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Abstract

This dissertation addresses three complex stochastic and dynamic resource allocation
problems: (i) Admission Control and Routing with Delayed Information, (ii) Dynamic
Product Promotion and Knapsack Problem for Perishable Items, and (iii) Congestion
Control in Routers with Future-Path Information. Since these problems are intractable
for finding an optimal solution at middle and large scale, we instead focus on designing
tractable and well-performing heuristic priority rules.

We model the above problems as the multi-armed restless bandit problems in the
framework of Markov decision processes with special structure. We employ and en-
rich existing results in the literature, which identified a unifying principle to design
dynamic priority index policies based on the Lagrangian relaxation and decomposition
of such problems. This decomposition allows one to consider parametric-optimization
subproblems and, in certain “indexable” cases, to solve them optimally via the marginal
productivity (MP) index. The MP index is then used as a dynamic priority measure to
define heuristic priority rules for the original intractable problems.

For each of the problems considered we perform such a decomposition, identify in-
dexability conditions, and obtain formulae for the MP indices or tractable algorithms
for their computation. The MP indices admit the following priority interpretations in
the three respective problems: (i) undesirability for routing a job to a particular queue,
(ii) promotion necessity of a particular perishable product, and (iii) usefulness of a par-
ticular flow transmission.

Apart from the practical contribution of deriving the heuristic priority rules for the
three intractable problems considered, our main theoretical contributions are the fol-
lowing: (i) a linear-time algorithm for computing MP indices in the admission control
problem with delayed information, matching thus the complexity of the best existing
algorithm under no delays, (ii) a new type of priority index policy based on solving a
(deterministic) knapsack problem, and (iii) a new extension of the existing multi-armed
restless bandit model by incorporating random arrivals of restless bandits.
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Resumen

Esta tesis estudia tres complejos problemas dinámicos y estocásticos de asignación de
recursos: (i) Enrutamiento y control de admisión con información retrasada, (ii) Pro-
moción dinámica de productos y el Problema de la mochila para artı́culos perecederos,
y (iii) Control de congestión en “routers” con información del recorrido futuro. Debido
a que la solución óptima de estos problemas no es asequible computacionalmente a
gran y mediana escala, nos concentramos en cambio en diseñar polı́ticas heurı́sticas de
prioridad que sean computacionalmente tratables y cuyo rendimiento sea cuasi-óptimo.

Modelizamos los problemas arriba mencionados como problemas de “multi-armed
restless bandit” en el marco de procesos de decisión Markovianos con estructura espe-
cial. Empleamos y enriquecemos resultados existentes en la literatura, que constituyen
un principio unificador para el diseño de polı́ticas de ı́ndices de prioridad basadas en la
relajación Lagrangiana y la descomposición de dichos problemas. Esta descomposición
permite considerar subproblemas de optimización paramétrica, y en ciertos casos “in-
dexables”, resolverlos de manera óptima mediante el ı́ndice de productividad marginal
(MP). El ı́ndice MP es usado como medida de prioridad dinámica para definir reglas
heurı́sticas de prioridad para los problemas originales intratables.

Para cada uno de los problemas bajo consideración realizamos tal descomposición,
identificamos las condiciones de indexabilidad, y obtenemos fórmulas para los ı́ndices
MP o algoritmos computacionalmente tratables para su cálculo. Los ı́ndices MP corre-
spondientes a cada uno de estos tres problemas pueden ser interpretados en términos
de prioridades como el nivel de: (i) la penalización de dirigir un trabajo a una cola par-
ticular, (ii) la necesidad de promocionar un cierto artı́culo perecedero, y (iii) la utilidad
de una transmisión de flujo particular.

Además de la contribución práctica de la obtención de reglas heurı́sticas de priori-
dad para los tres problemas analizados, las principales contribuciones teóricas son las
siguientes: (i) un algoritmo lineal en el tiempo para el cómputo de los ı́ndices MP en el
problema de control de admisión con información retrasada, igualando, por lo tanto, la
complejidad del mejor algoritmo existente para el caso sin retrasos, (ii) un nuevo tipo de
polı́tica de ı́ndice de prioridad basada en la resolución de un problema (determinista)

v



de la mochila, y (iii) una nueva extensión del modelo existente de “multi-armed restless
bandit” a través de la incorporación de las llegadas aleatorias de los “restless bandits”.
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Chapter 1

Introduction

Economic decision making under uncertainty is one of the most important challenges
of everyday life. People have developed, based on their beliefs or intuition, ways of or-
dering alternatives by assigning them priorities in order to deal with complex decisions.
Therefore, it is of great practical interest to have a general methodology for designing
tractable priority rules for relevant intractable problems. Moreover, we would like to
be able to identify assumptions under which such priority rules may lead to optimal
decisions, and to provide suboptimality bounds for these heuristics in general.

Typically, any activity requires to invest our effort, time, space, money or another
scarce resource, which is costly to use because of its limited capacity. In order to make a
rational choice, the decision-maker needs to answer two basic questions: Is it worth to
invest the scarce resource in the activity? If so, How much of it should be invested? The
situation often gets more complicated due to availability of several alternative activi-
ties, among which our scarce resource must be distributed. In such a resource allocation
problem, an additional question arises: How to choose the activities to invest in?

In this work we aim to answer the above-mentioned questions by dynamic priority
rules, that is, reconsidering the priority-order of alternatives regularly in time. The need
for dynamic (priority) allocation arises whenever the activities one invests in have any of
the following features: (1) the decision-maker does not have perfect information about
the reward that the activity yields, (2) the reward is known, but subject to a random
factor, (3) the reward is known, but changes over time. Thus, we will deal with those
cases, in which the decision-maker faces a trade-off between exploitation (taking a re-
ward today) and exploration (obtaining a possibly higher reward tomorrow). This is
captured by the restless bandit models we will use in this work.

Analysis of such problems is of both theoretical and practical value. From a prac-
tical point of view, stochastic and dynamic resource allocation problems arise in areas as
diverse as product (R&D) management, marketing, financial economics, optimal con-

1
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sumption planning, telecommunications, engineering systems, medicine, etc., where a
well-reasoned advice is more than needed. Three applications in stochastic scheduling,
marketing, and telecommunications addressed in this work are outlined in Section 1.1.

Stochastic and dynamic resource allocation problems are naturally modeled in the
framework of Markov decision processes (MDPs), which briefly surveys Section 1.2. We
will focus on a particular family of MDPs with special structure, called the multi-armed
restless bandit problems. Section 1.3 describes the key concepts of the restless bandit mod-
els and their priority solutions based on the marginal productivity index. We emphasize
that index policies we propose to use are usually simple though suboptimal priority rules
for the complex and intractable problems considered. Finally, Section 1.4 outlines the
results for our three problems obtained by employing and enriching these methods.

1.1 Description of Three Problems

We address the following three problems in this dissertation.

1.1.1 Admission Control and Routing with Delayed Information

Chapter 4 addresses the problem of dynamic job admission control and/or routing in
a model of parallel loss queues with delayed state observation and/or delayed action
implementation. Two versions of the model are considered, depending on whether the
admission control capability is enabled or not. The queue servers may be endowed with
finite or infinite buffer space. Such problems are relevant in a variety of application
domains, most notably in the operation of packet-switched communication networks
and distributed computer systems.

In addition, in such systems there are nonnegligible propagation delays, which force
the controller to take decisions based on stale system state information and cannot take
effect before a time lag. This is the main distinctive feature of the problem addressed
with respect to existing literature, where little has been done on problems with de-
lays. Recent applications in which the delays are of special importance include satellite
communications, long-distance-controlled robots, and situations in which an advanced
processing of observations is necessary.

Note that in problems with delayed state observation or delayed action implemen-
tation, the decision-maker does not have perfect information about the reward that the
activity yields. Such problems are naturally formulated as partially observed Markov deci-
sion processes (POMDPs), which in turn are readily reformulated as conventional MDPs.



1.1. DESCRIPTION OF THREE PROBLEMS 3

1.1.2 Dynamic Product Promotion and Knapsack Problem for Perishable Items

Chapter 5 introduces the Knapsack Problem for Perishable Items addressing the sto-
chastic combinatorial problem of choosing a collection of perishable products to be al-
located at a promotion location with limited space (called knapsack). Such a dynamic
problem of expected revenue maximization subject to a physical space constraint arises
in a variety of industries, where products have an associated lifetime and cannot be sold
afterwards.

We design a finite-horizon model in which demand is altered not by price changes,
but rather by moving a number of product units to a scarce promotion space, where
they are likely to attract extra customers. Examples of the promotion space include
shelves close to the cash register, promotion kiosks, or a depot used for selling via the
Internet.

As a special case of the knapsack problem, we also deal with the problem of dynamic
promotion of a single perishable product. This may be of interest if there is no knapsack
(or budget) restriction, and perishability is an important factor in altering the customer
demand.

1.1.3 Congestion Control in Routers with Future-Path Information

Chapter 6 considers a bottleneck router with a scarce resource that is given by the band-
width available for which several flows compete. Each flow generates certain goodput
reward for its receiver, if it is delivered, which can be achieved fully only if the flow is
transmitted by the router. The difficulty is that these flows are stochastically and dy-
namically changing transmission rates, so the rewards may increase or decrease over
time.

This work is concerned with congestion control which tries to exploit flows’ future-
path information about network congestion at routers. In the periods of network con-
gestion, a use of future-path information may be highly valuable for the network perfor-
mance, since dropping a packet too late on its route implies that all the scarce resources
(bandwidth and buffer space) it has consumed so far are wasted.

Thus, the question is whether to exploit the present rewards by transmitting at the
arrival rate, or to take a locally-suboptimal action of packet dropping or marking which
may yield higher rewards further downstream or to the following packets arriving at
the router.

We consider the problem under three basic router variants with the following net-
work congestion control functions:

(i) TD router: congestion control based on tail dropping (buffer overflow),
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(ii) ICN router: congestion avoidance with implicit congestion notification (packet
dropping), and

(iii) ECN router: congestion avoidance with explicit congestion notification (packet
marking).

1.2 Markov Decision Process Framework

In stochastic and dynamic resource allocation, the controller may influence by her ac-
tions the future evolution of an underlying system at various points in time. In such a
sequential decision process, there are rewards (or costs) incurred over time that depend
on the actions taken and the way in which the system evolves. The goal of the con-
troller may be to maximize the expected total1 reward or to minimize the expected total
cost over a certain time horizon. If the horizon is infinite, then one may need to use
discounting or long-run averaging in order to have a finite-valued objective (Stidham,
2002). Nevertheless, such alternatives of objective function may also be relevant in some
finite horizon problems.

When the information needed to predict the future evolution of a system is con-
tained in the current state of the system and depends on the current action, we call such
a sequential decision process a Markov decision process (MDP).2 MDPs have a great mod-
eling power, which can provide results on the existence and structure of good policies
and on methods for the computation of optimal policies. Therefore, it has naturally
been used in a variety of applications in areas including engineering systems, opera-
tions research, management science, economics and applied probability.

MDP theory has been developed in two separate streams, for discrete-time and
continuous-time models, respectively. In further discussion we will focus on discrete-
time MDPs, which is an important setting from at least two points of view: (1) there is a
large number of interesting problems being naturally modeled in the discrete time set-
ting and (2) important classes of continuous-time problems can be exactly reformulated
into discrete-time setting using the uniformization technique.

In stochastic dynamic systems it is typically not possible to have information about
future states at a decision moment, and therefore decisions should not be based on
them. Hence, a useful solution concept for an MDP is a non-anticipative policy (or, history-

1Throughout this work, the term total is reserved to mean the sum over all the time epochs.
2The theory on modeling and solving of such optimization problems is sometimes referred to as sto-

chastic dynamic programming, since those problems are dynamic in that present actions have repercussions
in the future, and stochastic in that they involve uncertainty of random state changes over time. In some lit-
erature also other equivalent names are used, such as sequential stochastic optimization, and stochastic control
(typically for continuous-state problems).
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dependent policy), which is defined as a set of rules specifying the action to be taken for
each decision point in time and for each possible state of the system, using only current
and past information.

A policy thus answers the following question: What action should be taken at a
given time if the system is in a given state? As we will see later, a class of stationary
policies is often of high interest. A policy is stationary if the answer to the question just
stated does not depend on the point in time (i.e., it is time-homogeneous). Such a policy
is appropriate, because MDPs are of Markovian nature, i.e., the future evolution of the
system depends on history only through the current state.

The breakthrough in MDPs was made by an approach, now called dynamic program-
ming, developed by Richard Bellman in the 1950’s. The idea of dynamic programming
is based on the Principle of optimality: at any point in time, an optimal policy must pre-
scribe an action that optimizes the sum of immediate reward and (expected) total re-
ward obtained if an optimal policy is applied from the subsequent point in time on.
The mathematical concept associated to the Principle of optimality is the optimality
equations of dynamic programming, called the Bellman equations. For infinite-horizon
problems, Bellman equations simplify so that they are not time-dependent; indeed, the
optimal objective value is a unique fixed point solution.

The value of dynamic programming is due to its both theoretical and practical po-
wer. Dynamic programming provides a coherent theoretical framework for studying
Markov decision processes. As such, it leads to several general theoretical results in-
cluding a necessary and sufficient condition for optimality of a stationary policy in
some broad cases. For instance, it implies that for finite-state and finite-action MDPs
there is an optimal policy that is deterministic, stationary, and independent of the ini-
tial state. From practical point of view it is remarkable that the dynamic programming
approach reduces optimization over the sequence of decisions in various points in time
to a sequence of parameter optimizations for every time point, thus, it may significantly
decrease the problem complexity.

Still, for many problems this may be not enough to make the solution of the prob-
lem tractable. A typical knot arising in their use is that the dynamic programming
recursions may be too many (or infinitely many) to allow actual computation. The size
of dynamic programming formulation is typically exponentially growing with the size
of the model, which is known as the curse of dimensionality. Here comes out a necessity
for other approaches. One of the solution approach alternatives is linear programming
(LP) reformulation of Bellman equations. Since each Bellman equation includes an op-
timization term, it can be relaxed to a set of linear inequalities, one for each action.
Once this has been done with all Bellman equations, one adds an objective function that
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forces at least one inequality to be satisfied sharply for each state. From the solution to
this associated LP problem, one can readily get the optimal policy for the original MDP.
As Stidham (2002) points out, the LP approach is especially well suited to constrained
MDPs, in which the optimal policy must satisfy side constraints, what allows to reduce
the set of policies.

However, the LP reformulation as such does not help to deal with the curse of
dimensionality. Section 3.1 discusses the Lagrangian relaxation, an approach we will
adopt in this work helping decompose complex problems with special structure in or-
der to obtain well-performing suboptimal solutions.

1.3 A Unifying Principle to Design Dynamic Priority Index Po-
licies

Due to the curse of dimensionality, complex resource allocation problems, such as those
described in Section 1.1, are typically addressed, analyzed, and solved by ad-hoc tech-
niques. Moreover, even if the focus is on finding good (i.e., not necessarily optimal)
policies based on priorities, many people may have proposed ad hoc priority rules. This
section briefly outlines a unifying principle to design priority rules described in more
detail in Chapter 3, which has been developed in the literature on the (restless) bandit
problems.

In this work we develop MDP models with a special structure, falling into the frame-
work of the multi-armed restless bandit problem. This is a fundamental model of allocating
a scarce resource to stochastic and dynamic alternatives. We assume that the alterna-
tives evolve independent of each other, except for a sample path constraint on the re-
source capacity.

We will formally define the multi-armed restless bandit problem after the review
of its historical development in Chapter 2. At this place we only anticipate that it is
PSPACE-hard, and therefore intractable on a medium and large scale. We will thus focus
attention on the more realistic and practical goals of designing and computing well-
grounded heuristic policies that are readily implementable.

For the multi-armed restless bandit problem there is a tractable relaxation, which
help decompose it into separate parametric optimization subproblems for each alterna-
tive. This relaxation has two steps: first, we relax the sample path constraint requiring
it only on average; in the second step we apply the standard Lagrangian relaxation. Such
a relaxed problem then decomposes into subproblems due to the independence of alter-
natives, where the Lagrangian multiplier appears as a parameter. This parameter has
an interpretation of price or wage paid for allocating the scarce resource.



1.4. RESULTS OUTLINE FOR THREE PROBLEMS 7

The parametric optimization subproblems corresponding to all the alternatives can
often be solved optimally under certain convexity assumptions that are natural for the
problem in hand. Moreover, as the pricing parameter changes, the optimal solutions
may change in a monotonic way, so that it is optimal to allocate the scarce resource less
when the price is higher. In such a case we will be interested in the break-even values
of the price parameter at which the optimal solution changes. Such values measure the
marginal productivity of allocating the scarce resource.

We will call these values the marginal productivity (MP) indices, and let us say that
a parametric subproblem is indexable if they exist. Then, we can use the MP indices
in dynamic priority rules to measure the priority of allocating the scarce resource to
a given alternative. Given the economic interpretation of MP indices, giving priority
correspondingly to them results in allocating the scarce resource to alternatives with
currently highest productivity of using the resource.

The MP index is thus established as a unifying design principle of dynamic prior-
ity policies in intractable stochastic and dynamic resource allocation problems. This
approach has been proved recently to be well-grounded and tractable in a variety of
problems of increasing complexity, and is enriched by our work. Experimental stud-
ies suggest that MP indices are typically close to optimal, and performing better or at
least not worse than other rules that may exist for certain applications. Moreover, sev-
eral existing well-performing rules obtained by ad-hoc methods have been shown to be
special cases of MP.

Let us emphasize that MP indices are given by optimal solutions in a parametric
subproblem case, whereas they are used to define heuristic priority rules for the in-
tractable resource allocation problems. Thus, several questions need to be addressed
for a given problem:

(i) [Mathematical question.] For a given optimization criterion, under what condi-
tions are the alternatives indexable?

(ii) [Algorithmic question.] How to calculate the MP indices quickly?

(iii) [Experimental question.] How close to optimal are the resulting MP index priority
policies? And how do they compare to alternative policies?

1.4 Results Outline for Three Problems

We obtain the following results for the three problems considered in this dissertation.
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1.4.1 Admission Control and Routing with Delayed Information

A priority policy in terms of MP indices is derived for this problem under the following
three performance objectives: (i) minimization of the expected total discounted sum of
holding costs and rejection costs, (ii) minimization of the expected time-average sum of
holding costs and rejection costs, and (iii) maximization of the expected time-average
number of job completions. Our employment of existing theoretical and algorithmic
results on restless bandit indexation together with some new results yields a fast algo-
rithm that computes the MP index for an admission control of a queue in linear time
with respect to the buffer size.

Such MP index values can be used both to immediately obtain the optimal thresh-
olds for a single-queue admission control problem, and to design an index priority pol-
icy for the routing problem (with possible admission control) in the multi-queue system.
The MP index can be thought of as a measure of undesirability of routing a job to a par-
ticular queue, given as a function of the queue’s augmented state, which refers to the
observed action-state pair at the previous period.

Our approach seems to be tractable also for the analogous problems with larger
delays and, more generally, for arbitrary restless bandits with delays.

This work was presented at the Third International Conference on Performance
Evaluation Methodologies and Tools (ValueTools) in 2008, and an extended abstract
was published as Jacko and Niño-Mora (2008).

1.4.2 Dynamic Product Promotion and Knapsack Problem for Perishable Items

For the dynamic product promotion problem we derive an optimal MP index policy
with closed-form indices. The MP indices, that can be interpreted in this setting as
promotion priority indices, capture the marginal rate of promotion as a function of its
price, salvage value, lifetime, expected demand, and expected promotion power. For
a single product we obtain structural results analogous to those reported in dynamic
pricing literature: the promotion priority increases with shorter product lifetime.

For the Knapsack Problem for Perishable Items we propose a new MP-index-based
heuristic that includes solving a deterministic knapsack problem and whose nearly-
optimal performance and superiority to other heuristics is demonstrated in a computa-
tional study.

This work was presented at the Sixth Czech-Slovak International Symposium on
Combinatorics, Graph Theory, Algorithms and Applications in 2006 and at the VIIIth
Annual Conference of INFORMS Revenue Management and Pricing Section in 2008.
An extended abstract was published as Jacko and Niño-Mora (2007).
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1.4.3 Congestion Control in Routers with Future-Path Information

We model the congestion control problem of multiple flows in the framework of multi-
armed restless bandit problem with an additional feature of random arrivals of flows
with random finite length. We set out to maximize the expected time-average network
goodput so that the expected time-average router’s throughput is below its bandwidth
and so that the router’s buffer space is not overflowed. We discuss how a novel con-
cept of network-capability fairness arises by implementing at routers a congestion control
mechanism that maximizes the expected time-average network goodput.

Relaxation and decomposition of this problem allows us to introduce a transmission
index which evaluates the usefulness of each flow’s transmission at the moment. The
transmission index is the MP index arising in the context of this problem. Moreover,
argue that the transmission index identifies locally optimal router actions for the de-
centralized network problem. Since the index captures the value of network services to
users, it can be interpreted as a network congestion price (when multiplied by the packet
size).

