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Abstract

The g-classical orthogonal polynomials of the g-Hahn Tableau are characterized from their orthogonality
condition and by a first and a second structure relation. Unfortunately, for the g-semiclassical orthogonal
polynomials (a generalization of the classical ones) we find only in the literature the first structure relation.
In this paper, a second structure relation is deduced. In particular, by means of a general finite-type rela-
tion between a ¢g-semiclassical polynomial sequence and the sequence of its ¢-differences such a structure
relation is obtained.
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1. Introduction

The g-classical orthogonal polynomial sequences (Big ¢-Jacobi, g-Laguerre, Al-Salam
Carlitz 1, g-Charlier, etc.) are characterized by the property that the sequence of its monic
q-difference polynomials is, again, orthogonal (Hahn’s property, see [6]). In fact, the ¢-difference
operator is a particular case of the Hahn operator which is defined as

flgx +w)— f(x)
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In the sequel, we are going to work with g-semiclassical orthogonal polynomials and ¢-classical
polynomials of the Hahn Tableau, hence we will consider the g-linear lattice x(s), i.e., x(s+1) =
gx(s) + w. Therefore, for the sake of convenience we will denote AV = L, .. Notice that for
g = 1 we get the forward difference operator A. In such a case, when w — 0 we recover the
standard semiclassical orthogonal polynomials [13].

Taking into account the role of such families of ¢-polynomials in the analysis of hypergeo-
metric g-difference equations resulting from physical problems as the ¢-Schrédinger equation,
g-harmonic oscillators, the connection and the linearization problems among others there is an
increasing interest to study them. Moreover, the connection between the representation theory
of quantum algebras and the g-orthogonal polynomials is well known (see [2] and references
therein).

We also find many different approaches to the subject in the literature. For instance, the
functional equation (the so-called Pearson equation) satisfied by the corresponding moment
functionals allows an efficient study of some properties of g-classical polynomials [3,7,8,17].
However, the g-classical sequences of orthogonal polynomials {C,},>0 can also be character-
ized taking into account its orthogonality as well as one of the two following difference equations,
the so-called structure relations.

e First structure relation [1,9,18]

n-+t
S()CHs) =Y AunCu(s), 720, Ayp#0, 720, €

V=n
where @ is a polynomial with deg @ = ¢ < 2 and C!H(s) := [n + 11" AD C,11(s), being
[n]:=(¢" —1)/(g—1), n=>0.

ee Second structure relation [16,17]

n
Co()= > 0,,CM(s). n>1,0<1<2, pn=1 n>t. 2)

v=n—t

The g-classical orthogonal polynomials were introduced by W. Hahn [6] and also analyzed
in [1]. The generalization of this families leads to g-semiclassical orthogonal polynomials which
were introduced by P. Maroni and extensively studied in the last decade by himself, L. Kheriji,
J.C. Medem, and others (see [7,16]).

For g-classical orthogonal polynomial sequences, which are ¢g-semiclassical of class zero, the
structure relations (1) and (2) become

G () Ly Pu(s) = Gy Pyy1(5) + BuPa(s) + Pn Pu1(s),  7n #0,
() L1/g,0/q Pa(8) = G Py 1(5) + B Pu(s) + Pn Pu1(s),  Pn #0,
Pu(s) = P (s) + 8, P, (5) + €, P s).

In particular, in Table 1 we describe these parameters for some families of ¢-classical orthogonal
polynomials.

The first structure relation for the g-semiclassical orthogonal polynomials was established
(see [7]), and it reads as follows.



Table 1
Some families of ¢-polynomials of the Hahn Tableau

(A1) Bigg-Jacobi Py(x;a,b,c;q), x=x(s)=

P (x;a,b, ¢; ) = " Pulgx; ag, bq, cq; @),

P =aq(x —Dbx —c), o) =¢ " (x —aq)(x - cq),

ap =abq[n], & =q "[n],

Bn =—ag[n]1 - abq"+1) ctab?q?tpb(1—cq" —cq"t

1 ag" (A4q— cq"“))

(1— aqun)(l athIH»Z)

Bn —qlnl - abqn+1) c+a2bq2”+l+a(l —cq —cq”+1 —bq" (1+q— an+1))

(1—abq?")(1—abq?t+2)

](1 aq")(1—bg")(1—abg")(c—abg")(1—cq")(1— abq"“)

Yn= aq[n - abqZM)Z(l athrl 1)(1 ahq2"+l)
~ ~ neq 1—gh— 1 1—
n=q"Vn, n=-— 1q u(hq"qu)l Bn, €= abq dg™)=g)

(A7)  g-Laguerre TP (xiq), x=x(s)=
LI 9) =L (gx: ),
p()=ax(x+1), o) =g x,
dn=alnl, Bn=gq
@ =0, Pu=q "I, Tn=a"lg*"¥A—ag"),
So=a"YA—-hn. en=a"11-q""Hd - q)7n.

(A3)  Al-Salam Carlitz | U\ (x:q), x=ux(s)=q".
U@ (¢ ) =T (x: ),
p)=a, o)=A—-x)a—x), @ =q¢*"nl,

(Ag)  q-Charlier an(q_s;a;q),
cMg=5:a39) =Cu(g™*aq7 L ),
p)=x(x—1), o) =q lax,

(1—abg")(1— ahq’H'l)

207 n)A+ g —ag™Y), Py =a"¢ M [n]1 - ag).

Bn=q+a)nl, P =aq"[nl.

dn=Inl, Pn=q P nla+aq+q"t), Pu=aqgt™"nla+q").

an=0, Bu=aq "), Ta=q"Pn. Sn=C01A—q)pn.

en=01-q""H(L-q)n.

