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Abstract

The q-classical orthogonal polynomials of the q-Hahn Tableau are characterized from their orthogonality
condition and by a first and a second structure relation. Unfortunately, for the q-semiclassical orthogonal
polynomials (a generalization of the classical ones) we find only in the literature the first structure relation.
In this paper, a second structure relation is deduced. In particular, by means of a general finite-type rela-
tion between a q-semiclassical polynomial sequence and the sequence of its q-differences such a structure
relation is obtained.
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1. Introduction

The q-classical orthogonal polynomial sequences (Big q-Jacobi, q-Laguerre, Al-Salam
Carlitz I, q-Charlier, etc.) are characterized by the property that the sequence of its monic
q-difference polynomials is, again, orthogonal (Hahn’s property, see [6]). In fact, the q-difference
operator is a particular case of the Hahn operator which is defined as

Lq,ω(f )(x) = f (qx + ω) − f (x)

(q − 1)x + ω
, ω ∈ C, q ∈ C, |q| �= 1.
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In the sequel, we are going to work with q-semiclassical orthogonal polynomials and q-classical
polynomials of the Hahn Tableau, hence we will consider the q-linear lattice x(s), i.e., x(s+1) =
qx(s) + ω. Therefore, for the sake of convenience we will denote �(1) ≡ Lq,ω . Notice that for
q = 1 we get the forward difference operator �. In such a case, when w → 0 we recover the
standard semiclassical orthogonal polynomials [13].

Taking into account the role of such families of q-polynomials in the analysis of hypergeo-
metric q-difference equations resulting from physical problems as the q-Schrödinger equation,
q-harmonic oscillators, the connection and the linearization problems among others there is an
increasing interest to study them. Moreover, the connection between the representation theory
of quantum algebras and the q-orthogonal polynomials is well known (see [2] and references
therein).

We also find many different approaches to the subject in the literature. For instance, the
functional equation (the so-called Pearson equation) satisfied by the corresponding moment
functionals allows an efficient study of some properties of q-classical polynomials [3,7,8,17].
However, the q-classical sequences of orthogonal polynomials {Cn}n�0 can also be character-
ized taking into account its orthogonality as well as one of the two following difference equations,
the so-called structure relations.

• First structure relation [1,9,18]

Φ(s)C[1]
n (s) =

n+t∑
ν=n

λn,νCν(s), n � 0, λn,n �= 0, n � 0, (1)

where Φ is a polynomial with degΦ = t � 2 and C
[1]
n (s) := [n + 1]−1�(1)Cn+1(s), being

[n] := (
qn − 1

)
/(q − 1), n � 0.

•• Second structure relation [16,17]

Cn(s) =
n∑

ν=n−t

θn,νC
[1]
ν (s), n � t, 0 � t � 2, θn,n = 1, n � t. (2)

The q-classical orthogonal polynomials were introduced by W. Hahn [6] and also analyzed
in [1]. The generalization of this families leads to q-semiclassical orthogonal polynomials which
were introduced by P. Maroni and extensively studied in the last decade by himself, L. Kheriji,
J.C. Medem, and others (see [7,16]).

For q-classical orthogonal polynomial sequences, which are q-semiclassical of class zero, the
structure relations (1) and (2) become

φ(s)Lq,ωPn(s) = α̃nPn+1(s) + β̃nPn(s) + γ̃nPn−1(s), γ̃n �= 0,

σ (s)L1/q,ω/qPn(s) = α̂nPn+1(s) + β̂nPn(s) + γ̂nPn−1(s), γ̂n �= 0,

Pn(s) = P [1]
n (s) + δnP

[1]
n−1(s) + εnP

[1]
n−2(s).

In particular, in Table 1 we describe these parameters for some families of q-classical orthogonal
polynomials.

The first structure relation for the q-semiclassical orthogonal polynomials was established
(see [7]), and it reads as follows.
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Table 1
Some families of q-polynomials of the Hahn Tableau

(A1) Big q-Jacobi P̂n(x;a, b, c;q), x ≡ x(s) = qs ,

P
[1]
n (x;a, b, c;q) = q−nP̂n(qx;aq, bq, cq;q),

φ(x) = aq(x − 1)(bx − c), σ (x) = q−1(x − aq)(x − cq),

α̂n = abq[n], α̃n = q−n[n],
β̂n = −aq[n](1 − abqn+1)

c+ab2q2n+1+b(1−cqn−cqn+1−aqn(1+q−cqn+1))

(1−abq2n)(1−abq2n+2)
,

β̃n = q[n](1 − abqn+1)
c+a2bq2n+1+a(1−cqn−cqn+1−bqn(1+q−cqn+1))

(1−abq2n)(1−abq2n+2)
,

γ̂n = aq[n] (1−aqn)(1−bqn)(1−abqn)(c−abqn)(1−cqn)(1−abqn+1)

(1−abq2n)2(1−abq2n−1)(1−abq2n+1)
,

γ̃n = qnγ̂n, δn = − qn(1−q)

1−abqn+1 β̂n, εn = abq2n (1−qn−1)(1−q)

(1−abqn)(1−abqn+1)
γ̂n.

(A2) q-Laguerre L̂
(α)
n (x;q), x ≡ x(s) = qs ,

L
[1] (α)
n (x;q) = q−nL̂

(α+1)
n (qx;q),

φ(x) = ax(x + 1), σ (x) = q−1x,

α̂n = a[n], β̂n = q−2n−1[n](1 + q − aqn+1), γ̂n = a−1q1−4n[n](1 − aqn),

α̃n = 0, β̃n = q−n[n], γ̃n = a−1q1−3n(1 − aqn),

δn = a−1(1 − q)β̂n, εn = a−1(1 − qn−1)(1 − q)γ̂n.

(A3) Al-Salam Carlitz I Û
(a)
n (x;q), x ≡ x(s) = qs ,

U
[1](a)
n (x;q) = Û

(a)
n (x;q),

φ(x) = a, σ (x) = (1 − x)(a − x), α̃n = q1−n[n], β̃n = q(1 + a)[n], γ̃n = aqn[n].

(A4) q-Charlier Ĉn(q−s ;a;q),

C
[1]
n (q−s ;a;q) = Ĉn(q−s ;aq−1;q),

φ(x) = x(x − 1), σ (x) = q−1ax,

α̂n = [n], β̂n = q−2n−1[n](a + aq + qn+1), γ̂n = aq1−4n[n](a + qn),

α̃n = 0, β̃n = aq−n[n], γ̃n = qnγ̂n, δn = (1 − q)β̂n, εn = (1 − qn−1)(1 − q)γ̂n.