We apply these general results to derive closed-form expressions of the transmis-
sion index for TD, ICN, and ECN routers, and we present two situations in which this
index defines an optimal transmission priority policy for a multiple-flow problem at
a bottleneck router. Finally, we discuss proposals for practical implementation of the
transmission index in existing congestion avoidance mechanisms. Such changes are ar-
guably expected to lead both to a lower delay and higher network throughput, though
the implementation may be costly at the moment due to the necessity of information
gathering by network nodes.

This work was presented at the EuroFGI Workshop on IP QoS and Traffic Control in
2007, and an extended abstract was published as Jacko and Sansò (2007).
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Learn by play.
< J. A. Comenius >

Chapter 2

Multi-Armed Restless Bandit
Problem and Marginal Productivity
Index Policies

In this work we develop MDP models with a special structure, falling into the frame-
work of the multi-armed restless bandit problem—a fundamental stochastic and dynamic
resource allocation model. In this chapter we outline important contributions in its his-
torical development, review its peculiarities in order to highlight its broad applicability
and present the framework it offers for dynamic resource allocation problems, based on
the survey Niño-Mora (2007b).

2.1 Multi-Armed Bandit Problem

The multi-armed bandit problem, originally described by Robbins (1952), is a model of a
controller optimizing her decisions while acquiring knowledge at the same time. Al-
though it is a simply-stated problem of stochastic dynamic optimization, its solution
had been a challenging open problem for a considerably long time, until the celebrated
result of Gittins and Jones (1974) (reviewed below) appeared. This problem models
the fundamental trade-off between exploitation (getting the highest immediate rewards)
and exploration (learning about the system and receiving possibly even higher rewards
later).

The multi-armed bandit problem is named after a one-armed bandit slot machine one
can find in casinos (see Figure 2.1). In the multi-armed case, the gambler has to decide
which arm to pull (exactly one at a time) in order to maximize her total reward in a
series of trials. So, we can rephrase the multi-armed bandit problem as the problem

11
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Figure 2.1: The multi-armed bandit problem is named after a one-armed bandit slot
machine one can find in casinos.

concerned with the question of how to dynamically allocate a single scarce resource
amongst several stochastic alternative projects (Weber, 1992).

Each bandit is modeled as a random reward yielding process whenever played,
whereas it remains frozen (no evolution, no rewards) whenever not played. Such a
bandit is called classic as opposed to its extension called the restless bandit introduced
in Whittle (1988), which admits evolution and rewards/costs even if not played.

2.2 Multi-Armed Restless Bandit Problem

The multi-armed restless bandit problem is a natural generalization of the multi-armed ban-
dit problem, which is capable to cover considerably broader set of practical situations.
To the classical model we add just two simply-stated features: (1) bandits are allowed
to evolve and yield rewards when not played (no freezing anymore), and (2) we are to
allocate the scarce resource parallely to a fixed number of bandits (instead of playing
only one bandit). Nevertheless, the increased modeling power comes at the expense of
tractability: the multi-armed restless bandit problem is P-SPACE hard, even in the deter-
ministic case (Papadimitriou and Tsitsiklis, 1999). The research focus must thus shift to
the design of well-grounded, tractable heuristic policies.

In this work we consider the work-reward restless bandits generalized by Niño-Mora
(2002), which significantly expand the modeling scope of the restless bandits introduced
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in Whittle (1988), which in turn are a generalization of the classic bandits of Robbins
(1952). In the following, we will use the term bandit (without adjectives) as a generic
term for any of the above three classes.

2.3 Index Policies

An appealing feature of the multi-armed classic bandit problem is optimality of the in-
dex priority policy (also called index rule), obtained by Gittins and presented in a series
of papers in the early 1970s (as documented in Whittle (1980)). Since bandits are com-
peting for a scarce resource, we assign to each of them a dynamic allocation index, and
then apply the index priority policy, defined as follows: “Assign the scarce resource to
a bandit of highest current index value.” The index he proposed became known as the
Gittins index, and the solution to the multi-armed classic bandit problem as the Gittins
index (priority) policy. See Gittins (1979) for a reconciliation of the ideas. The signifi-
cance of the Gittins index is that it can be computed for each bandit in isolation, i.e., it
is independent of the other bandits. An excellent presentation of the multi-armed clas-
sic bandit problem introducing an intuitive (almost verbal) proof of optimality of the
Gittins index policy was given in Weber (1992).

A classical example of optimality of an index priority policy is the cµ-rule for the
job sequencing problem (Smith, 1956). In that problem, jobs labeled by k with linear
holding costs ck and mean service time µ−1

k must be scheduled for service at a single
server so that the expected total holding cost is minimized. The cµ-rule prescribes to
schedule the jobs as follows: “Assign the server to an uncompleted job of highest index
ckµk.” Note, however, that such an allocation index is static, as opposed to the Gittins
index, which is dynamic (depending on the actual bandit’s state).

We will use the approach introduced by Whittle (1988), who proposed to solve the
multi-armed restless bandit problem by solving its relaxation by Lagrangian methods.
The Whittle relaxation was to replace a family of sample-path constraints (of playing a
fixed number of bandits at every period) by a unique one (of playing the required num-
ber of bandits on average). Then, using a Lagrangian multiplier, such a constraint can
be dualized and included in the objective. This allows to decompose the multi-armed
problem and significantly simplify the solution procedure by considering bandits in
isolation. Whittle (1988) further proposed an index, which in the case of classic bandits
recovers the Gittins index, to be used in an index priority policy: “Assign the scarce
resource to bandits of highest current index values.”

Identification of tractable indices that make an index priority policy well-performing
is a central issue in the literature concerning extensions of the multi-armed bandit prob-
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lem. Unless we are lucky to find a particular class of bandits with special structure as
in the case of classic bandits, in general we can only expect a form of asymptotic opti-
mality of an index policy for the multi-armed restless bandit problem, as was shown in
Weber and Weiss (1990).

The above-mentioned authors realized that well-performing indices often have an
economic interpretation. The cµ-rule takes into account expected savings of serving a
given queue with respect to not serving it. Gittins (1979) characterized his index as the
maximal reward rate, because it is calculated as the maximal rate of expected rewards
per unit of expected time. Whittle (1988) interpreted the index he proposed as a fair
charge for assigning the scarce resource to the bandit. Niño-Mora (2002, 2006b) coined
the term marginal productivity (MP) index for his index that generalizes all the above
indices. It is “marginal” because it captures the effect of employing the scarce resource
at a given moment with respect to not doing so, and “productivity” reflects that it is
computed as the maximum rate of marginal rewards per unit of marginal work. Put in
an economics jargon, the MP index is nothing but the marginal rate of transformation
of employing the scarce resource at a given state of a bandit.

Whittle (1988) further realized that not all restless bandits are indexable; for non-
indexable bandits such indices simply do not exist. Niño-Mora (2001, 2002, 2006b)
introduced methods of analysis to determine a priori whether a given restless bandit
model is indexable, and gave an adaptive-greedy algorithm based on Klimov (1974)
to calculate the MP indices. That approach, which we follow in this work, has been
shown in a growing variety of applications to yield an index priority policy which is
well-grounded, intuitive, easy-to-implement, and nearly-optimal, i.e., well-suited for
practical purposes. We dedicate a separate chapter (Chapter 3) to the methodology of
establishing existence and computation of MP indices as applied in this work.

2.4 Mathematical Programming Formulation and Conservation
Laws

The mathematical programming approach we review in this section is closely connected
to graphical interpretation of problems and is thus very well suited for providing in-
sights of the solution methods and for helping to exploit the problem structure. With
each policy and each initial state, one can associate a performance vector, for instance, the
expected average reward under the policy if starting from the initial state. Then, a set
of admissible policies (which depends on a given problem) defines a performance region
(or achievable region), i.e., the space of all possible system performance vectors which are
achievable under admissible policies.
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Structural properties of such a performance region lead to structural properties in
the given problem. We may therefore be interested in describing the performance region
so that the optimization problem can be efficiently solved by classical mathematical
programming methods. When an analysis via this methodology is available, one can
typically make clear and strong statements about optimal policies.

The earliest intentions to use such an approach were made in queueing theory, orig-
inated in Klimov (1974) and Coffman and Mitrani (1980), later followed by Federgruen
and Groenevelt (1988) in a more general framework of a certain family of queueing
models. In the latter contribution it was shown that the performance region in those
models is a polytope of special type. An important concept of (strong) conservation laws
was introduced in Shanthikumar and Yao (1992), where the previous results were ex-
tended by proving a powerful result about the achievable region approach. When the
performance vectors satisfy strong conservation laws, the achievable region is a par-
ticular polytope (called the base of a polymatroid, previously known in combinatorial
optimization), completely characterized by those laws, and the set of vertices of the
achievable region is equivalent to the set of performance vectors obtained by all the
static index policies. Then, optimization of a linear objective can be accomplished by a
greedy algorithm, which indeed finds an optimum in a vertex, hence ensuring that there
is an optimal index policy (Stidham, 2002).

Bertsimas and Niño-Mora (1996) drawing on the work of Tsoucas (1991), extended
those results to a more complex class of stochastic dynamic problems. They defined
generalized conservation laws, whose satisfaction by performance vectors implies that the
performance region is a polytope of special structure. Moreover, optimization of a linear
objective over such a polytope is solved by an adaptive-greedy algorithm based on Klimov
(1974), which leads to an optimal dynamic index policy. More general results in a similar
fashion introducing partial conservation laws were obtained in Niño-Mora (2001, 2002,
2006b), in which the analysis is closely tied to restless bandits.

Conservation laws and polytopes treated in the listed papers were exploited mainly
in the context of queueing systems and networks. An early survey of the achievable
region approach was given in Dacre et al. (1999). An updated exposition can be found
in Niño-Mora (2009), which stresses that conservation laws help exploit the problem
structure in order to design and compute optimal or nearly optimal policies.

2.5 Single Restless Bandit Model

In what follows, project is used as a short name for the most general work-reward rest-
less bandit, to emphasize its broad applicability in problems of effort allocation to alter-
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native projects. Consider the time slotted into time epochs t ∈ T := {0, 1, 2, . . . }.1 The
time epoch t corresponds to the beginning of a time period t.

We can either work or not work on a given project. We denote by A := {0, 1} the
action space, i.e., the set of allowable actions, where 1 corresponds to working, and 0 to
not working (resting). This action space is the same for every project. A project labeled
by k ∈ K can be modeled independently of other projects as the tuple

(
Nk, (W a

k)a∈A , (Ra
k)a∈A , (P a

k)a∈A
)
,

where

• Nk is the state space, i.e., a finite set of possible states project k can occupy;

• W a
k :=

(
W a

k,n

)
n∈Nk

, where W a
k,n is the expected one-period work expended by

project k at state n under action a;

• Ra
k :=

(
Ra

k,n

)
n∈Nk

, where Ra
k,n is the expected one-period reward earned by project

k at state n under action a;

• P a
k :=

(
pa

k,n,m

)
n,m∈Nk

is the project-k stationary one-period state-transition proba-

bility matrix under action a, i.e., pa
k,n,m is the probability of moving to state m from

state n under action a.

The dynamics of project k is thus captured by the state process Xk(t) ∈ Nk and the
action process ak(t) ∈ A at all time epochs t ∈ T . As a result of choosing action ak(t) in
state Xk(t) at time epoch t, the project expends the work, earns the reward, and evolves
its state for the time epoch t + 1. It is natural to require that the expected one-period
work is nonnegative, therefore 0 ≤ W a

k,n. The classic bandits and the restless bandits
in Whittle (1988) satisfy W a

k,n = a for all k, n, a, while this requirement was dropped in
the work-reward restless bandits introduced in Niño-Mora (2002). In this work we will
also assume that Ra

k,n is bounded.
Note that we have the same action space A available at every state. Though at first

glance this may appear as a limitation on the applicability of the model, the opposite
is true. Notice that to effectively restrict the number of allowable actions at certain
states, we can define actions 1 and 0 as duplicates by having the same one-period con-
sequences. If actions 1 and 0 at state n of project k satisfy W 1

k,n = W 0
k,n, R1

k,n = R0
k,n, and

p1
k,n,m = p0

k,n,m for all m, then we say that state n ∈ Nk of project k is uncontrollable.

1Throughout this work we stick to the following notational conventions to ease the reading: every
set is typeset in calligraphic font (e.g., T ,N ), the corresponding uppercase letter denotes the number of its
elements (T, N ), and their generic element is written in lowercase (t, n). Vectors are in lowercase boldface in
row/column form as necessary (n, z) , and matrices are in uppercase boldface (P ). In problem parameters
and variables, superscripts are reserved to actions or policies, and subscripts to states.
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In some applications it may be more natural to consider Ca
k,n := −Ra

k,n, the expected
one-period cost paid by project k at state n if action a is decided at the beginning of a
period. We, however, prefer using rewards during this exposition since they provide a
more intuitive interpretation of certain concepts obtained in the solution.

Example 2.1 (Job Sequencing Problem: MDP Formulation). Consider K jobs waiting
at the beginning (i.e., at time epoch t = 0) for service at a server that can serve one
job at every time period. Let 0 < µk < 1 be the probability that the service of job k

is completed within one period and let 0 < ck be the holding cost per period incurred
for job k waiting. These jobs can be viewed as competing projects and while there are
at least two jobs waiting, one must decide to which job the server should be allocated.
Note that otherwise the decision is trivial.

Suppose that the server is preemptive (i.e., the service of a job can be interrupted at
any time epoch even if not completed). We have the action space A := {0, 1}, where
action 0 means “not serving” a job, and action 1 means “serving” a job.

Thus, we define job k with

• state space Nk := {‘completed’, ‘waiting’};

• expected one-period works (job completions)

W 1
k,‘completed’ := 0, W 1

k,‘waiting’ := µk,

W 0
k,‘completed’ := 0, W 0

k,‘waiting’ := 0;

• expected one-period rewards (the negative of holding costs)

R1
k,‘completed’ := 0, R1

k,‘waiting’ := −ck · (1− µk)− 0 · µk,

R0
k,‘completed’ := 0, R0

k,‘waiting’ := −ck;

• one-period state-transition probability matrix if serving a job,

P 1
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ µk 1− µk

,
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and if not serving,

P 0
k :=


‘completed’ ‘waiting’

‘completed’ 1 0

‘waiting’ 0 1

.

Notice that when the server is allocated to job k, the expected one-period work is
only W 1

k,‘waiting’ = µk < 1 if the job is still waiting, and W 1
k,‘completed’ = 0 if it is already

completed. In this example, the state ‘completed’ is uncontrollable, because actions 1
and 0 have the same one-period consequences in that state.

• • •

2.6 MDP Formulation of Multi-Armed Restless Bandit Prob-
lem

Let Eπ
n denote the expectation conditioned on a policy π and on a joint initial state

n := (nk)k∈K, where Xk(0) = nk. For any initial joint state n := (nk)k∈K and for any
discount factor 0 < β < 1, the problem under the β-discounted criterion is to find an
admissible policy π ∈ Π maximizing the objective given by the expected aggregate total
β-discounted reward, i.e.,

max
π

Eπ
n

[∑
k∈K

∞∑
t=0

βtR
ak(t)
k,Xk(t)

]
, (2.1)

subject to the sample path capacity constraint,∑
k∈K

W
ak(t)
k,Xk(t) ≤W, for all t = 0, 1, 2, . . . (2.2)

where W is the available capacity to be used every period. Note that the sample path
capacity constraint is conditioned on the policy π and the joint initial state n.

Analogously we can formulate the problem under the time-average criterion. For any
initial joint state n := (nk)k∈K, the problem is to find a policy π maximizing the objective
given by the expected aggregate time-average reward, i.e.,

max
π

lim inf
T→∞

1
T

Eπ
n

[∑
k∈K

T−1∑
t=0

R
ak(t)
k,Xk(t)

]
, (2.3)

subject to the same sample path capacity constraint (2.2).
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Note that the sample path capacity constraint may be required as equality instead
of inequality. Indeed, such an equality constraint was considered in the multi-armed
classic bandit problem in Gittins (1979) and in the multi-armed restless bandit problem
in Whittle (1988).

Further, in some applications one may require a sample path constraint on actions
instead of on expected one-period works, i.e.,∑

k∈K
ak(t) ≤W, for all t = 0, 1, 2, . . .

where W is interpreted as the maximum number of projects upon which action 1 can be
applied during a period.
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Connect the dots.
< S. Jobs >

Chapter 3

Design of Index Policies: Lagrangian
Relaxation, Decomposition, and
Restless Bandit Indexation

3.1 Whittle Relaxation, Lagrangian Relaxation, and Decompo-
sition

Whittle (1988) proposed to relax the sample path capacity constraint (2.2) so that under
the β-discounted criterion we require this constraint to hold only in “expected total β-
discounted” terms,

Eπ
n

[∑
k∈K

∞∑
t=0

βtW
ak(t)
k,Xk(t)

]
≤ Eπ

n

[ ∞∑
t=0

βtW

]
=

W

1− β
(3.1)

and under the time-average criterion only in “expected time-average” terms,

lim
T→∞

1
T

Eπ
n

[∑
k∈K

T−1∑
t=0

W
ak(t)
k,Xk(t)

]
≤ lim

T→∞

1
T

Eπ
n

[
T−1∑
t=0

W

]
= W. (3.2)

The Whittle relaxation (2.1)-(3.1) (or (2.3)-(3.2)) can be solved by the Lagrangian re-
laxation (see, e.g., Guignard, 2003; Visweswaran, 2009), introducing a nonnegative La-
grangian multiplier, say ν, to dualize the constraint. Thus, under the β-discounted cri-
terion we obtain

max
π

Eπ
n

[∑
k∈K

∞∑
t=0

βt
(
R

ak(t)
k,Xk(t) − νW

ak(t)
k,Xk(t)

)]
+ ν

W

1− β
.

21
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and under the time-average criterion we obtain

max
π

lim
T→∞

1
T

Eπ
n

[∑
k∈K

T−1∑
t=0

(
R

ak(t)
k,Xk(t) − νW

ak(t)
k,Xk(t)

)]
+ νW.

The Lagrangian relaxation for every ν ≥ 0 yields an upper bound for the (maximiza-
tion) objective value of the multi-armed restless bandit problem. Indeed, it finds a fam-
ily of solutions (one for each ν) that are better or as good as the optimal solution of the
original problem. These solutions, however, typically do not satisfy the sample path
capacity constraint, i.e. they are typically not feasible for the multi-armed restless ban-
dit problem. (Note that if the dualized constraint is an equality, then ν is allowed to be
negative.)

Strong LP duality yields that there exists ν∗ ≥ 0 (which under the β-discounted cri-
terion depends on the joint initial state), for which the Lagrangian relaxation achieves
the same objective value as the Whittle relaxation. Further, if ν∗ 6= 0, then LP com-
plementary slackness assures that any optimal solution to the Lagrangian relaxation
satisfies the constraint in the Whittle relaxation (see Niño-Mora, 2001). In other words,
any optimal solution to the Lagrangian relaxation is an optimal solution to the Whittle
relaxation if ν∗ 6= 0.

Finally, for any fixed ν, the Lagrangian relaxation decomposes into single-project
subproblems due to their mutual independence. If πk ∈ Πk is an admissible policy for
project k, then the single-project subproblem under the β-discounted criterion is

max
πk

∞∑
t=0

βt Eπk
nk

[
R

ak(t)
k,Xk(t) − νW

ak(t)
k,Xk(t)

]
(3.3)

and under the time-average criterion is

max
πk

lim
T→∞

1
T

T−1∑
t=0

Eπk
nk

[
R

ak(t)
k,Xk(t) − νW

ak(t)
k,Xk(t)

]
. (3.4)

This parametric optimization problem is addressed in the following sections.

3.2 Restless Bandit Indexation

In the rest of this chapter we outline the restless bandit indexation methodology which is
crucial to design and efficiently compute marginal productivity (MP) indices for their
use in dynamic priority policies. As we have seen in Section 3.1, the multi-armed rest-
less bandit problem can be relaxed and decomposed into subproblems, which can be
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viewed as optimization problems of binary-action MDPs with ν-parametric one-period
rewards, where ν is interpreted as wage per unit of work. In the following we focus on
such a single-bandit problem, and we drop the project label k.

The MDP formulation is the following:

• State space is N , with N possible states;

• Actions A := {0, 1} are available in each state, which are called the passive action
(0; resting) and the active action (1; working);

• Active dynamics: If the project is in state n and the active action is employed at a
given period, then during that period it generates reward R1

n, a wage for work
νW 1

n must be paid, and the project moves to another state according to the active
transition probability matrix P 1 for the next period;

• Passive dynamics: If the project is in state n and the passive action is employed at
a given period, then during that period it generates reward R0

n, a wage for work
νW 0

n must be paid, and the project moves to another state according to the passive
transition probability matrix P 0 for the next period.

Note that Ra
n − νW a

n is a parametric one-period (net) reward if action a is applied in
state n.

