ·|1/2; 1

ϕ(z)

)∣∣∣∣
is bounded above and below in such a set. Then (25) follows.

Proof of (27). This is very similar to that above, just apply Lemma 4.1 to

qn(Ln(z))− qn(0)− 1√
λ

∫ Ln(z)

0
pn−1

and with W ∗n replacing Wn . We obtain∣∣∣∣∣qn(Ln(z))− qn(0)− (1/
√
λ)
∫ Ln(z)

0 pn−1

ϕ(z)n D−2(W ∗n ; 1/ϕ(z))

∣∣∣∣∣ (1− |ϕ(z)|−1)(82)

≤ π−1/2δ−1/2
n

∥∥∥∥(1+ |Q′|)(qn − qn(0)− 1√
λ

∫ x

0
pn−1

)
W

∥∥∥∥
L2[a−n ,an ]

= o(1).
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5. Proof of Theorem 1.1 and Corollary 1.2

We begin with a technical lemma:

Lemma 5.1. Assume that Q is as in Theorem 1.1:

(a)

lim
x→∞

Q′′(x)
Q′(x)2

= 0.

(b) For n ≥ 1 and polynomials P of degree ≤ n,

‖PW‖L∞(R) ≤ C

(
n

an

)1/2

‖PW‖L2(R).(83)

(c) Let n ≥ 1 and let

gn(θ) = 1+ |Q′(an cos θ)|, θ ∈ [−π, π ].(84)

Let 0 < r < 1. There exists C > 1 such that, for |z| ≤ r and n ≥ 1,

C−1 ≤ |D(gn; z)/
√

Q′(an)| ≤ C.(85)

(d)

C1 ≤ Q′(an)/
n

an
≤ C2.(86)

Proof. (a) By (6) and the unboundedness of Q′ at∞,

0 ≤ Q′′(x)
Q′(x)2

≤ β

x Q′(x)
→ 0, x →∞.

(b) This is a special case of the Nikolskii inequalities. See, for example, [24, p. 94] or
[15, p. 295].

(c) Now, if v ≥ u ≥ 0,

log
Q′(v)
Q′(u)

=
∫ v

u

Q′′(t)
Q′(t)

dt ≥
∫ v

u

α

t
dt = α log

v

u
,

by (6). Similarly, we obtain an upper bound, and hence,(
v

u

)α
≤ Q′(v)

Q′(u)
≤
(
v

u

)β
, 0 < u < v.(87)

Then, for t ∈ [−π, π ],

|log(gn(t))− log Q′(an)|
=
∣∣∣∣log

(
1

Q′(an)
+
∣∣∣∣Q′(an cos t)

Q′(an)

∣∣∣∣)∣∣∣∣
≤ max

{
log

(
1

Q′(a1)
+ 1

)
, | log | cos t |β |

}
.
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Then, for |z| ≤ r < 1,

|log |D(gn; z)/
√

Q′(an)||
=
∣∣∣∣ 1

4π

∫ π

−π
[log gn(t)− log Q′(an)] Re

(
eit + z

eit − z

)
dt

∣∣∣∣
≤ 1

4π

1+ r

1− r

∫ π

−π
max

{
log

(
1

Q′(a1)
+ 1

)
, |log |cos t |β |

}
dt.

(d) As Q′ is increasing,

n = 2

π

∫ 1

0

ant Q′(ant)√
1− t2

dt ≤ an Q′(an).

Also,

n ≥ 2

π

∫ 1

1/2

(an/2)Q′((an/2))√
1− t2

dt ≥ an Q′(an)
1

π

∫ 1

1/2

1√
1− t2

dt ( 1
2 )

1+β,

by (87).

Proof of (7) of Theorem 1.1. The weight W = exp(−Q) is even, so the numbers a±n

become just ±an , while δn = an . We apply Theorem 1.5 and note that, from (75),

γn−1

γn
≤ 4an,

while we may take as the number ηn in the Jackson inequality (33),

ηn = C
an

n
.

See [24, p. 81] or [7]. Then (76) becomes∣∣∣∣(γn−1(W 2)

nκn

)2

− λ
∣∣∣∣ = O

(
an

n

)2

,(88)

so, from (79),∫
I

(
q ′n − n

κn

γn−1(W 2)
pn−1

)2

W 2 ≤ 1

λ
−
(

n
κn

γn−1(W 2)

)2

= O

(
an

n

)2

.

Then also, ∣∣∣∣ nκn

γn−1(W 2)
− 1√

λ

∣∣∣∣ = O

(
an

n

)2

,

so (80) yields ∫
I

(
q ′n −

1√
λ

pn−1

)2

W 2 = O

(
an

n

)2

.

Next, we estimate qn(0).
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Lemma 5.2. Assume the hypotheses of Theorem 1.1. Then

|qn(0)| ≤ C

√
an

n
.(89)

Proof. First let us denote the Sobolev orthogonal polynomial for the special caseψ ≡ 1
by q∗n . By Lemma 5.1(b),

|q∗n W |(0) ≤ C

√
n

an
‖q∗n W‖L2(R) ≤ C

√
an

n
,(90)

by (78), withψ ≡ 1 and the estimates (88) above. Now we return to generalψ , denoting
as usual the corresponding Sobolev orthogonal polynomials by qn . The triangle inequality
gives

|qn(0)− q∗n (0)|‖ψW‖L2(R) ≤ ‖(qn − q∗n )ψW‖L2(R)(91)

+ ‖[(qn − q∗n )− (qn − q∗n )(0)]ψW‖L2(R).