An orthogonal polynomial sequence, {Bn}n�0, is said to be q-semiclassical if

Φ(s)B[1]
n (s) =

n+t∑
ν=n−σ

λn,νBν(s), n � σ, λn,n−σ �= 0, n � σ + 1,

where Φ is a polynomial of degree t and σ is a non-negative integer such that σ � max{t −2,0}.
Recently, F. Marcellán and R. Sfaxi [12] have established a second structure relation for the

standard semiclassical polynomials which reads as follows:

Theorem 1.1. For any integer σ � 0, any monic polynomial Φ , with degΦ = t � σ + 2, and any
SMOP {Bn}n�0 with respect to a linear functional u, the following statements are equivalent:
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(i) There exist an integer p � 1 and an integer r � σ + t + 1, with σ = max(t − 2,p − 1), such
that

n+σ∑
ν=n−σ

ξn,νBν(x) =
n+σ∑

ν=n−t

ςn,νB
[1]
ν (x), n � max(σ, t + 1), (3.36)

where B
[1]
n (x) = (n + 1)−1B ′

n+1(x),

ξn,n+σ = ςn,n+σ = 1, n � max(σ, t + 1), ξr,r−σ ςr,r−t �= 0,〈
(Φu)′,Bn

〉 = 0, p + 1 � n � 2σ + t + 1,
〈
(Φu)′,Bp

〉 �= 0 (σ � 1),

and if p = t − 1 then 〈u,B2
p〉−1〈u,ΦB ′

p〉 /∈ N
∗.

(ii) The linear functional u satisfies

(Φu)′ + Ψ u = 0,

where the pair (Φ,Ψ ) is admissible, i.e., the polynomial Φ is monic, degΦ = t , degΨ =
p � 1, and if p = t − 1 then 1

n!Ψ
(n)(0) /∈ −N

∗, with associated integer σ .

Now, we are going to extend this result for the q-semiclassical polynomials of the Hahn
Tableau.

Some years ago, P. Maroni and R. Sfaxi [15] introduced the concept of diagonal sequence for
the standard semiclassical polynomials. The following definition extends this definition to the
q-semiclassical case.

Definition 1.1. Let {Bn}n�0 be a sequence of monic orthogonal polynomials and φ a monic
polynomial with degφ = t . When there exists an integer σ � 0 such that

φ(s)Bn(s) =
n+t∑

ν=n−σ

θn,νB
[1]
ν (s), θn,n−σ �= 0, n � σ, (3)

the sequence {Bn}n�0 is said to be diagonal associated with φ and index σ .

Obviously, the above finite-type relation, that we will call diagonal relation, is nothing else that
an example of second structure relation for such a family. But, some q-semiclassical orthogonal
polynomials are not diagonal. As an example, we can mention the case of a q-semiclassical
polynomial sequence {Qn}n�0 orthogonal with respect to the linear functional v, such that the
functional equation �(1)v = Ψ v, with degΨ = 2, holds. In fact, the sequence {Qn}n�0 satisfies
the following relation:(

x(s + 1) + vn,0
)
Qn(s) = qQ

[1]
n+1(s) + ρnQ

[1]
n (s), n � 0,

where the lattice, x(s), is q-linear, i.e., x(s + 1) − qx(s) = ω,

ρn = qn+1

C

[n + 1]
γn+1

, n � 1, ρ0 = 0,

vn,0 = γn+2γn+1

qn[n + 2]C + ρn − qβn − ω, n � 0.

Here C is a constant, γn and βn are the coefficients of the three-term recurrence relation (TTRR)
that the orthogonal polynomial sequence {Qn}n�0 satisfies. In fact, this sequence is not diagonal
and it will be analyzed more carefully in Section 5.1.
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The aim of our contribution is to give, under certain conditions, the second structure relation
characterizing a q-semiclassical polynomial sequence by a new relation between the sequence
of q-polynomials, {Bn}n�0, and the polynomial sequence of monic q-differences, {B[1]

n }n�0, as
follows:

n+σ∑
ν=n−σ

ξn,νBν(s) =
n+σ∑

ν=n−t

ςn,νB
[1]
n (s), n � max(t + 1, σ ),

where ξn,n+σ = ςn,n+σ = 1, n � max(t + 1, σ ), and there exists r � σ + t + 1 such that
ξr,r−σ ςr,r−t �= 0.

Notice that when σ = 0 we get the second structure relation (2).

2. Preliminaries and notation

Let u be a linear functional in the linear space P of polynomials with complex coefficients and
let P

′ be its algebraic dual space, i.e., the linear space of the linear functionals defined on P. We
will denote by 〈u,f 〉 the action of u ∈ P

′ on f ∈ P and by (u)n := 〈u,xn〉, n � 0, the moments
of u with respect to the sequence {xn}n�0.

Let us define the following operations in P
′. For any polynomial h and any c ∈ C, let �(1)u,

hu, and (x − c)−1u be the linear functionals defined on P by (see [7,14])

(i) 〈�(1)u, f 〉 := −〈u,�(1)f 〉, f ∈ P,
(ii) 〈gu,f 〉 := 〈u,gf 〉, f,g ∈ P,

(iii) 〈(x − c)−1u,f 〉 := 〈u, θc(f )〉, f ∈ P, c ∈ C, where θc(f )(x) = f (x)−f (c)
x−c

.

Furthermore, for any linear functional u and any polynomial g we get

Lq,ω(gu) := �(1)(gu) = g
(
q−1(x − ω)

)
�(1)u + �(1)

(
g
(
q−1(x − ω)

))
u. (4)

Let {Bn}n�0 be a sequence of monic polynomials (SMP) with degBn = n,n � 0, and {un}n�0 its
dual sequence, i.e., un ∈ P

′, n � 0, and 〈un,Bm〉 := δn,m, n,m � 0, where δn,m is the Kronecker
symbol. The next results are very well known [7].

Lemma 2.1. For any u ∈ P′ and any integer m � 1, the following statements are equivalent:

(i) 〈u,Bm−1〉 �= 0, 〈u,Bn〉 = 0, n � m.

(ii) There exist λν ∈ C, 0 � ν � m − 1, λm−1 �= 0, such that u = ∑m−1
ν=0 λνuν.

On the other hand, it is straightforward to prove

Lemma 2.2. For any (t̂ , σ̂ , r̂) ∈ N
3, r̂ � σ̂ + t̂ + 1, and any sequence of monic polynomials

{Ωn}n�0, degΩn = n, n � 0, with dual sequence {wn}n�0 such that

Ωn(x) =
n∑

ν=n−t̂

λn,νBν(x), n � t̂ + σ̂ + 1, λr̂,r̂−t̂ �= 0,

Ωn(x) = Bn(x), 0 � n � t̂ + σ̂ ,

we have that wk = uk for every 0 � k � σ̂ .
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The linear functional u is said to be quasi-definite if, for every non-negative integer, the lead-
ing principal Hankel submatrices Hn = ((u)i+j )

n
i,j=0 are non-singular for every n � 0. Assuming

u is quasi-definite, there exists a sequence of monic polynomials {Bn}n�0 such that (see [4])

(i) degBn = n, n � 0,
(ii) 〈u,BnBm〉 = rnδn,m, with rn = 〈u,B2

n〉 �= 0, n � 0.

The sequence {Bn}n�0 is said to be the sequence of monic orthogonal polynomials, in short
SMOP, with respect to the linear functional u.

If {Bn}n�0 is a SMOP, with respect to the quasi-definite linear functional u, then it is well
known (see [14]) that its corresponding dual sequence {un}n�0, is

un = r−1
n Bnu, n � 0. (5)

Remark 2.1. We assume u0 = u, i.e., the linear functional u is normalized.