Problems (3.3) and (3.4) are problems of finding an optimal policy for the MDP de-
scribed above over an infinite time horizon, under the β-discounted criterion with dis-
count factor 0 < β < 1 and under the time-average criterion, respectively. Our analytical
focus will be on the discounted criterion, whose optimal policy given in terms of MP
indices can be directly extended to the latter by taking limit β → 1. See, e.g., Puterman
(2005) for a more thorough discussion on MDP optimization criteria.

Since for finite-state finite-action MDPs there exists an optimal policy that is deter-
ministic, stationary, and independent of the initial state, we narrow our focus only to
those policies and represent them via active sets S ⊆ N . In other words, a policy S
prescribes to be active in states in S and passive in states in SC := N \ S. This view
is crucial in this approach, as it admits a combinatorial optimization formulation of the
ν-wage problem, which we develop next.

Let ESi denote the expectation over the state process X(t) evolving according to P 0

and P 1 and over the action process a(t) evolving according to S, conditioned on policy
S and on initial state X(0) = i. Let us denote by fSi the total β-discounted expected
reward earned under policy S starting from initial state i, defined by

fSi := ESi

[ ∞∑
t=0

βtR
a(t)
X(t)

]
. (3.5)
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Similarly, gSi is the total β-discounted expected work expended under policy S starting
from initial state i, defined by

gSi := ESi

[ ∞∑
t=0

βtW
a(t)
X(t)

]
. (3.6)

Then, formulated for initial state i, the problem (3.3) is solved by solving the following
ν-wage problem:

max
S⊆N

fSi − νgSi . (3.7)

Section A.1 shows that (under a regularity condition) this problem can be normalized,
i.e., it is possible to formulate an equivalent problem by redefining the active-action
rewards and works, so that the passive-action rewards and works are zero. This often
leads to a simpler analysis than in the non-normalized case.

3.3 Marginal Productivity Index and Indexability

Niño-Mora (2006b) coined the term marginal productivity index based on the method-
ology outlined next. Note that, for simplicity of exposition, we assume that there is no
uncontrollable state (i.e., there is no state n satisfying R0

n = R1
n, W 0

n = W 1
n , and P 0

n = P 1
n

at the same time).

The crucial observation for solving problem (3.7) was made by Whittle (1988) and is
the following. Under some (problem-specific) natural regularity conditions, the (min-
imal) optimal active sets S(ν) for increasing values of the wage parameter ν will be
nested: either monotonically expanding or diminishing. Then, we can attach to each
state n a (minimum) value of the wage parameter ν, called the MP index νn, below
which n enters S(ν). Note that if the wage ν = νn, then both the actions are optimal in
state n.

Definition 3.1. We say that the project is indexable if there exists an index νn for n ∈ N
such that

S(ν) = {n ∈ N : νn > ν}, for all ν.

In such a case we say that νn is the project’s marginal productivity (MP) index.

That is, the set of MP indices νn for all n ∈ N (if they exist) defines an optimal MP
index policy: “Work if and only if the MP index of the current state is greater than the
wage parameter ν.”
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Let 〈a,S〉 be the policy that implements action a in the initial period and policy S
proceeds. We consider the (n,S)-marginal reward defined as rSn := f

〈1,S〉
n − f

〈0,S〉
n , and

the (n,S)-marginal work defined as wS
n := g

〈1,S〉
n − g

〈0,S〉
n . Finally, let νSn := rSn/wS

n be the
(n,S)-marginal productivity rate provided that the denominator does not vanish.

If the problem is indexable, then the index νn must be equal to the (n,S)-marginal
productivity rate for some active set S. Indeed: suppose that the wage parameter ν =
νn, then by the definition of νn there is a policy S such that the objective is not altered
by adding or removing state n from S, i.e.,

fS∪{n}n − νngS∪{n}n = fS\{n}n − νngS\{n}n . (3.8)

Moreover, notice that under ν = νn any action can be applied anytime the system
is in state n without altering the value of the objective function. In particular, we can
apply policies 〈1,S \ {n}〉, 〈0,S \ {n}〉, 〈1,S ∪ {n}〉, 〈0,S ∪ {n}〉 interchangeably. Hence
we have

f 〈1,S\{n}〉
n − νng〈1,S\{n}〉

n = f 〈0,S\{n}〉
n − νng〈0,S\{n}〉

n (3.9)

and
f 〈1,S∪{n}〉

n − νng〈1,S∪{n}〉
n = f 〈0,S∪{n}〉

n − νng〈0,S∪{n}〉
n . (3.10)

So, using the definition of the marginal productivity rate, we can write

νn = νS\{n}n = νS∪{n}n for some S, (3.11)

and therefore the term marginal productivity index. Notice from the identities above
that index νn is the value of the wage parameter ν for which marginal reward equals
marginal work cost.

3.4 Sufficient Indexability Condition and Adaptive-Greedy Al-
gorithm

Establishing indexability in general is a cumbersome task, however, we implement an
analytically tractable sufficient condition called PCL(F)-indexability. This sufficient con-
dition draws on polyhedral arguments of having a problem satisfied the partial conser-
vation laws (PCL) for a postulated family of active sets F ⊆ 2N (see Niño-Mora, 2001,
2002, 2006b). An adaptive-greedy algorithm AGF exhibited in Figure 3.1 calculates can-
didates ν̂nk

for MP indices and candidates Ŝk for optimal active sets.
The postulated family of active setsF must satisfy certain connectivity assumptions,

so that all the steps in the adaptive-greedy algorithm are well-defined. As a simplest



26 CHAPTER 3. DESIGN OF INDEX POLICIES

set Ŝ0 := ∅;
for k := 0 to N − 1 do

choose nk ∈ argmax{ν bSk
n : n ∈ ŜC

k and Ŝk ∪ {n} ∈ F};
set Ŝk+1 := Ŝk ∪ {nk};
set ν̂nk

:= ν
bSk
nk
;

end {for};

Figure 3.1: Adaptive-greedy algorithm AGF .

example, in a single-queue admission control problem we may postulate the family F
to be the set of all the threshold policies that prescribe to admit customers while the
queue is shorter than a particular threshold.

Definition 3.2. Let ν̂nk
under a sequence of choices of nk for k = 0, 1, . . . , N − 1 be

the output of the adaptive-greedy algorithm AGF for the ν-wage problem (3.7). The
problem (3.7) is called PCL(F)-indexable if the following two conditions hold:

(i) the (n,S)-marginal work wS
n is positive for all n ∈ N and S ∈ F ;

(ii) the quantities ν̂nk
are nonincreasing in k.

The following is the main methodological result (see Niño-Mora, 2001, 2002).

Proposition 3.1. If a problem is PCL(F)-indexable, then it is indexable with marginal produc-
tivity indices νn := ν̂n, where ν̂n is the output of the adaptive-greedy algorithm AGF .

3.5 Geometric Interpretation

Under indexability, each of the active sets Ŝ0, Ŝ1, . . . , ŜN calculated by the algorithm
AGF is optimal for some value of the wage parameter ν. In particular, the active set
Ŝ0 is optimal for ν ≥ νn0 , the active set Ŝ1 is optimal for νn0 ≥ ν ≥ νn1 , etc., and the
active set ŜN is optimal for νnN−1 ≥ ν. In geometric terms, these sets determine the
upper boundary of the achievable work-reward region of the ν-wage parametric problem
(3.7), and the MP indices are the slopes of the lines connecting the performance vectors
of subsequent optimal policies.

These concepts, well-known in the bi-criteria (parametric) linear programming lit-
erature, are illustrated in Figure 3.2. In fact, Niño-Mora (2007a) elucidated that the
adaptive-greedy algorithm is analogous to the parametric Simplex method introduced
in Saaty and Gass (1954).
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Figure 3.2: An illustration of the achievable work-reward region leading to optimal
active sets Ŝ0, Ŝ1, . . . , ŜN .
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Road is created walking.
< A. Machado >

Chapter 4

Admission Control and Routing
with Delayed Information

4.1 Introduction

This chapter addresses the problem of designing and computing a tractable heuristic
policy for dynamic job admission control and/or routing in a discrete time Markovian
model of parallel loss queues with one-period delayed state observation and/or action
implementation, which comes close to optimizing an infinite-horizon problem under
several objectives. Two versions of the model are considered, depending on whether
the admission control capability is enabled or not. The queue servers may be endowed
with finite or infinite buffer space.

We consider the following three performance objectives: (i) minimization of the ex-
pected total discounted sum of holding costs and rejection costs, (ii) minimization of the
expected time-average sum of holding costs and rejection costs, and (iii) maximization
of the expected time-average number of job completions. Holding costs are assumed to
be convex and nondecreasing in the number of jobs queued in the buffer space.

Such problems are relevant in a variety of application domains, most notably in
the operation of packet-switched communication networks and distributed computer
systems. In such systems there are nonnegligible propagation delays, which force the
controller to make decisions based on stale system state information and take effect only
after a time lag. Additional recent applications include long-distance-controlled robots,
and situations in which an advanced processing of observations is necessary.

As for our considering joint admission control and routing problems, instead of re-
stricting attention to the conventional pure-routing case, the motivation is that it allows
the system designer to take into account the tradeoff between rejection and holding

29
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costs. The key insight is that, when the system is heavily congested, denying access to
further arrivals until the congestion is sufficiently reduced can substantially decrease
holding costs at a relatively small expense in terms of increased rejection costs.

The above problems are naturally formulated as partially observed Markov decision
processes (POMDPs), which in turn are readily reformulated as conventional Markov de-
cision processes (MDPs) by redefining the state of each queue as the augmented state build
up of the last observed queue length and the actions applied since then (Brooks and
Leondes, 1972). Computation of optimal policies for the resultant multidimensional
MDPs by solving the associated dynamic programming (DP) equations is, however, hin-
dered by the curse of dimensionality in large-scale models. We will thus focus attention
on the more realistic and practical goals of designing and computing well-grounded
heuristic policies that are readily implementable. Since in such problems the controller
must dynamically assess the relative values of alternative rejection and routing actions,
it is intuitively appealing to do so based on an index policy, defined after the model
description below.

4.1.1 Model Description

Time is slotted into discrete-time epochs t = 0, 1, 2, . . . The system consists of N indepen-
dent parallel queues with servers and a gate. Queue n ∈ N := {1, . . . , N} is endowed
with a (possibly infinite) buffer with room for holding In ≥ 1 jobs waiting or in service,
and has a single geometric server, which serves jobs in FCFS order and completes the
service of a job at the end of a period with probability 0 < µn < 1.

Jobs arrive to the system as a Bernoulli stream with probability 0 < λ ≤ 1 of arrival
at the beginning of each period. Upon a job’s arrival to the gate, a central controller
(gatekeeper) must decide: (i) in the case that admission control is enabled, whether to
admit the job or to reject it (admission function); and, if admitted, (ii) to which of N

queues in parallel to route the job for service (router function). We assume that a cus-
tomer that is admitted and routed to an empty queue starts to be served immediately,
and therefore may leave the system at the end of the same period if the service is com-
pleted.

Denote by Xn(t) the state of queue n at the beginning of period t, given by the num-
ber of jobs it holds waiting or in service, and by an(t) ∈ {0, 1} the action indicator that
takes the value 1 when a job arriving at time t is not to be routed to queue n. We assume
that at the start of period t the controller does not know the current state, but has infor-
mation on previous states and actions, knowing in particular Xn(t−1) and an(t−1) for
each queue n. Thus, we deal with the problem with a one-period delay.

Action choice is based on adoption of an admission and routing policy (if admission
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function is enabled), or just a routing policy (if it is not), denoted by π. This is to be cho-
sen from the corresponding class Π of (possibly randomized) policies that use previous
state and action information.

4.1.2 Performance Objectives

For two of our performance objectives defined below we will assume that the system
incurs per-queue holding costs at rate cn(in) per period during which in jobs are held
in queue n, such that cn(in) is convex and nondecreasing in in for each queue n. The
system further incurs loss costs at rate ν per rejected job, due either to active rejection
(not admitting) or to forced rejection (when an admitted job finds the buffer to which it
is routed full).

We will find it convenient to formulate the overal cost incurred in a period in which
the joint system state is i = (in) and action a = (an) prevails as a constant plus a term
that is separably additive across queues, using the identity

∑
n∈N

cn(in) + νλ

[
1−

∑
n∈N

(1− an)

]
= −(N − 1)λν +

∑
n∈N

[cn(in) + νλan] .

Note that the term 1 −
∑
n∈N

(1 − an) in the above equality takes the value 1 if an arrival

is to be rejected (an = 1 for every queue n), and takes the value 0 otherwise (an = 0 for
exactly one queue n).

For the third performance objective we will denote by c′n(an, in) the expected rate
of job completions per period during which in jobs are held in queue n and action an

prevails, i.e.,

c′n(an, in) :=


0, if in = 0 and an = 1,

λµn, if in = 0 and an = 0,

µn, if in ≥ 1.

Let Eπ
(a,i)[·] denote expectation under policy π conditioned on the initial previous

joint action and state vectors being equal to a(−1) := a = (an) and X(−1) := i =
(in). The operation of such a system raises the following performance optimization
problems:

(i) find a policy minimizing the expected total discounted sum of holding costs and
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rejection costs,

min
π∈Π

Eπ
(a,i)

[ ∞∑
t=0

∑
n∈N
{cn(Xn(t)) + νλan(t)}βt

]
, (4.1)

where 0 < β < 1 is the discount factor;

(ii) find a policy minimizing the expected time-average sum of holding costs and re-
jection costs,

min
π∈Π

lim sup
T→∞

1
T

Eπ
(a,i)

[
T∑

t=0

∑
n∈N
{cn(Xn(t)) + νλan(t)}

]
; (4.2)

(iii) find a policy maximizing the expected time-average number of job completions,

max
π∈Π

lim inf
T→∞

1
T

Eπ
(a,i)

[
T∑

t=0

∑
n∈N

c′n(an(t), Xn(t))

]
. (4.3)

4.1.3 Index Policies

As mentioned earlier, a way to formulate present model as an MDP is to redefine the
state of each queue n as the augmented state X̃n(t) := (an(t−1), Xn(t−1)), and use the
joint state and action process X̃(t) := (X̃n(t)) and a(t) := (an(t)).

In the present model, index policies are based on attaching to each queue n a nu-
meric index νn(an, in), which can be thought of as a measure of undesirability of routing
a job to queue n, given as a function of the queue’s augmented state, which we denote
by (an, in) and emphasize that it refers to the observed action-state pair at the previous
period. We note that we allow the index to be undefined for certain (uncontrollable)
states. Further, under the time-average criteria (4.2) and (4.3), if the (first-order) in-
dex νn(an, in) is defined and constant, then we define a second-order index γn(an, in).
(When the first-order index is undefined, then the second-order index is undefined as
well.)

The resultant index policy prescribes the following actions, when at time t the aug-
mented state of each queue n is known to be X̃n(t) = (an, in):

• under objective (4.1),

– in the problem version with admission control capability, the policy pre-
scribes to admit an arriving job if ν > νn(an, in) for at least one queue n

such that νn(an, in) is defined, i.e., if the cost of rejecting the job exceeds the
undesirability of routing it to some queue; otherwise, the job is rejected;
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– if admitted, the job is routed to a queue

∗ of lowest index νn(an, in), breaking ties arbitrarily, among those queues
n for which νn(an, in) is defined and ν > νn(an, in), if at least one such
queue exists;

∗ of undefined index νn(an, in), breaking ties arbitrarily, if there is no queue
n for which νn(an, in) is defined and ν > νn(an, in) and if at least one
queue with undefined index exists;

∗ of lowest index νn(an, in), breaking ties arbitrarily, in all the remaining
cases;

• under objectives (4.2) and (4.3),

– in the problem version with admission control capability, the policy pre-
scribes to admit an arriving job if ν > νn(an, in) for at least one queue n

such that νn(an, in) is defined, i.e., if the cost of rejecting the job exceeds the
undesirability of routing it to some queue; otherwise, the job is rejected;

– if admitted, the job is routed to a queue

∗ of lexicographically lowest index pair (νn(an, in), γn(an, in)), breaking ties
arbitrarily, among those queues n for which νn(an, in) and γn(an, in) are
defined and ν > νn(an, in), if at least one such queue exists;

∗ of undefined index νn(an, in), breaking ties arbitrarily, if there is no queue
n for which νn(an, in) and γn(an, in) are defined and ν > νn(an, in), and
if at least one queue with undefined index exists;

∗ of lexicographically lowest index pair (νn(an, in), γn(an, in)), breaking ties
arbitrarily, in all the remaining cases.

Note that such policies may well prescribe to admit and route a job to a queue that
is actually full, unbeknownst to the controller, in which case the job will be blocked and
hence rejected.

For the special case of the pure-routing problem under objectives (4.1) and (4.2) in
which there are two symmetric infinite-buffer queues and linear holding cost (N = 2,
µn ≡ µ, and cn(i) ≡ i), it was shown in Kuri and Kumar (1995) that an index policy
is optimal: the Join the Shortest Expected Queue (JSEQ) rule, where the JSEQ index of a
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queue n is defined as

νJSEQ
n (an, in) :=



in − µ, if an = 1, in ≥ 1,

0, if an = 1, in = 0,

in + λ− µ, if an = 0, in ≥ 1,

λ(1− µ), if an = 0, in = 0,

where the index represents the expected value of Xn(t) conditioned on (an(t−1), Xn(t−
1)) = (an, in). Such a result partially extends to queues with delays classical results
in (Winston, 1977; Hordijk and Koole, 1990) for symmetric queues without delays on
optimality of the Join the Shortest (Nonfull) Queue (JSQ) rule.

For the case of routing to two nonsymmetric queues with infinite buffers, in which
index policies need no longer be optimal, Artiges (1995) showed (in a variation on the
above model) that the optimal routing policy is characterized by a monotone switching
curve, extending a classical result in Hajek (1984) for a model without delayed informa-
tion. Still, one can easily devise a variety of heuristic routing index rules by defining
indices based on ad hoc arguments, analogously to the Shortest Expected Delay routing
rule in Houck (1987). Yet, a drawback of such conventional indices, which typically
measure a queue’s expected weighted load, is that they only give a routing rule, being
of no use to obtain a reasonable combined admission control and routing rule as out-
lined above, since consideration of rejection costs does not play a role in their definition.

Hence, we are led to address the issue of defining appropriate indices νn(an, in) for
the above admission control and routing problems. Instead of proposing some ad hoc
index via heuristic arguments, we will deploy a unifying fundamental design principle
for priority allocation policies in multiarmed restless bandit problems (MARBPs), of which
(4.1), (4.2), and (4.3) are special cases, based on the economically intuitive concept of
marginal productivity (MP) index.

Such an approach was introduced in Whittle (1988), and has been developed and
applied in a variety of models by the second author in work including Niño-Mora (2001,
2002, 2006b,a), which was reviewed in Niño-Mora (2007b). In particular, Niño-Mora
(2002, 2007c) introduced such an approach to the design of index policies for admission
control and routing to parallel exponential queues without delayed information. As
for use of MP index policies for problems with delayed state information, they were
introduced in Niño-Mora (2007d) in the setting of a dynamic scheduling model.

In the present setting, and focusing for concreteness on discounted problem (4.1)
under combined admission control and routing, such a restless bandit indexation ap-
proach is based on decoupling the problem into individual single-queue admission con-
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Figure 4.1: A design of the single-queue admission control problem with delay. The
gatekeeper’s work consists of shutting and opening the entry gate, thus rejecting some
of the arriving customers.

trol subproblems, one for each queue n ∈ N :

min
πn∈Πn

Eπn

(an,in)

[ ∞∑
t=0

{cn(Xn(t)) + νλan(t)}βt

]
, (4.4)

where Πn denotes the class of admission control policies based on one-period delayed
state observation for operating queue n in isolation, and Eπn

(an,in) [·] denotes expecta-

tion conditioned on the initial observed state and action pair being equal to X̃n(0) :=
(an(−1), Xn(−1)) = (an, in). Note that, in such a setting, taking action an(t) = 1 at
period t means denying access to potential arrivals, which can be conveniently visual-
ized as the action of shutting the queue’s entry gate which is taken by the gatekeeper (see
Figure 4.1).

Problem (4.4) is a single restless bandit problem (RBP), i.e., a binary-action (an(t) = 1:
active; an(t) = 0: passive) MDP, on which we can deploy the powerful theoretical and
algorithmic results available for restless bandit indexation (cf. Niño-Mora, 2007b). Let us
say that problem (4.4) is indexable if there exists an index νMPI

n (an, in) that characterizes
its optimal policies for every real value of the rejection cost parameter ν, as follows: it
is optimal to take the active action (shut the entry gate) in augmented state X̃n(t) =
(an, in) if νMPI

n (an, in) ≥ ν and it is optimal to take the passive action (open the entry
gate) in augmented state X̃n(t) = (an, in) if νMPI

n (an, in) ≤ ν.
In such a case, we term νMPI

n (an, in) the queue’s MP index, due to its economic in-
terpretation as a measure of the rate of marginal reduction in expected holding cost
relative to the marginal increase in expected rejections that results from shutting the
gate in state (in, an) instead of opening it, which characterizes the expected holding
cost versus rejections tradeoff curve. Such is the index we propose to use as the basis
for designing an index rule for admission control and/or routing for the multi-queue
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problems of concern.

