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1 Introduction

Gaussian quadrature formulas for measures supported on the real line
constitute a classical subject that has been widely studied. It is well-known
that Gaussian quadrature formulas allow to compute in an exact way the
integrals of polynomials up to a certain degree depending on the nodes and
the quadrature (Christoffel numbers) coefficients. Indeed, if dμ is a positive
measure supported on the real line and {Pn(x)}n∈N is the monic orthogo-
nal polynomial sequence with respect to dμ, then the quadrature formula
In( f ) = ∑n

i=1 λ j f (x j), where {x j}n
j=1 are the zeros of Pn(x), is such that In(P) =

∫
supp(μ)

P(x)dμ(x) for any polynomial P of degree less than or equal to 2n − 1.

See for instance the monograph [4].
In the case of measures supported on the unit circle the analogue formulas

are the so-called Szegő quadrature formulas. Now the nodes are the zeros of
the para-orthogonal polynomials. These zeros have modulus 1, and the max-
imal domain of exactness in a space of Laurent polynomials depends on the
nodes and the quadrature coefficients. If dμ is a positive measure on the unit
circle T, an n-point Szegő quadrature formula has the following form In( f ) =∑n

j=1 A j f (z j), where the nodes belong to T, that is, |zi| = 1, ∀i = 1, · · · , n,
and zi �= z j for i �= j. If {�n(z)}n∈N is the monic orthogonal polynomial se-
quence with respect to dμ and the nodes are the zeros of the para-orthogonal
polynomials �n(z) + τ�∗

n(z), with |τ | = 1, then In(P) = ∫
T

P(z)dμ(z) for P
belonging to the space of Laurent polynomials �−(n−1),n−1. See for instance
the following references: [1, 6, 7, 9], and [5]. Hence, in both situations,
real line and unit circle, the construction of quadrature formulas needs the
knowledge of the zeros of orthogonal or para-orthogonal polynomials and for
increasing the dimension of the spaces of exactness new computations need to
be done.

An alternative way of computing integrals with respect to measures sup-
ported on the unit circle is based on the zeros of the orthogonal polynomials,
(see for example [2]). This way is particularly interesting when the measures
of integration are of Bernstein–Szegő type. We will deal with such measures
along this paper. The class of Bernstein–Szegő measures is an important class
of measures on the unit circle such that the corresponding monic orthogonal
polynomial sequences follow in a simple way. In this paper we construct a
new quadrature formula for this type of measures which uses as nodes the
zeros of an orthogonal polynomial of a fixed degree and which is exact for all
polynomials. The quadrature formulas with more than very few nodes may be
difficult to use because the weights are difficult to compute accurately, and the
weights may be of large magnitude and therefore amplify errors in the function
values. In the Gaussian numerical integration theory, a quadrature formula is
said to be optimal if it is exact in a linear subspace of polynomials of degree
as large as possible and it is asymptotically exact. In this sense the situation
described for Bernstein–Szegő measures is better than the standard approach.

Moreover, since we can approach measures supported on T by Bernstein–
Szegő measures, our method is a powerful tool for computing integrals for
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very general measures, for example those such that the absolutely continuous
part of the measure is the inverse of an analytic function with a fast rate of
convergence on T.

The paper is organized as follows: In Section 2 we study quadrature formulas
for Bernstein–Szegő measures. Indeed we prove that for each Bernstein–Szegő
measure there exists a quadrature formula such that it is exact for all poly-
nomials. The novelty is that we use the zeros of the orthogonal polynomials
as nodes and we obtain exactness. Taking into account that the Bernstein–
Szegő measures are very suitable for approximating an important class of
measures we use their properties for studying new quadrature formulas. Thus,
in Section 3, we present quadrature formulas for this new class of measures
and we prove that the error can be controlled with a well-bounded formula.
Finally, in Section 4 we show some numerical examples in order to point out
the strength of these quadrature formulas.

2 Exact quadrature formulas for Bernstein–Szegő measures

The Bernstein–Szegő measures play a very important role in the theory
of orthogonal polynomials on the unit circle T = {z ∈ C : |z| = 1}. They are
absolutely continuous measures with respect to the Lebesgue normalized
measure:

dμ(θ) = dθ

2π |Q(eiθ )|2 , (1)

where Q(z) is an algebraic polynomial with zeros outside the closed unit disk
D = {z : |z| ≤ 1}, i.e., they are rational modifications of the Lebesgue measure.
For simplicity, in the sequel and throughout all of the paper, we will denote

by
|dz|
2π

the Lebesgue normalized measure on T. In this sense the previous

measure is written as dμ(z) = |dz|
2π |Q(z)|2 for z ∈ T.

