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Abstract

We analyze a special spectral transform of a measure p supported on a compact subset C of the complex plane. A perturbation

uq of u is said to be a Geronimus spectral transform if du| = | where « ¢ C. We focus our attention in the analysis of

u
z— 1|2
the Hessenberg matrix associated with the multiplication operator in terms of the orthogonal polynomial basis defined by the

measure uj.
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1. Introduction

Rational spectral transforms of linear functionals have been considered in [2] in the framework of their connections
with orthogonal polynomials and the representation of the multiplication operator with respect to such a basis, that is,
a Jacobi matrix.

For linear functionals u associated with Jacobi matrices three canonical rational spectral transforms have been
considered (see [2,13-15]).

(1) The canonical Christoffel transform &z = (x — o)u.
(2) The canonical Geronimus transform it = (x — &)~ 'u + md(x — ).
(3) The canonical Uvarov transform &z = u + mo(x — o).

Taking into account the LU and QR factorization of a Jacobi matrix, a simple explanation of the canonical rational
spectral transforms using such factorizations is presented in [2]. Furthermore, the iteration of the Christoffel transform
i = (x — a)’u yields a connection between the corresponding Jacobi matrices using the QR factorization of the
Jacobi matrix associated with u (see [4]). Later on, some analogue of rational spectral transformations for Hermitian
Toeplitz matrices is introduced in [5]. There, an Hermitian linear functional u is introduced in the linear space of the
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Laurent polynomials L = span{z"},.,. Thus an inner product associated with u can be defined in the linear space P of
polynomials with complex coefficients as follows:

(p.q)y = (u, p(2)q@™"), p,geP. (1)

The Gram matrix 7'with respect to the canonical basis {z" },, > ¢ is a Hermitian Toeplitz matrix. If the principal submatrices
T, of T are positive definite, then there exists a non-trivial probability measure u supported on the unit circle (see [8,12])
such that:

27 .
(u, p) =/0 pEe?ydu), pebP.

In such a case, there exists a sequence {®,},,>( of monic polynomials such that:
(P, ¢m>,u =e,(Woum, n,meN,

{@n}, >0 is said to be the sequence of monic polynomials orthogonal with respect to the Hermitian linear functional u.

The polynomials {¢, }, > o With ¢, = e, (1), 172 @, are said to be orthonormal either with respect to u, or with respect
to the inner product (1).

The multiplication operator p()—2p(2) isrepresented in terms of the polynomial basis {¢,, },, > o by alower Hessenberg
matrix H (u). The algebraic analysis of the Hessenberg matrix associated with the multiplication operator has been
presented in [10] in the framework of the state-space generators of general orthogonal polynomials.

In [5,11] we have analyzed the representation of such an operator when two kind of canonical perturbations of the
linear functional u are considered

(1) Canonical Christoffel transforms, i.e., we have analyzed a new linear functional & such that the corresponding
inner product is

(p.q)i=(z—w)p,(z—n)q),, p,qeP.

The iteration of the canonical Christoffel transform has been analyzed from an analytic point of view in [6,9].
(2) Canonical Uvarov transforms, i.e., we have introduced a new linear functional # such that the corresponding inner
product is

(P Qi = (P @ +mp@)q @) +mpa g (x)
withm € Ry and o € C.

Again, the LU and QR factorizations play a central role.

More recently, in [3] some extensions of canonical Christoffel transforms have been considered for other kind of
inner products. In particular, formal orthogonality on algebraic curves have been considered in the seminal paper [1].
Unfortunately, the algebraic study of the corresponding orthogonal polynomials (recurrence relations for instance) has
not been done yet. But for a future work, the analysis of spectral canonical transforms for these inner products offers a
new perspective.

The aim of our contribution is the analysis of a special example of Geronimus transform for measures supported on
a compact subset of the complex plane. In some sense, this is an inverse transform of the Christoffel canonical one.

The structure of the manuscript is as follows. In Section 2 we introduce the basic concepts and the background for
the study of the Geronimus transform p; of a measure p supported on an infinite compact subset of the complex plane.
In particular, we will give the explicit expression of the polynomials orthogonal with respect to y; in terms of the
polynomials orthogonal with respect to . In Section 3, we obtain the corresponding Hessenberg matrices as well as
the connections with the QR factorization. Finally, in Section 4, some examples are analyzed.



