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Abstract

In this paper we consider a perturbation of a Laguerre-Hahn functional by
adding a derivative of a Dirac Delta. This transformation leaves invariant the fam-
ily of Laguerre-Hahn linear functionals. We shall also analyze the class of the
perturbed linear functional. Finally, we illustrate these perturbations by adding
the derivative of a Dirac Delta to the first kind associated functional of the clas-
sical Laguerre functional. The expression of the new orthogonal polynomials is
obtained.
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1 Introduction

The study of the modification of a linear functional by the addition of the derivatives
of a Dirac Delta is related with the theory of the rational approximation of Markov
functions (see [12]). In the last years some applications in boundary problems for
linear differential equations of fourth order (see [9]), as well as some extensions of the
Gaussian quadrature rules have been considered.

In [6] the first approach to such a kind of perturbations is presented. There neces-
sary and sufficient conditions for the regularity of the modified functional are obtained.
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In the same work, when the initial functional is semi-classical, an exhaustive study of
the corresponding sequence of orthogonal polynomials is done.

Later on in [2] and [3] a generalization of the classical Laguerre polynomials has
been treated when the addition of the first derivative of a Dirac Delta at the point z = 0
to the classical Laguerre functional is considered. In particular, the hypergeometric
character of these new polynomials is deduced.

The aim of our contribution is to analyze how the Laguerre-Hahn character for the
perturbed linear functional is preserved under such a kind of perturbations as well as to
determine the class of the perturbed functional. In some previous work (see [1] ) other
examples of perturbations of Laguerre-Hahn linear functionals have been analized. The
class of the perturbed linear functionals is also studied.

The structure of the paper is as follows. Section 2 contains some introductory
results and notations concerning linear functionals. Section 3 is devoted to the char-
acterization of the Laguerre-Hahn linear functionals and the definition of the class. In
Section 4 a modification of a Laguerre-Hahn functional is carried out by adding the first
derivative of a Dirac Delta and we study the class of the new Laguerre-Hahn functional.
The above perturbation has been carried out for the first kind associated functional of
the classical ones (Hermite, Laguerre, Jacobi and Bessel), showing the equations that
the new linear functional satisfies, as well as the Ricatti differential equation which
fulfils the corresponding Stieltjes function fulfils.

Finally, nn Section 5 we obtain the explicit expression of the polynomials orthog-
onal with respect to such a perturbation when the first kind associated Laguerre func-
tional is considered.

2 Preliminaries

Let {u,},50 be a sequence of complex numbers and y a linear functional defined in the
linear space P of the polynomials with complex coeflicients, such that

W, X"y =y, n=0,1,2...

(1 is said to be a moment functional associated with {u,},~. Moreover y, is said
to be the n — th moment of the functional pu.

If ¢(x) is a complex polynomial, we define the moment functional ¢, the left
multiplication by a polynomial ¢, and Dy, the usual distributional derivative of u, as
follows

(pu, p(x)) =, ¢ (x) p(x)), (D, p(x)) = =, p'(x)), p €P.

On the other hand, J. will denote the Dirac delta linear functional {(d., p) = p(c). In
particular, we will use the notation dy = 0.

A sequence of orthogonal polynomials {P,},¢ is said to be classical if there exist
polynomials ¢ and ¢, with deg¢ < 2 and degy = 1, such that u satisfies the Pearson
differential equation

D (¢p) = ypu.



Let ¢ be a linear functional on the linear space P of polynomials with complex
coefficients and let S (u)(z) be its Stieltjes function defined by

S =—Y L (1)

n+1
n>0
where p, = (u,x"), n > 0, are the moments of w. In the sequel, we will assume,
that yo = 1.
Let P’ be the algebraic dual space of P and A = span{D"6},cy. We consider the
isomorphism F : A — P given as follows:

For
N
I e Gt DA
U= nZ(; n! /«lnD 67
we get
N
FO)@) = ) "
n=0
Then,
Sw)(z) = -7 "Fw@E™).
If

n

p@) = Z ajz!

Jj=0

then we define for every p € P

(up) () Zn: (Zn: ajﬂj—m] ",

m=0 \j=m

p(2) — p(0)
—

(Bop)(2)

Thus

S (p)(z) = p(2)S ()(2) + (Ubop)(2).

The functional x~'y and the product of two linear functionals are defined respec-
tivly as follows
(x'w,p) = (. 60p); (v, p) = (wup), pEP.
If uo = 1, we define the linear functional u~' by

up” = 6o.

Then it is straightforward to prove that



1. x(x‘ll,t) =pu

2. x7 o) = p = 6o

30 a2 (P = x7! (x’lu) = — 8o + 1 DSy.

We give the following auxiliary results (see [14] and [15] for a more comprehensive

approach)

Lemma 1 For p € Pand u,v € P', we have
1. S"(W(z) = S(Du)(2).
2. S(uv)(2) = —z8 (W)(2)S W)(2).
387 W@ = 1S (W@

Given a moment functional u, a sequence of polynomials {P,},>( is said to be a
sequence of orthogonal polynomials with respect to u if

(i) The degree of P, is n.
(i) (U, Pp(x)P(x)) =0, m # n.
(i) (u, P2(0)) #0,n=0,1,2, ..