An orthogonal polynomial sequence, {B,},>o0, is said to be g-semiclassical if

n—+t

P)BM(s)= Y dnnBu(s). n=0.  Aun—o #0,

V=n—o

n=>o+1,

where @ is a polynomial of degree ¢ and o is a non-negative integer such that o > max{s — 2, 0}.
Recently, F. Marcelldn and R. Sfaxi [12] have established a second structure relation for the

standard semiclassical polynomials which reads as follows:

Theorem 1.1. For any integer o > 0, any monic polynomial @, withdeg® =t < o + 2, and any
SMOP {B,},>0 With respect to a linear functional u, the following statements are equivalent:
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(i) There exist an integer p > 1 and an integer r > o +1t + 1, with o = max(r — 2, p — 1), such
that

n+o n+o
Y EBi )= ) cuuBNx), n>max(o.r+1), (336)
V=n—o v=n—t

where BIH(x) = (n + DB, (),

Ennto =Snnto =1, n=max(o,t+1), &, 661 #0,
(®u),B,)=0, p+1<n<20+1+1, ((®u),Bp)#0 (o >1),

and if p =¢ — 1 then (u, B3)"Y(u, # B),) ¢ N*.
(if) The linear functional u satisfies

(Pu) +Pu =0,

where the pair (@, ¥) is admissible, i.e., the polynomial & is monic, deg® =1¢, deg¥ =
p>1 andif p=r—1then Ly (0) ¢ —N*, with associated integer o.

Now, we are going to extend this result for the g-semiclassical polynomials of the Hahn
Tableau.

Some years ago, P. Maroni and R. Sfaxi [15] introduced the concept of diagonal sequence for
the standard semiclassical polynomials. The following definition extends this definition to the
g-semiclassical case.

Definition 1.1. Let {B,},>0 be a sequence of monic orthogonal polynomials and ¢ a monic
polynomial with deg ¢ = ¢. When there exists an integer o > 0 such that

n—+t
¢()Bu(s)= Y 6uBIs), Opno#0, n>o0, 3)
V=n—o

the sequence {B, },>0 is said to be diagonal associated with ¢ and index o.

Obviously, the above finite-type relation, that we will call diagonal relation, is nothing else that
an example of second structure relation for such a family. But, some ¢-semiclassical orthogonal
polynomials are not diagonal. As an example, we can mention the case of a g-semiclassical
polynomial sequence {Q,},>0 orthogonal with respect to the linear functional v, such that the
functional equation AM v = W, with deg ¥ = 2, holds. In fact, the sequence {On}n>o satisfies
the following relation:

(xG+D +va0) 0 () =q O () + 04 O (s). 1 >0,
where the lattice, x(s), is g-linear, i.e., x(s + 1) — gx(s) = w,

n+1 [I’l + 1]
pn = q I n 2 15 100 = 07
< Yl
S Yn+2Vn+1
"7 g+ 2]

Here € is a constant, y,, and 8, are the coefficients of the three-term recurrence relation (TTRR)
that the orthogonal polynomial sequence {Q,},>0 satisfies. In fact, this sequence is not diagonal
and it will be analyzed more carefully in Section 5.1.

C+pop—qgBy—w, n=0.



The aim of our contribution is to give, under certain conditions, the second structure relation
characterizing a ¢-semiclassical polynomial sequence by a new relation between the sequence
of g-polynomials, {B,},>0, and the polynomial sequence of monic g-differences, {B,[ll]},@o, as
follows:

n—+o n—+o
Z EnvBy(s) = Z S‘n,vBy[,l](S)v n>=max(t+1,0),
v=n—o v=n—t

where &, n40 = Snnto =1, n = max(t + 1,0), and there exists r > o + ¢ + 1 such that

%‘r,r—a Sror—t # 0
Notice that when o = 0 we get the second structure relation (2).

2. Preliminaries and notation

Let u be a linear functional in the linear space P of polynomials with complex coefficients and
let ' be its algebraic dual space, i.e., the linear space of the linear functionals defined on IP. We
will denote by (u, f) the action of u € P’ on f € P and by (u), := (u, x™), n > 0, the moments
of u with respect to the sequence {x"},>o.

Let us define the following operations in I’. For any polynomial 4 and any ¢ € C, let A®y,
hu, and (x — ¢)~1u be the linear functionals defined on PP by (see [7,14])

i) (ADu, f) = —w, AD f), f P,
(it) (gu, f): (u,gf>,f,g€IP’
(i) ((x — ) tu, £) =, 0:(f)), f €P, ¢ € C, where f.(f)(x) = L[

Furthermore, for any linear functional « and any polynomial g we get

Lyo(gu) =AY (gu) = g(¢ 7 (x — ) APu + AD (g(¢7 (x — w)))u. (@)

Let {B,},>0 be a sequence of monic polynomials (SMP) with deg B, =n,n > 0, and {u,}, >0 its
dual sequence, i.e., u, € P, n >0, and (u,, By,) := 8y.m, n,m >0, where §, ,, is the Kronecker
symbol. The next results are very well known [7].

Lemma 2.1. For any u € P and any integer m > 1, the following statements are equivalent:

(i) (u, By—1)#0, (u, By) =0,n>m.
(i) There exist 1, € C, 0 < v <m —1, Ay_1 #0, such thatu = 3" Ay,

On the other hand, it is straightforward to prove

Lemma 2.2. For any (7,6,7) € N®, # > 6 + 7 + 1, and any sequence of monic polynomials
{$2,}n>0, deg £2, = n, n > 0, with dual sequence {w, },>0 such that

n
2= Y duBu(x), n=i+6+1 A 1 #0,

v=n—f

£2,(x)=B,(x), 0<n<t +

o,
we have that wy = uy forevery0 <k <o



The linear functional « is said to be quasi-definite if, for every non-negative integer, the lead-
ing principal Hankel submatrices H,, = (Wit} j=o @renon- singular for every n > 0. Assuming
u is quasi-definite, there exists a sequence of monlc polynomials {B,,},>0 such that (see [4])

(i) deg B, =n,n >0,
(ii) (u, ByBu) = rn8um, With r,, = (u, B2) #0, n > 0.