On the other hand, (see [4]), the sequence {Bn}n�0 satisfies a three-term recurrence relation
(TTRR)

Bn+1(x) = (x − βn)Bn(x) − γnBn−1(x), n � 0, (6)

with γn �= 0, n � 1, and B−1(x) = 0, B0(x) = 1.
Conversely, given a SMP, {Bn}n�0, generated by a recurrence relation (6) as above with

γn �= 0, n � 1, there exists a unique normalized quasi-definite linear functional u such that the
family {Bn}n�0 is the corresponding SMOP. This result is known as Favard theorem (see [4]).

An important family of linear functionals is constituted by the q-semiclassical linear functio-
nals, i.e., when u is quasi-definite and satisfies

�(1)(Φu) = Ψ u. (7)

Here (Φ,Ψ ) is an admissible pair of polynomials, i.e., the polynomial Φ is monic, degΦ = t ,
degΨ = p � 1, and if p = t − 1, then the following condition holds:

lim
q↑1

1

[p]!
[
�(1)

]p
Ψ (0) := lim

q↑1

1

[p]!

p︷ ︸︸ ︷
�(1) · · ·�(1) Ψ (0) �= −n, n ∈ N

∗,

where [m]! = [1][2] · · · [m], m ∈ N
∗, is the q-analog of the usual factorial.

The pair (Φ,Ψ ) is not unique. In fact, under certain conditions (7) can be simplified, so we
define the class of u as the minimum value of max(deg(Φ) − 2,deg(Ψ ) − 1), for all admissible
pairs (Φ,Ψ ). The pair (Φ,Ψ ) giving the class σ (σ � 0 because deg(Ψ ) � 1) is unique [7].

When u is q-semiclassical of class σ, the corresponding SMOP is said to be q-semiclassical
of class σ .

When σ = 0, i.e., degΦ � 2 and degΨ = 1, then u is q-classical (Askey–Wilson, q-Racah,
Big q-Jacobi, q-Charlier, etc.). For more details see [10,17,18].

3. Main results

First, we will present particular cases of diagonal sequences.
Let {Pn}n�0 and {Qn}n�0 be sequences of monic polynomials, {vn}n�0 and {wn}n�0 their

corresponding dual sequences. Let φ be a monic polynomial of degree t .
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Definition 3.1. The sequence {Pn}n�0 is said to be compatible with φ if φvn �= 0, n � 0.

Lemma 3.1. [14, Proposition 2.1] Let φ be as above. For any sequence {Pn}n�0 compatible
with φ, the following statements are equivalent:

(i) There is an integer σ � 0 such that

φ(x)Qn(x) =
n+t∑

ν=n−σ

λn,νPν(x), n � σ, (8)

∃r � σ : λr,r−σ �= 0. (9)

(ii) There are an integer σ � 0 and a mapping from N into N :m �→ μ(m) satisfying

max{0,m − t} � μ(m) � m + σ, m � 0, (10)

∃m0 � 0 with μ(m0) = m0 + σ, (11)

such that

φvm =
μ(m)∑

ν=m−t

λν,mwν, m � t,

λμ(m),m �= 0, m � 0. (12)

Proposition 3.1. [14, Proposition 2.2] Assume {Qn}n�0 is orthogonal and {Pn}n�0 is compatible
with φ. Then the sequences {Pn}n�0 and {Qn}n�0 fulfill the finite-type relations (8)–(9) if and
only if there are an integer σ � 0 and a mapping from N into N :m �→ μ(m) satisfying (10)
and (11). Moreover, there exist {km}m�0 and a sequence {Λμ(m)}m�0 of monic polynomials with
deg(Λμ(m)) = μ(m), m � 0, such that

φvm = kmΛμ(m)w0, m � 0. (13)

From these two results we get

Corollary 3.1. [15, Proposition 1.6] Let φ be as above. For sequences of monic orthogonal poly-
nomials (SMOP) {Pn}n�0 and {Bn}n�0 orthogonal with respect to linear functionals v and u,
respectively, the following statements are equivalent:

(i) There exists an integer σ � 0 such that

φ(s)Pn(s) =
n+t∑

ν=n−σ

λn,νB
[1]
ν (s), λn,n−σ �= 0, n � σ.

(ii) There exist a monic polynomial sequence {Ωn+σ }n�0, with deg(Ωn+σ ) = n + σ , n � 0, and
non-zero constants kn, n � 0, such that

φu[1]
n = knΩn+σ v0, (14)

where {u[1]
n }n�0 is the dual sequence of {B[1]

n }n�0.

Thus we can prove
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Proposition 3.2. Any diagonal sequence, {Bn}n�0, orthogonal with respect a linear functional u

is necessarily semiclassical and u satisfies

�(1)
(
φ(qx + ω)Ωn+σ (x)u

) = ψn(x)u, n � 0, (15)

where

ψn(s) = φ(s + 1) − φ(s − 1)

�x(s)
Ωn+σ (s) − dnφ(s)φ(s − 1)Bn+1(s), (16)

and

dn = [n + 1] 〈u,B2
n+σ 〉

〈u,B2
n+1〉λn+σ,n

, n � 0. (17)

Furthermore, the sequence {Ωn+s}n�0 satisfies

Ωn+σ (s)�(1)Ωσ (s) − Ωσ (s)�(1)Ωn+σ (s)

= φ(s + 1)
{
dnΩσ (s)Bn+1(s + 1) − d0Ωn+σ (s)B1(s + 1)

}
. (18)

Proof. Let {Bn}n�0 be a diagonal sequence in the sense of Definition 1.1 and assume the linear
functional u is normalized. Then from Lemma 3.1 there exist a sequence of monic polynomials
{Ωn+σ }n�0 and non-zero constants {kn}n�0 such that

φu[1]
n = knΩn+σ u.

Then

kn�
(1)(Ωn+σ u) = �(1)

(
φ
(
q−1(x − ω)

))
u[1]

n + φ
(
q−1(x − ω)

)
�(1)u[1]

n

= �(1)
(
φ
(
q−1(x − ω)

))
u[1]

n − [n + 1]
〈u,B2

n+1〉
φ
(
q−1(x − ω)

)
Bn+1(x)u(s),

(19)

as well as

�(1)
(
φ(s)φ(s − 1)

) = φ(s)
φ(s + 1) − φ(s − 1)

�x(s)
. (20)

Combining (19) and (20), a straightforward calculation yields (15)–(17). Taking (15) for n = 0
and cancelling out �(1)(φ(qx + ω)u), from the quasi-definite character of u we obtain (18). �
Corollary 3.2. [15, Corollary 2.3] If {Bn}n�0 is a diagonal sequence given by (3), then we get

1

2
t � σ � t + 2. (21)

For a linear functional u, let (Φ,Ψ ) be the minimal admissible pair of polynomials with Φ

monic, degΦ = t , and degΨ = p � 1, defined as above. To this pair we can associate the non-
negative integer σ := max(t − 2,p − 1) � 0.

Now, given {Bn}n�0, a SMOP with respect to u, we get

Φ(s)B[1]
n (s) =

n+t∑
λn,νBν(s), n � max(t − 1,0), (22)
ν=0
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where λn,n+t = 1 and

λn,ν = r−1
ν

〈
u,Φ(s)B[1]

n (s)Bν(s)
〉 = r−1

ν

[n + 1]
〈
BνΦu,�(1)Bn+1

〉
= − r−1

ν

[n + 1]
〈
Bν

(
q−1(x − ω)

)
�(1)(Φu) + �(1)

(
Bν

(
q−1(x − ω)

))
Φu,Bn+1

〉
,

0 � ν � n + t.