2. Background and preliminary results

Let u be a non-trivial probability measure, i.e., a positive Borel measure, supported on a infinite compact subset C of
the complex plane. Under such an assumption, there exists a sequence {®, (z; i)}, > ¢ of monic polynomials orthogonal
with respect to u such that:

coo(w) cro(@w - cuow
Gp(z; ) = —— ' s
An=1(0) con—1(1)  Cciu—1 -+ Cun—1()
1 z e

where ¢y, j = [ 2¥z/ dpand
co.0() -+ cno(p)
An(ﬂ) =

CO,n(l‘) ot Cnon D)

Notice that 4,,(u) > 0 for n > 0.
The sequence {, (z; )}, >0, given by ¢, (z; ) = (en (u))_1/2¢n (z; w) is said to be the sequence of orthonormal
A (W)
Ap—1 H
The nth reproducing kernel polynomial associated with {¢,,(z; 10}, > is defined by

polynomials associated with u, where e, (1) = , n >0, with the convention A_(x) = 1.

n

Ka(zys =Y ¢;(v; ;25 ).
j=0

The functions

(z 1)
q.;(w:/ i 4u@), rec, jz0 ®)
c t—z2

are called functions of second kind associated with y. We also denote

D(z;
Q1= /C #du(z) = (e; (w)"%q; ().

-z
We define

du
|z —al?’

This kind of perturbed measures has been studied in [7] as well as the corresponding sequence of monic orthogonal
polynomials. It will be said a canonical Geronimus transform of the measure p.

Let{®,(z; i1)}, > ¢ be the sequence of monic orthogonal polynomials on C associated with yy and {@,, (z; 1)}, > be
the corresponding orthonormal polynomial sequence. Our first goal is to find an explicit expression for {@,,(z; )}, >0
in terms of the sequence {®,(z; 1)}, >0-

Proposition 1. Consider ¢,(o) = ||y || — Z;’=0|ql(oc)|2, n=0. Then

An(.“l)
An—l(,u)

Notice that ||p; || = do(uy).

=¢—1(), n=>1. 4



Proof. If we consider the family {1,z —«, ..., (z — )", ...} and we define

dk,j<u>=L<z—a>k(z—a)f du=fc<z—a>k+1(z—a)f“du1 =di1,j+1 (), k. j=0,

then the monic polynomial &, (z; u) is given by

do,o (1) dio(w -+ dno(w
D (z; u)=% '
= Gt () diac1 ) et (0
1 z—a o (z—a)"
as well as
doo(pn) - dugu)| [ dooun)| droa) - duote)
Aur) = : : _ do,lf#l) do,o.(#) dn—I:O(.u)

don(uar) *++ dun(n))| | don(pt)|don-1,(10) -+ a1 ()
If we use the determinantal Sylvester’s identity for the above expression, then we get

A () A2 () = A1 () A1 (1) — en1 (WA (I gn—1()|*, n=1.
From this, we deduce

An (,ul) _ An—l (:ul)
Anfl(/i) An72(,u)

Therefore

— | gno1(@*, n>1.

n—1

= o) = ) lar@P, n=1.

=0

An(,ul)
An—l (;u)

Since Ag(1t;) = |14 ||, our statement follows. [J

Corollary 2.

en+l(,ul) — en (00)
en (1) en—1() '

n>1.

Proposition 3. The sequence of monic orthogonal polynomials {®,(z; i;)} can be obtained from

. _ . Oy (a) .
Dnt1(z; fy) = (2 — ) Pp(z; ) + - Sn(z, o), n=l,
&n—1()
o
Do(z; up) =1, D1(z; u1)=z—a+%, (5)
Il ey
where
z—1t
Sn(z, o u)=/ " tKn_l(z,t;u)du(t), n=1. (6)
co—

Here K (z, o; ) is the nth reproducing kernel associated with {¢,,(z; )}, > -



Proof. Since {(z — ), (z; 1)}, > is an orthonormal basis in (z — o)[P with respect to the inner product

(f. &) =/Cf(z)@du1,

the Fourier expansion of the polynomial ¢, (z; ;) — ¢, (2 py) in terms of the above basis yields:

n
Ppi1(T ) — @paq (oG ) = (2 — o) Zlnﬂ,j(/?j(z; w) forevery n>0.
Jj=0

Then

@HJ=wammo—%Hmea—m%ammMm

=Awwmuma—m%mmmmn—%HanLa—m%ammMm

(e 2 , ¢,
- ( en (,U,) ) 5’1’] + (Pn+1(0(7 ﬂl)‘/;‘ o _t d:u(t)