If every polynomial P,(x) has 1 as leading coefficient, then {P,}, is said to be the
sequence of monic orthogonal polynomials with respect to the linear functional p. It is
clear that for every sequence of orthogonal polynomials there exists the corresponding
family of monic orthogonal polynomials.

The next theorem, whose proof appears in [10] , gives necessary and sufficient
conditions for the existence of a sequence of monic orthogonal polynomials {P,},-¢
with respect to a moment functional u associated with {1, },5 -

Theorem 2 Let p be a linear functional associated with {u,},-,. There exists a se-
quence of monic orthogonal polynomials {P,},~, with respect to u if and only if the

leading principal submatrices of the Hankel matrix [/,t,-+ j], o @re non singular.
ij

A linear functional such that there exists the correspondient sequence of ortho-
gonal polynomials is said to be regular or quasi-definite.

Now we show the three term recurrence relation that a sequence of monic ortho-
gonal polynomials satisfies. The proof is given in [10].

Theorem 3 If i is a quasi-definite linear functional and is {P,},s( the correspond-
ing sequence of monic orthogonal polynomials, then there exist sequences of complex
numbers {B,},50 and {y,},s0 » With y, # 0 for every n € N, such that:

)CP,,(X) = Pn+1 ()C) +ﬂnPn(x) + ynPn—l(x) (2)

with Po(x) = 1, Pi(x) = x— Bo. Conversely, given two sequences of complex numbers
Bl nso and {yn},s1 with vy, # 0 for every n > 1, there exists a unique linear functional
 such that the polynomials defined in (2) constitute the sequence of monic polynomials
orthogonal with respect to .



Definition 1 ([10], [16].) Let {P,},>¢ be a sequence of monic orthogonal polynomials
with respect to a quasi-definite functional u.. The sequence of monic polynomials{PEll)}
defined by

n=0

3

P;l)(x) — <ﬂ§, M> n>0,

x=§

is said to be the associated sequence of first order for the sequence {P,}, -

Notice that the sequence {Pﬁql)} 0 satisfies the three term recurrence relation
nz

xPOx) = P () + Bt PO + ¥t P, (30,

with P\’(x) = 1, P\V(x) = x - B;.
According to Theorem 3, we shall note by ,u(l) the normalized functional, (;1(1))0 =

,Ugl) = 1, such that the sequence {Pf,l)} -0 is the corresponding sequence of monic
nz!

orthogonal polynomials.
Theorem 4 Let u be a linear functional. Then

YD =~

In a general way, the associated sequence of r — th order, r € N, {Pff)}’po is defined
by the recurrence relation B

PUL() = (8 = Buer) PV = yaur P (), n 2 1, )

PV =x =B, PV (x) = L.

This corresponds to a forward shifted perturbation in the cofficients of the three
term recurrence relation.

3 The Laguerre-Hahn linear functionals

Definition 2 ([1], [13], [14].) A linear functional u on the linear space P belongs to
the Laguerre-Hahn family if its Stieltjes function satisfies a Riccati equation

D(2)S’()(2) = BR)S*(1)(@) + C@)S (1)(2) + D(z) &)

where ®(z), B(z), C(2), and D(z) are polynomials with complex coefficients. Here
®(2) # 0, B(2) # 0, and D(2) = [(Dp)6o®] (2) + (uboC)(2) - (1260 B) (2).

Remark 5 When B(z) = 0, we get a first order linear differential equation ®(2)S’(u)(z) =
C(2)S (u)(z)+ D(z) and the linear functional is said to be an affine Laguerre-Hahn func-
tional. It is also called a semiclassical linear functional (see [14]).

Definition 3 Let {P,},>o be a sequence of monic orthogonal polynomials with respect
to a quasi-definite linear functional. {P,},>o belongs to the Laguerre-Hahn family if u
is a Laguerre-Hahn linear functional.



The proof of the next theorem can be found in [15].

Theorem 6 Let u be a quasi-definite and normalized functional and let {P,},. be the
corresponding sequence of monic orthogonal polynomials. The following statements
are equivalent

1. wis a Laguerre-Hahn functional.

2. u satisfies the functional equation D [®u]+Yu+B (x" qu) = 0, where ®(x), B(x),
and C(x) are the polynomials defined in (5), and

P(x) = = [@"(x) + C(x)]. (6)
3. u satisfies the functional equation

D [x®u] + (x¥ — ®)u + Bu* =0 (7

with the additional condition {(u, V) + <ﬂ2, HOB> = 0 where ®(x), ¥(x), and B(x)
are the same polynomials as in (6).

4. Every polynomial P,(x), n > 0, satisfies the so-called structure relation

n+d
)P, (1) = BOPDX) = > 0pPu(x), n> 5+ 1

p=n-s

where ®(x) and B(x) are the same polynomials as in (5) and {PS)}WO is the
sequence of associated orthogonal polynomials of first order for {P,},s, , where

t=deg®, P=deg¥ > 1,r =degB, s = max{p — 1,d — 2}, and d = max{t, r}.

3.1 Determination of the order of the class

In the characterization (7), we must notice that the representation is not unique. In fact,
it is enough to multiply by any polynomial in both sides of the equation. On the other
hand, uniqueness is deduced by imposing a minimality condition on the degrees of the
polynomials involved in (7). We will discuss this question below.