Lemma 3.2. [7, Proposition 3.2] For any monic polynomial Φ , degΦ = t , and any SMOP
{Bn}n�0 with respect to u, the following statements are equivalent:

(i) There exists a non-negative integer σ such that

Φ(s)B[1]
n (s) =

n+t∑
ν=n−σ

λn,νBν(s), n � σ, (23)

λn,n−σ �= 0, n � σ + 1. (24)

(ii) There exists a polynomial Ψ , degΨ = p � 1, such that

�(1)(Φu) = Ψ u, (25)

where the pair (Φ,Ψ ) is admissible.
(iii) There exist a non-negative integer σ and a polynomial Ψ , with degΨ = p � 1, such that

Φ(s)�(1)Bn(s − 1) + Ψ (s)Bn(s − 1) =
n+σ(n)∑
ν=n−t

λ̃n,νBν+1(s), n � t, (26)

λ̃n,n−t �= 0, n � t, (27)

where σ = max(p − 1, t − 2), the pair (Φ,Ψ ) is admissible, and

σ(n) =
{

p − 1, n = 0,

σ, n � 1.
(28)

We can write

λ̃n,ν = −[ν + 1] 〈u,B2
n〉

〈u,B2
ν+1〉

λν,n, 0 � ν � n + σ. (29)

Proof. (i) ⇒ (ii), (iii). Assuming (i), from Lemma 3.1 and taking Pn = Bn and Qn = B
[1]
n , we

get

Φum =
μ(m)∑
ν=0

λν,mu[1]
ν , m � 0.

On the other hand, (24) implies μ(m) = m + σ , m � 1. Taking into account that

�(1)u[1]
m = −[m + 1]um+1, m � 0, (30)
9



we have

�(1)(Φum) = −
μ(m)∑
ν=0

λν,m[ν + 1]uν+1, m � 0.

In accordance with the orthogonality of {Bn}n�0, we get

�(1)(ΦBmu) = −Ψμ(m)+1u, m � 0, (31)

with

Ψμ(m)+1(s) =
μ(m)∑
ν=0

λν,m[ν + 1]Bν+1(s), m � 0. (32)

Taking m = 0 in (31), we have

�(1)(Φu) = −Ψμ(0)+1u. (33)

Inserting (33) in (31) and because u is quasi-definite, we get

Φ(s)�(1)Bm(s − 1) − Ψμ(0)+1(s)Bm(s − 1) = −Ψμ(m)+1(s), m � 0.

The consideration of the degrees in both-hand sides leads to

• If t − 1 > μ(0) + 1, which implies t � 3, then t = σ + 2, μ(0) < σ .
• If t − 1 � μ(0) + 1, then μ(0) = σ , t � σ + 2.

Obviously, the pair (Φ,−Ψμ(0)+1) is admissible and putting p = μ(0) + 1, we have σ =
max(p − 1, t − 2). So (26) and (27) are valid from (29).

Thus, we have proved that (i) ⇒ (ii) and (i) ⇒ (iii).
(ii) ⇒ (iii). Consider m � 0. Thus

Φ(s)�(1)Bm(s − 1) + Ψ (s)Bm(s − 1) =
m+σ(m)+1∑

ν=0

λ′
m,νBν(s).

We successively derive from this〈
u,

(
Φ(s)�(1)Bm(s − 1) + Ψ (s)Bm(s − 1)

)
Bμ

〉 = λ′
m,μ

〈
u,B2

μ

〉
, 0 � μ � m + σ + 1.

A straightforward calculation yields〈
u,

(
Φ(s)�(1)Bm(s − 1) + Ψ (s)Bm(s − 1)

)
Bμ

〉 = −〈
u,Φ(s)Bm(s)�(1)Bμ(s)

〉
. (34)

Then

−〈
u,Φ(s)Bm(s)�(1)Bμ(s)

〉 = λ′
m,μ

〈
u,B2

μ

〉
.

Consequently, λ′
m,μ = 0, 0 � μ � m − t , λ′

m,0 = 0, m � 0. Moreover, for μ = m − t + 1, m � t ,

−〈
u,Φ(s)Pm(s)�(1)Pm−t+1(s)

〉 = −[m − t + 1]〈u,B2
m

〉 = λ′
m,m−t+1

〈
u,B2

m−t+1

〉
.

Therefore, for m � t ,

Φ(s)�(1)Bm(s − 1) + Ψ (s)Bm(s − 1) =
m+σ(m)∑

λ′
m,ν+1Bν+1(s), λ′

m,m−t+1 �= 0.
ν=m−t

10



(iii) ⇒ (i). From (26), we get

m+σ(m)∑
ν=0

λ̃m,νδn,ν+1 = 〈
un,Φ(s)�(1)Bm(s − 1) + Ψ (s)Bm(s − 1)

〉
= −〈

�(1)(Φun) − Ψ un,Bm(s − 1)
〉
.

For n = 0, 〈Ψ u − �(1)(Φu),Bm(s − 1)〉 = 0, m � 0. Therefore

�(1)(Φu) = Ψ u. (35)

Moreover, using (34) and the orthogonality of {Bn}n�0, we get〈
un,Φ(s)�(1)Bm(s − 1) + Ψ (s)Bm(s − 1)

〉 = −r−1
n

〈
u,Φ(s)Bm(s)�(1)Bn(s)

〉
.

Furthermore, making n → n + 1, we obtain{〈(
Φ�(1)Bn+1

)
u,Bm

〉 = 0, m � n + t + 1, n � 0,〈(
Φ�(1)Bn+1

)
u,Bn+t

〉 = −rn+1λ̃n+t,n �= 0, n � 0.

According to Lemma 2.1,

(
Φ�(1)Bn+1

)
u = −

n+t∑
ν=n−σ

rnλ̃ν,nuν, n � σ.

The orthogonality of {Bn}n�0 leads to

(
Φ�(1)Bn+1

)
u = −

n+t∑
ν=n−σ

(
λ̃ν,n

〈u,B2
n+1〉

〈u,B2
ν 〉 Bν

)
u, n � 0.

From (35) and taking into account u is quasi-definite, we finally obtain (23)–(24) in accordance
with (29). �

In an analog way we can prove the following result.