The sequence {B,},>0 is said to be the sequence of monic orthogonal polynomials, in short
SMOP, with respect to the linear functional u.

If {B,},>0 is @ SMOP, with respect to the quasi-definite linear functional u, then it is well
known (see [14]) that its corresponding dual sequence {u,},>0, is

unzr;lB,,u, n>0. (5)
Remark 2.1. We assume ug = u, i.e., the linear functional u is normalized.

On the other hand, (see [4]), the sequence {B,},>o satisfies a three-term recurrence relation
(TTRR)

Byy1(x) =(x — Bu)By(x) — v Bur_1(x), n=0, (6)

with y,, #20,n > 1,and B_1(x) =0, Bp(x) = 1.

Conversely, given a SMP, {B,},>0, generated by a recurrence relation (6) as above with
vn # 0, n > 1, there exists a unique normalized quasi-definite linear functional u such that the
family {B,},>0 is the corresponding SMOP. This result is known as Favard theorem (see [4]).

An important family of linear functionals is constituted by the g-semiclassical linear functio-
nals, i.e., when u is quasi-definite and satisfies

AD(@u) = wu. @)

Here (&, ¥) is an admissible pair of polynomials, i.e., the polynomial @ is monic, deg® =1,
deg¥ =p > 1, andif p =t — 1, then the following condition holds:

p
lim —[AD] w(0):= lim L A0 AD g0y £ n, neN
g1 [pl! 1[pl! ’ ’
where [m]! =[1][2]---[m], m € N*, is the ¢g-analog of the usual factorial.

The pair (@, ¥) is not unique. In fact, under certain conditions (7) can be simplified, so we
define the class of u as the minimum value of max(deg(®) — 2, deg(¥) — 1), for all admissible
pairs (&, ¥). The pair (&, ¥) giving the class o (o > 0 because deg(¥) > 1) is unique [7].

When u is g-semiclassical of class o, the corresponding SMOP is said to be g-semiclassical
of class o.

When o =0, i.e., deg @ < 2 and deg¥ =1, then u is g-classical (Askey-Wilson, g-Racah,
Big ¢-Jacobi, g-Charlier, etc.). For more details see [10,17,18].

3. Main results
First, we will present particular cases of diagonal sequences.

Let {P,},>0 and {Q,},>0 be sequences of monic polynomials, {v,},>0 and {w,},>0 their
corresponding dual sequences. Let ¢ be a monic polynomial of degree 7.



Definition 3.1. The sequence {P,},>0 is said to be compatible with ¢ if ¢v, # 0, n > 0.

Lemma 3.1. [14, Proposition 2.1] Let ¢ be as above. For any sequence {P,},>o compatible
with ¢, the following statements are equivalent:

(i) Thereis an integer o > 0 such that

n+t
PN = Y AyP(x), n>o, ®)
Ir>o: )Lr,r,; #0. ©)

(if) There are an integer o > 0 and a mapping from N into N:m +— u(m) satisfying

max{0,m —t} <pu(m)<m+o, m=0, (10)
Imo >0 with u(mg) =mo + o, (1)
such that
wu(m)
¢vm= Z )Lu,mwv, m2>t,
v=m—t
Ap(my,m # 0, m=0. 12)

Proposition 3.1. [14, Proposition 2.2] Assume {Q,,},,>0 is orthogonal and { P,,}, >0 is compatible
with ¢. Then the sequences {P,},>0 and {Q,},>0 fulfill the finite-type relations (8)—(9) if and
only if there are an integer o > 0 and a mapping from N into N:m — u(m) satisfying (10)
and (11). Moreover, there exist {k,, },» >0 and a sequence { A ,,ou)}m >0 Of monic polynomials with
deg( A m)) = n(m), m > 0, such that

v =k Apmywo, m =0, (13)
From these two results we get

Corollary 3.1. [15, Proposition 1.6] Let ¢ be as above. For sequences of monic orthogonal poly-
nomials (SMOP) {P,},>0 and {B,},>0 orthogonal with respect to linear functionals v and u,
respectively, the following statements are equivalent:

(i) There exists an integer o > 0 such that

n-+t
P Pu(s)= Y tuBM($), Auno#0, n>o.

Vv=n—o

(if) There exist a monic polynomial sequence {£2,,4¢ }»>0, With deg(£2,15) =n+o,n >0, and
non-zero constants k,, n > 0, such that

¢M£¢l] = ku$2n10v0, (14)

where {u}1},,>0 is the dual sequence of { B}, >o.

Thus we can prove



Proposition 3.2. Any diagonal sequence, { B, },>0, orthogonal with respect a linear functional
is necessarily semiclassical and u satisfies

AD(p(gx + ©) 2pso (D) = Y (), >0, (15)
where

Yn(s) = 20 12;(3“ =D G (5) — b ()P (5 — DBra (5), (16)
and

dn:[n+1]<”g3¢, n>0. 17)

(, B 1) n+on
Furthermore, the sequence {£2,,+5},>0 satisfies
240 (A 24 (5) — 26 () AP 2,116 (5)
=¢(s + D{dn 25 () Bus1(s + 1) — doS2u45 () Bi(s + 1)} (18)
Proof. Let {B,},>0 be a diagonal sequence in the sense of Definition 1.1 and assume the linear

functional u is normalized. Then from Lemma 3.1 there exist a sequence of monic polynomials
{$2145 }n>0 and non-zero constants {k,},>o such that

¢u,[11] =k S2p40U.
Then

kn AP (o) = AV (p(gHr — @) )ul + ¢ (g7 (6 — @) ADwfH
[n+1]

=AV(p(q ' —w))ul! — ———¢(¢7 x — @) Bus1(Du(s),
<M, Bn+]_>
(19)
as well as
1) — -1
AD($()p(s — 1) = (5 2O TV G =D (20)

Ax(s)

Combining (19) and (20), a straightforward calculation yields (15)—(17). Taking (15) for n =0
and cancelling out A® (¢ (gx + w)u), from the quasi-definite character of « we obtain (18). O

Corollary 3.2. [15, Corollary 2.3] If { B, },,>0 is a diagonal sequence given by (3), then we get
1
EISGQI-FZ. (21)

For a linear functional u, let (&, ¥) be the minimal admissible pair of polynomials with @
monic, deg® = ¢, and deg ¥ = p > 1, defined as above. To this pair we can associate the non-
negative integer o :=max(t — 2, p —1) > 0.