If u satisfies the equation D [®u] + Yu + B (x‘l ,uz) = 0, then multiplying it by a
polynomial g(x), we get

D[®'u] +¥'u+ B (x_l,uz) =0, (®)
where, ®* = g0, V* = g¥ — ¢’D, and B* = ¢B.

Thus we can associate with the linear functional y the set of nonnegative integer
numbers

Hw) = {max{p-1,d-2}, being d = max{t, r}, where t = deg ®*, p = deg V",
and r = deg B*, among all the choices of ®*, ¥*, and B*
such that (8) holds} .



Definition 4 The class of the Laguerre-Hahn functional u is the minimum of H(u).

Theorem 7 The class of the Laguerre-Hahn functional u is s if and only if

[T (jo ) + o 082)

a€ly

+ |r,| + |sa|) # 0.

where Zg is the set of zeros of ©(x). Here the polynomials ®,, ¥Y,, and B, as well
as the numbers r, and s, are defined by

O(x) = (x—a)Py(x),
Yx) + Qu(x) = (x—a)¥a(x)+rq,
B(x) = (x-a)B,(x)+s,.

As a consequence of the previous result we can give a characterization of the class
of a Laguerre-Hahn linear functional in terms of the polynomials B(x), C(x), and D(x)
defined in (5) using the Stieltjes function.

Corollary 1 Let u be a quasi-definite Laguerre-Hahn linear functional satisfying (5).
s is the class of u if and only if

l_[ (IC@)| + |B(a)l + |D(a)]) # O

a€ly

i.e., the polynomials ®©, B, C, and D are coprime.

4 Modification by a derivative of a Dirac Delta

Proposition 1 Let u be a Laguerre-Hahn linear functional and let M and ¢ be arbi-
trary complex numbers. Then
u=p+ Ms.

is a Laguerre-Hahn linear functional.

Proof. Let S = S (u)(z) be the Stieltjes function corresponding to the functional u such
that
®(2)S’ = B()S* + C(2)S + D(z) )

and let S = S ()(z) be the Stieltjes function associated with u. Then
1, X"y = py — Mnc"™', n > 0.

Thus
S@) =580 -

(z—¢)?



and substituting the above expression in (9), we get
(2= '®@D)S" = (= ¢)'BS” + (2 - *C - 2M(z - ©)’B) S (10)

+(M*B - 2M(z - c)® — M(z— ¢)’C + (z— ¢)*D).

As a consequence, p is a Laguerre-Hahn functional satisfying the distributional
equation

D [(x - c)4CD,L7] + [(x — )" + 2u(x — ¢)*B — 4(x — c)3(I)],L~1 +(x—o)*B(x"'I?) = 0.
This means that the family of Laguerre-Hahn linear functionals remains invariant
under such a kind of perturbations. m
4.1 Determination of the Class
In the sequel, we will assume that y is a Laguerre-Hahn linear functional of class s.

Proposition 2 Let u be a Laguerre-Hahn linear functional of class s and g = p1+ M6...
Then u is a Laguerre Hahn linear functional of class’s such that s —4 <s < s + 4.

Proof. Let ®, ¥, and B be as in Theorem 6. Let
D[OH] + Y+ B (x’lﬁz) =0, a1
be the equation which fulfils i, where

O*(x) = (x - )*D(x), ¥*(x) = (x—c)? ((x —0)®W(x) — 4(x — )D(x) + 2ﬂ3(x)) , (12)

B*(x) = (x - ¢)*B(x). (13)
Then
deg®* = " <s+6,
deg¥* = p*<s+5,
degB* = r'<s+6.

As a consequence, d* = max{t*,r*} < s+ 6 and s = max{p* — 1,d* -2} < s+ 4.
On the other hand, since y =t — Md. then s <s+4. m

Proposition 3 Let i be a Laguerre-Hahn linear functional such that the equation (11)
holds. Then for every zero of ®*(x) different from c, the equation (11) cannot be sim-
plified by division of the polynomial coefficients.

Proof. From the assumption about the linear functional u, S (1)(z) fulfils (5), where the
polynomials @, B, C, and D are coprime.
Let ®@* and B* be as in Proposition 2 and
(z-0)'C(2) - 2M(z - ¢)*B(z)
M?*B(z) = 2M(z — ¢)®(z) = M(z — ¢)*C(2) + (z = ¢)*D(2).

C*(2)
D*(2)

Assume a is a zero of @ different from c. Three different situations can be analyzed



1. If B(a) # 0, then B*(a) # 0.
2. If B(a) = 0 and C(a) # 0, then we get C*(a) # 0.

3. If B(a) = C(a) = 0 then taking into account D(a) # 0, we get D*(a) # 0, and, as
a consequence,
|B*(a)| + |C*(a)| + [D*(a)| # 0.

As a conclusion, the equation (5) cannot be simplified. m
In order to analyze the class of u we will study the behaviour of the polynomials
B,C,and D atz = c.

Proposition 4 Let @, B, C, and D the polynomials defined in (5). For g = u+ Md., let
s and s be the class of i and u, respectively. Then we get

1. 5=s+4ifBc) #0.

2. 5=s+31f
B(c) =0, (14)

and MB'(¢) —2®(c) # 0
3. 5= s+ 2if the condition (14) is satisfied together with

MB'(c) - 2d(c) = 0, (15)

and $MB" (c) — 29’ (c) — C(c) # 0.
4. s = s+ 1 if some of the following two cases hold
4.1. (14), (15),
1
EMBN(C) —2@0'(¢c) - C(c) =0, (16)

and B'(c) # 0.