Here by (78) and (88) applied to qn and q∗n ,

‖(qn − q∗n )ψW‖L2(R) ≤ ‖qnψW‖L2(R) + ‖q∗nψW‖L2(R) ≤ C
an

n
.(92)

Next, by Lemma 3.4(c),

‖[(qn − q∗n )− (qn − q∗n )(0)]ψW‖L2(R)

≤ ‖ψ‖L∞(R)C2‖(qn − q∗n )
′W‖L2(R)

≤ C2‖ψ‖L∞(R)

∥∥∥∥[(q ′n −
1√
λ

pn−1

)
−
(

q∗′n −
1√
λ

pn−1

)]
W

∥∥∥∥
L2(R)

≤ C
an

n
,

by (7) applied to qn and q∗n . Combining the last inequality and (91), (92) gives

|qn(0)− q∗n (0)| ≤ C
an

n
.(93)

Then (90) gives the result.

Proof of (8). This follows from what we have just proved, (7), and Lemma 3.4(c).
More precisely, Lemma 3.4(c) gives (recall that (58) is valid by Lemma 5.1 above)∥∥∥∥(1+ |Q′|)(qn − qn(0)− 1√

λ

∫ x

0
pn−1

)
W

∥∥∥∥
L2(R)
= O

(
an

n

)
.(94)

By Lemma 5.2,

|qn(0)|‖(1+ |Q′|)W‖L2(R) ≤ C

√
an

n
.

Note that Lemma 5.1(a) implies that for each ε > 0, Q′2W ε is decreasing for large x , so
the norm in the last left-hand side is finite. Then (8) follows.
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Proof of (9) and (10). The Nikolskii inequality in Lemma 5.1(b) and (7) gives∥∥∥∥(q ′n −
1√
λ

pn−1

)
W

∥∥∥∥
L∞(R)

≤ C

√
n

an

∥∥∥∥(q ′n −
1√
λ

pn−1

)
W

∥∥∥∥
L2(R)
≤ C

√
an

n
.

Then Lemma 3.4 gives∥∥∥∥(1+ |Q′|)(qn − qn(0)− 1√
λ

∫ x

0
pn−1

)
W

∥∥∥∥
L∞(R)

= O

(√
an

n

)
.

Our estimate above for qn(0) then gives the result.

Proof of (12) and (13). First, (12) follows from (7), (81), and the fact that L [−1]
n (z) =

anz in this even case. For (13), we use (82) and (94) to obtain, uniformly for z in closed
subsets of C\[−1, 1],∣∣∣∣∣qn(anz)− qn(0)− (1/

√
λ)
∫ an z

0 pn−1

ϕ(z)n D−2(W ∗n ; 1/ϕ(z))

∣∣∣∣∣ (1− |ϕ(z)|−1)(95)

≤ π−1/2a−1/2
n

∥∥∥∥(|Q′| + 1)

(
qn − qn(0)− 1√

λ

∫ x

0
pn−1

)
W

∥∥∥∥
L2[a−n ,an ]

= O

(√
an

n

)
.

Here by (26) and Lemma 5.1(c), (d),

n

an

∣∣∣∣D−2

(
W ∗n ;

1

ϕ(z)

)
/D−2

(
Wn; 1

ϕ(z)

)∣∣∣∣ = n

an

∣∣∣∣D−2

(
gn; 1

ϕ(z)

)∣∣∣∣
is bounded above and below for z in closed subsets of C\[−1, 1]. Also, as log Wn ≤ 0,

|D2(Wn; u)| ≤ 1, |u| < 1.

Hence the term∣∣∣∣qn(0)/

(
ϕ(z)n D−2

(
W ∗n ;

1

ϕ(z)

))∣∣∣∣ ≤ C |qn(0)| n

an

∣∣∣∣D2

(
Wn; 1

ϕ(z)

)∣∣∣∣ /|ϕ(z)|n
decays geometrically, in view of the decay (89) of qn(0), and the geometric growth of
the denominator. We can then drop qn(0) in (95) and (13) follows.

Proof of Corollary 1.2. From [15, Theorem 15.1, p. 402],

γn−1(W
2) = 1√

2π

(
an

2

)−n+1/2

exp

(
2

π

∫ an

0

Q(s)√
a2

n − s2
ds

)
(1+ o(1)).

Then (76) gives the result. Similarly, the L2 asymptotics (15) follow directly from (7) of
Theorem 1.1 and the L2 asymptotics for pn−1 given in [15, Theorem 15.1, p. 402]. The
asymptotics in the plane (16) follow from (12) and asymptotics in the plane for pn−1

given in [15, Theorem 15.1, p. 402]. Finally the pointwise asymptotics on the segment
[−an, an] follow from (9) and Theorem 15.3 in [15, p. 403]. (We warn the reader that
the notation used there is a little different.)
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