Therefore,

@5 )
o—t

n—1
P12 1) = @y (2 1) 1+(z—oc)2/c @ (z; @) du(r)
Jj=0

1/2
+ <en+l(#l)> T an (@) Ppi1 (@ 1) | (2 — D)@, (23 1)
en (1)

z—1
=@p1(% ul)/ — K1 (z, t; ) du(r)
co—1t

en+1(1y) 12
+ (—) + gn (@@, (o, 1) | (2 — D)@,z p.
en(,u)

If we rewrite the above expression in terms of the monic orthogonal polynomials {®; (z; 1)}, > and {®(z; up)}, >0

we obtain

€n+1 (,ul) + Oy ((Z)¢n+l (o, /'tl)
en (1)

Notice that S, (z, o; ) is a polynomial of degree n. For every n >0, taking into account the leading coefficients in both

the left- and right-hand sides of (7), we get

en() — enp1(py) = Qn()Ppyr (o ), (8)

and from Corollary 2,

Pp1(2; ) = Ppr1 (o py) Su(z, 05 p) + (z =) Pp(z; . (7

€n+1 (Ml) On ()
en(p)  en(a)
_ On ()
en—1(o) ’

Finally, from Eq. (7), we obtain

Dy (o py) =

On ()

en—1(o)

Dpi1(z; uy) = (@2 — )Py (z; ) + Su(z, o ). O



Remark 4. If C =T ={z € C : |z| = 1}, using in (6) the Christoffel-Darboux formula (see [8,12]), then the sequence
(D, (z; 1}y >0 satisfy

qn (g (@)
En—1 (o T

&n ()
en—1(o)

Dyi1(z; 1) = <z —a > Dy (z; 1) + Qr(z;p), n=l. 9)

This result can be seen with more detail in [7].

Now, from (3), we get
du =z — o dp. (10)

Let H(u;) be the lower Hessenberg matrix associated with the multiplication operator in terms of {¢,,(z, 1)}, > 0. In
[5], we give a relation between H (u) and H ()

H(u) —ol =LM and H(u) —al =ML, (11)

where L is a lower triangular matrix such that ¢(z; ft;) = Lo(z; n) and M is a lower Hessenberg matrix so that

(z — 0@z ) = Mo(z; py). Here o(z; ) = [@g(z; ), @ (25 ), ... 1" with ft=p, py.
Our second goal is to find the explicit expression of the matrices M and L.

3. Hessenberg matrices and the Geronimus transform

Proposition S. The sequences {¢, (z, W}, >0 and {¢, (2, 1)}, > o satisfy
(z =)z W) = Mo(z; ),

where ¢(z; 1) =[0o(z; ), @1z W), ... 1% @@ 1) =[@o(z: 1), @125 1), - . .]t, and M is a lower Hessenberg matrix
with entries

_qﬁ?n 7=0k20
1
qr (o) go (o) .
—_—— ifj=1k>1,
my,j = 111 11/ €0 (o0) (12)
qr(0)gj—1() ) .
_ : 2<j<k,
Vi@ oS
Sffio(‘i) yi=k+l,
0 ifj>k+1.

Proof. Taking into account (5), for n = 0 we get

Qo ()
el

and, as a consequence,

D1(z; uy) — Do(z; uy) = (2 — ) Po(z; )

1/2 (o)
(eelo((uul))) P15 1) = IIC,LIL?%%(Z: ) = (2 = ) po(z; .



Now, forn =1,

O1(@)lpyll 01 ()
Dr(z; ) — —ZLL Py (2 wy) = (2 — ) | Dz 1) — :
2(2; 1) 0 () 0o (@ 1z uy) = (z a)[ 1(z; W (qo(a) ) Po(z u)}

ez(u1)>l/2 _ _||u1||ql(fx)(el(m))l/2 N AL C)) ,
<—81(u) 02(z; 1) 200 70 \ o) o1 u)=c—0) ez W qo(a)wo(z,u) .

Finally, forn >2,

On()ep—2()
On—1(0)en—1(2)

0, (Jen_lw)sn_z(a) -

d5n+](z;,u1)— D, (z; ,U1)

=(z—a) [<I>n (z; ) — qn—l(a)> Pn_1(z; u)} ,

&n—1() On—1()
en() \'? qn(@)  en—a(@)(p) ven(1Wgn (%)
Pu1(z; ) — —_— B (23 p)=(z—0) | Bp(zs p)— L (|
+1(z5 1) (enl(#)> 1) i (D) (7 u=(z oc)[ (z; W) T, 0,—1(z u)]

Hence, taking into account Corollary 2

() \'? _ (sn_z(ao)l/z P . G (@) ,
<8n_1(a)) Q125 141) e 1) mq)n(z,m)—(z ) | pn(z5 ) qnil(a)qon_l(z,u).