4.2. (14), (15), (16),
B'(c) =0, a7

and g—"fB”’(c)— D"(c)—C'(c) # 0.
5. s = s if some of the following three cases hold

5.1. (14), (15), (16), (17),

g—/{B’”(c) —®"(c)-C'(c) = 0, (18)

and O(c) # 0.

5.2, (14), (15), (16), (17), (18),
d(c) = 0, (19)

and C(c) — MB”(c) # 0.



5.3.

6. 5=

6.1.

6.2.

6.3.

7. 5=5-

7.1.

7.2.

7.3.

7.4.

(14). (15), (16), (17), (18), (19),

C(c)-MB"(c)=0
and 2BD(c) - L@ (c) - XC"(c) + D(c) # 0.
— 1 if some of the following three cases hold

(14), (15), (16), (17), (18), (19), (20),

M?
41

and ®'(c) # 0.
(14), (15), (16), (17), (18), (19), (20), (21),

M

D'(c)=0
and C'(c) — 3B (c) # 0.
(14), (15), (16), (17), (18), (19), (20), (21), (22),

!’ 2M /17
C'(e)~ 5 B"(e)=0

and 4 B<5>( )= DD (c) - %C(c) + D' (c) # 0.
2 if some of the following four cases hold

(14), (15), (16), (17), (18), (19), (20), (21), (22), (23),

M?
51
and ®”(c) # 0.
(14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24),

M oy - 2 29O - 5C70 + D) =0,

Mm?
51

and B”(c) # 0.

M 55y - M

(14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25),

B’(c)=0

and 1C"'(c) = HLBY(c) # 0.

(14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25), (26),

oM
C"( ) - B =
and 2 BO(c) - LoO(c) - XCcW(e) + 1D"(c) # 0.

10

B9 - 00 - 50+ D(e) = 0,

q><4>( )— c’”(c) +D'(c) =0,0"(c) =0

(20)

ey

(22)

(23)

(24)

(25)

(26)

27



8. s = 5 — 3 if some of the following four cases hold
8.1. (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25), (26), (27),

Mm?
6!

and @ (c) # 0.

8.2. (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25), (26), (27),
(28),

—B9c) - q><5>( ) - 'C(4)(c) + %D”(c) =0 (28)

"(c) =0, (29)

and B (c) # 0.
8.3. (14),(15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25), (26), (27),
(28), (29),
B"(c) =0, (30)
and 3C""(c) — 2B (c) £ 0.
8.4. (14),(15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25), (26), (27),
(28), (29), (30),

3@m-ﬂwm— a1)

and %-BV(c) - Lo©(c) - XCO(c) + LD (c) # 0.

9.5 =s5-=3if(14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25),
(26), (27), (28), (29), (30), (31), and

M ey - 2M gy - ®@+;Vﬁﬁa (32)

10. s = s =4 if (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (24), (25),
(26), (27), (28), (29), (30), (31), and

Mm?

73“0 Md%) d%a+ U%@ (33)

Proof. In a general way, S@=S (u)(z) fulfils the equation (10), with s < s+ 4. Notice
that if B(c) # O then's = s + 4.
In the sequel, we will use the following notation. If Tj(z) is a polynomial of de-
gree k, ¢ a real number, and £ a non negative integer number, then T ;(z) will be the
polynomial such that

Tex(@) = (2= OTesn1(2) + 12,
with the initial condition T o(z) = T(2).
If B(c) = 0 holds, then in (10) we can divide by z — ¢, and

(z—c)P®S’ = (z-c¢)’BS*+ ((z —oPC-2M(z - c)B)§
+(M*Bey = 2M® - M(z - )C + (z - ¢)’D),

11



thus s < s + 3. In particular, if MB, 1(c) —2®(c) # 0, s = s + 3.
If MB.  (c) —2®(c) = 0, then MB’(c) — 2®(c) = 0. Dividing by (z — ¢) in the above
expression, we get

(z— DS’ = (z—¢)*BS? + ((z —¢)’C - ZMB) S

+(M?Bep - 2M®,y - MC + (2 - ¢)*D). (34)

and then s < s + 2. In particular if MB.(c) —2®.1(c) — C(c) # O then's = s + 2.
If MB.»(c) — 2@, 1(c) — C(c) = 0, then %MB"(C) —2d'(c) — C(c) = 0. Dividing by
(z—c¢)in (34),

(z—)®S’ =(z—¢)BS? + ((z—¢)C - 2MB,,)S

+(M?Bes - 2M® 5 - MCy + (z - ©)D), 35)

thus s < s + 1. In particular if B’(c) = Othen’s = s + 1.
If B.1(c) = 0and MB.3(c) —2®.2(c) — C.1(c) # 0, then s = s+ 1. If B'(c) = 0and
%B”’(c)— " (c) — C’(c) = 0, once again, we can divide by (z — ¢), in (35),

®S’ = BS? + (C —2MB.,)S + (MZBL.A —2M® 35— MC., + D),

then s < s. Assume ®(c) # 0. Then the above equation cannot be simplified. If
either ®(c) = 0 and B(c) # 0, or if ®(c) = 0, B(c) = 0 and C(c) — 2MB.»(c) # 0 or if
®(c) = B(c) = 0 = C(c)-2MB,5(c) = 0 but M*B, 4(c) —2M® . 3(c)— MC 5(c)+D # 0
we cannot simplify.