Now, given {B,},>0, a8 SMOP with respect to u, we get

n-+t
®()BM(s) = A uBy(s), n>max(t —1,0), (22)
v=0



where A, ,+; =1 and

-1

= _(B,du, AVB, )

Ay = ry Hu, @ () B (5) By (s))

[n+1]
-1
== [nr:_ 1]<Bv (q_l(x — a)))A(l)(Q)M) + AD (Bv (q_l(x — a))))@u, Bn+1>,
oOv<n+t.

Lemma 3.2. [7, Proposition 3.2] For any monic polynomial @, deg® = ¢, and any SMOP
{Bx}n>0 with respect to u, the following statements are equivalent:

(i) There exists a non-negative integer o such that

n+t
o BN )= Y doBuls), n>o. (23)
V=n—o
An—oc#0, nzo+1 (24)

(ii) There exists a polynomial ¥, deg¥ = p > 1, such that

AD(Pu) =wu, (25)

where the pair (@, ¥) is admissible.
(iii) There exist a non-negative integer o and a polynomial ¥, with deg¥ = p > 1, such that

n4+o(n)

POAVB (s — D)+ W(©)Ba(s =D = Y AuvByjals), n>t, (26)
v=n—t

5;n,n—t #0, n>t, (27)

where o =max(p — 1,t — 2), the pair (&, ¥) is admissible, and

_Jp—1 n=0,
o(n) = {a, n>1. (28)
\We can write
- , B2
An,uz—[v—i—l]M)w,n, O<v<n+o. (29)
u, Bv+1>

Proof. (i) = (ii), (iii). Assuming (i), from Lemma 3.1 and taking P, = B, and Q,, = BIM, we
get

w(m)
<15um = Z )w,mug)l], m > 0.
v=0

On the other hand, (24) implies u(m) =m + o, m > 1. Taking into account that

AV = —[m 4+ Nuyy1, m>0, (30)



we have

u(m)
AV (@up) ==Y dymlv+Luygs, m>0.
v=0

In accordance with the orthogonality of {B,},,>0, We get

AD(® Byu) = =Wy myr1u, m >0,
with
w(m)
Wumy1(9) = Y dumlv+11Buya(s), m>0.
v=0

Taking m =0 in (31), we have

AV (@u) = -0, 0y 1u.
Inserting (33) in (31) and because u is quasi-definite, we get

®($)AD By (s — 1) = W) 11() Bu (s — 1) = =Pugmy41(s), m >0.
The consideration of the degrees in both-hand sides leads to

o Ift — 1> u(0)+ 1, which implies¢ > 3, thent =0 + 2, u(0) < o.
o Ifr —1< () +1,then u(0) =0,1<0o+2.

(1)

(32)

(33)

Obviously, the pair (@, —¥,0)+1) is admissible and putting p = ©(0) + 1, we have o =

max(p — 1,¢t — 2). So (26) and (27) are valid from (29).
Thus, we have proved that (i) = (ii) and (i) = (iii).
(if) = (iii). Consider m > 0. Thus
m-+o(m)+1
PAYBu(s — D)+ W (S)Bu(s =D = Y 2, By(s).
v=0
We successively derive from this

(. (@()AD By (s = 1) + W () By(s — 1)) Bu) =1, (. B2), 0O<pu<m+o+1.

A straightforward calculation yields

(u, (@YADY B,y (s — 1) + W (5) B (s — 1)) Bu) = —(u, @(5) B () AV B, ().
Then

~(ut, @ () B () APV By (5)) = A, (u. B2).

Consequently, A, ,

~(t, @(5) Pu($)AWD Py 1(5)) = —[m — t + 1, BE) = Ay yatt BE_,11)-
Therefore, form > ¢,

m+o (m)

DAV Bu(s =D+ W) Buls =D =D My 1Bu1(s), My iyq #0.

v=m-—t

10

(34

=0,0<pu<m—t, A, g=0,m=>0. Moreover, for u =m —t+1,m>1t,



(iii) = (i). From (26), we get

m-+o (m)

> mbnvit =g, @($)AD By (s — 1) + ¥ () By (s — 1)
v=0

= —(AD(Puy) — Wiy, Buls — 1)).
Forn=0, (Wu — AD(®u), B, (s — 1)) =0, m > 0. Therefore

AV (Pu)=wu. (35)
Moreover, using (34) and the orthogonality of {B,},,>0, we get
(tn, @()AY By (s — 1) + W (5) By (s — 1)) = —r, Hu, @(5) B (s) AL B,y (5)).
Furthermore, making n — n + 1, we obtain
(@AYB,1)u, By)=0, m>n+t+1, n>0,
{((¢A<1>Bn+1)u, Butt)= —Tut1hntrn 70, n>0.

According to Lemma 2.1,

n+t
(@A(l)Bn+l)u = — Z rnxv,nuva n 2 0.

V=n—o

The orthogonality of {B,,},>0 leads to

I w [ fu Br%+1>
(@AVB )u=— ) hon——p7 =By Ju, n>0.

From (35) and taking into account « is quasi-definite, we finally obtain (23)—(24) in accordance
with (29). O

In an analog way we can prove the following result.