Several results concerning these measures and the corresponding sequences
of orthogonal polynomials are well-known, (see [3] and [11]). Among them we
point out:

(1) If the polynomial Q(z) has degree m then the sequence of monic orthog-
onal polynomials with respect to the measure (1), {�n(z)}n∈N, is given by,
(see [11]),

�n(z) = 1

Q(0)
zn−m Q∗(z), ∀n ≥ m.

We recall that the ∗ operator is defined by P∗(z) = zn P( 1
z ), assuming the

degree of P(z) is n, (see [3]).
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Since qm(z) = 1

Q(0)
Q∗(z) is a monic polynomial, with zeros inside the

unit disk D, we can write

�n(z) = zn−mqm(z), ∀n ≥ m.

Notice that the zeros of qm(z) can be either simple or multiple.
(2) The Bernstein–Szegő measures are very suitable in order to approximate

another type of measures. An important result concerning this fact is the
following (see [10]).
Let dτ be a probability measure supported on ∂D = T with orthonormal
polynomial sequence {χn}n∈N. Then for each n we get:

1.
∫ 2π

0

dθ

2π |χn(eiθ )|2 = 1,

2.

dτn(θ) = dθ

2π |χn(eiθ )|2 → dτ weakly when n → ∞.

In order to prove the main result concerning the existence of this new
quadrature formula for Bernstein–Szegő measures, next we introduce some
notation.

If dμ is a Bernstein–Szegő measure given by (1) we denote by {�n}n∈N

the monic orthogonal polynomial sequence and by {ϕn}n∈N the sequence of

orthonormal polynomials. If �n(z) = zn−m
s∏

i=1

(z − zi)
νi , for n ≥ m, with zi �= z j

for i �= j and
s∑

i=1

νi = m we also denote by Vm the following Vandermonde

matrix where the evaluations of the polynomials ϕ0(z), · · · , ϕn(z) and its
derivatives in the zeros z1, · · · , zs appear, i.e.

Vm =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ϕ0(z1) ϕ1(z1) · · · ϕm−1(z1)

· · · · · · · · · · · ·
ϕ

(ν1−1)
0 (z1) ϕ

(ν1−1)
1 (z1) · · · ϕ

(ν1−1)
m−1 (z1)

· · · · · · · · · · · ·
ϕ0(zs) ϕ1(zs) · · · ϕm−1(zs)

· · · · · · · · · · · ·
ϕ

(νs−1)
0 (zs) ϕ

(νs−1)
1 (zs) · · · ϕ

(νs−1)
m−1 (zs)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

Theorem 2.1 Let dμ be a Bernstein–Szegő measure (1) such that its monic

orthogonal polynomial sequence is �n(z) = zn−m
s∏

i=1

(z − zi)
νi , for n ≥ m, with

zi �= z j for i �= j and
s∑

i=1

νi = m. Then there exists a quadrature formula with

nodes {z1, · · · , zs} which uses the values of the function and its derivatives
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in these nodes and such that it exactly integrates functions in the space of
polynomials P, that is,

∫

T

P(z)dμ(z) =
s∑

i=1

νi−1∑

j=0

λi, j P( j)(zi), for every P(z) ∈ P. (3)

The coefficients {λi, j}i=1,··· ,s; j=0,··· ,νi−1 are the entries of the first row of the inverse
of the matrix Vm defined by (2). Moreover, λi,νi−1 �= 0 for i = 1, · · · , s.

Proof Let P be a polynomial in P. If the degree of P is M, we can write
P(z) = ∑M

k=0 akϕk(z), where we denote by {ϕn}n∈N the sequence of orthonor-
mal polynomials with respect to the measure dμ. Thus we get

∫

T

P(z)dμ(z) =
∫

T

(
M∑

k=0

akϕk(z)

)

dμ(z) =
M∑

k=0

ak

∫

T

ϕk(z)dμ(z) = a0.

On the other hand, if we compute the values of P(z) and its derivatives in the
nodes zi, then we have for 1 ≤ i ≤ s and 0 ≤ j ≤ νi − 1

P( j)(zi) =
M∑

k=0

akϕ
( j)
k (zi) =

m−1∑

k=0

akϕ
( j)
k (zi). (4)

Thus we have a linear system of m equations and m unknowns a0, · · · , am−1,
which should be written in matrix form as follows

Vm Am = Pm,

where Vm was introduced in (2),

Am = (a0, · · · , aν1−1, · · · , am−1)
T

and

Pm = (
P(z1), · · · , P(ν1−1)(z1), · · · , P(νs−1)(zs)

)T
.