In a matrix form, we get
(@ —0Mo(: p) = Mo 1), (13)

where M and M are lower and upper bidiagonal matrices, respectively, with entries

_QMM’ i=k=0
Vil
g [l k=1,

go(@) Y eo(®)’

L, i =k, _
- / qr()  |eg—2() .
qi (o) T @)’ Jj=k2>2,
i j = = L j=k—1, g, =1 W@ a1

qr—1(0)
0 otherwise, 0(@) k=0,j=1
lleey I
&k (o) .
=k+1,
er—1(a) /
0 otherwise.

The matrix M is non-singular. Thus Eq. (13) becomes

(z— Dz 1) = M "Ma(z; 1)



As a consequence,

M~ is a lower triangular matrix with entries ﬂz,((_j]) given by

qr () .
- (_1) ’ Og,] <k7
mk,j =149 ()

0 otherwise.

Thus, the multiplication in (14) yields (12). O
The matrix M is quasi-unitary (see [11]). Indeed

Proposition 6.

Q) MM*=1.
(i) M*M =1 — exo ()@ (o5 py) (s py)* where

oo
too() = 1M en (@) = |l = D lr (@) >0,
=0

where I denotes the unit matrix.

Proof.
@
I=(p(z; W), o(z; W)y
= ((z =09z W, (z = Dz "),
= (Mo(z; ), ¢(z; 1) M'),
= M(p(z; ), (25 pp)')y M* = MM™.
(i1)
— €00 (%)
M ey ©®— L 2o ’
MM =y 21 il

1 o
MMV = — (80(002 +lgo@* > |qz<o<>|2>

£o(%) =

1
" T lao() (

2
=1- Msw(cx).
Il 41 ll€o ()

i lleo (@) = I llgo(@)1* + lqo@)* Y lgi()[?

)

(14)



For j >2,

(M*)(j)M(j)ZSj—l(OC) ( |41 1( )l Z| (O()|2)

gj—2() ej—1(o )2

—; . 2 . 2 - 2
TG IRIC) (8’1(“) + 111 3 _lar @) )

I=j

. 2
- lgj—1()] b (@),
gj—(o)ej—1()

(M*)(O)M(l) — _ 610(0() SOO(OC
g IV 1T I = Igo() |2
For j >2,
; qj—1(2)
(M*) M) = — = o0 (%),

Vi ll/ej—a(0)e;— 1(oc)

b q0(0)qj-1(2)/zj-1(®) {1 @ )ZIQI(OC)I }
ej1

o VIl eo@)ej—2 (@)

_ 0(q;1(%) o
i e @)E 2@, - @

Finally, for 2<k < j,

MM — Qr—1(00qj—1(20)y/€j—1(2) .
(M™) k) Vo2 (@) er—1(@)ej—2 (%) &1 (a) Zlcn(oc)l

_ gk—1(a)qj—1() ().
\/Sk 2(@)er—1(0)ej—2(w)e;— 1(06)

Qn (06)

Since Dy, 1 (05 ) = forn>1, we get

en (i) )1/2 n(2)

eny1(y) /) en—1(®)

(pn+1((x; .ul) = <

an—W) n>1. 0

Ven—1(@)en (@)



Let L be the lower triangular matrix such that ¢(z; p;) = L¢(z; ). Then, taking into account (13), we obtain

ML = M(H () — o).

The entries ﬁk,j of H := M(H(,u) —ol) are

aw  a@
ek—1(1) gg—1(2)
=1 (e
N e(p)

%mw%w(

0,
and the entries lAk,j of L =ML are

QO(“)
Il ey

mw)umml
—— 1,1
qo(a) V €o(a)

&0 (o)
ll gl

0,0 +

I,

q1(@) [l
- 2 0+
- qo(e) V €o(2) Ho

l,j=
So(a)l
—I1,1,
[leep I
ex (o)
Lt 1,641,
er—1(00)
_ak(@)  [e—2(®) .
Gi—1(a) | e—1() !
0’