Lemma 3.3. [12, Lemma 3.1] For any monic polynomial @, deg ® = ¢, and any SMOP {B,,},>0
with respect to u, the following statements are equivalent:

(i) There exists a non-negative integer o such that the polynomials B,, satisfy

n+tr—1
AV @ —DBy(s))= > uBu(s), n>o+1, (36)
v=n—0-1
An—o—1#0, nzt+o+2 (37)

(ii) There exists a polynomial ¥, deg¥ = p > 1, such that
AV (Pu)=wu, (39)
where the pair (@, ¥) is admissible.

11



(iif) There exist a non-negative integer o and a polynomial ¥, deg¥ = p > 1, such that

D()AVB, (s — 1) + W (s)By(s — 1) — By(s) AP D (s — 1)

n+o(n)+1
= Y daaBus), n>t, (39)
v=n—t+1
Xn,n—t—i—l #0, n>t, (40)
where o =max(p — 1, ¢ — 2) and the pair (&, ¥) is admissible. We can write
. . B2
)"n\):_ukvm O0<v<n+om+1, n=0. (41)
' (u, B2)

3.1. First characterization of g-semiclassical polynomials

Theorem 3.1. For a monic polynomial @, deg @ =, and any SMOP {B, },,»0 With respect to u,
the following statements are equivalent:

(i) There exist a non-negative integer o, an integer p > 1, and an integer » > o + ¢ + 1, with
o =max(t — 2, p — 1), such that

n+t n+t
D B =Y v, BMGs), n=max(o, ), (42)
v=n—o v=n—t

where o+t = Upppr =1, n 2 Max(o, ), ¢ r—gVrr— #0,
(AY(@u),B,)=0, p+i<n<o+2+1,  (AD(@u), B,)#0,

and if p =7 — 1, then limg41(u, B2) " (u, DAY B,) £ —m, m € N*.
(ii) There exists a polynomial ¥, deg¥ = p > 1, such that

AY(@u) =wu,
and the pair (&, ¥) is admissible.

Proof. (i) = (ii). Consider the SMP {£2,},,>0 defined by

n—+t

nti+1(s) = V_Zn:_t %vn,uBqul(S), nzo+t+1,
2,06)=B,(s), 0<n<o+2t+1.
From (42),
n+t
AV (2ppa@)=+1+11 Y anyBuls), n>o+t+1. (43)
v=n—o

Since u is quasi-definite, then

(A(l)(q)u), pyi1) = —(u, ¢A(1)Qn+t+1>
n+t
=—[n+t+1] > any(u.®B,)=0, n>o+r+1

V=n—o

12



Therefore, (A (du), 22,) =0, n > o + 2t +1, and by hypothesis (AD (du), £2,) =0, p+1 <
n<o +2t+1,then (AD(@u), £2,) =0forn > p+1,and (AD(du), £2,,) # 0. Hence, if we
denote {w,},>0 the dual sequence of {£2,},>0 and apply Lemma 2.1, then

p
AV (@u) =Y (AP (@u), B,)w,. (44)
v=1

On the other hand, if wetake 7 =2¢,6 =o +1,and 7 =r + ¢ + 1, then

v=n—f

2,() =By(s), 0<n<é+1,
where
- [n] R

Upp = ﬁvn_,_l,v_l, n—t<v<n, n=2é6+7f+1,
vV
5 [r+1+1]
P e =+ 1]
From Lemma 2.2 and (5), it follows that wy = ux = (u, B?) 1By, 0 <k < &
(44) becomes

Vot 0, Fo+2t+2=6+1+1.

o +1. So, relation

AV (Pu)=wu,

where
P
w(s)=— (1, B2 Hu, #AYB,)B, (s,
v=1
with deg ¥ = p, as well as we have (u, @AM B,,) # 0 and, as a consequence, the pair (&, ¥) is
admissible with associated integer o .
(if) = (i). From Lemma 3.3(i) and making n — n + 1 we have

n—+t
AV(@(s —DBuy1(9)) = Y Any1uBu(s), n>o. (45)

V=n—o

where Ayy1 = +t+1l,n>0,and ryy1 -6 #0,n 2t +0 + 1.
On the other hand, the orthogonality of {B,},>0 yields

n+tt
B - DB = 3 (u, d(s — 1>Bn;1(s)Bv+1(s)> Boi), n3i-1l
v=n—t (I/t, Bv+l>
Hence,
n+t
A (@65 — DBsa(s) = Z v+ 1){u, (s — 1)ZBn+1(s)Bu+1(s)) BY(s),
v=n—t <M’ Bv—i—l>
nzt. (46)

From (45) and (46), we obtain (42) with

13



_ An—&-l,v
[n4+t+1]
[v+ 1](u, @(s — 1) By11(s) Byt1(s))

Upp = , n—t<v<n+t,
" [n+1+1)u, B2,,) =

Unn—oVnn—t7#0, nzo+t+1l

n—o<v<n+t,

Uy

Then,

0 ptl<n<o+2r+1,

@ _ (@5) _ ’
(AT (@), By} = —{u, @A B”>_!ﬁ[A<l>]PW(O)<u,Bf,>, n=p=deg¥,

and if p =1 — 1, the g-admissibility of (&, &) yields limy1(u, B3) " u, AP B,) # —m,
meN*. 0O

In the case of g-classical linear functionals, we get the following result

Corollary 3.3. Let {B,},>0 be a SMOP with respect to « and a monic polynomial &, with
deg ® =t < 2, such that (u, @) # 0, then the following statements are equivalent:

(i) The linear functional u is g-classical, i.e., there exists a polynomial ¥ with deg¥ =1 such
that AV (Pu) = wu.
(i) Y a,,By(s) = 3" v, B (s), n > 1. Furthermore, there exists an integer r >

t + 1 such that vy, ,—; # 0, and if # = 2 then limy 41 (u, B3) ™Y (u, @) # —m, m € N*.

3.2. Second characterization of ¢g-semiclassical polynomials

From the previous characterization, we can not recover the second structure relation of
g-classical orthogonal polynomials (2). Our goal is to establish the characterization that allows
us to deduce such a case.