Lemma 3.3. [12, Lemma 3.1] For any monic polynomial Φ , degΦ = t , and any SMOP {Bn}n�0
with respect to u, the following statements are equivalent:

(i) There exists a non-negative integer σ such that the polynomials Bn satisfy

�(1)
(
Φ(s − 1)Bn(s)

) =
n+t−1∑

ν=n−σ−1

λn,νBν(s), n � σ + 1, (36)

λn,n−σ−1 �= 0, n � t + σ + 2. (37)

(ii) There exists a polynomial Ψ , degΨ = p � 1, such that

�(1)(Φu) = Ψ u, (38)

where the pair (Φ,Ψ ) is admissible.
11



(iii) There exist a non-negative integer σ and a polynomial Ψ , degΨ = p � 1, such that

Φ(s)�(1)Bn(s − 1) + Ψ (s)Bn(s − 1) − Bn(s)�
(1)Φ(s − 1)

=
n+σ(n)+1∑
ν=n−t+1

λ̃n,νBν(s), n � t, (39)

λ̃n,n−t+1 �= 0, n � t, (40)

where σ = max(p − 1, t − 2) and the pair (Φ,Ψ ) is admissible. We can write

λ̃n,ν = −〈u,B2
m〉

〈u,B2
ν 〉 λν,n, 0 � ν � n + σ(n) + 1, n � 0. (41)

3.1. First characterization of q-semiclassical polynomials

Theorem 3.1. For a monic polynomial Φ , degΦ = t , and any SMOP {Bn}n�0 with respect to u,
the following statements are equivalent:

(i) There exist a non-negative integer σ , an integer p � 1, and an integer r � σ + t + 1, with
σ = max(t − 2,p − 1), such that

n+t∑
ν=n−σ

αn,νBν(s) =
n+t∑

ν=n−t

vn,νB
[1]
ν (s), n � max(σ, t), (42)

where αn,n+t = vn,n+t = 1, n � max(σ, t), αr,r−σ vr,r−t �= 0,〈
�(1)(Φu),Bn

〉 = 0, p + 1 � n � σ + 2t + 1,
〈
�(1)(Φu),Bp

〉 �= 0,

and if p = t − 1, then limq↑1〈u,B2
p〉−1〈u,Φ�(1)Bp〉 �= −m, m ∈ N

∗.
(ii) There exists a polynomial Ψ , degΨ = p � 1, such that

�(1)(Φu) = Ψ u,

and the pair (Φ,Ψ ) is admissible.

Proof. (i) ⇒ (ii). Consider the SMP {Ωn}n�0 defined by

Ωn+t+1(s) =
n+t∑

ν=n−t

[n + t + 1]
[ν + 1] vn,νBν+1(s), n � σ + t + 1,

Ωn(s) = Bn(s), 0 � n � σ + 2t + 1.

From (42),

�(1)
(
Ωn+t+1(s)

) = [n + t + 1]
n+t∑

ν=n−σ

αn,νBν(s), n � σ + t + 1. (43)

Since u is quasi-definite, then〈
�(1)(Φu),Ωn+t+1

〉 = −〈
u,Φ�(1)Ωn+t+1

〉
= −[n + t + 1]

n+t∑
αn,ν〈u,ΦBν〉 = 0, n � σ + t + 1.
ν=n−σ

12



Therefore, 〈�(1)(Φu),Ωn〉 = 0, n � σ +2t +1, and by hypothesis 〈�(1)(Φu),Ωn〉 = 0, p+1 �
n � σ + 2t + 1, then 〈�(1)(Φu),Ωn〉 = 0 for n � p + 1, and 〈�(1)(Φu),Ωp〉 �= 0. Hence, if we
denote {wn}n�0 the dual sequence of {Ωn}n�0 and apply Lemma 2.1, then

�(1)(Φu) =
p∑

ν=1

〈
�(1)(Φu),Bν

〉
wν. (44)

On the other hand, if we take t̂ = 2t , σ̂ = σ + 1, and r̂ = r + t + 1, then

Ωn(s) =
n∑

ν=n−t̂

ṽn,νBν(s), n � σ̂ + t̂ + 1,

Ωn(s) = Bn(s), 0 � n � σ̂ + t̂ ,

where

ṽn,ν = [n]
[ν]vn−t−1,ν−1, n − t̂ � ν � n, n � σ̂ + t̂ + 1,

ṽr̂,r̂−t̂ = [r + t + 1]
[r − t + 1] vr,r−t �= 0, r̂ � σ + 2t + 2 = σ̂ + t̂ + 1.

From Lemma 2.2 and (5), it follows that wk = uk = 〈u,B2
k 〉−1Bk , 0 � k � σ̂ = σ +1. So, relation

(44) becomes

�(1)(Φu) = Ψ u,

where

Ψ (s) = −
p∑

ν=1

〈
u,B2

ν

〉−1〈
u,Φ�(1)Bν

〉
Bν(s),

with degΨ = p, as well as we have 〈u,Φ�(1)Bp〉 �= 0 and, as a consequence, the pair (Φ,Ψ ) is
admissible with associated integer σ .

(ii) ⇒ (i). From Lemma 3.3(i) and making n → n + 1 we have

�(1)
(
Φ(s − 1)Bn+1(s)

) =
n+t∑

ν=n−σ

λn+1,νBν(s), n � σ, (45)

where λn+1,n+t = [n + t + 1], n � σ , and λn+1,n−σ �= 0, n � t + σ + 1.
On the other hand, the orthogonality of {Bn}n�0 yields

Φ(s − 1)Bn+1(s) =
n+t∑

ν=n−t

〈u,Φ(s − 1)Bn+1(s)Bν+1(s)〉
〈u,B2

ν+1〉
Bν+1(s), n � t − 1.

Hence,

�(1)
(
Φ(s − 1)Bn+1(s)

) =
n+t∑

ν=n−t

[ν + 1]〈u,Φ(s − 1)Bn+1(s)Bν+1(s)〉
〈u,B2

ν+1〉
B[1]

ν (s),

n � t. (46)

From (45) and (46), we obtain (42) with
13



αn,ν = λn+1,ν

[n + t + 1] , n − σ � ν � n + t,

vn,ν = [ν + 1]〈u,Φ(s − 1)Bn+1(s)Bν+1(s)〉
[n + t + 1]〈u,B2

ν+1〉
, n − t � ν � n + t,

αn,n−σ vn,n−t �= 0, n � σ + t + 1.

Then,

〈
�(1)(Φu),Bn

〉 = −〈
u,Φ�(1)Bn

〉 = {
0, p + 1 � n � σ + 2t + 1,

1
[p]! [�(1)]pΨ (0)〈u,B2

p〉, n = p = degΨ,

and if p = t − 1, the q-admissibility of (Φ,Ψ ) yields limq↑1〈u,B2
p〉−1〈u,Φ�(1)Bp〉 �= −m,

m ∈ N
∗. �

In the case of q-classical linear functionals, we get the following result

Corollary 3.3. Let {Bn}n�0 be a SMOP with respect to u and a monic polynomial Φ , with
degΦ = t � 2, such that 〈u,Φ〉 �= 0, then the following statements are equivalent:

(i) The linear functional u is q-classical, i.e., there exists a polynomial Ψ with degΨ = 1 such
that �(1)(Φu) = Ψ u.

(ii)
∑n+t

ν=n αn,νBν(s) = ∑n+t
ν=n−t vn,νB

[1]
ν (s), n � t . Furthermore, there exists an integer r �

t + 1 such that αr,rvr,r−t �= 0, and if t = 2 then limq↑1〈u,B2
1 〉−1〈u,Φ〉 �= −m, m ∈ N

∗.

3.2. Second characterization of q-semiclassical polynomials

From the previous characterization, we can not recover the second structure relation of
q-classical orthogonal polynomials (2). Our goal is to establish the characterization that allows
us to deduce such a case.

First, we have the following result.