Now, if the following four conditions hold

1. ®(c) =0,
2. B(c) =0,
3. C(c) —2MB,_(c) = 0, or equivalently, C(c) - MB”(c) = 0,

4. M2B4(c) = 2M®D,3(c) — MC.(c) + D(c) = 0, or equivalently, % B®(c) -
H(c) - 2C"(e) + D(c) = 0,

then
D1 S = BeyS? + (Coy = 2MB3) S + (M?Bs = 2M®cy = MC3 + Dy ).

This means that’s < s— 1. Thus if at least one of the above conditions does not hold
and @’(c) = 0, then we cannot simplify and s = .
Again, if the following four conditions are satisfied

1. .1(c) =0,ie. D (c) =0,
2. B.i(c) =0,1ie. B'(c) =0,
3. C.i(c) —2MB.3(c) =0,i.e. C'(c) - %#B"’(C) =0,

12



4. M?B.5(c) — 2M® . 4(c) — MC.3(c) + D.1(c) = 0, i.e. "g—fBG)(c) - MpD(c) -
Ye(e)+ D'(e) =0,

then
D28 = BepS® + (Cop = 2MBe4) S + (M?Beg = 2M®es — MCey + D),

which means that s < s — 2. In particular, if one the above conditions does not hold
then the class is s — 1.
If the following conditions are satisfied

L. @c(c) =0,ie. O(c) = 0.
2. B.a(c) =0,1e. B"(c) =0,
3. Cea(c) =2MBes(c) = 0ie. 3C”(c) — ZLBY(c) = 0,

4. M2B,6(c) — 2M®D,5(c) — MC,4(c) + Dea(c) = 0 ie. X BO(c) — M p0)(c) —
YW () + 1D"(c) = 0,

then
D38 = Be3S? + (Coz — 2MB.5) S + (M?Beg = 2M®eg — MCe5 + D),

which means that’s < s — 3. In particular, if one of the above conditions does not
hold the class is s — 2.
Finally, if the following conditions are satisfied

1. ®3(c) =0ie. ' (c) =0
2. B.s(c)=0ie. B”(c) =0,
3. Cea(c) =2MB.5(c) = 0i.e. 3;,C”(c) - 2LBY(c) = 0,

4. M?B.7(c)=2M®,g(c)—MC,5(c)+D.3(c) i.e. —"74,2 BD(c)-2LpO(c)- U CO (o) +
ID/// _ ’ ’ ’
i (C) - O,

then
O 4S" = BoyS> +(Coy —2MB,g) S + (MZBL.,8 —2M®.7 — MC.p + Dc,4),

which means that s = s — 4. If one of the above conditions does not hold s = s — 3.
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4.2 Examples

In the next examples we will describe the equation that 7 = u'" + M&’, satisfies when
u' is the associated functional of the first kind for the classical orthogonal polynomials
(Hermite, Laguerre and Jacobi). We also find the Riccati equation that the correspond-
ing Stieltjes function §(z) = S (u)(z), satisfies.

Because p'! is a Laguerre-Hahn functional of class s = 0 (see [6] and [8]), the cor-
responding Stieltjes function satisfies the Riccati differential equation (5). The polyno-
mials ®, ¥, B, C, and D are listed in Table 1.

H(l) La,(l) Pa’ﬁ’(l)
D(z) | 1 z Z -1
0,’2 _BZ
Y@ |2z |z-a-3 —(a+ﬁ+4)z—m
4 I 1 I
B(z) | -1 | —a-1 @+ DB+ D@+p+1)
(@+B+3)(a+L+2)?
02 _,82
Cl) | -2z | —z+a+2 (a+ﬁ+2)z—m
D) | -2 | -1 a+B+3
Table 1

According to Definition (2),

4.2.1 Hermite polynomials
In this case B(c) = —1 # 0 and u fulfils the equation
D [(x - c)4ﬁ] +2(x—c)? ((x —¢)P’x—-N-2(x- c))]I— (x-o)* (x_'ﬁz) =0.

The class s of the linear functional i is s = 4. Furthermore S(z) satisfies the Riccati
equation

(z=0)'S" = ~(z=0)*S742(z=0)* (=22 = ¢ + N) S+(-N* = 2N(z = ¢ + 22(z = ) = 2z = ©)*).

4.2.2 Laguerre polynomials
B(c) = —a — 1 # 0 and y fulfils the equation
D [x(x - c)4ﬁ] + (x—=c¢) ((x —a-3)x—¢=2N(a+1) - 4x(x - c)),TI
- (@+ Dx-o*(x'P) =0.

The class of the linear functional i is s = 4. Furthermore §(z) satisfies the Riccati
equation.

2z —0)*S" = —(a + 1)(z-¢)*S? (36)
+z- ) (2N@+ 1)+ (-z+ @+ 2z - )’)S
+(-N(@+1)=2Nzz - 0) - N(~z+ @ + 2)(z - ¢)* = (z - ¢)*).

