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Abstract. In this manuscript we analyze some linear spectral transformations
of a Hermitian linear functional using the multiplication by some class of
Laurent polynomials. We focus our attention in the behavior of the Verblunsky
parameters of the perturbed linear functional. Some illustrative examples are
pointed out.
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1. Introduction and preliminary results
Let L be a linear functional in the linear space Λ = span {zn}n∈Z of the Laurent
polynomials such that L is Hermitian, i.e. cn = 〈L, zn〉 = 〈L, z−n〉 = c̄−n, n ∈ Z.
Then, we can introduce a bilinear functional associated with L in the linear space
P of polynomials with complex coefficients as follows (see [7],[12])

〈p(z), q(z)〉L =
〈L, p(z)q̄(z−1)

〉
(1.1)

where p, q ∈ P.
In terms of the canonical basis {zn}n�0 of P, the Gram matrix associated

with this bilinear functional is

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

c0 c−1 · · · c−n · · ·
c1 c0 · · · c−(n−1) · · ·
...

...
. . .

...
cn cn−1 · · · c0 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(1.2)
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i.e., a Toeplitz matrix [10].
The linear functional is said to be quasi-definite if the principal leading sub-

matrices of T are non-singular. In this case, a unique sequence of monic polyno-
mials {Φn}n�0 such that

〈Φn, Φm〉L = knδn,m, (1.3)

can be introduced, where kn �= 0 for every n � 0. It is said to be the monic
orthogonal polynomial sequence associated with L.

These polynomials satisfy the following recurrence relations (see [7], [10], [17],
[19])

Φn+1(z) = zΦn(z) + Φn+1(0)Φ∗
n(z), n = 0, 1, 2, . . . (1.4)

Φ∗
n+1(z) = Φ∗

n(z) + Φn+1(0)zΦn(z), n = 0, 1, 2, . . . (1.5)

Here Φ∗
n(z) = znΦn(1/z) is the reversed polynomial associated with Φn(z) (see

[17]), and the complex numbers {Φn(0)}n�1, with |Φn(0)| �= 1, n � 1, are called
reflection (or Verblunsky) parameters.

Kn(z, y), the n-th reproducing kernel associated with {Φn}n�0, is defined by

Kn(x, y) =
n∑

j=0

Φj(y)Φj(x)
kj

=
Φ∗

n+1(y)Φ∗
n+1(x) − Φn+1(y)Φn+1(x)
kn+1(1 − ȳx)

.

Notice that
Φ∗

n(z) = knKn(z, 0).

Moreover,

K∗
n(x, y) :=

1
kn+1

Φn+1(x)Φ∗
n+1(y) − Φ∗

n+1(x)Φn+1(y)
x − y

,

i.e. this is the Bézoutian of Φn+1, Φ∗
n+1 up to a constant factor.

On the other hand, from the recurrence relations we deduce

zΦn(z) =
n+1∑
j=0

λn,jΦj(z), (1.6)

with

λn,j =

⎧⎪⎨
⎪⎩

1 if j = n + 1,
kn

kj
Φn+1(0)Φj(0) if j � n,

0 otherwise,
(1.7)

(see [13],[17]). Thus, the matrix representation of the linear operator h : P �→ P,
the multiplication by z, in terms of the basis {Φn}n�0 is

zΦ(z) = HΦΦ(z),

where Φ(z) = [Φ0(z), Φ1(z), . . . ,Φn(z), . . .]t and HΦ is a lower Hessenberg matrix
with entries λn,k defined in (1.7).



         

If the leading principal submatrices of T have a positive determinant, then
the linear functional is said to be positive definite. Every positive definite linear
functional has an integral representation

〈L, p(z)〉 =
∫
T

p(z)dσ(z), (1.8)

where σ is a nontrivial probability Borel measure supported on the unit circle
T = {z ∈ C : |z| = 1} (see [7],[10],[12],[17]).