4.1.4 Goals and Contributions

Two issues need thus be addressed: (i) show that problem (4.4) is indeed indexable;
and (ii) design an efficient index-computing algorithm. As for the first issue, we will
deploy the sufficient indexability conditions based on partial conservation laws (PCLs)
introduced in Niño-Mora (2001, 2002). Such conditions require one to identify a family
of stationary deterministic policies among which an optimal policy for problem (4.4)
exists for every value of the parameter ν.

For such a purpose, we draw on results in Altman and Nain (1992) and Kuri and
Kumar (1995) that characterize the structure of optimal policies for such a single-queue
admission control problem (in an infinite-buffer model) with one-period delayed state
information. Such work shows that it suffices to consider policies that are characterized
by two thresholds k1 ≥ k0 ≥ 0, as follows: if the previous observed number of jobs in
the system was i and the previous action was to open, i.e., a = 0 (resp. shut, i.e., a = 1)
the queue’s entry gate, the (k0, k1)-policy prescribes to shut the gate iff i > k0 (resp. iff
i > k1).

The intuition behind such a result is that, if it is optimal to shut the entry gate given
that it was previously shut, then, other things being equal, it should also be optimal
to shut it when it was previously open, as in the latter case the actual number of jobs
in the system cannot be smaller than in the former. It is further shown in Altman and
Nain (1992) that one need only consider threshold pairs that differ in at most one unit:
0 ≤ k1 − k0 ≤ 1. Note that, in order to be consistent with such bi-threshold policies, the
MP index νMPI

n (an, in) must be monotone nondecreasing in in for both an ∈ {0, 1}, and
must satisfy νMPI

n (0, in) ≥ νMPI
n (1, in).

As for the second issue, that of index computation, provided PCL-indexability is
established relative to such a family of policies, one can use the adaptive-greedy algo-
rithm introduced in Niño-Mora (2001, 2002) to compute the MP indices. Using the gen-
eral fast-pivoting implementation given in Niño-Mora (2007a) such an algorithm has
a cubic arithmetic operation complexity in the number of restless bandit states, which
in the present setting corresponds to an O(I3) operation count. While tractable, such a
complexity can be overly burdensome for online computation in high-speed communi-
cation switches.

Relative to the above two issues, this chapter presents the following contributions:
(i) it shows that problem (4.4) is PCL-indexable relative to bi-threshold policies, which
ensures both existence of the MP index and the validity of the adaptive-greedy algo-
rithm for its computation; (ii) by exploiting special structure, a substantially faster in-
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dex algorithm is presented that computes the MP indices in O(I) operations; (iii) we
present an algorithm to calculate the MP indices for any particular state by performing
at most O(log2 I) arithmetic operations; (iv) validity of the same algorithm for the MP
indices under the time-average criterion to be used for (4.2) is established; (v) the MP
index to be used for (4.3) is obtained by the same algorithm and shown to be constant,
and the second-order MP index is derived.

An extensive computational study testing the performance of the proposed index
policies will be included in the final (paper) version of this chapter.

4.2 MDP Formulations

In order to draw an analogy, in this section we formulate as a Markov decision process
(MDP) both the admission control problem without delay and the admission control
problem with a one-period delay. Since the problem considered in the following is a
single-queue case, we drop the subscript n from the notation. For concreteness, in this
section we focus on the objective (4.1); for the problem of maximum expected number of
job completions one would simply replace the holding cost ci for the completion reward
−c′(a, i).

4.2.1 Admission Control Problem

First we formulate as an MDP the no-delay admission control problem. Let X(t) be the
state process, denoting the queue length (including customers in service, if any) at time
epoch t. If a(t) denotes the action process, then the task at time epoch t is to choose
between closing the gate (a(t) = 1) and letting the gate open (a(t) = 0). The MDP
elements are as follows:

• The action space is denoted by A := {0, 1}.

• The state space is I := {0, 1, . . . , I}, where state i ∈ I represents the number of
customers in the buffer or in service.

• Denoting by ζ := λ(1−µ), η := µ(1−λ), and ε := 1−ζ−η, the one-period transition
probabilities pa

ij := P [X(t) = j|X(t− 1) = i, a(t− 1) = a] from state 1 ≤ i ≤ I − 1
to state j under action a are

p0
ij =


η if j = i− 1

ε if j = i

ζ if j = i + 1

p1
ij =

µ if j = i− 1

1− µ if j = i
(4.5)
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and for the boundary cases, p1
00 = 1, and

p0
0j =

1− ζ if j = 0

ζ if j = 1
pa

Ij =

µ if j = I − 1

1− µ if j = I
(4.6)

The remaining transition probabilities are zero.

• If the queue length is i ∈ I and action a ∈ A is chosen, then the gatekeeper’s one-
period reward is defined as the negative of the expected holding cost at the current
epoch,

Ra
i := −ci.

At the same time, the gatekeeper’s one-period work is defined as the expected num-
ber of rejected customers during the current period,

W 1
i := λ W 0

i :=

λ if i = I

0 otherwise

Thus, for rejection cost (gatekeeper’s wage) ν, the one-period overal cost is

−Ra
i + νW a

i = ci + λνa + (1− a)1{i = I}λν,

where 1{Y } is the 0/1 indicator function of statement Y .

Given the definition above, we call state I uncontrollable, because in this state both
the actions result in identical consequences (for having identical one-period reward,
one-period work, and transition probabilities), and there is actually no decision to make.
This is not the case for the remaining states, henceforth called controllable.

Finally, to ease later reference we summarize here our model parameters assump-
tions:

0 < β < 1, 0 < λ ≤ 1, 0 < µ < 1, 0 ≤ η < 1, 0 < ε < 1, 0 < ζ < 1. (4.7)

4.2.2 Admission Control Problem with Delay

In this subsection we follow the classic reformulation as MDP of problems with a dis-
crete-time delay, which is a special case of partially observed MDPs, by augmenting the
state space (Brooks and Leondes, 1972).
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In the admission control problem with delay1, the decision at epoch t is based on
X̃(t) := (a(t−1), X(t−1)), which is henceforth called an augmented state process. Thus,
X̃(t) is the observed state at time epoch t, while X(t) is the actual (hidden) queue length
process. The MDP elements of the admission control problem with delay are as follows:

• The action space is A as in the no-delay problem.

• Recall that in the no-delay problem, state I is uncontrollable. Consequently, states
(0, I) and (1, I) in the problem with delay are duplicates, having identical one-
period reward, one-period work, and transition probabilities, so they can and
should be merged into a unique state (∗, I). We therefore define the augmented
state space

Ĩ := (A× {0, 1, . . . , I − 1}) ∪ {(∗, I)}.

• The one-period transition probabilities are

pa′

(a,i),(b,j) := P
[
X̃(t + 1) = (b, j)|X̃(t) = (a, i), a(t) = a′

]
= P

[
X(t) = j, a(t) = b|X(t− 1) = i, a(t− 1) = a, a(t) = a′

]
= pa

ij · 1{a′ = b}.

For the merged state (∗, I), we have pa′

(a,i),(∗,I) := pa′

(a,i),(0,I) + pa′

(a,i),(1,I) = pa
ij .

• If the current-epoch augmented state is (a, i), then the gatekeeper’s one-period re-
ward is defined as the negative of the expected holding cost at the current epoch,

R
b
(a,i) := E

[
Rb

X(t)|a(t− 1) = a,X(t− 1) = i
]
.

Similarly, the gatekeeper’s one-period work is defined as the expected number of
rejected customers during the current period,

W
b
(a,i) := E

[
W b

X(t)|a(t− 1) = a,X(t− 1) = i
]
.

Thus, for rejection cost (gatekeeper’s wage) ν, the one-period overal cost is−R
b
(a,i) +

νW
b
(a,i).

The above one-period reward and one-period work can be explicitly stated as fol-

1We use the ’tilded’ notation for the delayed version when not doing so might be confusing; note that
state-dependent quantities are easy to distinguish since the original state is uni-dimensional, while the
augmented state of the delayed problem is bi-dimensional.
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lows:

R
b
(a,i) :=



0, if (a, i) = (1, 0),

−[(1− ζ)c0 + ζc1], if (a, i) = (0, 0),

−[µci−1 + (1− µ)ci], if a = 1 and 1 ≤ i ≤ I − 1,

−[ηci−1 + εci + ζci+1], if a = 0 and 1 ≤ i ≤ I − 1,

−[µcI−1 + (1− µ)cI ], if (a, i) = (∗, I).

W
b
(a,i) :=



λ, if b = 1,

ζ, if b = 0 and (a, i) = (∗, I),

ζλ, if b = 0 and (a, i) = (0, I − 1),

0, otherwise.

To evaluate a policy π under the discounted criterion, we consider the following
two measures. Let gπ

(a,i) be the expected total β-discounted work (or, the expected total β-
discounted number of rejected customers) if starting from state (a(−1), X(−1)) := (a, i)
under policy π,

gπ
(a,i) := Eπ

(a,i)

[ ∞∑
t=0

βtW
a(t)
(a(t−1),X(t−1))

]
.

Analogously is defined f
π
(a,i), the expected total β-discounted reward if starting from state

(a(−1), X(−1)) := (a, i) under policy π,

f
π
(a,i) := Eπ

(a,i)

[ ∞∑
t=0

βtR
a(t)
(a(t−1),X(t−1))

]
.

If the rejection cost ν is interpreted as the wage paid to gatekeeper for each rejected
customer, then the objective is to solve the following ν-wage problem for each ν:

min
π∈Π
−f

π
(a,i) + νgπ

(a,i), (4.8)

where Π is the set of all non-anticipative control policies.

Next we present alternative, simpler definitions of one-period work and one-period
reward, and show that they lead to an equivalent problem. These alternative definitions
capture the reward and work one period earlier comparing to the original ones. If the
current-epoch augmented state is (a, i), then the alternative gatekeeper’s one-period
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reward is defined as the negative of the expected holding cost at the previous epoch,

Rb
(a,i) := β(−ci/β) = −ci. (4.9)

Similarly, the alternative gatekeeper’s one-period work is defined as the expected num-
ber of rejected customers during the previous period,

W b
(1,i) := λ W b

(0,i) :=

λ if i = I

0 otherwise
(4.10)

Notice that we have Rb
(a,i) = Ra

i and W b
(a,i) = W a

i .
Then, the alternative expected total β-discounted work if starting from state (a, i) :=

(a(−1), X(−1)) under policy π is

gπ
(a,i) := Eπ

(a,i)

[ ∞∑
t=0

βtW
a(t)
(a(t−1),X(t−1))

]
. (4.11)

Analogously, the alternative expected total β-discounted reward if starting from state
(a, i) := (a(−1), X(−1)) under policy π is

fπ
(a,i) := Eπ

(a,i)

[ ∞∑
t=0

βtR
a(t)
(a(t−1),X(t−1))

]
. (4.12)

Then, the alternative objective is

min
π∈Π
−fπ

(a,i) + νgπ
(a,i), (4.13)

where Π is the set of all non-anticipative control policies, and the following proposition
demonstrates its equivalence to (4.8).

Proposition 4.1.

(i) For any state (a, i) ∈ Ĩ and any policy π ∈ Π, fπ
(a,i) = Ra

i + βf
π
(a,i).

(ii) For any state (a, i) ∈ Ĩ and any policy π ∈ Π, gπ
(a,i) = W a

i + βgπ
(a,i).

(iii) Problems (4.8) and (4.13) are equivalent.

Proof. (i) Using the above definitions, we can write

f
π
(a,i) = Eπ

(a,i)

[ ∞∑
t=0

βt E
[
R

a(t)
X(t)|a(t− 1), X(t− 1)

]]
= Eπ

(a,i)

[ ∞∑
t=0

βtR
a(t)
X(t)

]
,
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where the last equality follows from Fubini’s theorem and from the law of total
expectation.

On the other hand, we have

fπ
(a,i) = Eπ

(a,i)

[ ∞∑
t=0

βtR
a(t−1)
X(t−1)

]
,

hence we obtain identity fπ
(a,i) = Ra

i + βf
π
(a,i).

(ii) Analogously to (i).

(iii) Since, for all (a, i), −Ra
i + νW a

i is constant, β > 0, and the identities in (i) and (ii)
hold, (4.13) is equivalent to (4.8).

Notice that the alternative one-period reward Rb
(a,i) and the one-period work W b

(a,i)

are independent of the current-epoch action (superscript b), therefore we will omit the
superscript in the remaining sections.

4.3 Restless Bandit Indexation

In the previous section we have formulated the admission control problem with delay
as a binary-action Markov decision process (MDP), i.e., a restless bandit, where shutting
the entry gate corresponds to the active action, and opening it as the passive action.

We next address such a problem by deploying a restless bandit indexation approach,
following the seminal idea introduced in Whittle (1988) and developed by the second
author, in work surveyed in Niño-Mora (2007b). We focus on the finite-buffer problem
under the discounted criterion. The solution to the problem under the time-average
criterion is treated in subsection 4.4.5.

MDP theory ensures existence of an optimal policy that is stationary, deterministic
and independent of the initial state. We represent a stationary deterministic policy in
terms of an active set S ⊆ Ĩ, i.e., the set of states in which it prescribes to shut the gate;
in the remaining states it prescribes to let the gate open. The problem to find an optimal
admission control policy is thus reduced to finding an optimal active set,

min
S⊆eI −fS(a,i) + νgS(a,i). (4.14)

For every rejection cost ν, the optimal policy is characterized by the unique solution
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vector (v∗(a,i)(ν))
(a,i)∈eI to the Bellman equations

v∗(a,i)(ν) = min
a′∈A

−R(a,i) + νW(a,i) − β
∑

(b,j)∈eI
pa′

(a,i),(b,j)v
∗
(b,j)(ν)

 , (a, i) ∈ Ĩ (4.15)

where v∗(a,i)(ν) denotes the optimal value of (4.13) starting at (a, i) under rejection cost
ν. Hence, there exists a maximal optimal active set (i.e., a set of states in which it is optimal
to close the gate) S∗(ν) ⊆ Ĩ for (4.13), which is characterized by

S∗(ν) :=

(a, i) ∈ Ĩ :
∑

(b,j)∈eI
p0
(a,i),(b,j)v

∗
(b,j)(ν) ≤

∑
(b,j)∈eI

p1
(a,i),(b,j)v

∗
(b,j)(ν)

 .

Problem (4.14) can be viewed as a bi-criteria parametric optimization problem. In-
tuitively, if the rejection cost ν → −∞, the optimal active set should be Ĩ, whereas if the
rejection cost ν →∞, the optimal active set should be the empty set. In fact, we set out
to show a stronger, so-called indexability property: Active sets S∗(ν) diminish mono-
tonically from Ĩ to the empty set as the rejection cost ν increases from −∞ to∞. Such
a property was introduced in Whittle (1988) for the restless bandits with one-periods
works equal to 1 under the active action, and equal to 0 under the passive action, and
extended to restless bandits without these limitations in Niño-Mora (2002).

Such an indexability property is equivalent to existence of break-even values νMPI
(a,i)

of the rejection cost ν attached to augmented states (a, i) ∈ Ĩ, which characterize the
optimal policies for (4.14) as follows: it is optimal to take the active action when the
system occupies augmented state (a, i) if νMPI

(a,i) ≥ ν, and it is optimal to take the passive
action when the system occupies augmented state (a, i) if νMPI

(a,i) ≤ ν. Since we have
defined S∗(ν) as the maximal optimal active set, state (a, i) ∈ S∗(ν) if ν = ν(a,i), though
this choice is arbitrary. We will refer to index νMPI

(a,i) as the marginal productivity index
(MPI), after its economic interpretation as the marginal productivity of work at state
(a, i), as elucidated in Niño-Mora (2002, 2006b).

4.3.1 Exploiting Special Structure

While one could test numerically whether a given instance is indexable and calculate the
indices ν(a,i) for all (a, i) ∈ Ĩ, we aim instead to establish analytically indexability of the
admission control problem with delay in general. This will further allow us to achieve
our second objective of obtaining a fast way of computing the indices. In this subsection
we present how to exploit special structure of the model by aligning indexability to a
known family of optimal bi-threshold policies.
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Suppose that we postulate a family F ⊆ 2eI of active sets, satisfying certain con-
nectivity conditions (see Niño-Mora (2007b) for the details). Before presenting such a
family for the admission control problem with delay, we review a test (deployed in
Section 4.4) to verify whether a postulated family F can be used to establish indexabil-
ity, via the sufficient conditions termed PCL(F)-indexability introduced in Niño-Mora
(2001, 2002).

Let policy 〈a,S〉 be the policy where action a is applied in the current period and
policy S proceeds. Notice that policy 〈a,S〉 implies that the next-epoch augmented
state will be (a, j) for some state j ∈ I. We define the marginal work of closing the gate
instead of letting it open (or, of rejecting possible customers instead of admitting them),
if starting from state (a, i) under active-set policy S, as

wS
(a,i) := g

〈1,S〉
(a,i) − g

〈0,S〉
(a,i) , (4.16)

i.e., as the increment in total work that results from closing the gate instead of opening
it at current epoch. Analogously, we define the marginal reward,

rS(a,i) := f
〈1,S〉
(a,i) − f

〈0,S〉
(a,i) , (4.17)

as the analogous increment in total reward. Finally, we define the marginal productivity
rate

νS(a,i) :=
rS(a,i)

wS
(a,i)

, (4.18)

provided that the denominator does not vanish. As we will see, the denominator is
positive for the admission control problem with delay. It can be shown that if the indices
exist, then ν(a,i) = νS(a,i) for some active set S.

In Figure 4.2 is given a scheme of the adaptive-greedy algorithm AGF , which calcu-
lates the candidates for the maximal optimal active sets {Ŝk}2I+1

k=0 and the candidates for
the MP indices {ν̂ik}

2I+1
k=1 . It is greedy, since in each step it picks the state with the lowest

marginal productivity rate ν
bSk−1

(ak,ik) (out of the feasible ones), and it is adaptive, because

in each step it updates the marginal productivity rates for the actual active set Ŝk−1.

Now we are ready to define PCL(F)-indexability, based on partial conservation laws
(PCL), which determines both the computational and analytical value of the adaptive-
greedy algorithm AGF .

Definition 4.1 (PCL(F)-indexability). The admission control problem with delay is
called PCL(F)-indexable, if
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Ŝ0 := Ĩ;
for k = 1 to 2I + 1 do

pick (ak, ik) ∈ arg min
{

ν
bSk−1

(a,i) : (a, i) ∈ Ŝk−1 and Ŝk−1 \ {(a, i)} ∈ F
}
;

ν̂(ak,ik) := ν
bSk−1

(ak,ik);

Ŝk := Ŝk−1 \ {(ak, ik)};
end {for};
{Output {Ŝk}2I+1

k=0 ,
{
ν̂(ak,ik)

}2I+1

k=1
}

Figure 4.2: Algorithmic scheme of AGF .

(i) [Positive Marginal Works under F] for each active set S ∈ F and for each control-
lable state (a, i) ∈ Ĩ, the marginal work wS

(a,i) > 0;

and either of the following conditions holds:

(ii) for every rejection cost ν, there exists an optimal active set S ∈ F ;

(ii’) the output
{
ν̂(ak,ik)

}2I+1

k=1
of the algorithm AGF are marginal productivity indices

in nondecreasing order.

Niño-Mora (2001, 2002, 2007b) introduced variants of PCL(F)-indexability and pro-
ved that PCL(F)-indexability implies indexability, i.e., the existence of MP indices that
are calculated as

{
ν̂(ak,ik)

}2I+1

k=1
by the adaptive-greedy algorithm AGF . To ease later

reference, we summarize the above in the following theorem.

Theorem 4.1. If marginal works are positive under F (cf. Definition 4.1(i)) for problem (4.13),
then for that problem the following statements are equivalent:

(i) for every rejection cost ν, there exists a maximal optimal active set S ∈ F ;

(ii) the problem is indexable and all active sets S∗(ν) ∈ F ;

(iii) the output
{
ν̂(ak,ik)

}2I+1

k=1
of the algorithm AGF are marginal productivity indices in non-

decreasing order.

In Section 4.4 we show that for a certain family F (defined below), Definition 4.1(i)
holds and, given the existing results, Theorem 4.1(i) is true. In this way indexability of
the admission control problem with delay will be established, and the algorithm AGF

can be used to obtain the indices.
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Definition 4.1(i) has an intuitive interpretation (cf. Niño-Mora, 2002, Proposition
6.2): positivity of marginal work wS

(a,i) (where S ∈ F and state (a, i) ∈ Ĩ is control-
lable) is equivalent to monotonicity of total work,

g
S\{(a,i)}
(a,i) < gS(a,i), if (a, i) ∈ S,

gS(a,i) < g
S∪{(a,i)}
(a,i) , if (a, i) /∈ S.