Proposition 3.3. For any monic polynomial Φ , with degΦ = t , and any SMOP {Bn}n�0 with
respect to u, the following statements are equivalent:

(i) There exists a polynomial Ψ , degΨ = p � 1, such that

�(1)(Φu) = Ψ u, (47)

where the pair (Φ,Ψ ) is admissible.
(ii) There exist a non-negative integer σ and a polynomial Ψ , with degΨ = p � 1, such that

Φ(s)
[
�(1)

]2
Bn(s − 1) + �(1)

(
Ψ (s)Bn(s − 1)

) − Bn(s)
[
�(1)

]2
Φ(s − 1)

=
n+σ(n)∑
ν=n−σ

ϑn,νBν(s), n � σ, (48)
14



where ϑn,n−σ �= 0 either n � σ + t + 1 or n = σ + t and p � t − 1, σ = max(t − 2,p − 1),
and the pair (Φ,Ψ ) is admissible. We can write

ϑn,ν = 〈u,B2
n〉

〈u,B2
ν 〉ϑν,n, 0 � ν � n + σ(n), n � 0. (49)

Proof. We have

Φ(s)
[
�(1)

]2
Bn(s − 1) + �(1)

(
Ψ (s)Bn(s − 1)

) − Bn(s)
[
�(1)

]2
Φ(s − 1)

=
n+σ(n)∑

ν=0

ϑn,νBν(s), n � 0, (50)

where for all integers 0 � ν � n + σ(n), and n � 0,〈
u,B2

ν

〉
ϑn,ν = 〈

u,
(
Φ(s)

[
�(1)

]2
Bn(s − 1) + �(1)

(
Ψ (s)Bn(s − 1)

)
− Bn(s)

[
�(1)

]2
Φ(s − 1)

)
Bν

〉
.

Taking into account (5) and (48), a straightforward calculation leads to〈
u,B2

ν

〉
ϑn,ν = 〈

u,
(
Φ(s)

[
�(1)

]2
Bν(s − 1) + �(1)

(
Ψ (s)Bν(s − 1)

)
− Bν(s)

[
�(1)

]2
Φ(s − 1)

)
Bn

〉
.

Therefore, inserting (50)

〈
u,B2

ν

〉
ϑn,ν =

ν+σ(ν)∑
i=0

ϑν,i

〈
u,B2

n

〉
δi,n = ϑν,n

〈
u,B2

n

〉
.

In particular, for 0 � ν � n − σ − 1, then n � ν + σ + 1 � ν + σ(ν) + 1. Thus, we deduce
ϑν,n = 0. Hence ϑn,ν = 0, for 0 � ν � n − σ − 1.

For ν = n − σ and n � σ + t , we obtain〈
u,B2

n−σ

〉
ϑn,n−σ = 〈

u,�(1)
(
Φ(s)�(1)Bn−σ (s − 1) + Ψ (s)Bn−σ (s − 1)

)〉
− 〈

u,�(1)
(
Bn−σ (s)�(1)Φ(s − 1)

)
Bn

〉
=

n+1∑
nu=0

λ̃n−σ,ν

〈
u,Bn�

(1)Bν

〉
= [n + 1]λ̃n−σ,n+1

〈
u,B2

n

〉
.

But, from (40), we get ϑn,n−σ �= 0, either n � σ + t + 1, or n = σ + t and p � t − 1. As a
consequence,

Φ(s)
[
�(1)

]2
Bn(s − 1) + �(1)

(
Ψ (s)Bn(s − 1)

) − Bn(s)
[
�(1)

]2
Φ(s − 1)

=
n+σ(n)∑
ν=n−σ

ϑn,νBν(s), n � σ.
15



(ii) ⇒ (i). From (48)〈
�(1)

(
Φ(s − 1)�(1)u

) + ((
�(1)Φ(s − 1)

) − Ψ (s)
)
�(1)u,Bn(s − 1)

〉 = 0, n � σ + 1,〈
�(1)

(
Φ(s − 1)�(1)u

) + ((
�(1)Φ(s − 1)

) − Ψ (s)
)
�(1)u,Bn(s − 1)

〉 = 〈u,1〉ϑn,0,

n � σ.

According to Lemma 2.1

�(1)
(
Φ(s − 1)�(1)u

) + ((
�(1)Φ(s − 1)

) − Ψ (s)
)
�(1)u

=
σ∑

n=0

〈u,1〉ϑn,0

〈u,B2
n〉 Bn(∇u − u) =

σ(0)∑
n=0

ϑ0,nBn(∇u − u).

Finally, a direct calculation yields

�(1)
(
�(1)(Φu) − Ψ u

) = 0,

then �(1)(Φu) − Ψ u = 0.
Moreover, since σ(n) = σ and ϑn,n+σ = [n + σ + 1]λ̃n,n+σ+1 �= 0, for n � t + 1, then

λ̃n,n+σ+1 �= 0, n � t + 1. The q-admissibility of the pair (Φ,Ψ ) follows taking into account
the value of λ̃n+σ(n)+1. �

Our main result is the next one.

Theorem 3.2. For any monic polynomial Φ , degΦ = t , and any SMOP {Bn}n�0 with respect
to u, the following statements are equivalent:

(i) There exist a non-negative integer σ , an integer p � 1, and an integer r � σ + t + 1, with
σ = max(t − 2,p − 1), such that

n+σ∑
ν=n−σ

ξn,νBν(s) =
n+σ∑

ν=n−t

ςn,νB
[1]
ν (s), (51)

where ξn,n+σ = ςn,n+σ = 1, n � max(σ, t + 1), ξr,r−σ ςr,r−t �= 0,{〈
�(1)(Φu),Bm

〉 = 0, p + 1 � m � 2σ + t + 1,〈
�(1)(Φu),Bp

〉 �= 0,

and if p = t − 1, then limq↑1〈u,B2
p〉−1〈u,Φ�(1)Bp〉 �= m, m ∈ N∗ (q-admissibility condi-

tion).
(ii) There exists a polynomial Ψ , degΨ = p � 1, such that

�(1)(Φu) = Ψ u, (52)

where the pair (Φ,Ψ ) is admissible.

Proof. (i) ⇒ (ii). Let us consider the SMP {Ξn}n�0 given by

Ξn+σ+1(x) =
n+σ∑

ν=n−t

[n + σ + 1]
[ν + 1] ςn,νBν+1(x), n � σ + t + 1,

Ξn(x) = Bn(x), 0 � n � 2σ + t + 1.
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A direct calculation yields

�(1)Ξn+σ+1(s) = [n + σ + 1]
n+σ∑

ν=n−σ

ξn,νBν(s), n � σ + t + 1.

Taking into account the linear functional u is quasi-definite, we get〈
�(1)(Φu),Ξn+σ+1

〉 = −〈
u,Φ�(1)Ξn+σ+1(s)

〉
= −[n + σ + 1]

n+σ∑
ν=n−σ

ξn,ν〈u,ΦBν〉 = 0, n � σ + t + 1.

From the assumption and Lemma 2.1, if we denote {wn}n�0 the dual sequence of {Ξn}n�0, then
we get

�(1)(Φu) =
p∑

ν=0

〈
�(1)(Φu),Bν

〉
wk. (53)

Taking t̂ = σ + t , σ̂ = σ + 1, and r̂ = r + σ + 1, the polynomials Ξn can be rewritten as

Ξn(x) =
n∑

ν=n−t̂

ς̃n,νBv(x), n � σ̂ + t̂ + 1,

Ξn(x) = Bn(x), 0 � n � σ̂ + t̂ ,

where

ς̃n,ν = [n]
[ν]ςn−σ−1,ν−1, n − t̂ � ν � n, n � σ + t̂ + 1,

ς̃r̂,r̂−t̂ = [r + σ + 1]
[r − t + 1] ςr,r−t �= 0, r̂ � 2σ + t + 2 � σ̂ + t̂ + 1.