Then, there exists a sequence {ϕn}n�0 of orthonormal polynomials

ϕn(z) = κnzn + . . . , κn > 0,

such that ∫ π

−π

ϕn(eiθ)ϕm(eiθ)dσ(θ) = δm,n, m, n � 0. (1.9)

Notice that
Φn(z) =

ϕn(z)
κn

,

as well as |Φn(0)| < 1 for every n � 1.
It is well known that if σ is a nontrivial probability measure supported on

the unit circle, then there exists a unique sequence of Verblunsky parameters
{Φn(0)}n�1 associated with σ. The converse is also true, i.e., given a sequence
of complex numbers {an}n�1, with an ∈ D, there exists a nontrivial probability
measure on the unit circle such that if {Φn}n�0 is the corresponding sequence of
monic orthogonal polynomials then an = Φn(0).

The family of Verblunsky parameters provides a quantitative information
about the measure and the corresponding sequence of orthogonal polynomials.

The measure σ can be decomposed into a part that is absolutely continuous
with respect to the Lebesgue measure dθ

2π and a singular measure. Thus, if ω = σ′

dσ(θ) = ω(θ)
dθ

2π
+ dσs(θ).

Definition 1.1 ([17],[19]). Suppose the Szegő condition,∫
T

log(ω(θ))
dθ

2π
> −∞, (1.10)

holds. Then, the Szegő function, D(z), is defined in D by

D(z) = exp
(

1
4π

∫
eiθ + z

eiθ − z
log(ω(θ))dθ

)
. (1.11)

The Szegő condition (1.10) is equivalent to
∑∞

n=0 |Φn(0)|2 < ∞. On the other
hand, the measure σ is said to be of bounded variation if

∞∑
n=0

|Φn+1(0) − Φn(0)| < ∞

holds.



        

Finally, in terms of the moments {cn}n�0 an analytic function

F (z) = c0 + 2
∞∑

n=1

c−nzn (1.12)

can be introduced. If L is a positive definite linear functional, then F (z) is analytic
in the open unit disk and Re (F (z)) > 0 therein. In such a case F (z) is said to be
a Carathéodory function and it can be represented as a Riesz-Herglotz transform
of the nontrivial probability measure σ introduced in (1.8) (see [7],[12],[17])

F (z) =
∫
T

w + z

w − z
dσ(w).

Following are some perturbations of the measure σ, for which we have studied
the behavior of the corresponding Carathéodory functions (see [15]) as well as the
Hessenberg matrices associated with the corresponding sequence of orthogonal
polynomials in three cases
(i) If dσ̃ = |z − α|2dσ, |z| = 1, then the so-called canonical Christoffel trans-

formation appears. In [4] and [16] we have studied the connection between
the associated Hessenberg matrices using the QR factorization. The iteration
of the canonical Christoffel transformation has been analyzed in [8],[11], and
[14]. See also [2] for a more general framework.

(ii) If dσ̃ = dσ + mδ(z − α), |α| = 1, m ∈ R+, then the so-called canonical
Uvarov transformation appears. In [4] and [15] we have studied the connection
between the corresponding sequences of monic orthogonal polynomials as well
as the associated Hessenberg matrices using the LU and QR factorization.
The iteration of the canonical Uvarov transformation has been studied in [7]
and [14]. Asymptotic properties for the corresponding sequences of orthogonal
polynomials have been studied in [20].

(iii) If dσ̃ = 1
|z−α|2 dσ + mδ(z − α) + m̄δ(z − ᾱ−1), |z| = 1, m ∈ C, and |α| �= 1,

then a special case of the Geronimus transform has been analyzed in [5].
In particular, the relation between the corresponding sequences of monic
orthogonal polynomials and the associated Hessenberg matrices is stated. A
more general framework is presented in [9].

Notice that the above transformations constitute the analogue on the unit circle
of the canonical linear spectral transforms on the real line (see [1] and [21]).

The aim of our contribution is to analyze a new perturbation of a Hermitian
linear functional L, such that the Christoffel transformation is a particular case.

In Section 2, we introduce two perturbations of L by using the left multi-
plication by the real and imaginary part of a complex polynomial, respectively.
Necessary and sufficient conditions on order to preserve the quasi-definiteness of a
linear functional under such perturbations are known in the literature (see [3] and
[18]). We also determine the relation between the associated Hessenberg matri-
ces. In Section 3 we prove that these perturbations belong to the family of linear
spectral transformations. In Section 4, we deduce the explicit expression for the



         

Verblunsky parameters associated with these perturbations and, as a consequence,
the invariance of the Szegő class of bounded variation measures follows. Finally,
in Section 5 we show some illustrative examples.