Since the matrix of coefficients is non-singular, the system has a unique
solution. If we denote by (λ1,0, · · · , λ1,ν1−1, · · · , λs,0, · · · , λs,νs−1) the first row
of the inverse of Vm we get

a0 =
s∑

i=1

νi−1∑

j=0

λi, j P( j)(zi).

Therefore our quadrature formula is exact in P because
∫

T

P(z)dμ(z) =
s∑

i=1

νi−1∑

j=0

λi, j P( j)(zi).

In order to prove the property of the quadrature coefficients, let assume that
λi,νi−1 = 0 for some i. For simplicity, take i = 1, that is, λ1,ν1−1 = 0. Then the
quadrature formula becomes
∫

T

P(z)dμ(z) =
ν1−2∑

j=0

λ1, j P( j)(z1) +
s∑

i=2

νi−1∑

j=0

λi, j P( j)(zi), for every P(z) ∈ P.
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Now we consider the polynomial qm−1(z)=(z−z1)
ν1−1(z−z2)

ν2 · · · (z−zs)
νs ∈

Pm−1 and we compute
∫

T
zmqm−1(z)zkdμ(z) = ∫

T
zm−kqm−1(z)dμ(z) for k =

0, · · · , m. Since the quadrature formula is exact we deduce

∫

T

zm−kqm−1(z)dμ(z) =
ν1−2∑

j=0

λ1, j(zm−kqm−1(z))( j)(z1)

+
s∑

i=2

νi−1∑

j=0

λi, j(zm−kqm−1(z))( j)(zi) = 0.

Thus zmqm−1(z) is orthogonal to zk for k = 0, · · · , m and therefore it can be
written like

zmqm−1(z) =
2m−1∑

k=m

ak�k(z) = �m(z)R(z)

with R(z) ∈ Pm−1.
Hence zm = (z − z1)R(z) and since z1 �= 0, (notice that �m(z) = 1

Q(0)
Q∗(z)),

we get a contradiction. Therefore λ1,ν1−1 �= 0. 
�

Some remarks concerning the preceding theorem can be pointed out:

1. The particular case corresponding to one of the simplest Bernstein–Szegő
measures, that is, when m = 1 is mentioned in [10], p. 129.

2. Although the preceding quadrature is not always interpolatory it is exact
in the whole space of polynomials.

3. The quadrature coefficients and the nodes are determined by the coeffi-
cients of the polynomial ϕm(z).

4. In the particular case when the nodes are simple, the quadrature formula
is exact in the space Pm−1 of polynomials of degree less than or equal to
m − 1 and, therefore, it is an interpolatory quadrature which is exact in the
linear space P of polynomials. Moreover, in this situation the coefficients
λi �= 0 for i = 1, · · · , m.

3 Extension of the quadrature formulas to more general measures

Taking into account that the trigonometric polynomials are dense in the space
of periodic continuous functions on [0, 2π ], we are going to use the Bernstein–
Szegő measures to approximate an important class of measures.

Lemma 3.1 Let dν be a measure supported on T, absolutely continuous with
respect to the Lebesgue normalized measure, with weight function w, that is,
dν(z) = 1

2π
w(z)|dz|.
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If we assume that w is continuous, then given ε > 0 there exists a Bernstein–
Szegő measure dμ(z) = |dz|

2π |Q(z)|2 such that
∣
∣
∣
∣w(z) − 1

|Q(z)|2
∣
∣
∣
∣ < ε, for every z ∈ T.

Proof It is a consequence of the density of the trigonometric polynomials in
the space of periodic continuous functions on [0, 2π ] and the results by Fejér
and Riesz about the representation of nonnegative trigonometric polynomials,
(see [8]). 
�

Now we are in a position to prove the main result.

Theorem 3.2 Let dν be a measure supported on T, absolutely continuous with
respect to the Lebesgue normalized measure, with weight function w, which is
continuous on T. Given ε > 0 there exists a quadrature formula, which uses m =
m(ε, ν) values of the function and its derivatives and m quadrature coefficients,
of the following type:

Im(P) =
s∑

i=1

νi−1∑

j=0

λi, j P( j)(zi).