From Lemma 2.2, wk = uk = 〈u,B2
k 〉−1Bku, 0 � k � σ̂ = σ + 1. So, (53) becomes

�(1)(Φu) =
p∑

ν=1

( 〈�(1)(Φu),Bν〉
〈u,B2

ν 〉 Bν

)
u = Ψ u.

Since 〈�(1)(Φu),Bp〉 �= 0, then degΨ = p.
From the assumption, if p = t − 1, then

lim
q↑1

1

[p]!
[
�(1)

]p
Ψ (0) = lim

q↑1

〈�(1)(Φu),Bp〉
〈u,B2

p〉 = − lim
q↑1

〈u,Φ�(1)Bp〉
〈u,B2

p〉 �= −m, m ∈ N
∗.

Hence, the pair (Φ,Ψ ) is admissible with associated integer σ .
(ii) ⇒ (i). From Lemma 3.2(iii), there exists a polynomial Ψ , degΨ = p � 1, such that

Φ(s − 1)�(1)Bn(s − 1) + Ψ (s)Bn(s − 1) − Bn(s)�
(1)Φ(s − 1)

=
n+σ(n)+1∑
ν=n−t+1

λ̃n,νBν(s), n � t, (54)

where λ̃n,n−t+1 �= 0, n � t , σ = max(t − 2,p − 1), and the pair (Φ,Ψ ) is admissible.
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Taking q-differences in both-hand sides of (54), we get

Φ(s)
[
�(1)

]2
Bn(s − 1) + �(1)

(
Ψ (s)Bn(s − 1)

) − Bn(s)
[
�(1)

]2
Φ(s − 1)

=
n+σ(n)∑
ν=n−t

ζn,νB
[1]
ν (s), n � t, (55)

where ζn,ν = [ν + 1]λ̃n,ν+1, 0 � ν � n + σ(n), n � t .
From (48) and (55), we obtain (51) where

ξn,ν = ϑn,ν

ϑn,n+σ

, n − σ � ν � n + σ,

ςn,ν = [ν + 1]λ̃n,ν+1

ϑn,n+σ

, n − t � ν � n + t,

ξn,n−σ ςn,n−t = [n − t + 1]
ϑ2

n,n+σ

ϑn,n−σ λ̃n,n−t+1 �= 0, n � σ + t + 1.

Finally,〈
�(1)(Φu),Bn

〉 = 〈u,Ψ Bn〉 =
{

0, p + 1 � n � 2σ + t + 1,

〈u,B2
p〉

[p]! [�(1)]pΨ (0) �= 0, n = p = degΨ.

From the admissibility of the pair (Φ,Ψ ), if p = t − 1, then 〈u,B2
p〉−1〈u,Φ�(1)Bp〉 �= m,

m ∈ N
∗. �

4. The uniform lattice x(s) = s

As a direct consequence from the operator Lq,ω and the q-linear lattice x(s), we can recover
the uniform lattice setting x(s) = (qs − 1)/(q − 1) and taking limit q → 1. For instance, for
�-classical orthogonal polynomials the structure relations (1) and (2) have been studied in [5].

Theorem 4.1 (First characterization of discrete semiclassical polynomials). For a monic poly-
nomial Φ , degΦ = t , and any SMOP {Bn}n�0 with respect to u, the following statements are
equivalent:

(i) There exist a non-negative integer σ , an integer p � 1, and an integer r � σ + t + 1, with
σ = max(t − 2,p − 1), such that

n+t∑
ν=n−σ

αn,νBν(s) =
n+t∑

ν=n−t

vn,νB
[1]
ν (s), n � max(σ, t), (56)

where B
[1]
n (s) := (n+1)−1�Bn+1(s), αn,n+t = vn,n+t = 1, n � max(σ, t), αr,r−σ vr,r−t �= 0,〈

�(Φu),Bn

〉 = 0, p + 1 � n � σ + 2t + 1,
〈
�(Φu),Bp

〉 �= 0,

and if p = t − 1, then 〈u,B2
p〉−1〈u,Φ�Bp〉 �= −m, m ∈ N

∗.

(ii) There exists a polynomial Ψ , degΨ = p � 1, such that

�(Φu) = Ψ u,

and the pair (Φ,Ψ ) is admissible.
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Theorem 4.2 (Second characterization of discrete semiclassical polynomials). For any monic
polynomial Φ , degΦ = t , and any SMOP {Bn}n�0 with respect to u, the following statements
are equivalent:

(i) There exist a non-negative integer σ , an integer p � 1, and an integer r � σ + t + 1, with
σ = max(t − 2,p − 1), such that

n+σ∑
ν=n−σ

ξn,νBν(s) =
n+σ∑

ν=n−t

ςn,νB
[1]
ν (s), (57)

where ξn,n+σ = ςn,n+σ = 1, n � max(σ, t + 1), ξr,r−σ ςr,r−t �= 0,{〈
�(Φu),Bm

〉 = 0, p + 1 � m � 2σ + t + 1,〈
�(Φu),Bp

〉 �= 0,

and if p = t − 1, then 〈u,B2
p〉−1〈u,Φ�Bp〉 �= m, m ∈ N

∗ (admissibility condition).

(ii) There exists a polynomial Ψ , degΨ = p � 1, such that

�(Φu) = Ψ u, (58)

where the pair (Φ,Ψ ) is admissible.

The proofs are analogous to the original ones setting ω = 1, and taking limit q ↑ 1. Therefore
Lq,1 ≡ �(1) becomes � and [n] becomes n.

Remark 4.1. �-semiclassical linear functionals have been studied in [11].

5. Examples

5.1. First example

Let {Qn}n�0 be a SMOP that satisfies the following relation(
x(s + 1) + vn,0

)
Qn(s) = qQ

[1]
n+1(s) + ρn(s)Q

[1]
n (s), (59)

where the lattice, x(s), is q-linear, i.e., x(s + 1) − qx(s) = ω,

ρn = qn+1

C

[n + 1]
γn+1

, n � 1, ρ0 = 0,

vn,0 = γn+2γn+1

qn[n + 2]C + ρn − qβn − ω, n � 0,

and C is a constant, being {βn}n�0 and {γn}n�0 the coefficients of the TTRR

xQn = Qn+1 + βnQn + γnQn−1, n � 1.

Then, from the above TTRR and Theorem 3.1, we get {Qn}n�0 is a sequence of q-semiclassical
orthogonal polynomials with respect to the linear functional v, solution of the Pearson equation

�(1)v = Ψ v, (60)

of class σ = 1, with Φ(x) = 1 and degΨ = 2.
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Then, it also satisfies the following relation

Q[1]
n (s) = Qn(s) + λn,n−1Qn−1(s), (61)

where λn,n−1 = γn+1γn

qn[n+1]C.

In fact, a straightforward calculation gives Ψ (x) = −C
q
Q2(x) − 1

γ1
Q1(x).