2. Transformations LR = 1
2Re[Pn(z)]L and LI = 1

2i
Im[Pn(z)]L

Let consider the following transformations of a hermitian linear functional L.

Definition 2.1. Given a hermitian linear functional L and a monic polynomial

Pn(z) =
n∑

i=0

αiz
i, αn = 1, we will denote by LR and LI the linear functionals such

that

(i) 〈LR, q〉 =
〈L, 1

2 (Pn(z) + P̄n(z−1))q
〉
,

(ii) 〈LI , q〉 =
〈L, 1

2i (Pn(z) − P̄n(z−1))q
〉
.

Notice that LR and LI are also hermitian. If L is quasi-definite, necessary and
sufficient conditions for LR and LI to be also quasi-definite have been studied in
[3] and [18], when P1(z) = z − α. Moreover, explicit expressions for the sequences
of monic polynomials orthogonal with respect to LR and LI in terms of {Φn}n�0

are also shown. Indeed,

Proposition 2.2 ([18]).

(i) If |Re(α)| �= 1, and b1, b2 are the zeros of the polynomial z2 − (α + ᾱ)z + 1,
then LR is quasi-definite if and only if K∗

n(b1, b2) �= 0, n � 0. In addition, if
{Yn}n�0 denotes the sequence of monic polynomials orthogonal with respect
to LR, then

Yn−1(z) =
Φn(z)K∗

n−1(b1, b2) − K∗
n−1(z, b2)Φn(b1)

K∗
n−1(b1, b2)(z − b1)

, n � 1, (2.1)

and

Yn−1(0) =
Φn(b1)Φn−1(b2) − Φn(b2)Φn−1(b1)

K∗
n−1(b1, b2)(b1 − b2)kn−1

, n � 1. (2.2)

(ii) If |Re(α)| = 1, and b is the double zero of the polynomial z2 − (α + ᾱ)z + 1,
then LR is quasi-definite if and only if K∗

n(b, b) �= 0, n � 0. In addition,

Yn−1(z) =
Φn(z)K∗

n−1(b, b) − K∗
n−1(z, b)Φn(b)

K∗
n−1(b, b)(z − b)

, n � 1, (2.3)

and

Yn−1(0) = −b
Φn(0)K∗

n−1(b, b)kn−1 − Φn−1(b)Φn(b)
K∗

n−1(b, b)kn−1
, n � 1. (2.4)



        

Proposition 2.3 ([18]).

(i) If |Im(α)| �= 1, and b̃1, b̃2 are the zeros of the equation z2 + (ᾱ − α)z − 1,
then LI is quasi-definite if and only if K∗

n(b̃1, b̃2) �= 0, n � 0. In addition, if
{yn}n�0 denotes the sequence of monic polynomials orthogonal with respect
to LI , then

yn−1(z) =
Φn(z)K∗

n−1(b̃1, b̃2) − K∗
n−1(z, b̃2)Φn(b̃1)

K∗
n−1(b̃1, b̃2)(z − b̃1)

, n � 1, (2.5)

and

yn−1(0) =
Φn(b̃1)Φn−1(b̃2) − Φn(b̃2)Φn−1(b̃1)

K∗
n−1(b̃1, b̃2)(b̃1 − b̃2)kn−1

, n � 1. (2.6)

(ii) If |Im(α)| = 1, and b̃ is the double zero of the equation z2 + (ᾱ−α)z − 1, LI

is quasi-definite if and only if K∗
n(b̃, b̃) �= 0, n � 0. In addition,

yn−1(z) =
Φn(z)K∗

n−1(b̃, b̃) − K∗
n−1(z, b̃)Φn(b̃)

K∗
n−1(b̃, b̃)(z − b̃)

, n � 1, (2.7)

and

yn−1(0) = b̃
Φn(0)K∗

n−1(b̃, b̃)kn−1 − Φn−1(b̃)Φn(b̃)

K∗
n−1(b̃, b̃)kn−1

, n � 1. (2.8)

Notice that, if α = a+ci, then b1 = a+
√

a2 − 1 and b2 = b−1
1 = a−√

a2 − 1,
as well as b̃1 =

√
1 − c2 + ci and b̃2 = −b̃−1

1 .
There is another equivalent condition for the quasi-definiteness of LR and LI

and, as a consequence, an expression for the corresponding families of Verblunsky
coefficients follows