First, we have the following result.

Proposition 3.3. For any monic polynomial @, with deg® = ¢, and any SMOP {B,},,>0 with
respect to u, the following statements are equivalent:

(i) There exists a polynomial ¥, deg¥ = p > 1, such that

AV (Pu)=wu, (47)
where the pair (@, ¥) is admissible.
(if) There exist a non-negative integer o and a polynomial ¥, with deg¥ = p > 1, such that

& (5)[AD B, (s — 1) + AD (W (5)B, (s — 1) — B, () [ AV (s — 1)

n+o(n)
= Y PauBu(s). n>o, (48)

V=n—o

14



where 9, ,_, #Qecithern > o +t+1lorn=oc+tand p>tr—1,0 =max(t —2, p —1),
and the pair (@, ¥) is admissible. We can write

_ (u,BY)
" (u, B2)

Yon, 0<v<n+o@), n=0. (49)

Proof. We have

®($)[AD B (s — 1) + AD (W (5)B, (s — 1)) — Bu()[ AV (s — 1)
n+o(n)
= Z 29n,va(s)a n =0, (50)
v=0

where for all integers 0 < v<n+o(n),andn >0,

(1, B9, = (u, (@ () [ AP Bus — 1) + AD (W (5)B,(s — 1))
— B,)[AV @ (s —1)B,).

Taking into account (5) and (48), a straightforward calculation leads to

(1, B9 o = (u, (@ ()[AD]By(s — 1) + AD (W (5)B, (s — 1))
— B,()[AYT (s — 1)) B,).
Therefore, inserting (50)

v4o(v)
(w, B2y = vilu. B2)Sin=0vnlu. BE).
i=0

In particular, forO<v<n—o —1,thenn>v+o+1>v+o(v)+ 1 Thus, we deduce
Uy, =0.Hence 9, , =0, for0<v<n—o -1
Forv=n—o andn > o +r, we obtain

(u, B2 )9nn—0o =, AV (@($)AVB,_5(s = 1) + ¥ (s)By_o (s — 1))

~(u, AP (By_s (5)AV & (s — 1)) B,,)

n+1
= Jn-onfu, B,ADB,)

nu=0
=[n+ 1]5\n7<r,n+l<u, B,%)
But, from (40), we get ¥, ,—s # 0, eithern 2o +t+1,orn=0+rand p >t —1. Asa
consequence,
®($)[ AP B (s — 1) + AP (W (5)B, (s — 1) — Bu(s)[ AP (s — 1)

n+o(n)
= D PwBi). n>o.

vV=n—o

15



(it) = (i). From (48)
(AD(@(s = DADU) + (AP (s — 1) =¥ () AVu, By(s —1))=0, n>o+1,
(AD(@(s = DADU) + (AP (s — 1)) — ¥ (5)) AV u, By (s — 1)) = (u, 1) 90,
n<o.
According to Lemma 2.1

AV (s — DAY u) + (AP D (s — 1)) — ¥ (5))ADu

o (u 1>19 0 o (0)
=Y (’482’;’3,1(w —u)=Y_ P0nBy(V —u).
n=0 u, By n=0

Finally, a direct calculation yields
AV AV (@u) —wu) =0,
then AD (du) — wu =0. )
y Moreover, since o(n) =0 and ¥, 46 = [n + 0 + LAy nto+1 # 0, for n >t + 1, then

Annto+1 7 0, n >t + 1. The g-admissibility of the pair (&, ¥) follows taking into account
the value of A5 (n)+1. O

Our main result is the next one.

Theorem 3.2. For any monic polynomial ¢, deg® = ¢, and any SMOP {B,},>0 with respect
to u, the following statements are equivalent:

(i) There exist a non-negative integer o, an integer p > 1, and an integer » > o + ¢ + 1, with
o =max(t — 2, p — 1), such that

n+o n+o

Y EB) = Y B, (51)

v=n—o v=n—t
where &, o = Snn+o =1, n =max(o,t +1), & -6 6rr—r #0,
(AD(@u), B,)=0, p+1<m<20+1+1,
(AD(@u), By)#0,

and if p =1 — 1, then limg1(u, B3) " (u, DAV B,) 5 m, m € N* (g-admissibility condi-
tion).
(if) There exists a polynomial ¥, deg¥ = p > 1, such that
AV (Du) =wu, (52)
where the pair (@, ¥) is admissible.

Proof. (i) = (ii). Let us consider the SMP {Z,},,>0 given by

n+o

[n+ 0 +1]
= = _ B , > t+1,
nto+1(X) U:;_, D 1] SnvByyi(x), nzo+t+

E,(x)=B,(x), 0<n<20+r+1.
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A direct calculation yields

n+o
APE, i) =ln+0o+1] Y &.uBi(s). n>o+t+1

V=n—o
Taking into account the linear functional u is quasi-definite, we get
(AP (@u), Byio41)=—(u, AV By 11())
n+o

=—[n+o+1] Y &, u.®B)=0, n>o+t+1

V=n—o

From the assumption and Lemma 2.1, if we denote {w, },>0 the dual sequence of {&,,},>0, then
we get

p
AV (@u) =Y (AP (Du), B, )uw. (53)
v=0

Takingf =0 +t,6 =0 +1,and 7 =r + o + 1, the polynomials Z,, can be rewritten as

n
En(x)= ) GuuBu(x), n26+i+1

v=n—f

Ey(x) =B, (x), 0<n<&+f,

where
- [n] N A
S‘n,v=ﬁ§n7(rfl,vfly n—t<v<n, nzo+t+1,
v
- [r+o0+1]

;,;_Fmg,,r,,;eo, F>20+14+226+i+1

From Lemma 2.2, wy = ug = (u, B2 Byu, 0 <k <& = o + 1. So, (53) becomes

P r(AD(du), B,)
AD (o) = Z<<—’”Bu>u _ v
—~\  (u B}

Since (AM (du), B,) #0, then deg ¥ = p.
From the assumption, if p =¢ — 1, then

o1 . (AD@w), B . ,oADB
i (Ao <l AV@OED o 08V
g1 [p]! g1 (u, Bf) qtl  (u, Bj)

Hence, the pair (@, ¥) is admissible with associated integer o .
(ii) = (i). From Lemma 3.2(iii), there exists a polynomial ¥, deg¥ = p > 1, such that

@(s—1)AYB, (s — 1)+ W(s)Bu(s — 1) — By(s) AP @ (s — 1)
n+o(n)+1
= Z Xn,va(S)’ nzt, (54)
v=n—t+1

where Xn,n_ﬂrl #0,n>1t, 0 =max(t — 2, p — 1), and the pair (&, ¥) is admissible.