Informally stated, rejecting in a larger number of states corresponds to a larger expected
total discounted number of rejected customers. Definition 4.1(i) is a natural assumption
in many models, though, in general, it is neither a sufficient nor a necessary condition
for indexability.

4.3.2 Postulated Active-Set Family

We use the results of Altman and Nain (1992), who characterized the optimal bi-thres-
hold policies, and identify an active-set family F for which Theorem 4.1(i) holds. A
bi-threshold active-set policy with open-gate threshold K0 and closed-gate threshold
K1 will be denoted by

ĨK0,K1 := {(0,K0), (0,K0 + 1), . . . , (0, I)} ∪ {(1,K1), (1,K1 + 1), . . . , (1, I)}, (4.19)

which is well-defined for all 0 ≤ K0,K1 ≤ I + 1 except the active sets ĨI+1,I and ĨI,I+1,
because states (1, I) and (0, I) are duplicates, and by definition either both or none of
them can belong to ĨK0,K1 .

In words, active set ĨK0,K1 prescribes to open or close the gate depending on the
previous-epoch action and previous-epoch state. If the gate was open in the previous
period, then we open the gate if and only if the queue length in the previous epoch
was equal to or larger than the open-gate threshold K0. Similarly, if the gate was closed
in the previous period, then we open the gate if and only if the queue length in the
previous epoch was equal to or larger than the closed-gate threshold K1.

Intuitively, if an active set ĨK0,K1 is optimal for some rejection cost ν, then K0 ≤ K1.
Indeed, for a given previous-epoch queue length, we would be less prone to close the
gate if it was closed than if it was open in the preceding period, because the queue
length could not get larger under a closed gate, and therefore the rejection costs become
relatively more harmful than the holding costs. On the other hand, it can be shown that
K1 ≤ K0 + 1 (see below). Thus, the postulated family of optimal active sets for the



4.3. RESTLESS BANDIT INDEXATION 47

admission control problem with delay is

F := {ĨK,K : K = 0, 1, . . . , I + 1} ∪ {ĨK,K+1 : K = 0, 1, . . . , I − 1}. (4.20)

Theorem 4.2 (Altman and Nain (1992), Theorem 3.1). If the holding cost ci is nondecreas-
ing and convex on I, thenF as defined in (4.20) contains an optimal active set for every rejection
cost ν.

Though the above result was shown for the problem with infinite buffer, it directly
applies to the finite-buffer variant. Notice that if a bi-threshold policy is optimal for the
infinite-buffer problem, then it is also optimal for all problems with buffer equal to or
larger than both the thresholds. If the buffer is smaller than the larger optimal threshold
(K1), then it is optimal to open the gate all the time.

For active-set family F given in (4.20), picking (ak, ik) becomes trivial, because there
is only a unique feasible augmented state in each step. For instance, in step k = 1, only
state (1, 0) belongs both to Ŝ0 and Ŝ0\{(1, 0)} = Ĩ0,1 ∈ F , since Ŝ0 := Ĩ = Ĩ0,0. Similarly,
in step k = 2, only state (0, 0) belongs both to Ŝ1 and Ŝ1 \{(0, 0)} = Ĩ1,1 ∈ F . In general,
(ak, ik) = (0, (k/2) − 1) for all even 1 ≤ k ≤ 2I , and (ak, ik) = (1, (k − 1)/2) for all odd
1 ≤ k ≤ 2I . Finally, in step k = 2I + 1, the picked state is (∗, I).

To summarize, the sequence of candidate active sets {Ŝk}2I+1
k=0 in algorithm AGF

under active-set family F given in (4.20) is

Ŝ0 = Ĩ = Ĩ0,0, Ŝ1 = Ĩ0,1, Ŝ2 = Ĩ1,1, Ŝ3 = Ĩ1,2, Ŝ4 = Ĩ2,2, . . .

. . . , Ŝ2I−1 = ĨI−1,I , Ŝ2I = ĨI,I , Ŝ2I+1 = ĨI+1,I+1 = ∅, (4.21)

and the sequence of picked states {(ak, ik)}2I+1
k=1 is

(a1, i1) = (1, 0), (a2, i2) = (0, 0), (a3, i3) = (1, 1), (a4, i4) = (0, 1), . . .

. . . , (a2I−1, i2I−1) = (1, I − 1), (a2I , i2I) = (0, I − 1), (a2I+1, i2I+1) = (∗, I).

Given the above, Figure 4.3 presents the reduction of the algorithmic scheme AGF

as it applies to the postulated family F given in (4.20). Notice that the computational
complexity remains at the same level since the main difficulty lies in the calculation

of ν
bSk−1

(ak,ik), for which no computational details are given. Therefore we also call them
algorithmic schemes, not algorithms. The goal of this chapter is to establish the valid-
ity of AGF for our problem and to develop its implementation of low computational
complexity.
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for K = 1 to I do

ν̂(1,K−1) := ν
eIK−1,K−1

(1,K−1) ;

ν̂(0,K−1) := ν
eIK−1,K

(0,K−1);

end {for};
ν̂(∗,I) := ν

eII,I

(∗,I);

{Output
{
ν̂(a,i)

}
(a,i)∈eI}

Figure 4.3: Algorithmic scheme of AGF under active-set family F given in (4.20).

4.4 Results

In this section we focus on the admission control problem with delay to a buffer (i.e.,
I ≥ 2) under the discounted criterion. The results under the time-average criterion are
summarized in subsection 4.4.5.

Our main results are twofold. First, we prove the positivity of marginal works (cf.
Definition 4.1(i)) for F given in (4.20), so that the algorithm AGF can be applied to
compute the indices. Second, we simplify AGF obtaining a procedure that performs
only a linear number of arithmetic operations to compute all the indices and the optimal
thresholds.

Let us introduce a more compact notation. For any augmented-state-dependent
variable x(a,i), we will use the backward difference operator in the first dimension, i.e.,
the action-difference operator,

∆1x(1,i) := x(1,i) − x(0,i) (4.22)

and in the second dimension, i.e., the state-difference operator,

∆2x(a,i) := x(a,i) − x(a,i−1) (4.23)

whenever the right-hand side expressions are defined. For definiteness, we further let
∆2x(a,0) := 0 for a ∈ A. Directly from these definitions we obtain the following auxiliary
identity,

∆2x(1,i) −∆2x(0,i) = ∆1x(1,i) −∆1x(1,i−1). (4.24)

In the following we list our main results, drawing on the technical analysis of work
measures presented in the appendix (Section B.1).
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Proposition 4.2.

(i) The marginal works in problem (4.14) are positive under the active-set family F given in
(4.20), i.e., Definition 4.1(i) holds.

(ii) If the holding cost ci is nondecreasing and convex on I, then the admission control problem
with delay in (4.14) is PCL(F)-indexable, and therefore it is indexable and algorithm AGF

calculates the marginal productivity indices for this problem.

Proof.

(i) By B.2(iii) and B.3(iv), ∆1g
S
(1,i) > 0 for all 0 ≤ i ≤ I − 1 and ∆1g

S
(1,I) = 0 under

every active set S ∈ F . Then, B.4 establishes the positivity of marginal works for
all states.

(ii) Due to (i), Theorem 4.1(i)-(iii) are equivalent. The validity of Theorem 4.1(i) was
established in Theorem 4.2, therefore Theorem 4.1(iii) holds, and implies the above
claim.

4.4.1 A Fast Algorithm for Calculation of All Marginal Productivity Indices

Suppose that the holding cost ci is nondecreasing and convex on I. In the following we
develop an algorithm for calculation of all MP indices in O(I), which is two orders of
magnitude faster that the best general implementation of algorithm AGF performing
O(I3) arithmetic operations.

The algorithmic scheme AGF in Figure 4.3 is exhibited in its bottom-up version, as it
calculates the MP indices in nondecreasing order (cf. Definition 4.1(ii’)). This is closely
related to our definition of indexability in Section 4.3 as the property that “active sets
S∗(ν) diminish monotonically from Ĩ to the empty set as the rejection cost ν increases
from−∞ to∞,” being emulated by the bottom-up version of the algorithm. Notice that
we could equivalently define indexability as “active sets S∗(ν) expand monotonically
from the empty set to Ĩ as the rejection cost ν decreases from∞ to−∞.” This intuitively
leads to consideration of algorithm AGF in its equivalent, top-down version, starting
with the empty set and calculating the indices in nonincreasing order.

In other words, while the bottom-up version of algorithm AGF traverses the active-
set family F in the order (cf. (4.21))

Ĩ0,0, Ĩ0,1, Ĩ1,1, Ĩ1,2, . . . , ĨI−1,I , ĨI,I , ĨI+1,I+1,

the top-down version does that in the reverse order

ĨI+1,I+1, ĨI,I , ĨI−1,I , . . . , Ĩ1,2, Ĩ1,1, Ĩ0,1, Ĩ0,0.
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ν(1,0) := ν
eI0,0

(1,0);
for K = 1 to I − 1 do

ν(0,K−1) := ν
eIK,K

(0,K−1);

ν(1,K) := ν
eIK,K

(1,K);

end {for};
ν(0,I−1) := ν

eII,I

(0,I−1);

ν(∗,I) := ν
eII+1,I+1

(∗,I) ;

{Output
{
ν(a,i)

}
(a,i)∈eI}

Figure 4.4: Algorithmic scheme for the calculation of MP indices of the admission con-
trol problem with delay in terms of active sets ĨK,K only.

For instance, index ν(1,0) is calculated as the marginal productivity rate ν
eI0,0

(1,0) in the
bottom-up version, while the same index is calculated as the marginal productivity rate

ν
eI0,1

(1,0) in the top-down version. In fact, Niño-Mora (2002, Theorem 6.4(b)) implies that

ν
bSk−1

(ak,ik) = ν
bSk

(ak,ik), using the notation of Figure 4.2. Thus, since the active set of type ĨK,K

is efficient every two steps of the algorithm (except for the last step, where ĨI+1,I+1

follows ĨI,I ), we can formulate the indices in terms of marginal productivity rates under
active sets ĨK,K only. Such an algorithmic scheme is presented in Figure 4.4.

Next we develop an efficient implementation of the algorithmic scheme AGF , which
we present in Figure 4.5. The algorithm FA is two orders of magnitude faster than the
best existing general implementation of the algorithm AGF . We characterize the MP
indices calculated as indicated in Figure 4.4 in terms of closed-form expressions of pivot
state-differences given in B.13 and B.7. Notice that one iteration of the algorithm solves
the problem (4.14) for the entire range of the real-valued rejection cost parameter ν.

Proposition 4.3.

(i) The algorithm FA in Figure 4.5 computes the marginal productivity indices for problem
(4.14) under the discounted criterion.

(ii) The algorithm FA in Figure 4.5 performs O(I) arithmetic operations.

Proof. (i) The algorithm FA is an implementation of expressions of marginal produc-

tivity rates ν
eIK,K

(a,i) developed below into the algorithmic scheme given in Figure 4.4.

The marginal productivity rates are, by definition (4.18), computed as the ratio
of marginal rewards to marginal works. These quantities are given in B.11 and
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{Input I, λ, µ, β}
{Initialization}
ζ := λ(1− µ); η := µ(1− λ); ε := 1− ζ − η;
A0 := 0; A′

0 := βζ; B := βµ/(1− β + βµ); B′ := βζB + β(µ− η);
C ′′

0,0 := ∆1R(1,0) − ζB∆2R(1,1)/µ; D0 := 0; D′
0 := ∆1R(1,0);

ν(1,0) := C ′′
0,0/λ;

{Loop}
for K = 1 to I − 1 do

AK := βζ/[1 − β + βζ + βη(1 − AK−1)]; A′
K := βζ + β(µ − η)AK;

ZK := AKA′
K−1/A

′
K;

C ′′
K,K := ∆1R(1,K) − ζB∆2R(1,K+1)/µ;

C ′′
K,K+1 := ∆1R(1,K+1) − ζB2∆2R(1,K+1)/µ− ζB∆2R(1,K+2)/µ;

DK :=
(
βηDK−1 −∆2R(0,K)

)
AK/(βζ); D′

K := ∆1R(1,K) + β(µ− η)DK;

f
0

:= −
βζ

AK
DK − ∆1R(1,K) + (1 − β)C′′

K,K+1 − (βD′
K−1 + ∆2R(1,K))B

′ + βµ(βζDK−1B + C′′
K,K+1 − ∆1R(1,K−1))

A′
K

AK
+ βA′

K−1B′ + βζβµ(1 − BAK−1)

;

f
1

:= −
βζ

AK
DK − ∆1R(1,K) + (1 − β)D′

K−1 − (βC′′
K,K+1 + ∆2R(1,K))A

′
K−1 + βµ(βζDK−1 + (C′′

K,K+1 − ∆1R(1,K−1))AK−1)

A′
K

AK
+ βA′

K−1B′ + βζβµ(1 − BAK−1)

;

g0 :=
βλ (1 + B′)

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1−BAK−1)

; g1 :=
1 + A′

K−1

1 + B′ g0;

if K = 1 then

ν(0,0) :=
(1− ζ)D′

0 + ζC ′′
1,1 − (1− ζ)A′

0f
0 − ζB′f1

λ− (1− ζ)A′
0g

0 − ζB′g1
;

else

ν(0,K−1) :=
η
[
D′

K−2 + DK−1A
′
K−2

]
+ εD′

K−1 + ζC ′′
K,K − [ηZK−1 + ε]A′

K−1f
0 − ζB′f1

λ− [ηZK−1 + ε]A′
K−1g

0 − ζB′g1
;

end {if};

ν(1,K) :=
µD′

K−1 + (1− µ)C ′′
K,K − µA′

K−1f
0 − (1− µ)B′f1

λ− µA′
K−1g

0 − (1− µ)B′g1
;

end {for};
{Finalization}
AI := βζ/[1−β +βζ +βη(1−AI−1)]; A′

I := βζ +β(µ−η)AI; ZI := AIA
′
I−1/A

′
I;

DI :=
(
βηDI−1 −∆2R(0,I)

)
AI/(βζ);

f0 := −
βζ
AI

DI − βµD′
I−1

A′
I

AI
+ βµA′

I−1

; g0 :=
λ(1 + βµ)

A′
I

AI
+ βµA′

I−1

;

ν(0,I−1) :=
η
[
D′

I−2 + DI−1A
′
I−2

]
+ εD′

I−1 − [ηZI−1 + ε]A′
I−1f

0

(η + ε)λ− [ηZI−1 + ε]A′
I−1g

0
;

ν(∗,I) :=
D′

I−1 + βζ
AI

DIZI

λ(1− ZI)
;

{Output
{
ν(a,i)

}
(a,i)∈eI}

Figure 4.5: Fast algorithm FA for the calculation of MP indices under general rewards.
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B.4, respectively, in terms of their action-differences, which can be expressed in
terms of pivot state-differences due to B.4 and B.1. The pivot state-differences

∆2f
eIK,K

(0,K) ,∆2f
eIK,K

(1,K) ,∆2g
eIK,K

(0,K),∆2g
eIK,K

(1,K) given in B.13 and B.7 are in Figure 4.5 briefly
denoted by f0, f1, g0, g1, respectively.

(ii) The number of arithmetic operations in “Initialization” and in “Finalization” is
constant (with respect to I). Similarly, at each step of “Loop”, a constant number
of arithmetic operations is performed. Since there are O(I) steps of “Loop”, the
overal complexity of the algorithm is O(I).

Once the optimal index policy is known, the optimal thresholds for a given rejection
cost ν can easily be obtained. The optimal open-gate threshold is

K0 := min{i ∈ I : ν(0,i) ≥ ν}.

Similarly, the optimal closed-gate threshold is

K1 := min{i ∈ I : ν(1,i) ≥ ν}.

If ν > ν(∗,I), then K0 := I + 1 and K1 := I + 1.

4.4.2 A Fast Algorithm for Calculation of One Marginal Productivity Index

In this subsection we develop an algorithm for calculation of one MP index, say of state
(a,K) in isolation. We show that it performs at most O(log2 K) arithmetic operations,
given that it may require to calculate an integer power, for which the best known algo-
rithm (exponentiation by squaring) needs O(log2 K) operations.

The idea is to perform step K of the “Loop” of algorithm FA in Figure 4.5, which
performs a constant number of arithmetic operations, having calculated AK and DK

using their respective closed-form formulae. If η = 0, then AK is constant and requires
a constant number of arithmetic operations to calculate. In the following we assume
η > 0 and denote by

s :=
ζ

η
, t :=

1− β + βζ + βη

βη
, u :=

√
t2 − 4s, u+ :=

t + u

2
, u− :=

t− u

2
. (4.25)

Note that the above quantities are well defined given the model parameters assump-
tions. The following lemma2 characterizes AK and DK in terms of K-th powers of u+

and u−.
2I am grateful to Sofı́a Villar for bringing to my attention the Möbius transformation, crucial for obtain-

ing closed-form solutions of the recurrences in this lemma.
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Lemma 4.1.

(i) For any K ≥ 1,

AK = s
uK

+ − uK
−

uK+1
+ − uK+1

−
.

(ii) If ∆2R(1,i) = R for all i ≥ 1, then for any K ≥ 1,

DK = − R

1− β

[
u + (uK

+ − uK
− )u−u+

uK+1
+ − uK+1

−
− 1

]
.

(iii) Sequences AK and (if ∆2R(1,i) = R for all i ≥ 1) DK converge as K → ∞ to their
respective limits

A =
s

u+
, D =

c

1− β
(u− − 1) .

Proof. (i) We start by developing the formula for AK . By definition of AK in (B.14)
and those of s and t in (4.25) we can write AK =

s

−AK−1 + t
. Notice that this is a

well-defined Möbius transformation m(x) :=
0 · x + s

−1 · x + t
represented in the matrix

form as

M :=

(
0 s

−1 t

)

Therefore, AK expressed in terms of A0 is given by the K-th functional power of

m(x) for x = A0, i.e., AK = mK(A0) =
aK ·A0 + bK

cK ·A0 + dK
. Since A0 = 0 by definition,

we obtain AK = bK/dK . By properties of Möbius transformation, we have(
aK bK

cK dK

)
= MK .

Since

MK =

(
0 s

−1 t

)(
aK−1 bK−1

cK−1 dK−1

)
=

(
s · cK−1 s · dK−1

−aK−1 + t · cK−1 −bK−1 + t · dK−1

)

we have bK = s · dK−1 and hence AK = sdK−1/dK .

Next, we set out to obtain a closed-form solution for sequence dK . Using the
above identity for bK−1, we have dK = −s · dK−2 + t · dK−1. This recurrence is
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one of the two Lucas sequences (cf. Lucas, 1878; Kalman and Mena, 2003) with the
initial values d0 = 1 and d1 = t obtained from the definition of matrix M and the
relationship b1 = s · d0. Its closed-form solution is

dK =
uK+1

+ − uK+1
−

u

and therefore

AK = s
uK

+ − uK
−

uK+1
+ − uK+1

−
.

(ii) Now we develop the formula for DK . By recursive implementation of the defini-
tion of DK in (B.53) and using definition of s in (4.25) we have

DK = − 1
βη

[
AK

s
∆2R(1,K) +

AK

s

AK−1

s
∆2R(1,K−1) + . . .

+
AK

s

AK−1

s
. . .

A1

s
∆2R(1,1)

]
.

Since AK = sdK−1/dK , this simplifies to

DK = − 1
βη

[
dK−1

dK
∆2R(1,K) +

dK−2

dK
∆2R(1,K−1) + · · ·+ d0

dK
∆2R(1,1)

]
= − 1

βηdK

K−1∑
k=0

dk∆2R(1,k+1),

which, under constant ∆2R(1,i) = R for all i ≥ 1, is

DK = − R

βηdK

K−1∑
k=0

dk.

Plugging the expression for dk and simplifying the constant terms gives

K−1∑
k=0

dk =
1

1− t + s

[
1−

uK+1
+ (1− u−)− uK+1

− (1− u+)
u

]
.



4.4. RESULTS 55

The last two identities together with (1− t + s)βη = 1− β imply

DK = − R

1− β

u− uK+1
+ (1− u−) + uK+1

− (1− u+)

uK+1
+ − uK+1

−

= − R

1− β

[
u + (uK

+ − uK
− )u−u+

uK+1
+ − uK+1

−
− 1

]
.

(iii) The Lucas sequence dK defined in part (i) satisfies dK+1/dK = u+ > 1 as K →∞.
Therefore, we obtain the limits

A =
s

u+
, D =

c

1− β
(u− − 1) .

Finally we note that calculation of all MP indices using this method would require
O(log2(I!)) arithmetic operations, which is more than the linear number performed by
algorithm FA in Figure 4.5.