Proposition 2.4 ([3]). The linear functionals LR and LI are quasi-definite if and
only if Πn(b1) �= 0, Πn(b̃1) �= 0, n � 0, respectively, where

Πn(x) =
∣∣∣∣ xΦn(x) Φ∗

n(x)
x−1Φn(x−1) Φ∗

n(x−1)

∣∣∣∣ .
Moreover, the families of Verblunsky parameters {Yn(0)}n�1, {yn(0)}n�1,

associated with LR and LI , respectively, are given by

Yn(0) = (b1 − b−1
1 )

Φn(b1)Φn(b−1
1 )

Πn(b1)
, n � 1 (2.9)

yn(0) = (b̃1 + b̃−1
1 )

Φn(b̃1)Φn(−b̃−1
1 )

Πn(b̃1)
, n � 1. (2.10)

Remark 2.5. We recover the Christoffel transformation when |Re(α)| � 1. This
transformation was studied in [4],[16].



         

Now, we study the relation between the Hessenberg matrix associated with
LR, which will be denoted by HY , and the Hessenberg matrix associated with L.

Assume |α| �= 1. From (2.1),

(z − b1)Yn(z) = Φn+1(z) − Φn+1(b1)
K∗

n(b1, b2)
K∗

n(z, b2)

= Φn+1(z) − Φn+1(b1)
K∗

n(b1, b2)

[
1
kn

zΦn(z)Φ∗
n(b2) − b2Φ∗

n(z)Φn(b2)
z − b2

]

= Φn+1(z) − Φn+1(b1)
knK∗

n(b1, b2)

[
Φn+1(z)Φ∗

n(b2) − Φn+1(b2)Φ∗
n(z)

z − b2

]
.

Thus,

(z − b1)(z − b2)Yn(z)

= (z − b2)Φn+1(z) − Φn+1(b1)Φ∗
n(b2)

knK∗
n(b1, b2)

Φn+1(z)

+
Φn+1(b1)Φn+1(b2)

K∗
n(b1, b2)

n∑
j=0

Φj(0)Φj(z)
kj

= zΦn+1(z) − b2Φn+1(z) − Φn+1(b1)Φ∗
n(b2)

knK∗
n(b1, b2)

Φn+1(z)

+
Φn+1(b1)Φn+1(b2)

K∗
n(b1, b2)

n∑
j=0

Φj(0)Φj(z)
kj

= Φn+2(z) − Φn+2(0)Φ∗
n+1(z) − b2Φn+1(z)

− Φn+1(b1)
knK∗

n(b1, b2)

⎛
⎝Φ∗

n(b2)Φn+1(z) − Φn+1(b2)
n∑

j=0

Φj(0)Φj(z)
kj

⎞
⎠

= Φn+2(z) −
(

b2 + Φn+2(0)Φn+1(0) +
Φn+1(b1)Φ∗

n(b2)
knK∗

n(b1, b2)

)
Φn+1(z)

+
(

Φn+1(b1)Φn+1(b2)
K∗

n(b1, b2)
− Φn+2(0)kn+1

) n∑
j=0

Φj(0)Φj(z)
kj

.

In matrix form the above expression reads

(z − b1)(z − b2)Y (z) = MRΦ(z), (2.11)

where MR is a matrix with entries

m̃n,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = n + 2,

b2 + Φn+2(0)Φn+1(0) + Φn+1(b1)Φ∗
n(b2)

knK∗
n(b1,b2)

if j = n + 1,(
Φn+1(b1)Φn+1(b2)

K∗
n(b1,b2) − Φn+2(0)kn+1

)
Φj(0) if j � n,

0 otherwise.

(2.12)



        

and Y (z) = [Y0(z), Y1(z), . . .]t, Φ(z) = [Φ0(z), Φ1(z), . . .]t. Notice that (2.11) can
also be written as

z[Re{P1(z)}Y (z)] = MRΦ(z). (2.13)
On the other hand, we have zY (z) = HY Y (z), and then from (2.11) we get

(HY − b1I)(HY − b2I)Y (z) = MRΦ(z) = MRLY ΦY (z),

where LY Φ is a lower triangular matrix such that Φ(z) = LY ΦY(z), i.e. a matrix
of change of basis. Therefore,

(HY − b1I)(HY − b2I) = MRLY Φ.