17



Taking ¢-differences in both-hand sides of (54), we get

& (5)[AD]B(s — 1) + AD (W (5)B, (s — 1)) — Bu()[ APV (s — 1)
n+o(n)

= Z é-n,vB,[;l](S)v nzt, (55)

v=n—t

where ¢, =[v + 112, 141, 0 < v <n+o(n), n > 1.
From (48) and (55), we obtain (51) where

Vv

gn,vz , n—o<v<n+o,

29n,n+0

v+ 114
S‘n"):[—i_]in’w, n_tgvgn_i_t’

ﬁn,n+a
[n—1t+1] -
Enn—o Snn—t = B E— Unn—ornn—1+1#0, n>zo+t+1
ﬁn,n+a
Finally,
0, pH+1<n<20 +1t+1,

(AD(@u), B,) = (u, WB,) = (.52

[’p]f [ADIPE(0)£0, n=p=deg¥.

From the admissibility of the pair (&, ), if p =1 — 1, then (u, B2)"*(u, 2AVB,) # m,
meN* O

4. Theuniform latticex(s) =s

As a direct consequence from the operator L, ., and the g-linear lattice x(s), we can recover
the uniform lattice setting x(s) = (¢* — 1)/(g — 1) and taking limit ¢ — 1. For instance, for
A-classical orthogonal polynomials the structure relations (1) and (2) have been studied in [5].

Theorem 4.1 (First characterization of discrete semiclassical polynomials). For a monic poly-
nomial @, deg® = ¢, and any SMOP {B,},>0 with respect to u, the following statements are
equivalent:

(i) There exist a non-negative integer o, an integer p > 1, and an integer r > o + ¢ + 1, with
o =max(t — 2, p — 1), such that

n-+t n-+t
Z Oln,vBu(S) = Z Un,vB,[;l](S)a n = max(o, t), (56)
v=n—0c v=n—t

where BN (s) := (n+1) "L AB41(5), tpnar = Vpngs = 1,0 = Max(o, 1), . p—o Vr.p—s #0,
(A(@u),B,)=0, p+1<n<o+2t+1,  (A(Pu),B,)#0,
and if p =1 — 1, then (u, B2)"Y(u, ®AB,) # —m, m € N*.
(if) There exists a polynomial ¥, deg¥ = p > 1, such that
A(Pu) =Yu,
and the pair (@, ¥) is admissible.
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Theorem 4.2 (Second characterization of discrete semiclassical polynomials). For any monic
polynomial @, deg® = ¢, and any SMOP {B,},>0 with respect to u, the following statements
are equivalent:

(i) There exist a non-negative integer o, an integer p > 1, and an integer r > o + ¢ + 1, with
o =max(t — 2, p — 1), such that

n+o n+o
Z %'n,va(S) = Z S‘n,vBl[Jl](S)a (57)
v=n—o v=n—t

where En,n+a = Cn,n+o = 1,n > max(o,t+1), Er,r—o Sror—t #0,
<A(q§u),Bm)=0, p+1l<m<20+1t+1,
(A@u), By) #0,
and if p =1 — 1, then (u, B3)~*(u, ® AB,) # m, m € N* (admissibility condition).
(if) There exists a polynomial ¥, deg¥ = p > 1, such that
A(@u) =Yu, (58)

where the pair (@, ¥) is admissible.

The proofs are analogous to the original ones setting w = 1, and taking limit ¢ 1 1. Therefore
L,1=A® becomes A and [1n] becomes n.

Remark 4.1. A-semiclassical linear functionals have been studied in [11].
5. Examples
5.1. First example

Let {Q,}n>0 be a SMOP that satisfies the following relation

(x(s +1) + v4.0) 0u(8) =g 0111 (5) + pu () QI (s), (59)
where the lattice, x(s), is g-linear, i.e., x(s + 1) — gx(s) = w,

qn+1 [n+ 1]

¢ Vit
v _ Ynt2Vn4l
" g2l

and ¢ is a constant, being {8, },>0 and {y,,},>0 the coefficients of the TTRR
X0n=0nt1+B10n+0n-1, n=1l

Then, from the above TTRR and Theorem 3.1, we get {Q,,},>0 is a sequence of g-semiclassical
orthogonal polynomials with respect to the linear functional v, solution of the Pearson equation

Pn = , n=1, po=0,

Q:—i-pn_qﬂn_w’ n>05

AWy = Yo, (60)
of class o = 1, with @(x) =1 and deg ¥ = 2.

19



Then, it also satisfies the following relation

O (s) = 0n(5) + Ann10n-1(s), (61)
where A, 1= q’f,"[;ﬂ] ¢

In fact, a straightforward calculation gives ¥ (x) = —%Qz(x) — % 01(x).

Lemma 5.1. Let {Q,},>0 be a SMOP with respect to the linear functional v satisfying (60).
Then the sequence {Q,},>0 is not diagonal.

Proof. Assume {Q,}.>0 is diagonal with respect to ¢, with deg¢ = ¢, and index o. Then from
Corollary 3.2, /2 < o < t + 2 and we have the following diagonal relation:

n—+t

¢ On() =Y 0p0M(s), Ouno#0, n>0.