4.4.3 Fast Algorithm under Convex Non-Decreasing Holding Costs in Ad-
mission Control Problem with Delay

Under convex non-decreasing holding costs, the immediate reward is R(a,i) = Ra
i : −ci

under any a ∈ A, i ∈ I. Therefore, we have

∆1R(1,i) = 0, i ≥ 0,

∆2R(0,i) = ∆2R(1,i) = −ci + ci−1 =: −∆ci, i ≥ 1,

and the fast algorithm simplifies to the one shown in Figure 4.6. This includes the
special case of linear holding costs, when ∆ci := c for all i ∈ I.

The algorithm can also be used to derive the myopic index, which only looks one
period ahead. Such an index is defined as νMYOPIC

(a,i) := lim
β→0

ν(a,i)

β
for all (a, i) ∈ Ĩ. In the
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{Input I, λ, µ, β, {ci}i∈I}
{Initialization}
ζ := λ(1− µ); η := µ(1− λ); ε := 1− ζ − η;
A0 := 0; A′

0 := βζ; B := βµ/(1− β + βµ); B′ := βζB + β(µ− η);
C ′′

0,0 := ζB∆c1/µ; D0 := 0; D′
0 := 0;

ν(1,0) := C ′′
0,0/λ;

{Loop}
for K = 1 to I − 1 do

AK := βζ/[1 − β + βζ + βη(1 − AK−1)]; A′
K := βζ + β(µ − η)AK;

ZK := AKA′
K−1/A

′
K;

C ′′
K,K := ζB∆cK+1/µ; C ′′

K,K+1 := ζB2∆cK+1/µ + ζB∆cK+2/µ;
DK := (βηDK−1 + ∆cK) AK/(βζ); D′

K := β(µ− η)DK;

f0 := −
βζ
AK

DK + (1− β)C ′′
K,K+1 − (βD′

K−1 −∆cK)B′ + βµ(βζDK−1B + C ′′
K,K+1)

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1−BAK−1)

;

f1 := −
βζ
AK

DK + (1− β)D′
K−1 − (βC ′′

K,K+1 −∆cK)A′
K−1 + βµ(βζDK−1 + C ′′

K,K+1AK−1)
A′

K

AK
+ βA′

K−1B
′ + βζβµ(1−BAK−1)

;

g0 :=
βλ (1 + B′)

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1−BAK−1)

; g1 :=
1 + A′

K−1

1 + B′ g0;

if K = 1 then

ν(0,0) :=
(1− ζ)D′

0 + ζC ′′
1,1 − (1− ζ)A′

0f
0 − ζB′f1

λ− (1− ζ)A′
0g

0 − ζB′g1
;

else

ν(0,K−1) :=
η
[
D′

K−2 + DK−1A
′
K−2

]
+ εD′

K−1 + ζC ′′
K,K − [ηZK−1 + ε]A′

K−1f
0 − ζB′f1

λ− [ηZK−1 + ε]A′
K−1g

0 − ζB′g1
;

end {if};

ν(1,K) :=
µD′

K−1 + (1− µ)C ′′
K,K − µA′

K−1f
0 − (1− µ)B′f1

λ− µA′
K−1g

0 − (1− µ)B′g1
;

end {for};
{Finalization}
AI := βζ/[1−β +βζ +βη(1−AI−1)]; A′

I := βζ +β(µ−η)AI; ZI := AIA
′
I−1/A

′
I;

DI := (βηDI−1 + ∆cI) AI/(βζ);

f0 := −
βζ
AI

DI − βµD′
I−1

A′
I

AI
+ βµA′

I−1

; g0 :=
λ(1 + βµ)

A′
I

AI
+ βµA′

I−1

;

ν(0,I−1) :=
η
[
D′

I−2 + DI−1A
′
I−2

]
+ εD′

I−1 − [ηZI−1 + ε]A′
I−1f

0

(η + ε)λ− [ηZI−1 + ε]A′
I−1g

0
;

ν(∗,I) :=
D′

I−1 + βζ
AI

DIZI

λ(1− ZI)
;

{Output
{
ν(a,i)

}
(a,i)∈eI}

Figure 4.6: Fast algorithm FA for the calculation of MP indices under convex non-
decreasing holding costs.
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case of linear holding costs, it is straightforward to obtain the myopic index as follows.

νMYOPIC
(1,0) = c(1− µ);

νMYOPIC
(0,0) = c(1− η − µ2λ);

νMYOPIC
(1,1) = c(1− µ2);

νMYOPIC
(0,1) = c(1− µη

1− ζ
), if I = 2;

νMYOPIC
(0,1) = c(1− µη), if I ≥ 3;

νMYOPIC
(a,i) = c, for all a ∈ A and 2 ≤ i ≤ I;

4.4.4 Admission Control Problem with Delay to Server with an Infinite Buffer

In this subsection we assume linear holding costs.

Notice that the indices calculated in the algorithm FA’s “Loop” are independent of
the buffer length I (only the indices of states (0, I−1) and (∗, I) in “Finalization” depend
on I). In other words, considering two buffers with lengths I1 < I2, the MP indices
of states (1, 0), (0, 0), (1, 1), . . . , (0, I1 − 2), (1, I1 − 1) are the same for both buffers; the
indices of states (0, I1 − 1) and (∗, I1) would differ, while the remaining states only
exist under buffer I2. Therefore, the algorithm FA can be used to obtain the indices for
infinite-length buffer. However, in such a case, “Loop” would never stop.

We present a simple algorithmic check (Figure 4.7) that can be run before “Loop”
(and after “Initialization”) to verify whether K0 = K1 = ∞, i.e., whether it is opti-
mal to let the gate open always. It is due to the fact that the indices are calculated in
nondecreasing order and they converge as the buffer length I →∞.

Lemma 4.2. If the buffer length I =∞, the marginal productivity indices calculated in “Loop”
of algorithm FA under the discounted criterion in Figure 4.5 converge.

Proof. We prove that AK and DK converge, and that their convergence implies the con-
vergence of the MP indices. B.5(ii) implies that AK converges to a limit, say, A ≤ β as
K →∞. This limit must satisfy

A =
βζ

1− β + βζ + βη(1−A)
.

This equation has two solutions for A,

1− β + βζ + βη ±
√

(1− β + βζ + βη)2 − 4βηβζ

2βη
.
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A :=
[
1− β + βζ + βη −

√
(1− β + βζ + βη)2 − 4βηβζ

]
/(2βη);

A′ := βζ + β(µ− η)A; D := cA/(βζ − βηA);

f0 := −
βζ
A D + βζ(c + βµBD) + [c− β(µ− η)βD]B′

A′

A + βA′B′ + βζβµ(1−BA)
;

f1 := −
βζ
A D + cβζBA + [βµβζ + (1− β)β(µ− η)]D + (c− βζβC)A′

A′

A + βA′B′ + βζβµ(1−BA)
;

g0 :=
βλ (1 + B′)

A′

A + βA′B′ + βζβµ(1−BA)
; g1 :=

1 + A′

1 + B′ g
0;

ν(1,∞) :=
[β(1− µ)βζC + βµβ(µ− η)D]− βµA′f0 − β(1− µ)B′f1

βλ− βµA′g0 − β(1− µ)B′g1
;

if ν ≥ ν(1,∞) then K0 :=∞; K1 :=∞; end {if};

Figure 4.7: Algorithmic check for the problem with infinite-length buffer.

However, it can be shown that 1 > ζ − βη and β < 1 (which is true by the model
parameter assumptions) implies

1− β + βζ + βη −
√

(1− β + βζ + βη)2 − 4βηβζ

2βη
< β

<
1− β + βζ + βη +

√
(1− β + βζ + βη)2 − 4βηβζ

2βη
.

By B.5 it must be A ≤ β, therefore the limit is

A =
1− β + βζ + βη −

√
(1− β + βζ + βη)2 − 4βηβζ

2βη
.

Similarly, it can be shown (see the next subsection) that DK converges and the limit
is therefore

D =
cA

βζ − βηA
.

As a consequence of the above, the remaining expressions, including those of the MP
indices, converge.

If the algorithmic check does not confirm the infinite thresholds, the algorithm FA

can be run, stopping the loop once an index greater than ν is found and omitting “Fi-
nalization” part.
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4.4.5 Admission Control Problem with Delay under Time-Average Criterion

Our results extend directly to the admission control with delay under the time-average
criterion.

Proposition 4.4. By setting β := 1, the algorithm FA in Figure 4.5 computes the marginal
productivity indices for problem (4.14) under the time-average criterion.

Proof. The algorithm FA is valid by setting β := 1 for the time-average criterion because
the MP indices under that criterion are obtained in the limit β → 1 of the MP indices
under the discounted criterion, and the limits of all the expressions exist and are finite.

In case I = ∞, the algorithmic check in Figure 4.7 is only valid under β < 1, and
therefore is not suitable for the time-average criterion. In fact, it is not necessary to
perform such a check, because under the time-average criterion the indices diverge.

4.4.6 Further Remarks

If the system is in state (1, 0), then the buffer is empty, because it was empty a period
ago and the gate has been closed since then. Therefore, one could expect that the index
of state (1, 0) is the same as the index of state 0 in the no-delay problem, which is in fact
true. Moreover, there is a simple interpretation of that expression.

If the buffer is empty, the expected total β-discounted holding cost is

ζβc
[
1 + β(1− µ) + (β(1− µ))2 + . . .

]
=

βζc

1− β + βµ
,

because ζ is the probability that the customer remains in the buffer for more than a pe-
riod. The above expression is equal to λν(1,0), the expected (total β-discounted) rejection
cost if the rejection cost ν = ν(1,0). Thus, in state (1, 0) it is optimal to close the gate if
the expected rejection cost is lower than the expected discounted total holding cost of
an admitted customer. Further, in state (1, 0) it is optimal to let the gate open if the
expected rejection cost is greater than the expected discounted total holding cost of an
admitted customer. If the two expected costs are equal, then both closing and opening
are optimal. It is also clear that under the former condition it is optimal to close the gate
in any state, and therefore the indices of all states must not be smaller than ν(1,0).

Figure 4.8 shows the indices for a number of instances of the admission control prob-
lem with delay. An extensive simulation study we have performed suggests a conver-
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gence of the indices:

ν(1,i) → ν(0,i) as λ→ 0,

ν(1,i) → ν(0,i−1) as ζ → 1,

ν(0,i) →
βc

1− β
as i→∞,

ν(1,i) →
βc

1− β
as i→∞.

The convergence of the MP indices to βc/(1 − β) is intuitive. If the buffer is almost
full (say, the pervious-epoch queue length is I−2), then admitting a customer means to
increase the overal holding cost by c at least in the following I − 2 periods, because the
admitted customer cannot leave the system earlier that the previous I − 2 customers.
Therefore, the expected total β-discounted holding cost is at least

βc
[
1 + β + β2 + · · ·+ βI−2

]
=

βc(1− βI−1)
1− β

.

On the other hand, it is not greater than the expected holding cost of remaining in the
buffer forever, which is

βc
[
1 + β + β2 + . . .

]
=

βc

1− β
.

Now it is clear that the MP indices converge to βc/(1− β) as I →∞.

4.5 Fast Algorithm for the Job Completions Problem with De-
lay

In the job completions problem with delay, we define the one-period rewards in the
following way. If the queue length is i ∈ I and action a ∈ A is chosen, then the gate-
keeper’s one-period reward is defined as the expected number of job completions during
the current period,

R(a,i) = Ra
i :=


0, if i = 0 and a = 1,

λµ, if i = 0 and a = 0,

µ, if i ≥ 1.
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(a) if λ = 0.1, µ = 0.1 (b) if λ = 0.1, µ = 0.9

(c) if λ = 0.5, µ = 0.1 (d) if λ = 0.5, µ = 0.9

(e) if λ = 0.9, µ = 0.1 (f) if λ = 0.9, µ = 0.9

Figure 4.8: Optimal MP indices for the admission control problem with delay with pa-
rameters I = 10, c = 1, β = 0.99. The solid line exhibits indices ν(1,i) and the dotted line
exhibits indices ν(0,i).
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Therefore, we have

∆1R(1,i) =

−λµ, if i = 0,

0, if i ≥ 1,

and

∆2R(0,i) =

µ(1− λ), if i = 1,

0, if i ≥ 2,
∆2R(1,i) =

µ, if i = 1,

0, if i ≥ 2.

The algorithm FA is presented in Figure 4.9, after substituting the following expressions:
C ′′

0,0 := −λB/β; C ′′
K,K := 0; C ′′

K,K+1 := 0.

However, we are only interested in the job completions problem under the long-run
average criterion. Then, setting β := 1 in the fast algorithm, yields the constant index
ν(a,i) = −1 for all (a, i) ∈ Ĩ. Figure 4.10 shows the simplified quantities that are obtained
in this case in the fast algorithm FA. Since such an index is noninformative, we set out
to obtain an alternative, second-order index in the following subsection.

4.5.1 Second-Order Marginal Productivity Index

Since the (first-order) index is noninformative, we proceed by introducing a second-
order MP index γ(a,i), based on the Taylor series of ν(a,i) at β = 1,

ν(a,i) = −1 + γ(a,i)(1− β) +O((1− β)2), as β → 1.

Thus, γ(a,i) := −
∂ν(a,i)

∂β

∣∣∣∣
β=1

. As the MP index policy prescribes to route an arriv-

ing customer to the queue of the lowest MP index, in the case of constant (first-order)
indices the customer is to be routed to the queue of the lowest second-order MP index.
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{Input I, λ, µ, β}
{Initialization}
ζ := λ(1− µ); η := µ(1− λ); ε := 1− ζ − η; A0 := 0; A′

0 := βζ;
B := βµ/(1− β + βµ); B′ := βζB + β(µ− η); D0 := 0; D′

0 := −λµ;
ν(1,0) := −B/β;
{Loop}
for K = 1 to I − 1 do

AK := βζ/[1−β+βζ+βη(1−AK−1)]; A′
K := βζ+β(µ−η)AK; ZK := AKA′

K−1/A
′
K;

if K = 1 then D1 := −ηA1/(βζ); else DK := βηDK−1AK/(βζ); end {if};
D′

K := β(µ− η)DK;

g0 :=
βλ (1 + B′)

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1−BAK−1)

; g1 :=
1 + A′

K−1

1 + B′ g0;

if K = 1 then

f0 := −−η − (βD′
0 + µ)B′ + βµλµ

A′
1

A1
+ βA′

0B
′ + βζβµ

; f1 := −
−η + (1− β)D′

0 − µA′
K−1

A′
1

A1
+ βA′

0B
′ + βζβµ

;

ν(0,0) :=
(1− ζ)D′

0 − (1− ζ)A′
0f

0 − ζB′f1

λ− (1− ζ)A′
0g

0 − ζB′g1
;

else

f0 := −
βζ
AK

DK − βD′
K−1B

′ + βµβζDK−1B
A′

K

AK
+ βA′

K−1B
′ + βζβµ(1−BAK−1)

;

f1 := −
βζ
AK

DK + (1− β)D′
K−1 + βµβζDK−1

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1−BAK−1)

;

ν(0,K−1) :=
η
[
D′

K−2 + DK−1A
′
K−2

]
+ εD′

K−1 − [ηZK−1 + ε]A′
K−1f

0 − ζB′f1

λ− [ηZK−1 + ε]A′
K−1g

0 − ζB′g1
;

end {if};

ν(1,K) :=
µD′

K−1 − µA′
K−1f

0 − (1− µ)B′f1

λ− µA′
K−1g

0 − (1− µ)B′g1
;

end {for};
{Finalization}
AI := βζ/[1− β + βζ + βη(1−AI−1)]; A′

I := βζ + β(µ− η)AI; ZI := AIA
′
I−1/A

′
I;

DI := βηDI−1AI/(βζ);

f0 := −
βζ
AI

DI − βµD′
I−1

A′
I

AI
+ βµA′

I−1

; g0 :=
λ(1 + βµ)

A′
I

AI
+ βµA′

I−1

;

ν(0,I−1) :=
η
[
D′

I−2 + DI−1A
′
I−2

]
+ εD′

I−1 − [ηZI−1 + ε]A′
I−1f

0

(η + ε)λ− [ηZI−1 + ε]A′
I−1g

0
;

ν(∗,I) :=
D′

I−1 + βζ
AI

DIZI

λ(1− ZI)
;

{Output
{
ν(a,i)

}
(a,i)∈eI}

Figure 4.9: Fast algorithm FA for the calculation of MP indices for the job completions
problem.
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{Input I, λ, µ}
{Initialization}
ζ := λ(1− µ); η := µ(1− λ); ε := 1− ζ − η;
A0 := 0; A′

0 := ζ; B := 1; B′ := λ; D0 := 0; D′
0 := A′

0 −B′;
ν(1,0) := −1;
{Loop}
for K = 1 to I − 1 do

AK := ζ/[ζ + η(1−AK−1)]; A′
K := ζ + λµAK; ZK := AKA′

K−1/A
′
K;

DK := AK − 1; D′
K := A′

K −B′;
if K = 1 then

f0 :=
µ(1− λµ− λ2)

λ(1 + λ) + µ(1− λµ− λ2)
; f1 :=

µ(1− λµ)
λ(1 + λ) + µ(1− λµ− λ2)

;

else

f0 :=
−µ(1− λµ− λ2)DK−1

λ(1 + λ)− µ(1− λµ− λ2)DK−1
;

f1 :=
−µ(1− λµ)DK−1

λ(1 + λ)− µ(1− λµ− λ2)DK−1
;

end {if};
g0 := 1− f0; g1 := 1− f1; ν(0,K−1) := −1; ν(1,K) := −1;

end {for};
{Finalization}
AI := ζ/[ζ + η(1−AI−1)]; A′

I := ζ + λµAI; ZI := AIA
′
I−1/A

′
I; DI := AI − 1;

f0 :=
−µ(1− λµ− λ)DI−1

λ(1 + µ)− µ(1− λµ− λ)DI−1
; g0 := 1− f0;

ν(0,I−1) := −1;
ν(∗,I) := −1;
{Output

{
ν(a,i)

}
(a,i)∈eI}

Figure 4.10: Fast algorithm FA for the calculation of MP indices for the job completions
problem under the time-average criterion.
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We conjecture that the second-order indices are as follows (K ≥ 1):

γ(1,0) =
1
µ
− 1,

γ(0,0) =
2
µ
− 1− µ− (µ + λ)ζ

µ2 + µηζ
,

γ(1,1) = −
(

2 +
λ

µ

)
+

1
µ

(
2 +

λ

µ

)
,

γ(0,1) = −
(

2 +
λ

µ

)
+

1
2µ

(
5 + 3

λ

µ

)
+

2λ− 1
2µ(2ζ + 1)

(
1 +

λ

µ
+

λ2

µη

)
+

λ2

2µ2η(2ζ + 1)
,

γ(1,K+1) = γ(1,K) +
1
µ

{
1 +

λ

µ
+

λ2

µη

[
1 +

ζ

η
+ · · ·+

(
ζ

η

)K−1
]}

,

γ(0,K+1) = γ(0,K) +
1
µ

{
1 +

λ

µ
+

λ2

µη

[
1 +

ζ

η
+ · · ·+

(
ζ

η

)K−1
]}

+
λ2(η + λ)

µ2η(2ζ + 1)

(
ζ

η

)K

,

γ(∗,I) =
I

µ
− 1 +

λ

µη

[
(I − 1) + (I − 2)

ζ

η
+ · · ·+

(
ζ

η

)I−2
]

.

The last expressions can be simplified. If λ 6= µ, then

γ(1,K+1) = γ(1,K) +
1

µ− λ
− 1

µ− λ

λ2

µ2

(
ζ

η

)K

,

γ(0,K+1) = γ(0,K) +
1

µ− λ
+
[

η + λ

η(2ζ + 1)
− 1

µ− λ

]
λ2

µ2

(
ζ

η

)K

,

γ(∗,I) =
I

µ
− 1 +

λ

µ

ζ
(

ζ
η

)I−1
− η + I (µ− λ)

(µ− λ)2

 .

If λ = µ, then

γ(1,K+1) = γ(1,K) +
2
µ

+
K

η
,

γ(0,K+1) = γ(0,K) +
2
µ

+
K

η
+

η + λ

η(2ζ + 1)
,

γ(∗,I) =
I

µ
− 1 +

I(I − 1)
2η

.

4.6 Conclusions

We have presented a restless bandit approach which yielded an efficient exact algo-
rithm for the calculation of the marginal productivity indices and optimal threshold
queue lengths of an admission control problem with an action or information delay of
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one period. The algorithm draws on and significantly reduces the complexity of the
adaptive-greedy algorithm for the calculation of restless bandit optimal index policy.

We propose such indices as building blocks in a heuristic for a harder problem of
admission control and/or routing to parallel queues, where the queues can be hetero-
geneous in buffer lengths, departure probabilities, holding costs, discount factors, and
delays. The evaluation of the heuristic is a part of the work in progress.

Our approach seems to be tractable also for the admission control problem with
larger delays and, more generally, for arbitrary restless bandits with delays.