—eo(wer (e (0)py(0),

e1(a)

mlo

[e1 ()
+ b1,
o (o) >

81(“)120
Veo() =

e ()

ep—1 (o)

k+1,js

— Ver(Werr1 (1) @iy (0)9, (0),

@k(O)\/ek 1) — ¢k+4(0)\/ek+l(ﬂ)>

J=k=0,
J=k=1,
k=0, j=1,
k=1, j=0,
k=0, j=1,
J=k+1,

J <k,
j>k+1

15)

j=k+1,

J<k—1,

j>k+1,

10



Since lpo =,/ I\letl and taking into account (15), the entries [; ; of L are given by

Lo M(ﬁoﬁqo(w—nuu),

Ve Iy I

ho= ) 51’0+q1(a) “Ml”ll,o ’
& go() Y €0(2)

lk+1,0= Sk_l((x) l;k,O-i-qk—w 8k_z(OC)lk’() N k>2.
Gr—1(2) | ex—1(2)

ol ~ o
b= 0(0) e q1(@) |l 0,
&1 qo(a) \ €o()

lir11 = Be1(®) flk,]—qu_m 8k_Z(OC)lk,l . k=2
ek gr—1() \ ex—1(®)

Ep—1(A ~ o Ep—2 (A
ey = O (o 4O JE2@) ) sy 0, k41 (16)
2 (00) qr—1(2) | &—1(2)
More explicitly
el if j=k=0,
ll a1

k=1
e ® +T 1(“)ﬁ,o if j=0, k>1,
gr—2(0)eg—1(o0) (@)

Gk—1(c0) k=] 81—1(0€)ﬁ

lk’j= if j=1, k>0, 17

Veér—a(@)e—1(2) =0 qi(2)

g2y if j=k>1,

er—1(2)

k -
qe—1(00) > &—1() L it <k
Ver—2(o)er—1(2) 1=j—1 qi(2)
where &1 (o) 1= ||y |-

A result for the leading principal submatrices is the following

Proposition 7. Let (H(u)—ol),, M,,and L,, be the leading principal submatrices of H (u)—ol, M, and L, respectively.
Then

(1 (H(u) —ol), =L, M,.
(ii) The OR factorization of (H (u D —oal)his

(H(uy) —ad), = Oy Ry,

1"



where Qn =EM,, ﬁn =L,E"!
1, 0<k<sn —1,

Epx= [gn (0]

Ven1(@)’

k=n

Proof. (i) If we use the first expression of (11) in block matrix, then we get

Hu) - of =

M, M,
Ly |Lay [| M2 M22
LnMIZ

Llen + LMy ‘L21M12 + LppMp

Thus, as a consequence (H (u;) — ol),, = L, M,.

|

and E is the diagonal matrix with entries Ey j given by

(i) R, is a lower triangular matrix, so that it is enough to prove that 0, isa unitary matrix

(Q;)(O)(Qn)(o) = T

en—2(0)

(Qf,)(n—l)(én)(n_l) =

en—3(o) en—3 ()

For 1<k<n — 2, we get

(Zlqz( )W + en— z(oo)—l

gn—2(2)]?

=1

1 n—2
[Zlqz(a)l + &n—2()

n—2
Ay ( _ Ek=1() lgi—1(2) ] 2
(05 1) (On) PRy PRy m vy ng(an + en—2(%)
_a1(® g @ .
e—a(a)  er—2(x) '
A% 5 00— _ dk=100) [ fe—1()
(Qn)(O)(Qn) ll ey |l ( 8k—2(0€) Vek—2(0)er—1 ()
L) e—1(0)  [ex—1(2) _
ll e |l ep—2(a) er—2 (o)

Now, for 1< j<k<n —2

o A NG — qj—2(0)qj—1(c) gj-1(0) 1
(@) ) (Qn) P P ——
~qj-2(0)g,-1(2) gj-1(0) 1
&j—2() ej-3(0)  Jei_3(@)ej—1(2)
Finally,

qik—1(00)gn—2() &2 ()

)

n—2

Z 191 ()1* + &n—2(@)

8j](0()> =0

(Qﬁ)(n—l)(én)(k) =

Thus, Qn is a unitary matrix. [J

Vek—2(0)ex—1(0)en—3 () en—2(a1)

_ (=2 @1(@gn-2(®)
en—3(0) \/ep_o(0)ep—1(a0)



4. Examples
4.1. Example 1
Consider on the unit circle the measure

do .
du=lz 17—, z=e",
2n

where d0 is the Lebesgue measure. Then the monic orthogonal polynomial sequence on T={z € C : |z|] =1} associated

with p is (see [6,12])
n
) k+1 ,
D, (z; 1) = kX_(:) pany K Vn>0.