Lemma 5.1. Let {Qn}n�0 be a SMOP with respect to the linear functional v satisfying (60).
Then the sequence {Qn}n�0 is not diagonal.

Proof. Assume {Qn}n�0 is diagonal with respect to φ, with degφ = t , and index σ . Then from
Corollary 3.2, t/2 � σ � t + 2 and we have the following diagonal relation:

φ(s)Qn(s) =
n+t∑

ν=n−σ

θn,νQ
[1]
ν (s), θn,n−σ �= 0, n � σ.

If we denote by {vn}n�0 and {v[1]
n }n�0 the dual sequences of {Qn}n�0 and {Q[1]

n }n�0, respec-
tively, then by Proposition 3.1 the last relation is equivalent to

φv[1]
n = knΩn+σ v, n � 0, (62)

where kn = 〈v,Q2
n+σ 〉−1θn+σ,n and

Ωn+σ (x) =
n+σ∑
ν=0

θν,n

θn+σ,n

〈v,Q2
n+σ 〉

〈v,Q2
ν〉

Qν(x), n � 0.

It is clear that v satisfies an infinite number of relations as (62). Indeed, by multiplying both-hand
sides of (62) by a monic polynomial, we get another diagonal relation.

For this reason, we will assume t = degφ is the minimum non-negative integer such that v

satisfies diagonal relations as (62), i.e., Eq. (62) cannot be simplified.
Notice that t � 1. Indeed, if we suppose that t = 0, then 0 � σ � 2 and we recover the first

structure relation characterizing q-classical sequences. This contradicts the fact that the sequence
{Qn}n�0 is q-semiclassical of class one.

Consequently, since t � 1 then σ � 1. Taking q-differences in both-hand sides of (62) and
using (5), from (60) and �(1)v

[1]
n = −[n + 1]vn+1, we obtain

φ̃v[1]
n = knψnv, n � 0, (63)

where

φ̃(s) = [t]−1�(1)φ(s),

ψn(s) = [t]−1(Ωn+σ (s + 1)Ψ (s) + �(1)Ωn+σ (s) + dnφ(s + 1)Qn+1(s)
)
, n � 0,

dn = [n + 1](〈v,Q2
n+1

〉
kn

)−1
, n � 0.

Notice that the polynomial φ̃ is monic with deg φ̃ = t − 1.
Moreover, taking into account u is a quasi-definite linear functional, combining (62) and (63)

we obtain φ̃(x)Ωn+σ (x) = φ(x)ψn(x), and analyzing the highest degree of this relation, we get
ψn is a monic polynomial with degψn = n + σ − 1. But, this contradicts the fact that t = degφ

is the minimum non-negative integer such that v satisfies diagonal relations as (62). �
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5.2. The q-Freud type polynomials

Let {Pn}n�0 be a SMOP with respect to a linear functional u such that (u)0 = 〈u,1〉 = 1 and
the following relation

�(1)Pn(s) = [n]Pn−1(s) + anPn−3(s), n � 2, (64)

holds, where P−1 ≡ 0, P0 ≡ 1, and P1(x) = x, being x ≡ x(s) = qs , i.e., ω = 0.
We know that this family satisfies a TTRR, i.e., there exist two sequences of complex numbers

{bn}n and {cn}n, cn �= 0, such that

xPn = Pn+1 + bnPn + cnPn−1, n � 1.

Furthermore, from a direct calculation we get an = K(q)q−ncncn−1cn−2, n � 2. In fact, the
parameters cn satisfy the non-linear recurrence relation

q[n]cn−1 + K(q)q−n+1cncn−1cn−2 = [n − 1]cn + K(q)q−n−1cn+1cncn−1, n � 1,

with c0 = 0, c1 = −P2(0) �= 0, and limq↑1 K(q) = 4.
Moreover, from Proposition 3.2 we deduce that Φ ≡ 1 and thus σ = 2. As a consequence,

Ψ is a polynomial of degree 3. In other words, u is a q-semiclassical linear functional of class 2,
i.e., u satisfies the following distributional equation:

�(1)u = Ψ u, degΨ = 3. (65)

Lemma 5.2. Ψ (x) = −K(q)q−3P3(x) − c−1
1 P1(x).

So, (65) is the q-analog of the Pearson equation for the Freud case.

Proof. From our hypothesis Ψ is a polynomial of degree 3, so Ψ (x) = e0P0 + e1P1 +
e2P2 + e3P3. Then, taking into account d2

n = cnd
2
n−1, n � 1, and the value of an, n � 3, we

get

e0d
2
0 = e0

〈
u,P 2

0

〉 = 〈Ψ u,P0〉 = −〈
u,�(1)P0

〉 = 0,

e1d
2
1 = e1

〈
u,P 2

1

〉 = 〈Ψ u,P1〉 = −〈
u,�(1)P1

〉 = −1,

e2d
2
2 = e2

〈
u,P 2

2

〉 = 〈Ψ u,P2〉 = −〈
u,�(1)P2

〉 (64)= −〈
u, [2]P1

〉 = 0,

e3d
2
3 = e3

〈
u,P 2

3

〉 = 〈Ψ u,P3〉 = −〈
u,�(1)P3

〉 (64)= −〈
u, [3]P2 + a3P0

〉 = −a3. �
From Theorem 3.2, we can write the second structure relation as follows

Bn+2 + ξn,n+1Bn+1 + ξn,nBn + ξn,n−1Bn−1 + ξn,n−2Bn−2

= B
[1]
n+2 + ςn,n+1B

[1]
n+1 + ςn,nB

[1]
n . (66)

Using (64) we get

ξn,n+1 = ςn,n+1, ξn,n = [n + 3]−1an+3 + ςn,n,

ξn,n−1 = [n + 2]−1ςn,n+1an+2, ξn,n−2 = [n + 1]−1ςn,nan+1.
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Moreover, combining both structure relations if Pn(x) = ∑n
j=0 λn,j x

n−j , then λn,2k+1 = 0 for
non-negative integers n, k such that 0 � k � (n − 1)/2, and

λn,0 = 1, λn,2k+2 = [n]cn−1λn−2,2k + anλn−3,2k

[n − 2k − 2] − [n] , 1 � k � n/2.

In fact, with these values, we obtain cn = λn,2 − λn+1,2, bn = λn,1 − λn+1,1 = 0, and ξn,n+1 =
ξn,n−1 = ςn,n+1 = 0, n � 0. Hence, we can rewrite (66) as(

x2 + ṽn,0
)
Bn = B

[1]
n+2 + ρ̃nB

[1]
n , (67)

where

ṽn,0 = an+3

[n + 3] + qn+1[n + 1]
K(q)cn+1

− cn+1 − cn and ρ̃n = qn+1[n + 1]
K(q)cn+1

.

Lemma 5.3. The moments of the linear functional u, {(u)n}n�0, satisfy the following relation

[n + 1](u)n = K(q)q−3(u)n+4 +
(

1

c1
− [3]c2 + a3

q(1 + q)

)
(u)n+2, n � 0, (68)

where (u)0 = 1.

Therefore, taking into account that (u)1 = (u)3 = 0, we can deduce u is a symmetric linear
functional, i.e., (u)2n+1 = 〈u,x2n+1〉 = 0, n � 0.
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