It is not so difficult to show that the entries of LY Φ are

ln,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = n,

− kn

k̃n−1
(Φn+1(0)Yj(0) − 1) if j = n − 1,

−kn

k̃j
Φn+1(0)Yj(0) if j � n − 2,

0 otherwise,

(2.14)

where Yk(0) can be calculated using (2.9) and k̃n−1 = − knK∗
n(b1, b2)

2K∗
n−1(b1, b2)

.

3. Carathéodory functions
Let σ be a nontrivial probability measure supported on the unit circle and consider
the transformation dσ̃ = Re(Pn)dσ, where Pn is some polynomial in z of degree
n. If F (z) is the Carathéodory function associated with σ, we want to find FR(z),
the Carathéodory function associated with σ̃.

Proposition 3.1. Let σ be a nontrivial probability Borel measure supported on the
unit circle. Consider a perturbation to σ defined by dσ̃ = (RePn)dσ, where Pn is a
polynomial on z of degree n, i.e. Pn(z) = zn+α1z

n−1+α2z
n−2+· · ·+αn. Let F (z)

be the Carathéodory function associated with σ. Then, FR(z), the Carathéodory
function associated with σ̃, is a linear spectral transformation of F (z) given by

FR(z) =
[Pn(z) + Pn(1/z)]F (z) + Qn(z) − Qn(1/z)

2

where Qn(z) =
∫ 2π

0

eiθ + z

eiθ − z
[Pn(eiθ) − Pn(z)]dσ.

Proof. We have∫ 2π

0

eiθ + z

eiθ − z
Pn(eiθ)dσ =

∫ 2π

0

eiθ + z

eiθ − z
[Pn(eiθ) − Pn(z)]dσ + Pn(z)F (z)

= Pn(z)F (z) + Qn(z),

where

Qn(z) =
∫ 2π

0

eiθ + z

eiθ − z
[Pn(eiθ) − Pn(z)]dσ.



         

On the other hand,∫ 2π

0

eiθ + z

eiθ − z
Pn(eiθ)dσ =

∫ 2π

0

1
z e−iθ

1
z − e−iθ

[Pn(e−iθ) − Pn(1/z)]dσ + Pn(1/z)F (z)

= Pn(1/z)F (z)− Qn(1/z).

Therefore

FR(z) =
[Pn(z) + Pn(1/z)]F (z) + Qn(z) − Qn(1/z)

2
. (3.1)

�

Remark 3.2. Notice that this result was proved in [3], where (3.1) was obtained
using the relation between the moments associated with L and LR.

4. Verblunsky parameters
In the rest of the manuscript, we assume that σ is a probability measure of the
Szegő class, i.e. (1.10) holds, as well as it is a measure of bounded variation.

Proposition 4.1. The family of Verblunsky parameters {Yn(0)}n�1 can be given in
terms of the family {Φn(0)}n�1 by

Yn(0) = An(b1)Φn+1(0) + Bn(b1), (4.1)

with

An(b1) =
Φn(b−1

1 )Φ∗
n(b1) − Φn(b1)Φ∗

n(b−1
1 )

Φn+1(b1)Φ∗
n(b−1

1 ) − Φn+1(b−1
1 )Φ∗

n(b1)
, (4.2)

Bn(b1) =
Φn+1(b1)Φn(b−1

1 ) − Φn+1(b−1
1 )Φn(b1)

Φn+1(b1)Φ∗
n(b−1

1 ) − Φn+1(b−1
1 )Φ∗

n(b1)
. (4.3)

Proof. From the recurrence relation and (2.9), we have

Yn(0)

=
[Φn+1(b1) − Φn+1(0)Φ∗

n(b1)]Φn(b−1
1 ) − [Φn+1(b−1

1 ) − Φn+1(0)Φ∗
n(b−1

1 )]Φn(b1)
[Φn+1(b1) − Φn+1(0)Φ∗

n(b1)]Φ∗
n(b−1

1 ) − [Φn+1(b−1
1 ) − Φn+1(0)Φ∗

n(b−1
1 )]Φ∗

n(b1)
,

and the result follows by a rearrangement of their terms. �

Now, we study the behavior of An(b1) and Bn(b1) when n → ∞. For |b1| < 1,
the division by Φn+1(b−1