V=n—o

If we denote by {v,},>0 and {v,[,ll}n>0 the dual sequences of {Q,},>0 and {Q,[,l]}@o, respec-
tively, then by Proposition 3.1 the last relation is equivalent to

qbv,[ll] =k, 2400, n=0, (62)

where k, = (v, 02, ) " 6,45, and

n+o 2
Oon (U, Qrig)
210 (x) = ————>—0v(x), n=0.
* ; en—i-a,n <v7 Q12;> '

Itis clear that v satisfies an infinite number of relations as (62). Indeed, by multiplying both-hand
sides of (62) by a monic polynomial, we get another diagonal relation.

For this reason, we will assume ¢ = deg ¢ is the minimum non-negative integer such that v
satisfies diagonal relations as (62), i.e., Eq. (62) cannot be simplified.

Notice that ¢+ > 1. Indeed, if we suppose that + = 0, then 0 < o < 2 and we recover the first
structure relation characterizing g-classical sequences. This contradicts the fact that the sequence
{Qn}n>0 1s g-semiclassical of class one.

Consequently, since ¢ > 1 then o > 1. Taking g-differences in both-hand sides of (62) and
using (5), from (60) and A® v = —[1n + 1]v,,1, we obtain

vl = kv, n >0, (63)
where

o) =[11"1AV g (s),

Yn($) = 117 (2ngo (s + DW () + AV 2,45 (5) + dnp(s + 1) Qpsa(s)), n >0,

dy=n+1([v, Q2,1 )ka) ", n>0.

Notice that the polynomial ¢ is monic with deg¢ =1 — 1.

Moreover, taking into account « is a quasi-definite linear functional, combining (62) and (63)
we obtain ¢ (x) 2,40 (x) = ¢ (x)¥, (x), and analyzing the highest degree of this relation, we get
Y, is @ monic polynomial with deg/,, =n + o — 1. But, this contradicts the fact that 7 = deg ¢
is the minimum non-negative integer such that v satisfies diagonal relations as (62). O
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5.2. The g-Freud type polynomials

Let {P,}»>0 be a SMOP with respect to a linear functional « such that (u)o = (#, 1) =1 and
the following relation

AV P, (s) = [1Py_1(5) + an Pa_3(s), n>2, (64)

holds, where P_1 =0, Pp=1, and P1(x) = x, being x = x(s) =¢*, i.e., o =0.
We know that this family satisfies a TTRR, i.e., there exist two sequences of complex numbers
{b,}, and {c, }n, ¢ # 0, such that

xP,=Py1+by Py +cyPro1, n>1l

Furthermore, from a direct calculation we get a, = K(¢)qg "¢ cn—1¢cn—2, n = 2. In fact, the
parameters ¢, satisfy the non-linear recurrence relation

qlnlen—1+ K(@)g " encntcn—a =[n — Uen + K(@)g " Lenprcnen-a, n=1,

with ¢g =0, c; = —P2(0) #0, and lim,41 K (¢q) = 4.

Moreover, from Proposition 3.2 we deduce that @ = 1 and thus o = 2. As a consequence,
¥ is a polynomial of degree 3. In other words, u is a g-semiclassical linear functional of class 2,
i.e., u satisfies the following distributional equation:

AVy=wu, degw =3. (65)
Lemma5.2. ¥ (x) = —K(q)g 3 P3(x) — c] L PL(x).
So, (65) is the g-analog of the Pearson equation for the Freud case.
Proof. From our hypothesis ¥ is a polynomial of degree 3, so ¥ (x) = egPo + e1P1 +

e2 P> + e3P3. Then, taking into account d? = c,d? ;, n > 1, and the value of a,, n > 3, we
get

eod = eofu, PE) = (Wu, Po) = —{u, AV Po) =0,

e1d? = ex(u, PY) = (Wu, P1) = —(u, AV P )= —1

e2dl = ealu, P2) = (Wu, Py) = —(u, AV P) & _(u, [21P1) =0,

esd? = esfu, P2 = (Wi, P3) = —(u, AV P)) ) (. [31P, + asP)) = —as. O

From Theorem 3.2, we can write the second structure relation as follows

Bn+2 + En,n—i—an-ﬁ—l + En,n Bn + En,n—an—l + En,n—ZBn—Z
1 1
= B,[H]_Z + gn,n+lB,£_i]_1 + Gan B;El]' (66)
Using (64) we get
sn,n+l = Gn,n+1, ";:n,n =[n+ 3]7161"4,-3 + Snons
sn,n—l =[n+ 2]71§n,11+1an+2a ‘i:n,n—Z =[n+ 1]71§n,nan+l-
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Moreover, combining both structure relations if P,(x) = Z';:o )L,,,jx"‘-", then A, 2x4+1 = 0 for
non-negative integers n, k such that 0 <k < (n — 1)/2, and -
[nlcn—1An—22k + anin—32k

[n — 2k —2] —[n] ’
In fact, with these values, we obtain ¢, = A,2 — Apt1.2, by = Ap1 — Apy1,1 =0, and &, 11 =
&nn—1= Gn.n+1 =0, n > 0. Hence, we can rewrite (66) as

Ano=1, An2k+2 = 1<k<n/2.

~ 1 ~
(x2 + Un,0) By = Br[l_az + 5. BIY, (67)
where

N anys @' Hn+1] and 3 q"n+1]
Up0 = — Cp+1 — C, on=——".
" n+3 " K@enr " "7 K(@enn

Lemma 5.3. The moments of the linear functional «, {(x),},>0, satisfy the following relation

1 3
1+ 1 = K (@)q3Wnsa + (— - M)(umz, n>0, (68)
aa ql+gq)

where (1)p = 1.

Therefore, taking into account that («)1 = (u)3 = 0, we can deduce u« is a symmetric linear
functional, i.e., (u)2pt1 = (u, x" 1) =0,n > 0.
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