Furthermore,
∣
∣
∣
∣
∣
∣

∫

T

P(z)dν(z) −
s∑

i=1

νi−1∑

j=0

λi, j P( j)(zi)

∣
∣
∣
∣
∣
∣
< ε ‖ P ‖∞, for every P ∈ P. (5)

Proof Applying the previous lemma, given ε > 0 there exists a Bernstein–

Szegő measure dμ(z) = |dz|
2π |Q(z)|2 such that |w(z) − 1

|Q(z)|2 | < ε, ∀z ∈ T.

If the degree of Q(z) is m, then we consider the zeros z1, · · · , zs of the corre-
sponding orthogonal polynomial of degree m according to their multiplicities
ν1, · · · , νs and we construct the quadrature formula given in Theorem 2.1

Im(P) =
s∑

i=1

νi−1∑

j=0

λi, j P( j)(zi),

which is exact in P. Then for P ∈ P we get
∣
∣
∣
∣

∫

T

P(z)dν(z) − Im(P)

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

T

P(z)

(

w(z) − 1

|Q(z)|2
) |dz|

2π

∣
∣
∣
∣ ≤ ε ‖ P ‖∞ . 
�

Notice that we can use the preceding result for a large class of measures, that
is, those that can be approximated by continuous weights on T. For example,
measures with associated weight function, which are continuous up to a finite
number of points.
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Corollary 1 Let dν1 be a measure on T absolutely continuous with respect to the
Lebesgue normalized measure, with weight function w1, such that, given ε1 > 0
and ε2 > 0 there exists a measure dν on T absolutely continuous with respect to
the Lebesgue normalized measure, with weight function w, which is continuous
and such that |w1(z) − w(z)| < ε1 up to a set of points with dν1-measure and
dν-measure less than ε2.

In such conditions given ε > 0 there exists a quadrature formula which
uses m = m(ε, ν1) values of the function and its derivatives and m quadrature
coefficients such that

∣
∣
∣
∣

∫

T

P(z)dν1(z) − Im(P)

∣
∣
∣
∣ ≤ 2ε ‖ P ‖∞, for every P ∈ P.

Proof Given ε > 0, let ε1 > 0 and ε2 > 0 be such that ε1 + ε2 ≤ ε. Now we
choose the measure dν satisfying the hypothesis. We apply to this measure
Theorem 2 and we use the quadrature formula Im in such a way that

∣
∣
∣
∣

∫

T

P(z)dν(z) − Im(P)

∣
∣
∣
∣ < ε ‖ P ‖∞, for every P ∈ P.

Therefore

∣
∣
∣
∣

∫

T

P(z)dν1(z) − Im(P)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

T

P(z)dν1(z) −
∫

T

P(z)dν(z) +
∫

T

P(z)dν(z) − Im(P)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

T

P(z)(w1(z) − w(z))
|dz|
2π

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

T

P(z)dν(z) − Im(P)

∣
∣
∣
∣

< (ε1 + ε2) ‖ P ‖∞ +ε ‖ P ‖∞≤ 2ε ‖ P ‖∞ . 
�

3.1 Applications

1. Let P(θ) be a trigonometric polynomial and let w(θ) be a weight function
with a finite number of points of discontinuity on [0, 2π ]. We are going
to apply the preceding lemma and theorem to approximate the following
integral:

∫ 2π

0
P(θ)w(θ)dθ.

First we approximate the measure by a Bernstein–Szegő measure dμ and
we determine the corresponding quadrature formula Im.
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If P(θ) = ∑M
k=0(ak cos kθ + b k sin kθ), then for z = eiθ we can write

P(θ) =
M∑

k=0

(

ak
zk + z−k

2
+ b k

zk − z−k

2i

)

=
M∑

k=0

(
ak − ib k

2

)

zk +
M∑

k=0

(
ak + ib k

2

)

z−k.

Now, if we denote by F(z) =
M∑

k=0

(
ak − ib k

2

)

zk and G(z) =
M∑

k=0

(
ak + ib k

2

)

z−k then using the quadrature formula Im we compute

∫

T

(F(z) + G(z))dμ(z).

Hence we have approximated
∫ 2π

0 P(θ)w(θ)dθ .
2. Taking into account that a large class of functions can be approximated

by polynomials on T, and the fact that the quadrature formulas allow to
integrate polynomials in z, one can conclude that the domain of application
of these quadratures is very wide.