1 ) in the numerator and denominator of An(b1) yields

An(b1) =
[Φn(b−1

1 )Φ∗
n(b1) − Φn(b1)Φ∗

n(b−1
1 )] 1

Φn+1(b
−1
1 )

[Φn+1(b1)Φ∗
n(b−1

1 ) − Φn+1(b−1
1 )Φ∗

n(b1)] 1
Φn+1(b

−1
1 )

,

Thus, when n → ∞, we get

lim
n→∞ An(b1) = − lim

n→∞
b1Φ∗

n(b1)
Φ∗

n(b1)
= −b1,



        

since lim
n→∞

Φn+1(z)
Φn(z)

= z, for z ∈ C � D, and if |b1| < 1, then

lim
n→∞

Φn(b1)Φ∗
n(b−1

1 )
Φn+1(b−1

1 )
= lim

n→∞
Φn(b1)b−n

1 Φn(b̄1)
Φn+1(b−1

1 )
= 0.

In a similar way, for |b1| > 1, dividing by Φn+1(b1) in the numerator and
denominator of An(b1), we obtain lim

n→∞ An(b1) = −b−1
1 .

On the other hand, if |b1| < 1, we get

Bn(b1) =
[Φn+1(b1)Φn(b−1

1 ) − Φn+1(b−1
1 )Φn(b1)]/Φn(b−1

1 )
[Φn+1(b1)Φ∗

n(b−1
1 ) − Φn+1(b−1

1 )Φ∗
n(b1)]/Φn(b−1

1 )
.

Notice than Φn(b−1
1 ) never vanishes if |b1| < 1 and thus the denominator only

vanishes on b1 = ±1. When n → ∞ the numerator of Bn(b1) becomes

lim
n→∞

Φn+1(b1)Φn(b−1
1 ) − Φn+1(b−1

1 )Φn(b1)
Φn(b−1

1 )

= lim
n→∞Φn(b1)

[
Φn+1(b1)
Φn(b1)

− Φn+1(b−1
1 )

Φn(b−1
1 )

]
= (b1 − b−1

1 ) lim
n→∞Φn(b1) = 0.

For the denominator, we have

lim
n→∞

Φn+1(b1)Φ∗
n(b−1

1 ) − Φn+1(b−1
1 )Φ∗

n(b1)
Φn(b−1

1 )
= lim

n→∞[−b−1
1 Φ∗

n(b1)] = −b−1
1 .

In a similar way, when |b1| > 1, dividing the numerator and denominator of
Bn(b1) by Φn(b1) and calculating the limit, we obtain the same result. Therefore,
lim

n→∞ Bn(b1) = 0 for all b1 ∈ R � 0, except for b1 = ±1. As a conclusion, we have
the following result.

Proposition 4.2. Suppose that
∑∞

n=0 |Φn(0)|2 < ∞ and
∑∞

n=0 |Φn+1(0)−Φn(0)| <
∞. Then, for |α| ∈ C � {0, 1,−1},

(i)
∞∑

n=0

|Yn(0)|2 < ∞.

(ii)
∞∑

n=0

|Yn+1(0) − Yn(0)| < ∞.

Remark 4.3. If b1 = ±1, then we get a result proved in [6].



         

5. Examples

5.1. A Bernstein-Szegő case
We study a spectral linear transformation of a Bernstein-Szegő measure given by
dσ̃ = (z − α + z−1 − ᾱ)1−|β|2

|z−β|2
dθ
2π , with α ∈ C � {0, 1,−1} and |β| < 1. It is well

known that

Φn(z) = zn − βzn−1 and Φ∗
n(z) = 1 − β̄z, n � 1.

In this case, the condition for the existence of the sequence of monic orthog-
onal polynomials {Yn}n�0 is

0 �= b1Φn(b1)Φ∗
n(b−1

1 ) − b−1
1 Φn(b−1

1 )Φ∗
n(b1)

= bn
1 (b1 − β)(1 − β̄b−1

1 ) − b−n
1 (b−1

1 − β)(1 − β̄b1),

and thus

b2n
1 �= (b−1

1 − β)(1 − β̄b1)
(b1 − β)(1 − β̄b−1

1 )
=

Φ1(b−1
1 )Φ∗

1(b1)
Φ1(b1)Φ∗

1(b
−1
1 )

.