14



4.2.3 Jacobi polynomials

B(c) # 0, because when a + 8+ 1 = 0 we get a semiclassical case. Therefore s = 4. On
the other hand, S satisfies, _
z-o*Z-1S =

(z-o*

4a+ DB+ D(a+B+ 1)§2+(z—c)2(—2N4(a+ DB+ D(@+p+ 1)+
(@ +B+3)a+pB+2) (@+B+3)(a+p+2)?
2 _ @2\ _
+(Z—C)2((a+,8+2)z— %))S +

(a+ DB+ Da+p+1)
(@+B+3)a+pB+2)>

2 _ 2
@ =P )+(Z—c)4(a+ﬁ+3)),

a+pB+2

+ (—2N(Z2 —-D(z—-c)+ N24
~N@z—-c) ((a +B+2)z—

and y satisfies the distributional equation

a,2_ﬁ2
D [(x=o*(? = D] + (x = o) ((—(a/ + B+ Dx + Y
(a+ DB+ D@+p+1) 2 —
N T+ @rprap  Hxmow _1))‘”
(a+ DB+ D@+p+1) (x’1~2) ~0
@+B+3)atpr2p & HITE

)(x—C)2

4(x — c)4

5 Some results on perturbed first kind associated La-
guerre polynomials by the derivative of a Dirac Delta.

In this section we deal with the first order associated Laguerre polynomials (L,f)(') (x) =
L,(a, 1, x). These polynomials satisfy the following fourth order linear differential
equation (see [11] ).

L™ (@, 1,x) + 5xL) (@, 1, %) + (—x2 +2n+a+3)x—a*+ 4) L (a,1,x) (37)
+3(—x+a+n+3)L, (@, 1,x)+(n+3)n+ DLyy(e,1,x) =0, n>0.

They are orthogonal with respect to the linear functional g, (see [5]).

Gupty = [ L (38)
0 |‘}’(a, 1-a, xe"”)|

where

15



N @y
i),
(@, = ala+1)---(a+n-1), (a) =1.

Y(a,b, x) 1+

The orthogonality relation for monic polynomials becomes

« Ln s 1» Lm ’ 17 @ —Xd
f (@ 1, )Ln(@ 1, )~  E —T@+n+ 2+ Dl (39)
0 |‘I’(a, 1-a, xe"”')i
Also the following structure relation holds
xLy(a,1,x) = =(n + 2)Ly(a, 1, %) = Lys1(a, 1, %) + Lyy1(@, 0, x) (40

where L,(a, 0, x) will denote the classical Laguerre polynomials.
The first kind associated polynomials for the classical Laguerre polynomials can be
represented in terms of hypergeometric series

La(@, 1, %) = (=1)"(n+1))(@+2), % sFak—nla+lia+k+2,k+2:1),
24 2)la + 2

where

o (@D)K(a)ks ey (@) X

nFm(l’Cl ,...7an;b ’b 7""bm;x)= K
( 1,42 1,02 — (bl)k(bz)ks E) (bm)k k!

(see [4] and [5]).
The polynomials {L,(e, 1, x)},5o satisfy the Christoffel-Darboux formula,

i Lm(a7 l,x)Lm(a', 1’)’) _ 1 Ln(a,7 1’ X)Ln_l(a’, 1,)’) - Ln_]((Y, 1’ X)Ln(a, 1,}’)
mzo(m+l)!F(a+m+2)_x—y nla+n+1) ’

Now we consider i = u + M§... Thus

1, p(0)) = (u, p(x)y = Mp'(c). (41)

We denote L,(a, 1, M, x) the monic polynomials which are orthogonal with respect
to ii. Thus

Proposition 5 For everyn € N,
Ly(a,1,M, x) = R(x;a,n, M, c)L,(a, 1, x) = S (x;@,n, M, c)L,-1(, 1, X) (42)

where
R(x;a,n,M,c) =

16



MB(a,n,M,c)L,_(a,1,c) MA(a,n,M,c)L,_1(a,1,c)
B D(a,n,M,c)(x—c)I'(@ +n+ 1)n! B D(a,n, M, c)(x — ¢)*T(a + n + Dn!
MA(a,n, M, o)L, _,(a,1,0)
" D(a,n,M,c)(x—o)l(@+n+ Dn!’

Sx;a,n,M,c) =

MB(a,n, M, c)L,(a,1,c) MA(a,n, M, c)L,(a,1,c)
D(a,n,M,c)(x—c)T(a+n+ Dn!  D(a,n,M,c)(x—c)*T(a+n+ Dn!
N MA(a,n, M, c)L;(a,1,c)

D(a,n,M,c)(x —o)(@ +n+ Dn!’

L’(a,1,c)L,_1(a,1,¢) = L (a,1,¢)L,_1(a,1,c
Al M) = Lyal,0(l-M (@1 Obe 1.6 ~ L (@ 1, Ol (@ 1,0)
2l (@ + n+ n!
L(a,1,0)L,—i(a,1,¢) - L . (a,1,c)L,(a,1,c
M n( W1 ( ) - L\ ( YL ( )L;(a’]’c)’
I'(a+n+ n!
L (a,1,0)Ly-1(a, 1,0) = L \(a, 1,0)Ly-1(a, 1,0)\ ,
B(a,n,M,c) = (I—M 2F(a+n4n—i)n' Ll (a,1,0)
+ M (L (@1, 0)Lyr (e 1,0) = LY (e, 1,0)La(a 1, €)
1~ a,l,c n— a,l,c)— qla, 1, c n a,l,c
6C(a+n+ Dnl V" ! n-l
+3 (L. 1,0L,_ (. 1,0) - L (@, 1, o)L (e, 1,0))) Ly(a. 1, 0),
L;,[(O(, 1’ C)Ln—l ((Y, 17 C) - L;l/_l(a,a 1’ C)LI’L—] (CZ, 1’ C) 2
Da,n, M,¢) = (I_M W(a+n+ n!