Everyone carries a burden.
< J. Nohavica >

Chapter 5

Dynamic Product Promotion and
Knapsack Problem for Perishable
Items

5.1 Introduction

Senior managers in retail industry make important decisions upon assortment plan-
ning, product pricing, and product promotion. Product assortment (collection of prod-
ucts and their shelf space and location) is a strategic decision defining the retail brand
image and is taken over a long-term planning period (Kök et al., 2006). The latter two
are also strategic, yet in a weaker sense; they can and do be used in practice in day-
to-day marketing decisions to dynamically adjust to demand variations. Within the
food retail industry, the necessity, frequency, and complexity of pricing and promotion
decisions are magnified by perishability of products.

An approach routinely applied to the revenue management of perishable products
is dynamic pricing, i.e. adjusting product price to observed or expected demand varia-
tion. The perishability property has deforming implications on product demand, which
thus becomes the crucial factor in revenue management models, as documented in El-
maghraby and Keskinocak (2003), who gave an extensive overview of research on dy-
namic pricing and its adoption in practice.

However, discrete-time decision making, implementation costs, and retail brand im-
age strategy make practitioners not to like changing prices too often or in an “unsystem-
atic” fashion as prescribed by theoretical dynamic pricing models. In addition, the price
reduction must usually be done over all units of the product, thus losing possible profit
from customers willing to pay the original, higher price. Revenue managers naturally
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intend to avoid situations in which the (optimal) price is lower than the costs associ-
ated with the inventory, as it leads to a negative net profit. Such a loss-averse behavior
may then result in conservative product orders, which in turn increase the probability
and the length of stockout periods. Based on several studies, Campo and Gijsbrechts
(2005) documented that consumers’ reaction to stockouts occurrence may have signifi-
cant negative impacts on retail sales and revenues.

The above suggests that there is a strong need by retail managers for a “softer”
marketing tool, which would dynamically allow them to improve sales and revenues,
yet not altering product prices.1 We therefore design a revenue management model
in which demand is altered not by price changes, but rather by moving a number of
product units to a promotion space, where they are likely to attract extra customers.
Examples of the promotion space include shelves close to the cash register, promotion
kiosks, or a depot used for selling via the Internet.

Thus, we address the problem of filling the promotion space to maximize the aggre-
gate expected revenue, which we have termed the Knapsack Problem for Perishable Items.
We assume that the items can be repeatedly reallocated, resulting in strategies allow-
ing for temporary promotions. Nevertheless, given the structural properties we derive,
our results also apply to the model, in which backward reallocation of items already
promoted is not allowed. Throughout this chapter, we focus on an example of a food
retailer, referred as to the food promotion problem and we consider the case when there
is a unique unit of each product.

To summarize the chapter, we develop a dynamic promotion model addressing the
problem faced by merchandiser of choosing a set of products (items) to be reallocated
to a promotion location with limited space. Promotion decisions are difficult, because of
the combinatorial complexity of allocating a scarce promotion space over multiple peri-
ods, and because the demand is uncertain. In fact, we conclude that finding a tractable
optimal solution is most likely to be an unreachable goal.

Our approach relies on a decomposition of the problem to single products. Each
product is then assigned a promotion priority index, which captures the marginal rate of
substitution (by properly taking into account both the cost and the opportunity cost of
promotion) as a function of its price, salvage value, lifetime, expected demand, and ex-
pected promotion power. Such an index, which we derive in closed form, allows us to
consider a promotion-priority-index policy: Select the products for promotion accordingly
to their promotion priority indices. This policy may be suboptimal, however, it pos-
sesses important practical characteristics of being interpretable, thus easing managerial

1The practical value of such a tool is evident: Capgemini, Intel, Cisco, and Microsoft cooperated on a
decision support system which includes Dynamic Promotion Management as one of three key solution
areas.
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insight, adaptable to additional features, easy-to-implement, and nearly-optimal.

5.1.1 Goals and Contributions

Section 5.2 outlines our model and briefly review the work on related models in the
literature. We further describe the milestones in the research on the bandit problem and
its extensions, especially the restless bandit problem, which we use to set our model.
The celebrated classic result on the bandit problem is the optimality of a dynamic solu-
tion defined by certain priority indices. Derivation of such indices for our model is one
of the two main goals of this work.

The Knapsack Problem for Perishable Items is formalized in Section 5.3. Since the
dynamic programming formulation is most likely to be intractable, we formulate it ap-
proximately using a Lagrangian relaxation, which allows us to decompose the problem
into single-item case.

An optimal promotion policy for a single item defined via promotion priority in-
dices is derived in Section 5.5. The optimal dynamic promotion policy is shown to be
time-monotonous: the efficiency of promoting nondecreases over time. Our single-item
model is one of the first finite-horizon bandit problems, in which priority indices are
obtained in a closed form.

This leads us to our second goal and contribution, the development of a new index-
based heuristic for the Knapsack Problem for Perishable Items in Section 5.6: “Pro-
mote the items that are given by an optimal solution to the knapsack subproblem with
item’s promotion priority indices multiplied by volumes as the objective function price
coefficients and item volumes as the knapsack constraint weights”. Its superiority to
other bandit problem heuristics is suggested by a computational study described in
Section 5.7.

Concluding remarks are given in Section 5.8. Proofs are deferred to the Appendix.

5.2 Model Outline and Related Work

A perishable item is a product unit with an associated lifetime ending at a deadline. At
the deadline (e.g., the “best before” date; the moment of replenishment with a fresher
product) the product’s demand drops to zero and only a salvage value is received. An
event of selling can happen before the deadline, causing that the standard product rev-
enue (i.e., profit margin) is obtained. The probability of selling only depends on whether
the item is being promoted or not.

The task is to select regularly a subset of perishable items for a promotion space
(knapsack) so that the expected aggregate total discounted revenue is maximized. We
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call this model the Knapsack Problem for Perishable Items (KPPI) and give its formal
statement in Section 5.3.

We set the model in discrete time as a Markov decision process. We assume that the
decisions are made in some regular time moments, say, twice a day, and the problem
parameters are adjusted to such time periods. In general, the KPPI defines a stochas-
tic variant of the knapsack problem with multiple units. As time evolves, some items
get sold accordingly to a stochastic time-homogeneous demand and some items perish
deterministically at their deadlines.

A model related to ours is the so-called Dynamic and Stochastic Knapsack Problem
(DSKP), which is, however, different in nature (see, e.g. Papastavrou et al., 1996, and
further work by the same authors). The DSKP is the problem of finding an online rule
to immediately reject or accept arriving items with a random value and/or random
weight. In the DSKP, however, the items cannot disappear from the knapsack. In the
same vein lies the problem of optimal project selection studied by Lu et al. (1999) and
other authors.

The KPPI is further closely related to dynamic pricing problems, and we show that
a simple dynamic pricing problem (of a single product) can be formulated in our frame-
work as a dynamic promotion problem when one must pay for promotion. However,
our formulation naturally requires a restriction on the volume of promoted items, while
such restriction is a nonsense in the dynamic pricing problem.

Accordingly to the food promotion problem, we assume that no replenishment occurs.
Since the products are perishable, the new delivery usually supplies a fresher product,
i.e., perishable at different time moment. As we argue in this chapter, the perishment
moment is a crucial factor for optimal promotion strategies, therefore different deliv-
eries can and should be considered as different products. We further assume in our
model that the demand is time-homogeneous. Elmaghraby and Keskinocak (2003) re-
marked that for nondurable goods demand is often independent over time, especially
for most necessity items, where consumers make frequent repeat purchases, which is
in line with this chapter’s focus on food products. Nevertheless, our results can be di-
rectly extended to the case of non-homogeneous demand and the heuristic we propose
is likely to improve in the case of demand nonincreasing over time.

5.2.1 Bandit Problem Literature

A natural mathematical setting for the KPPI problem is the multi-armed bandit problem
(cf. Gittins, 1979), in which one wants to dynamically choose between various bandits
(reward-yielding processes) one in an optimal fashion. That model captures the fun-
damental trade-off between exploitation of current rewards and exploration of possible
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future rewards. Gittins (1979) showed that the multi-armed bandit problem can be op-
timally solved using his indices, which can be calculated in polynomial time.

The bandits are here the perishable items. In our model, however, there are four
complications: the bandits are restless, because the items can get sold regardless of being
in the knapsack or not, the time horizon is finite due to perishability, and we are to select
more than one item for the knapsack, which is allowed to be filled partially, due to the
heterogeneity of the items. We thus mix up two models: the bandit problem and the
knapsack problem.

The multi-armed restless bandit problem (which is a generalization of the multi-
armed bandit problem considered in Gittins (1979)) over the infinite horizon was proven
to be PSPACE-hard even in its deterministic version (Papadimitriou and Tsitsiklis, 1999).
The research focus thus shifts to the design of well-grounded, tractable heuristic po-
licies. For the analysis we use the framework and methodology proposed for restless
bandits by Niño-Mora (2002, 2006b). That work provided a sufficient condition for a
restless bandit to be indexable together with an adaptive-greedy algorithm, which in
O(n3) operations (where n is the number of states) computes corresponding marginal
productivity (MP) indices that extend earlier indices of Gittins (classical bandits, 1979)
and Whittle (restless bandits, 1988). In our problem, the MP index can be interpreted as
the promotion priority index.

The indexability property of a single item modeled as a restless bandit means that
there exist promotion priority indices such that the optimal solution is to promote the
item whenever its promotion priority index is higher than the cost of promotion space
occupation (promotion cost). When coupling the bandits back into a multi-armed (non-
restless) bandit problem, the promotion priority indices define an optimal policy: At
every decision epoch choose the bandit of highest promotion priority index (promotion-
priority-index policy). Such a priority policy is in general not optimal for the restless case,
in which it becomes a well-grounded, efficient and practical heuristic.

Regarding the bandit problems with finite horizon, interesting results of index na-
ture appear very sporadically, because of the intractability of the model, and therefore
other methods (such as dynamic programming) are usually used. Even then, the prob-
lem is computationally intractable. Nevertheless, there is a tractable instance, the so-
called deteriorating case, first presented for an infinite-horizon bandit problem by Gittins
(1979), which was also successfully applied in a problem with finite-horizon objective
(Manor and Kress, 1997). In that setting, the bandits were, however, not restless. The
same is the case for the index policies for the finite-horizon multi-armed (non-restless)
bandit problem: Niño-Mora (2005) showed that such a problem is indexable and pro-
vided anO(T 2n3) algorithm (where T is the time horizon and n is the number of states)
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to compute the corresponding index. Such an algorithm can be improved to O(T 2n2)
for certain bandits with special structure.

The bandit problem framework was used to analyze adaptive marketing strategies
by various authors. Caro and Gallien (2007) developed a model for dynamic assortment
of seasonal goods and proposed an assortment-priority-index policy using approximate
indices that they obtained in a closed form. An adaptive model for interactive market-
ing environment was introduced in Bertsimas and Mersereau (2007). Both works build
upon the classical multi-armed bandit problem (in which the bandits are not restless)
and propose heuristics based on an approximate problem decomposition.

5.3 Knapsack Problem for Perishable Items

In this section we describe formally the Knapsack Problem for Perishable Items (KPPI)
arising from the motivation problem of food promotion. Let s = 0, 1, 2, . . . be the
discrete-time epochs and let period t be the period between epochs t and t− 1.

5.3.1 Perishable Items

Throughout the chapter, item refers to one unit of one product, and we consider to deal
with perishable items, defined as follows.

Definition 5.1. An item is called perishable at an associated deadline, if it possesses the
following three features:

(i) there is a stochastic process called demand existing before the deadline, which can
make the item to be sold;

(ii) if the item is sold, a revenue (profit margin) is accrued;

(iii) if the item is not sold at its deadline, a salvage value is accrued.

Suppose that we have a set I of I ≥ 2 perishable items. Let item i ∈ I have the
deadline Ti ≥ 1 (integer). Denote the item’s revenue Ri > 0 and the item’s salvage
value αiRi for some −∞ < αi ≤ 1.2 (The salvage value αiRi could be negative in case
of high perished-item destroying costs.)

Suppose that at discrete-time decision epochs s = 0, 1, . . . , Ti − 1 we can decide be-
tween two actions: to promote the item, so that the item gets access to a promotion demand,
or to not promote the item, so that it gets access to a standard demand. We assume that the

2The case of revenue Ri = 0 may also be included, but in that case we need to require αiRi < 0.
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promotion demand and the standard demand are independent. Further, a promotion
cost ν is paid every time period the item is promoted.

The state space Xi contains Ti + 1 states. State t ∈ Ti := {1, 2, . . . , Ti} means that
the item is unsold and t periods remain to its deadline, and one of the two possible actions
must be chosen; therefore the states in Ti will be called controllable. At the deadline, the
item moves to the absorbing terminal state 0. The item also moves to the state 0 once it
is sold. State 0 will be called uncontrollable, because no decision needs to be made.

The time counter s should not be confused with the controllable states of any item
i, for which we use variable t ∈ Ti. At time period s ∈ {0, 1, . . . , Ti − 1}, the item can
be either in the controllable state t = Ti − s (if it is still unsold) or in the uncontrollable
state 0 (if it has been sold). At the initial time period s = 0, the item is in the controllable
state t = Ti. At the deadline s = Ti and afterwards, the item is in the uncontrollable
state 0.

We consider homogeneous standard and promotion demands, which results in ho-
mogeneous transition probabilities. The item is sold (moves to state 0) with probability
1 − qi within one time period (and with probability 0 < qi ≤ 1 remains unsold moving
to state t− 1), if it is not promoted in state t. Formally,

qi := P[the not promoted item i is not sold in one period],

where the symbol P denotes probability. Analogously, the item is sold (moves to the
state 0) with probability 1− pi within one time period (and with probability 0 < pi ≤ 1
remains unsold moving to state t− 1), if it is promoted in state t. The difference qi − pi

will be called promotion power, as it captures the increase in the probability of being sold
caused by promoting.

We restrict ourselves to the case when future revenues are discounted with a dis-
count factor 0 < β < 1 per period. We can interpret the discount factor as that with
probability 1 − β an event (bankruptcy), which implies that there is no need to solve
the problem in the next time epoch, happens.3 At the end of the section we extend the
results for the limiting case β = 1.

To summarize, a perishable item (the subscript i is dropped) is defined as a Markov
decision process (MDP) as follows.

• The state space is X := T ∪ {0};

• The action space for controllable states in T is A := {0, 1}: we can either promote
(active action; 1) or not promote (passive action; 0); for uncontrollable state 0 a

3The discount factor should reflect both the intrinsic and systematic risk of the company or store in
hand.
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unique action (say, action 0) is available;

• The transition probability matrix P 1|T for promoting is4

P 1|T =



0 1 2 · · · T − 1 T

0 1 0 0 0 0 0

1 1 0 0 0 0 0

2 1− p p 0 0 0 0

3 1− p 0 p 0 0 0
...

... 0 0
. . . 0 0

T 1− p 0 0 0 p 0


,

where P
1|T
i,j is the probability of moving from state i ∈ X to state j ∈ X in 1

period if the item is promoted at all states in T (i.e., including state i). Similarly,
the transition probability matrix P 1|∅ for not promoting is

P 1|∅ =



0 1 2 · · · T − 1 T

0 1 0 0 0 0 0

1 1 0 0 0 0 0

2 1− q q 0 0 0 0

3 1− q 0 q 0 0 0
...

... 0 0
. . . 0 0

T 1− q 0 0 0 q 0


.

• If the item is not promoted in state t ∈ T \ {1}, the one-period expected revenue
R0

t := R(1−q) is incurred; If the item is not promoted in state t = 1, the one-period
expected revenue R0

t := R(1 − q) + βαRq is incurred; If the item is promoted in
state t ∈ T \ {1}, the one-period expected revenue R1

t := R(1 − p) minus the
promotion cost ν is incurred; If the item is promoted in state t = 1, the one-period
expected revenue R1

t := R(1− p) + βαRp minus the promotion cost ν is incurred;
In state 0 there is no revenue nor cost, i.e. R0

0 := 0.

4Including the row “0” (referring to the uncontrollable state) in the transition probability matrices is
correct as long as the transition probabilities are equal under both actions.
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5.3.2 KPPI Objective

An item can be either left at its standard shelf (i.e., not promoted) or selected for a
promotion knapsack (i.e., promoted) common for all the items and with limited integer
capacity W ≥ 1.5 Let item i occupy integer space Wi ≥ 1. To avoid trivial cases we
assume that Wi ≤ W for all i ∈ I and

∑
i∈I Wi > W . Decisions are made at time

periods s = 0, 1, . . . , T −1, where T := max{T1, T2, . . . , TI} is the problem’s time horizon.
The revenues are discounted by a one-period discount factor 0 < β < 1.

Starting from joint state t := (ti)i∈I , we define the expected aggregate total discounted
revenue under policy π as

Eπ
t

[∑
i∈I

∞∑
s=0

βsR
ai(s)
Xi(s)

]
, (5.1)

where Xi(s) is the state of item i at time epoch s and ai(s) is the action applied in time
epoch s to item i, counting promoting as 1 and not promoting as 0. The symbol Eπ

t

denotes the expectation under policy π if starting from joint state t.
Denote by Π the set of all non-anticipative policies. The goal is to find a policy

π∗ ∈ Π that maximizes (5.1) for t = T := (T1, T2, . . . , TI) among all such policies,
subject to ∑

i∈I
Wi · ai(s) ≤W at each time s = 0, 1, . . . ,∞.

5.3.3 Dynamic Programming Formulation

Let us define the following terms for a fixed time epoch s = 0, 1, . . . , T and product
i. The product is perished, if its deadline has already passed (s > Ti). The product is
perishing, if its deadline is currently achieved (s = Ti). The product is existing, if its
deadline has not passed yet (s ≤ Ti). The product is controllable, if it is existing and
not perishing (s < Ti). Let Is = {i ∈ I : Ti ≥ s} be the set of existing products,
I0

s = {i ∈ I : Ti = s} the set of perishing products, and I+
s = {i ∈ I : Ti > s} the set of

controllable products. It should be clear that we have I+
0 = I and I+

T = ∅.
On the item level (as opposed to the product level considered in the previous para-

graph), we will further need the term unsold items. Let zs = (zs,i)i∈Is be the existing
inventory (the binary vector of numbers of unsold items of all existing products) at time
epoch s. We will find it useful to define also z+

s = (zs,i)i∈I+
s

, the controllable inventory
(the binary vector of numbers of unsold items of controllable products).

5To avoid unnecessary complications, we set the possibly product-dependent promotion costs νi := 0.
Their incorporation is straightforward and does not alter our structural results.
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Let y+
s = (ys,i)i∈I+

s
be the binary vector of decision variables at time epoch s, de-

noting the number of items of product i chosen at time epoch s to be selected for the
knapsack. A dynamic programming formulation of the KPPI follows:

DMAX
T (zT ) =

∑
i∈I0

T

αiRizT,i (DP)

DMAX
s (zs) =

∑
i∈I0

s

αiRizs,i + max
y+

s ≤z+
sP

i∈I+
s

Wiys,i≤W

∑
i∈I+

s

[ys,iRi(1− pi) + (zs,i − ys,i)Ri(1− qi)]

+β
∑

ms≤z+
s

Py+
s

z+
s

[M s = ms]
(
DMAX

s+1 (z+
s −ms)

)
for time epochs s = 0, 1, . . . , T − 1. Here, M s = (Ms,i)i∈Is is a nonnegative integer ran-
dom vector denoting the number of units of each product that get sold at time epoch s.
Thus we calculate the probability Py+

s

z+
s

[M s = ms] that items given by vector ms get sold
within one time period, having z+

s unsold items out of which y+
s are in the knapsack.

The solution to the KPPI, prescribing the number of items selected for the promotion
knapsack at the initial time epoch s = 0, is given by the vector y+

0 achieving maximum
in DMAX

0 (1), where 1 := (1)i∈I .

Since selling is assumed to be independent for different products, we have

Py+
s

z+
s

[M s = ms] =
∏

i∈I+
s

Pys,i
zs,i [Ms,i = ms,i] =

∏
i∈I+

s

{ ms,i∑
m0=0

Pys,i
zs,i

[
M0

s,i = m0
]
Pys,i

zs,i

[
M1

s,i = ms,i −m0
]}

, (5.2)

where M0
s,i and M1

s,i are random variables denoting the number of not promoted and
promoted units of product i, respectively, that get sold at time epoch s. And further,

Pys,i
zs,i

[
M0

s,i = m0
]

=



qi, if m0 = 0 and zs,i − ys,i = 1,

1− qi, if m0 = zs,i − ys,i = 1,

1, if m0 = zs,i − ys,i = 0,

0, otherwise,

(5.3)
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Pys,i
zs,i

[
M1

s,i = m1
]

=



pi, if m0 = 0 and ys,i = 1,

1− pi, if m0 = ys,i = 1,

1, if m0 = ys,i = 0,

0, otherwise,

(5.4)

Notice that the time and space complexity of (DP) grows exponentially with the
number of products, and thus quickly becomes intractable. The minimization term is
somewhat more complex than a classical NP-hard knapsack problem and this must be
solved for each possible combinatorial vector zs of existing inventory for each time
epoch s. Further, dynamic programming does not provide any generally good ground
for defining an approximate solution. This motivates us to approach the problem from
a different perspective, which we explore next.