So we have a quasi-definite case if and only if

ln Φ1(b
−1
1 )Φ∗

1(b1)

Φ1(b1)Φ∗
1(b−1

1 )

2 ln b1
/∈ N.

If β = 0, i.e. a transformation of the Lebesgue measure, then the above
condition becomes

b2n
1 �= 1

b2
1

,

i.e.,
b1 �= e

kπi
n+1 , 1 � k � n.

Next, we obtain the expression for the family of Verblunsky parameters as-
sociated with the perturbed linear functional. From (4.2),

An(b1) =
b−n+1
1 (b−1

1 − β)(1 − β̄b1) − bn−1
1 (b1 − β)(1 − β̄b−1

1 )
bn
1 (b1 − β)(1 − β̄b−1

1 ) − b−n
1 (b−1

1 − β)(1 − β̄b1)

=
b−n+1
1 Φ1(b−1

1 )Φ∗
1(b1) − bn−1

1 Φ1(b1)Φ∗
1(b

−1
1 )

bn
1Φ1(b1)Φ∗

1(b
−1
1 ) − b−n

1 Φ1(b−1
1 )Φ∗

1(b1)

=
b1Φ1(b−1

1 )Φ∗
1(b1) − b2n−1

1 Φ1(b1)Φ∗
1(b

−1
1 )

b2n
1 Φ1(b1)Φ∗

1(b
−1
1 ) − Φ1(b−1

1 )Φ∗
1(b1)

.

Notice that

lim
n→∞An(b1) = −b1, |b1| < 1,

lim
n→∞An(b1) = −b−1

1 , |b1| > 1.



        

On the other hand, from (4.3),

Bn(b1) =
bn
1 (b1 − β)b−n+1

1 (b−1
1 − β) − b−n

1 (b−1
1 − β)bn−1

1 (b1 − β)
bn
1 (b1 − β)(1 − β̄b−1

1 ) − b−n
1 (b−1

1 − β)(1 − β̄b1)

=
b1Φ1(b1)Φ1(b−1

1 ) − b−1
1 Φ1(b1)Φ1(b−1

1 )
bn
1Φ1(b1)Φ∗

1(b
−1
1 ) − b−n

1 Φ1(b−1
1 )Φ∗

1(b1)

=
bn
1 (b1 − b−1

1 )Φ1(b1)Φ1(b−1
1 )

b2n
1 Φ1(b1)Φ∗

1(b
−1
1 ) − Φ1(b−1

1 )Φ∗
1(b1)

.

Therefore, for large n, if |b1| < 1, then

Yn(0) = An(b1)Φn+1(0) + Bn(b1) ∼ N1(b1)bn
1 ,

with N1(b1) = − (b1−b−1
1 )Φ1(b1)Φ1(b−1

1 )

Φ1(b−1
1 )Φ∗

1(b1)
.

If |b1| > 1, then

Yn(0) ∼ N2(b1)b−n
1 ,

with N2(b1) = (b1−b−1
1 )Φ1(b1)Φ1(b−1

1 )

Φ1(b1)Φ∗
1(b11)

.
Finally, for β = 0,

An(b1) =
1 − b2n

1

b2n+1
1 − b−1

1

,

Bn(b1) =
bn
1 (b1 − b−1

1 )
b2n+1
1 − b−1

1

.

So, in this case we get the following asymptotic behavior for the Verblunsky
parameters

Yn(0) ∼ bn
1 , |b1| < 1,

Yn(0) ∼ b−n
1 , |b1| > 1.

The behavior of such parameters for some specific values of b1 is shown in
Fig. 1.