4 Numerical examples

Let us consider a measure dν which is a polynomial modification of the
Lebesgue measure, that is, we consider the measure dν(z) = 1

2π
w(z)|dz| with

weight function w(z) = |z − .2|2. First we are going to approximate the mea-
sure dν by a Bernstein–Szegő measure dμ of the form dμ(z) = 1

2π |Q(z)|2 |dz|.
According to Lemma 1, if we choose ε = 10−7 then it is possible to obtain
Q(z) ∈ P such that

∣
∣
∣
∣w(z) − 1

|Q(z)|2
∣
∣
∣
∣ < 10−7, for every z ∈ T.

Indeed, for z ∈ T we have |z − .2|2 = |1 − .2z|2 and |1 − .2z|2 =
1

| ∑∞
n=0(.2z)n|2 . If we take Q(z) =

10∑

n=0

(.2z)n = 1 − .211z11

1 − .2z
we deduce

∣
∣
∣
∣w(z) − 1

|Q(z)|2
∣
∣
∣
∣=

∣
∣
∣
∣|1−.2z|2− |1 − .2z|2

|1 − .211z11|2
∣
∣
∣
∣=

|1 − .2z|2
|1 − .211z11|2 |.211(z + z)−.222|

≤ (1.2)2[2(.2)11 + .222]
.99

≤ .59578 × 10−7 < 10−7.
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Therefore, in this case

dμ(z) = 1

2π | ∑10
n=0 .2nzn|2 |dz|

and the sequence {�n}n∈N of monic orthogonal polynomials with respect to dμ

is given by �n(z) = zn−10�10(z), for every n ≥ 10, with

�10(z) = Q∗(z) =
10∑

n=0

.210−nzn.

Next we determine the nodal system and the coefficients of our quadrature
formula I10 in the following way:

1. The nodes {zi}10
i=1 are the zeros of �10(z) and they are given in the vector

nodes.
2. The quadrature coefficients {λi}10

i=1 are the solutions of the following system

ck =
10∑

i=1

λizk
i , for k = 0, · · · , 9,

where we denote by ck the moments of the measure dμ, that is, ck =∫
T

zkdμ(z). They are given in the vector coeff.

nodes =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.191899 − 0.0563465 I
−0.191899 + 0.0563465 I
−0.130972 − 0.15115 I
−0.130972 + 0.15115 I
−0.028463 − 0.197964 I
−0.028463 + 0.197964 I

0.083083 − 0.181926 I
0.083083 + 0.181926 I
0.168251 − 0.108128 I
0.168251 + 0.108128 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

coef f = 1

2π

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.16403 − 0.154488 I
1.16403 + 0.154488 I
0.983064 − 0.414416 I
0.983064 + 0.414416 I
0.678588 − 0.542769 I
0.678588 + 0.542769 I
0.347271 − 0.498797 I
0.347271 + 0.498797 I
0.0943028 − 0.296461 I
0.0943028 + 0.296461 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Next we will compute integrals of the form
∫

T
f (z)|z − .2|2|dz| for some

analytic functions f by using our integration formula I10( f ). We also compute
the integrals by using Mathematica and we compare both results obtaining
the error.

First we consider three elementary functions: exp(z), sin(z), and cos(z), for
which it would be easy to obtain the exact value of the integrals. The results
are displayed in the following table.

Function Approx I10 Approx NIntegrate Bound error

exp(z) 1
2π

(5.27788 + 2.25601 × 10−14I) 1
2π

( 5.27788) 10−9

sin(z) 1
2π

( −1.25664 − 5.37417 × 10−15I) 1
2π

(−1.25664) 10−13

cos(z) 1
2π

(6.53451 + 2.72553× 10−14I) 1
2π

(6.53451) 10−13
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Next we consider the following three other examples: exp(sin(z)),

sin(exp(z)), and exp(cos(z)) and the results are given in the next table.

Function Approx I10 Approx NIntegrate Bound error

exp(sin(z)) 1
2π

(5.27788 + 2.25722× 10−14I) 1
2π

(5.27788+ 2.08167× 10−16I) 10−9

sin(exp(z)) 1
2π

(4.81964 +2.0278× 10−14I) 1
2π

(4.81964 + 7.63278× 10−16I) 10−9

exp(cos(z)) 1
2π

(17.7626 + 7.3763× 10−14I) 1
2π

(17.7626+1.66533× 10−16I) 10−8

We want to point out that for these last approximations the command
NIntegrate of Mathematica is slower than our integration formula. Indeed for
these calculations NIntegrate always needs more time of computation than the
integration formula. This observation was confirmed several times on different
computers.

We also want to point out that all the computations have been done with
Mathematica 5.2, without using extra precision and we want to remark that
the results obtained are like it could be expected, according to the theory
developed in the previous section.
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