It is straightforward to verify that
n+42
ent) = [ 10 0Pan =",
T n—+1

hence ||u|| = ep(u) = 2 and the sequence of polynomials orthonormal with respect to yu is

1 n
) = k4 1)z*
002 1) AN ]; + 1)z

i+ D" —(n+ 2" 4]
VD +2)(z - 1)?

Now, we define a Geronimus transformation of the measure p as follows:

n=0.

du Iz — 1> do 0
di = i—of  |Jz—of2n > 1, z=em.
Then, we obtain
| ”_2|oc|2—oc—5c
Hill = o2 — 1
From (2), we get
an(@) =1 -0, @),
and from (18) and (19)
n
en(@) = Il ll = D lgr(@)
=0
2 —a—a e N
=== - Y e H?
=0
20> — o — _
= Ao o PKaET e

1
(n + 1)(n + 2)|o?+2)

1 5 i}
e R

oc"+2—(n+2)oc+n+1|2)].

(|(n 4 1)0{"+3 _ (11 + 2)0671-1—1 4 O(|2

(18)

19)

(20)

13



The entries ﬁk’j of the matrix H = I\;I(H(,u) — o) are

1
_Z =k=0,
7 J
k(@2 —(k+2a+k+1 1
- k2 2 1n J=k=1,
k+1\ a5 —(k+2)a> +ka  kk+2)
hij=1 J&+ D& +3)
, i=k+1,
k+2 J=rA
Vk+1(1 —aH? S
O O — — k) ]\ - 1,
VGFDG+2)E+ 2@ — (k+2)a+k)
0, j>k.

The entries my ; and [ ; of M and L, respectively, can be obtained, replacing (18)—(21) in (12) and (17).

expressions are cumbersome, and we will not show them.
4.2. Example 2
We consider on the unit circle the measure

do
d'u: — + mé(z — 1),
27

2n

These

where m > 0. The monic orthogonal polynomial sequence on T = {z € C : |z] = 1} associated with u is (see [5,12])

n—1
m
Dz ) =7" — kown>1.
n(z; ) =2 1+anz n
k=0
Then, we get

o =n do i0
en() = Dy (z; WZ o +m®,(1, ), z=e
0 Y

o n—1
m _.do m .
= / 7" — Kl —+ . z=e"
0 1+nm 2 l+4+nm

k=0

_1+(n+1)m
- 14+nm

hence ||i]| = ep(1) = 1 + m. The nth orthonormal polynomial with respect to u is

1+ nm 3
wn(z,ﬂ)—m ¢(1+nm)(1+(n+1)m 2(:)

B (1 +nm)z" T —mz" +m
VO +mm A+ m+ Dmyiz—1)°

14

(22)



The entries ﬁk,j of the matrix H = M(H(,u) —ol) are

2
m
o Jj=k=0,
_1+(k—1)m( (I4+(k+1)m)o— (1+km) m2 ) —k>1
Ikm \ (k)2 — (1 (k—1ymys . (=) (4Gt ym) ) ° =R
hij= 1 AFkm)(A+k+2)m) . (23)
) ]=k+15
1+ (k+1)m
m ( (I4+(k+1)m)o—(1+km) ) k1
—m AT 1,
\/(1+jm)(1+(j+1)m)(1+km)(1+(k+1)m) (l—i-km)&z—(l—i—(k—l)m)& /
0, j>k.

Consider a Geronimus transformation of the measure u
0

du Lodo i
= = - — - b o > ’ =c .
lz—al2 Jz—a?2n  Jau—1)2 ¢ ‘

duy

Then, we obtain

1 m
= . 24
ol = T + (24)
The functions of the second kind associated with p evaluated in « are
I+ m+1Dm)ya— (14 nm)
n(0) = - (25)
A +nm)(A+ (n+ Dm)(oc — 1)+
From (24) and (25) we get
1 1 (1 + (k4 Dmyo— (1 + km)|?
en(@) = ——— + — | mla* = — (26)
o> =1 oo — 1]]a] =y (LA+km)(1 + (k + Dm)le

The expression of the entries of the matrices M and L are very complicated and they can be obtained using the
expressions (22)—(26)) in (12) and (17).
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