5.2. The case dσ̃ = (z − α + z−1 − ᾱ)|z − 1|2 dθ
2π

Now we study a transformation of the measure dσ = |z − 1|2 dθ
2π , z = eiθ (see

[16]). Is is well known that if {Φn}n�0 denotes the sequence of monic polynomials
orthogonal with respect to σ, then

Φn(z) =
1

z − 1

⎛
⎝zn+1 − 1

n + 1

n∑
j=0

zj

⎞
⎠ , n � 1, (5.1)

or, equivalently,

Φ∗
n(z) =

1
1 − z

⎛
⎝1 − 1

n + 1

n∑
j=0

zj+1

⎞
⎠ , n � 1. (5.2)



         

Figure 1

Notice that

Φn(0) =
1

n + 1
, n � 1. (5.3)

Then, the perturbed linear functional is quasi-definite if and only if

b1
1

b1 − 1

⎛
⎝bn+1

1 − 1
n + 1

n∑
j=0

bj
1

⎞
⎠ 1

1 − b−1
1

⎛
⎝1 − 1

n + 1

n∑
j=0

b−j−1
1

⎞
⎠

− b−1
1

1
b−1
1 − 1

⎛
⎝b−n−1

1 − 1
n + 1

n∑
j=0

b−j
1

⎞
⎠ 1

1 − b1

⎛
⎝1 − 1

n + 1

n∑
j=0

bj+1
1

⎞
⎠ �= 0,

bn+2
1 − b−n−2

1 − 1
n + 1

n∑
j=0

bj+1
1 − bn+2

1

n + 1

n∑
j=0

b−j−1
1 +

1
n + 1

n∑
j=0

b−j−1
1

+
b−n−2
1

n + 1

n∑
j=0

bj+1
1 �= 0,

bn+2
1 − b−n−2

1 − 2
n + 1

n∑
j=0

bj+1
1 +

2
n + 1

n∑
j=0

b−j−1
1 �= 0.



        

In other words

b2n+4
1 − 1 − 2bn+2

1 − 2
n + 1

n∑
j=0

bj+1
1 �= 0,

bn+2
1 + 1 − 2b1

n + 1
bn+1
1 − 1
b1 − 1

�= 0,

(n + 1)(b1 − 1)(bn+2
1 + 1) − 2b1(bn+1

1 − 1) �= 0, for every n ∈ N.

On the other hand, from (2.9), the Verblunsky parameters are

Yn(0)

=

(b1 − b−1
1 )

1
b1 − 1

⎛
⎝bn+1

1 − 1
n + 1

n∑
j=0

bj
1

⎞
⎠ 1

b−1
1 − 1

⎛
⎝b−n−1

1 − 1
n + 1

n∑
j=0

b−j
1

⎞
⎠

1
(b1 − 1)(1 − b−1

1 )

⎛
⎝bn+2

1 − b−n−2
1 − 2

n + 1

n∑
j=0

bj+1
1 +

2
n + 1

n∑
j=0

b−j−1
1

⎞
⎠

=

(b−1
1 − b1)

⎛
⎝1 − 1

n + 1

n∑
j=0

bj+1
1 − 1

n + 1

n∑
j=0

b−j−1
1 +

1
(n + 1)2

n∑
j=0

bj
1

n∑
j=0

b−j
1

⎞
⎠

bn+2
1 − b−n−2

1 − 2
n + 1

n∑
j=0

bj+1
1 +

2
n + 1

n∑
j=0

b−j−1
1

=

(b−1
1 − b1)

[
bn+2
1 − b1(bn+2

1 + 1)
n + 1

bn+1
1 − 1
b1 − 1

+
b2
1

(n + 1)2

(
bn+1
1 − 1
b1 − 1

)2
]

b2n+4
1 − 1 − 2b1(bn+2

1 − 1)
n + 1

bn+1
1 − 1
b1 − 1

,

and, therefore, for n large enough, if |b1| < 1

Yn(0) ∼
(b−1

1 − b1)
[

b1

(n + 1)(b1 − 1)
+

b2
1

(n + 1)2(b1 − 1)2

]

−1 − 2b1

(n + 1)(b1 − 1)

∼ (b1 − b−1
1 )

b1

(n + 1)(b1 − 1)
∼ 1

n + 1
.

On the other hand, if |b1| > 1, then

Yn(0) =
(b−1

1 − b1)
[
− 1

(n + 1)(b1 − 1)
+

1
(n + 1)2(b1 − 1)2

]
1 − 2

(n+1)(b1−1)

∼ (b1 − b−1
1 )

1
(n + 1)(b1 − 1)

∼ 1
n + 1

.



         

Finally, we show the behavior of Yn(0) for some specific values of b1 in Fig. 2.

Figure 2
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