Li(a,1,0)Ly1(a, 1,0) = L) _ (e, 1,¢)La(a, 1,0)
- X
I'a+n+ Dn!

M2
6l'(a +n+ 1)n!
+3(L(@. 1oL, (a,1,0) - L (. 1,0)L} (e, 1,0))) Lu(e, 1, ).

(Lﬁ,"(a, LoLy(a, 1,0) = L (e, 1, 0)Ly(a, 1,0)

Proof. We consider the Fourier expansion

n—1
Lu(@, 1, M%) = Ly(@, 1,0 + ) anelil@, 1, %),
k=0

where

<IJ9 Ln(a', 1’ M7 X)Lk(a, 1’ X)>
I Le(er, 1, ) '

Ank =

In order to find the coefficients a, x, we can use the orthogonality of polynomials
L,(a, 1, M, x) with respect to 1. i.e.,

W, Ly(a, 1, M, x)Li(a, 1, x)) =0, 0<k<n-1.
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From (41)

W, Ly(a, 1, M, ) Li(a, 1, %)) = {(u,Ly(a,1, M, x)Li(a, 1, x))
-ML)(a,1,M,c)Ly(a, 1,¢) - ML,(a, 1, M, c)L;(a, 1,¢)
and, as a consequence,

ML (a,1,M,c)Li(a, 1,¢) + MLy(a, 1, M, c)L;(a, 1,¢)
ILx(@, 1, 21, '

Apk =

Thus

n—1
p Li(a, 1, o) Li(a, 1, x)
L(a,1,M,x) = Lya,1,x)+ML,(a,1,M,c)
g;na+k+mw+1ﬂ

& Li(e, 1, 0L, 1,x)

ML, (e, 1, M, .
tML(@ c)kZ:(;F(a+k+2)(k+l)!

Using the notation

& Li(e, 1, x)Li(e, 1, y)

K,(x,y) =
= (a1, x)”i(l)
6j+k (K (x, }’)) (j.k)
“anay - K

we get

Lu(a, 1, M, x) = Ly(a, 1,x) + ML, (a, 1, M, ©)K,—1(x,¢) + MLy(a, 1, M, 0)K"*(x, ),

and we have the following system of linear equations

(1 - MK, c)) Lu(a,1,M,¢) — MK,_i(c,c)L(a,1,M,¢) = Ly(a, 1,0),
MKV (e, e)Ly(a, 1, M, c) + (1 - MK (c, c)) Li(a,1,M,¢) = L(a, 1,¢).
(43)
In order to find L,(a, 1, M,c) and L, (a, 1, M, c) we will need the values, K,(c, ¢),
K’(i’:)(c, ¢), and Kfll_’})(c, c).
Using the Christoffel-Darboux formula we get

18



1 Ln(a" 1’ x)Ln—l (a" 1’ C) - Ln—l (CY, 15 x)Ln(a/, 19 C)

Ko = x—c I'(a +n+ 1)n!
K((ﬂ)(x, o = 1 L,(a,1,x)L,_(a,1,¢)— L,_i(a, 1, x)L,(a, 1,¢)
" (x—c)? I'(a+n+ n!
1 Lia,1,0)L_(a,1,0) = Ly1(a,1,x)L;(a, 1,¢)
+(x—c) I'(a+n+ Dn! ’
K(l’:)(x, 0 = -2 Lya,1,x)L,_1(a,1,¢) — L,_1(a, 1, x)L,(a, 1,¢)
"= (x-c)? I'(@+n+ 1)n!
1 La,1,0)L,1(a, 1,0) = L _ (@, 1,0)L,(a, 1,¢)
(x —¢)? I(a+n+ n!
1 Lia,1,x)L,_(a,1,¢) = Ly1(a, 1,0)L(a, 1,¢)
C(x—c)? T(a +n+ Dn!
1 Lo, 1,0)L _[(a,1,¢)-L _(a,1,x)L(a,1,c)
(x=o¢) I'a+n+1n! '

As a consequence,

Li(a,1,0)Ly1(a, 1,0) = L, _ (@, 1,0)Ly(a, 1,¢)
I'la+n+ Dn! ’

Ky-1(c,¢) = im K,y (x, ¢) =

Ko = Ko =1mKx0o)
L/(a,1,0)Ly-1(a, 1,0) = L (@, 1,0)Ly-1(a, 1, ¢)
B 2M(e +n + Dn! ’

and

K\, o) = (L (@ 1, o)Lyoy(@. 1, 0) = LY (@, 1, 0)Ly(a, 1,0)

6I'(a +n+ Dn!
+3 (L@ 1, 0L, (. 1,0) - L/ (e, 1, o)L} (e 1,0))).

From (43) we get
A M.
LialMe = SanMo)
D(a,n, M, c)
B(a,n, M,
L@, Me = B@nMo
D(a,n, M, c)
Therefore

Ln(as 19 Ms x) = R(x; as n’ Ms C)Ln(a» 19 x) - S(-x; as n7 Ms C)Ln—l(a', 1, -x)s
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We will like to show how we could find some particular expressions of (42). When
¢ = 0, we need to calculate, L,(e, 1,0), L/ (a, 1,0), L/ (a, 1,0), and L, (e, 1,0). Using
the structure relation (40) evaluated in ¢ = 0, in the cases of n = 0 and n = 1, we get
two expressions from which we obtain

Ly(a,1,0) = a — 3a; + 2.3,

where a; = Li(a, 1,0), a; = Ly(a, 1,0). We suppose that

1D + Dla,
L(alO)—Z( (l(f;r_l; £, (44)

with a, = L,(a, 1,0), n € N. From (40), we get

(n+2)Ly(a,1,0) + Ly (@, 1,0) = @y,

then, from (44) we obtain

Ln+1 (O,’, 1’ 0)

S (= Dfm+ Dlayy
%H—m+m§]—617;57—

Z (=D + 2)ay—k
n+1-k)!

(=D + 2)ape1 s
1 _Z n+2-h)

5 (DA + 2) a1
n+2-k! °

k=1

therefore the expression (44) holds.
If we take derivatives three times (42), and evaluate each one of the derivatives in
¢ = 0 then, we get the following expressions

(n+3)L,(a,1,0)+ L, (a,1,0) L, (a,1,0),

(n+4L (@, 1,00+ L, (2, 1,0) = L, (a.1,0),
(n+5)L(@,1,0)+ L" (a,1,0) L (@, 1,0).

Applying the same method that we use in order to prove (44) in each one of the previous
equations we obtain
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Proposition 6 For everyn € N,

S (-D)n+ DIT(n+a+1-k)

Ln(e, 1,0) = LT aHl-RTae+ D) @)

L@1.0) = :z:;(‘”"_“ﬁi e o

@10 = g(_l)n(mi:(fs_ ey @

L@ 1,0) = k: Shil T
References

[1] J. Alaya, Quelques résultats nouveaux dans la théorie des polynomes de
Laguerre-Hahn., These de Doctorat, Université de Tunis II. (1996)

[2] R. Alvarez-Nodarse, J. Arvesu and F. Marcellan, A generalization of the classical
Laguerre polynomials, Rend.Circ.Mat. Palermo Serie 2, 44 (1995), 315-329.

[3] R. Alvarez-Nodarse and F. Marcellan, A generalization of the classical Laguerre
polynomials: Asymptotic properties and Zeros, Appl. Anal, 62 (1996), 349-366.

[4] R. Askey, Orthogonal Polynomials and Special Functions, Reg. Conf. in Appl.
Math, 21. STIAM, Philadelphia, (1975).

[5] R. Askey and J. Wimp, Associated Laguerre and Hermite polynomials, Proc. of
Roy. Soc. Edin, 96 (1984), 15-37.

[6] S. Belmehdi and F. Marcellan, Orthogonal polynomials associated with some
modifications of a linear functional, Appl. Anal. 46 (1992), 1-24.

[7] H. Bouakkaz, Les polynomes orthogonaux de Laguerre-Hahn de classe zéro,
These Troisieme Cycle. Université Pierre et Marie Curie, Paris (1990).

[8] H. Bouakkaz and P. Maroni, Description des polynomes orthogonaux de
Laguerre-Hahn de classe zéro, In Orthogonal Polynomials and their Applications,
C. Brezinski et al editors, IMACS Ann. Comput. Appl. Math. 9. J.C Baltzer AG,
Basel (1991), 189-194.

[9] E. Buendia, J. Dehesa and F. Galvez The distribution of zeros of the polynomial
eigenfunctions of ordinary differential operators of arbitrary order, Lect. Notes
in Math. 1329. Springer Verlag. Berlin. (1988), 222-235.

[10] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach,
New York, (1978).

21



(11]

[12]

[13]

[14]

[15]

[16]

J. Dini, Sur les formes linéaires et les polynomes orthogonaux de Laguerre-Hahn,
These Troisieme Cycle. Université Pierre et Marie Curie, Paris (1988).

G. Lopez,Convergence of Padé approximants of Stieltjes type meromorphic func-
tions and comparative asymptotic for orthogonal polynomials, USSR Math.
Sborn. 64 (1989), 207-227.

A. Magnus, Riccati acceleration of the Jacobi continued fractions and Laguerre-
Hahn orthogonal polynomials, In Padé Approximation and its Applications, H.
Werner and H.T Burger editors, Lect. Notes in Math. 1071. Springer Verlag,
Berlin (1984), 213-230.

P. Maroni, Une théorie algébrique des polynomes orthogonaux: Applications aux
polyndémes orthogonaux semi-classiques, In Orthogonal Polynomials and their
Applications. C. Brezinski et al. eds. IMACS Ann. Comp. Appl. Math. 9 J.C
Baltzer AG, Basel (1991), 95-130.

E. Prianes and F. Marcelldn, Orthogonal polynomials and Stieltjes functions:the
Laguerre-Hahn case, Rendi.di Mat. 16 (1996), 117-141.

J. Sherman, On the numerators of the convergents of the Stieltjes continued frac-
tions, Trans. Amer. Math. Soc, 35 (1933), 64-87.

22