5.4 Work-Reward Restless Bandit Formulation of KPPI

We next formulate the KPPI as a variant of the multi-armed restless bandit problem,
where the restless bandit is replaced by what we call the work-reward restless bandit. We
set out to obtain a tractable index rule based on the MP indices.

In the multi-armed restless bandit problem (cf. Whittle, 1988), all bandits have the
same requirement on the resource. In our model, however, we admit non-uniform re-
source (i.e., knapsack space) requirements, which is a special case of the model in Niño-
Mora (2002). In the restless bandit framework of Whittle (1988), the immediate work is
assumed to be 1 for the active action and 0 for being passive. Nevertheless, in our case
the active action (promoting) requires a non-uniform utilization of the knapsack and we
need to reflect this feature in our model. Therefore, we define the immediate (promo-
tion) work of an item i in state t ∈ Ti under the active action by its volume, W 1

i,t := Wi,
and W 0

i,t := 0 under the passive action. We further define W 0
i,0 := 0.

We arrive to the following formulation of the KPPI, equivalent to (DP),

max
π∈Π

Eπ
T

[∑
i∈I

∞∑
s=0

βsR
ai(s)
i,Xi(s)

]
subject to

∑
i∈I

W
ai(s)
i,Xi(s)

≤W at each time s = 0, 1, . . . ,∞ (RB)

where, as before, Xi(s) denotes the state of item i at time epoch s, starting at state
Xi(0) = Ti.
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5.4.1 Whittle Relaxation and its Interpretation

Whittle (1988) proposed for restless bandits what has become known as the Whittle re-
laxation: replace the infinite set of resource constraints by one constraint requiring to
use the full resource in expectation. In our case, the Whittle relaxation of the (RB) is the
following:

max
π∈Π

Eπ
T

[∑
i∈I

∞∑
s=0

βsR
ai(s)
i,Xi(s)

]

subject to Eπ
T

[∑
i∈I

∞∑
s=0

βsW
ai(s)
i,Xi(s)

]
=

W

1− β
(WR)

where we have simplified
∞∑

s=0

βsW =
W

1− β
.

The Whittle relaxation (WR) can be solved by the Lagrangian method. Let κ be a
Lagrangian multiplier for the constraint, then the Lagrangian of (WR) is

L(π, κ) = Eπ
T

[∑
i∈I

∞∑
s=0

βsR
ai(s)
i,Xi(s)

]
− κ

(
Eπ

T

[∑
i∈I

∞∑
s=0

βsW
ai(s)
i,Xi(s)

]
− W

1− β

)

and can be rewritten as

L(π, κ) =
∑
i∈I

(
Eπ

T

[ ∞∑
s=0

βsR
ai(s)
i,Xi(s)

]
− κEπ

T

[ ∞∑
s=0

βsW
ai(s)
i,Xi(s)

])
+ κ

W

1− β
(L)

For a given penalizing parameter κ, (L) can be decomposed and analyzed separately
for each item, which we will do in Section 5.5. We interpret the parameter κ as the
competitive market price of space, the resource provided by the knapsack. Indeed, the
term κW/(1 − β) can be viewed as the money budget allocated for the knapsack space
we expect to be using (κW per period). Since we only consider the space utilization in
expectation, we in fact assume existence of a space market, where we permit to “buy”
some amount of space if necessary or to “sell” some amount of space if it is not used.
Then, there is an optimal market price κ∗ which balances expected supply (selling free
space) and expected demand (buying necessary space). If this price is known, then
max
π∈Π

L(π, κ∗) solves (WR).

This perfect market assumption reflected at the Whittle relaxation is sufficient for the
KPPI to be solved efficiently. Its solution, however, is not feasible for the original prob-
lem (RB), because no such space market is in practice available. The optimal solution is
a dynamic adaptive-knapsack policy; in the original problem a dynamic fixed-knapsack
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policy is sought. Nevertheless, the optimal solution to the Whittle relaxation yields a
tractable bound for the original problem.

The optimal dynamic adaptive-knapsack policy, however, may be relevant in some
applications. One could think of adjusting the knapsack’s space dynamically as the
optimal perfect market solution requires, e.g. by reserving a necessary number of pro-
motion shelves, where the price κ∗ must be paid as a promoter’s wage for each reserved
space unit.

5.5 Optimal Dynamic Promotion of Perishable Item

The aim of this section is to obtain the MP indices for a perishable item in isolation,
which will be the building block for the KPPI solution developed in Section 5.6. The
MP indices capture the marginal rate of promotion and define an index policy, which
furnishes an optimal control of a perishable item by indicating when it is worth pro-
moting. For that end, we introduce a per-period promotion cost νi ≥ 0, which must be
paid in every period when the item is being promoted.

Since we are considering item i in isolation, in the following we drop the item’s
subscript i. Starting from state t, we define the expected total discounted net revenue under
policy π as

Eπ
t

[ ∞∑
s=0

βsR
a(s)
X(s)

]
− νEπ

t

[ ∞∑
s=0

βsW
a(s)
X(s)

]
, (5.5)

where, as before, X(s) is the state at time epoch s and a(s) is the action applied in time
epoch s, counting promoting as 1 and not promoting as 0. The symbol Eπ

t denotes the
expectation under policy π if starting from state t.

Denote by Π the set of all non-anticipative policies for such a problem. The goal is
to find a policy π∗ ∈ Π that maximizes (5.5) for t = T among all such policies, and thus
optimally resolves the trade-off between the expected total discounted revenue and the
expected total discounted promotion cost.

The perishable item as defined above falls to the concept of restless bandit (a binary-
action MDP). Under some circumstances, one can identify its optimal control in terms
of MP indices. Next we show that such an optimal MP index policy for perishable item
exists under a demand regularity condition, and we identify it.
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5.5.1 Assumption

We will continue under the following assumption, which requires the promotion power
q − p to be positive.

Assumption 5.1. q − p > 0.

Assumption 5.1 is a consistency requirement on promotion power which rules out
uninteresting items that should never be promoted. Indeed, the optimal action in all the
states for an item with promotion power q−p ≤ 0 is not promoting (as long as ν ≥ 0). We
will show that promoting is optimal if promoting was optimal in the previous period,
i.e., the efficiency of promoting nondecreases over time.

5.5.2 Marginal Productivity Index

Now we examine the economics of promoting the perishable item. In particular, we
examine the efficiency of promoting the item in its current state if one must pay for
promotion. We will identify circumstances in which it is worth to promote the item,
by assigning the marginal productivity (MP) index, which captures the marginal rate of
promoting, to each controllable state. The optimal MP index policy is: “Promote the
item if and only if the MP index of the actual state is greater than the promotion cost
ν.” We employ the MP indices calculation method as described for restless bandits in
Niño-Mora (2002).

We show in Proposition 5.1 that a perishable item is indexable, that is, the optimal de-
cisions are prescribed by the MP index policy, using MP indices assigned to controllable
states.

Proposition 5.1. The perishable item is indexable, and the marginal productivity index if t

periods remain to the deadline is

ν∗t =
R

W

(q − p)
[
(1− β)1−(βp)t−1

1−βp + (1− βα)(βp)t−1
]

1− (βq − βp)1−(βp)t−1

1−βp

. (5.6)

The proof of Proposition 5.1 is presented in the Appendix together with a more de-
tailed description of the work-reward analysis. Next we list the most appealing proper-
ties of the MP indices, which have insightful interpretation and define heuristical priori-
ties for promotion if various items compete for a limited promotion space. In Section 5.6
we implement MP index as promotion priority measure: the higher the MP index, the
higher the promotion priority.

Proposition 5.2 (MP Index Properties). For any controllable state t,
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(i) the MP index is nonnegative and proportional to R/W ;

(ii) an item with lower probability of being sold when not promoted (i.e., with a higher q),
ceteris paribus, has higher MP index;

(iii) (Time Monotonicity) the MP index of an item is nondecreasing as the deadline approaches.

(iv) the MP index of a non-perishable item (i.e., with an infinite deadline) is

ν∗∞ =
R

W

(q − p)(1− β)(1− βp)
1− βq

. (5.7)

MP index resolves the trade-off between immediate and postponed promotion. Propo-
sition 5.2(iii) is a crucial property of MP indices, which demonstrates that the index is
nondecreasing as the deadline approaches. Armed with this result, we can look for an
optimal promotion starting time τ∗,

τ∗ := max{τ ∈ T : ν∗t > ν for all t ∈ T such that t ≥ τ}. (5.8)

In other words, (if τ∗ is finite,) τ∗ is the threshold time epoch, from which the MP index
is larger than the promotion cost ν, i.e. from which it is optimal to start to promote the
item, ceasing to promote it at the deadline. If τ∗ is not finite, then it is never optimal to
promote the item.

Corollary 5.0.1. The optimal starting time τ∗ is finite if and only if

R

W
(1− βα)(q − p) = ν∗1 > ν.

Further,

(i) if τ∗ is finite, then promoting is optimal in all time epochs from τ∗ to 1 and not promoting
is optimal in the remaining time epochs;

(ii) if τ∗ is not finite, then not promoting is optimal in all time epochs.

The above result assures that promotion is to be made in a natural way: the item is
selected for promotion only once and remains promoted while it is profitable to do it.

5.5.3 Special Cases and Further Remarks

We further give the MP index for certain classes of perishable items.

Proposition 5.3.
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(i) [Undiscounted Case] In the case β = 1, the marginal productivity index if t periods
remain to the deadline is

ν∗t =
R

W

(1− α)(q − p)(1− p)pt−1

1− q + (q − p)pt−1
.

(ii) [Reduction to cµ-rule] If q = 1, W = 1, and the discount factor β = 1, then the perishable
item is indexable, and the marginal productivity index if t periods remain to the deadline
is

ν∗t = R(1− α)(1− p).

Proposition 5.3(ii) tackles the situation in which there is no possibility of selling the
item if not promoted. Thus, only promoted item can be sold, and selling happens with
probability 1− p in every period. Interpreting this probability as a service rate, the MP
index reduces to the cµ-index, well-known in the queueing theory (see, e.g., Buyukkoc
et al., 1985), where c := R(1−α) is the reduction in revenue if item is not sold during its
lifetime. Such an MP index is constant over time and in particular it does not depend on
the number of periods before the deadline. This rule is fittingly applied in assortment
practice where products are chosen accordingly to their profitability and attractiveness.

5.5.4 Formulation of Dynamic Pricing Problem in our Framework

Suppose that we are given an additional parameter called discount (price markdown)
D ≥ 0, so that the revenue is R − D instead of R if the item is promoted. Thus, 1 − q

can be interpreted as the probability of selling the item priced at R, and 1 − p can be
interpreted as the probability of selling the item priced at R−D. Let ν̃ be the per-period
cost of maintaining (or informing about) the lower price. We are thus addressing a
simple case of the classic dynamic pricing problem.

In particular, we would like to have the following revenues:

R̃0
t := βR(1− q), for t ∈ T \ {1};

R̃0
t := βR(1− q) + βαRq, for t = 1;

R̃1
t := β(R−D)(1− p), for t ∈ T \ {1};

R̃1
t := β(R−D)(1− p) + βαRp, for t = 1;

R̃0
0 := 0,

Denote by D̃ := βD(1− p). In order to cast the above problem into our framework,
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we define the one-period revenue for all t ∈ T as follows:

R0
t := R̃0

t , R1
t := R̃1

t + D̃, R0
0 := R̃0

0,

and the promotion cost ν := ν̃ + D̃.
Then, this modified model is effectively the same as the original one, and hence the

optimal policy for the dynamic problem is the following: “Price the product at the lower
price if and only if the MP index of the actual state is greater than the cost ν̃ + D̃.”

5.6 Index-Based Heuristics for KPPI

Together with the relaxation, Whittle (1988) proposed a simple priority policy for the
multi-armed restless bandit problem employing the indices once an optimal index pol-
icy for each bandit is available: “Promote the bandit of highest index”. Heuristics based
on this simple idea showed good performance in various problems formulated in the
framework of the multi-armed restless bandit problem. In the KPPI problem, however,
this heuristic may not be the best proposal, since it assumes the same space requirement
of all perishable items (Wi = 1).

In a more general model of Niño-Mora (2002), the resource requirements were as-
sumed to be non-uniform and stochastic. Thus, his indices differ from the Whittle in-
dices and it was shown that the latter may be suboptimal in the Niño-Mora (2002)’s
model. We applied this approach to the perishable item in Section 5.5, where the item’s
MP index is volume-adjusted (since it includes a division by the volume Wi), so that the
heuristic is: “Promote the item of highest volume-adjusted index”.

Since the MP index can be interpreted as measuring the marginal rate of substitution
(i.e., the price per unit of space requirement) of promoting the item, we propose the
following heuristic construction for the KPPI: “Promote the items that are given by an
optimal solution to the knapsack subproblem defined below with item’s MP indices
multiplied by volumes as the objective function price coefficients and item volumes as
the knapsack constraint weights”.

Notice that the classic greedy solution to the knapsack problem arising in our heuris-
tic reduces it to “Promote the items of highest volume-adjusted index”. It is well known
that the greedy solution yields an optimal solution of a knapsack problem when all the
weights are uniform; however, in the general case it is suboptimal. Our simulation
study presented in Section 5.7 suggests that the latter heuristic reveals an analogous
performance: it is inferior and converging to ours.

In the following we assume that qi > pi holds for all items i (otherwise not pro-
moting is always optimal for such an item). Recall expression (5.6) for the MP index
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calculation, which is to be used in the heuristics via

vi := Wiν
∗
i,Ti

. (5.9)

Heuristic MPI–OPT: Calculate the prices vi and then solve the knapsack subproblem
optimally.

Heuristic MPI–GRE: Calculate the price/volume ratios vi/Wi and then select the
items for promotion in a greedy manner (highest first).

5.6.1 Knapsack Subproblem

Suppose that the knapsack-problem prices vi of all items are calculated using expression
(5.9). Then we have the following 0-1 knapsack problem to solve:

max
z

∑
i∈I

zivi

subject to
∑
i∈I

ziWi ≤W (KP)

zi ∈ {0, 1} for all i ∈ I

where z = (zi : i ∈ I) is the vector of binary decision variables denoting whether the
item i is selected for the promotion knapsack or not.

The quality of the solution z is not guaranteed to be optimal. The experimental
study in the next section, however, reveals its nearly-optimal behavior, systematically
outperforming other considered heuristics.

Finally, the next proposition asserts that the KPPI is a generalization of the knapsack
problem.

Proposition 5.4 (KPPI Reduction to KP). If Ti = 1, qi = 1, pi = 0 for all i ∈ I, then any
optimal solution z∗ of the knapsack problem (KP) is an optimal solution of the KPPI.

5.7 Experimental Study

In this section we present results of computational experiments, in which we evalu-
ate the performance of heuristics MPI–OPT and MPI–GRE. We further compare their
performance to the greedy Earlier-Deadline-First policy (EDF–GRE), a benchmark policy
often observed in practice.
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Heuristic EDF–GRE: Select products in a greedy manner after sorting the items so
that product i1 is preferred to product i2, if:

(i) Ti1 < Ti2 ,

(ii) Ti1 = Ti2 and Ri1(1− αi1) > Ri1(1− αi1),

(iii) Ti1 = Ti2 and Ri1(1− αi1) = Ri1(1− αi1) and Wi1 < Wi2 .

The following is the worst-case (i.e., minimizing) solution of the knapsack subprob-
lem whenever all the price coefficients are positive, which is our case.

Heuristic MIN: Leave the knapsack empty.
In each experiment we randomly generate 104 instances for each fixed pair (I, T ),

denoting the number of products and the time horizon, respectively, such that I ∈
{2, 3, 4, . . . , 8} and T ∈ {2, 4, 6, . . . , 20}. For each product i we set αi = 0.5 and we as-
sure that T1 := T . We assume that the standard and the promotion demands are Poisson
with the respective means λ0

i , λ
1
i and such that 1

2λa
i Ti ≤ 1 < 3

2λa
i Ti for both a ∈ {0, 1}.

The last condition assures that each item has a non-extreme probability of being sold
before the deadline. Thus, we define qi := exp{−λ0

i } and pi := exp{−λ1
i }, and assure

that qi > pi. We further generate the following uniformly distributed parameters:

Wi ∈ [10, 50]; Ri ∈ [10, 50]; Ti ∈ [2, T ]; λ0
i , λ

1
i ∈

(
2Ji

3Ti
,
2Ji

Ti

]
.

Finally, a uniformly distributed knapsack volume is generated: W ∈ [max{Wi}, 30% ·∑
i Wi).
We focus on the discount factor β = 1, as this is the case most likely to be imple-

mented in practice. Moreover, our experiments (not reported here) suggest that this
is also the hardest case and the performance of index-based heuristics improves as the
discount factor diminishes.

The experiments were performed on PC with 2.66 GHz CPU and 1.5 GB RAM work-
ing on Windows XP. A Delphi code was developed by the author, implementing a stan-
dard enumerative routine for the knapsack subproblem. Finally, the performance evalu-
ation measures (see below) were calculated using Matlab, which also created the figures
presented here.

5.7.1 Performance Evaluation Measures

We obtain the maximizing policy solving the (DP) optimally, which also yields the op-
timal objective value DMAX. The objective values of the other policies are also obtained
via the Bellman equations, employing the respective heuristic at each step, denoted Dπ
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for a policy π. We next introduce performance evaluation measures we use to report the
experiment results.

The relative suboptimality gap of policy π is calculated via

rsg(π) =
DMAX −Dπ

DMAX . (5.10)

Clearly, we have 0 ≤ rsg(π) ≤ 1, where rsg(π) = 0 is obtained by the maximiz-
ing policy. However, rsg(π) = 1 cannot be achieved unless αi ≤ 0 at least for some
item i. This motivates us to introduce the adjusted relative suboptimality gap of policy π,
calculated via

arsg(π) =
DMAX −Dπ

DMAX −DMIN . (5.11)

In our case 0 ≤ arsg(π) ≤ 1, and both limiting values can be achieved.

We further introduce a measure to be used to compare the mean performance of an
alternative heuristic with respect to Heuristic MPI–OPT, as follows:

ratio(π) =
mean(rsg(π))

mean(rsg(MPI–OPT))
. (5.12)

This ratio captures the extent to which the mean absolute gap (i.e., the revenue loss)
created by Heuristic MPI–OPT may be expected to be magnified if policy π is imple-
mented instead. Thus, we have ratio(π) > 1 if and only if policy π is on average worse
than Heuristic MPI–OPT. An analogous ratio is used with the arsg measure.

5.7.2 Results

Figure 5.1 exhibits two projections of the mean rsg(MPI–OPT) as function of the number
of products I and the time horizon T . The figure shows an excellent mean performance
of heuristic MPI-OPT well below 0.01%, and further suggests that such a performance
can be expected even for higher values of I and T . These strong results are further
confirmed in Figure 5.2 considering the arsg measure.

The ratio of the benchmark Heuristic EDF–GRE is presented in Figure 5.3 and Fig-
ure 5.4. The benchmark policy’s mean gap is in all cases more than 50-times larger than
that of Heuristic MPI–OPT, and the ratio grows with the number of items I . Further, in
Figure 5.5 and Figure 5.6 we evaluate Heuristic MPI–GRE, whose mean performance is
in all cases more than 10-times worse, though improving with higher I once this passes
the value 5.

Finally, we remark that the worst-case performance achieved by the maximum rsg
(arsg) values of Heuristic MPI–OPT are relatively small, ranging between 0.3% and 15%
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(a) for values T = 2, 4, 6, . . . , 20 (b) for values I = 2, 3, . . . , 8

Figure 5.1: Mean relative suboptimality gap of heuristic MPI–OPT.

(a) for values T = 2, 4, 6, . . . , 20 (b) for values I = 2, 3, . . . , 8

Figure 5.2: Mean adjusted relative suboptimality gap of heuristic MPI–OPT.

(4% and 14%). The maximum rsg (arsg) values of Heuristic MPI–GRE range between 1%
and 8% (22% and 72%), that is, its worst-case performance is good in absolute terms, but
is especially bad in the problems where promotion has small effect on total revenues.
The worst-case performance of Heuristic EDF–GRE ranges between 3% and 8% (51%
and 100%).

5.8 Conclusions

We have developed a dynamic and stochastic model of dynamic promotion and pro-
posed a policy that has a natural economic interpretation and suggests itself to be easily
implementable in practice. These advantages come at the cost of possible suboptimality
of such a dynamic solution, which was, however, shown to be negligible and smaller
than the cost of implementing a naı̈ve marketing solution. The model has an appeal-
ing property of being extensible to a variety of ad-hoc requirements that managers or
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(a) for values T = 2, 4, 6, . . . , 20 (b) for values I = 2, 3, . . . , 8

Figure 5.3: Performance ratio in terms of rsg of EDF–GRE over MPI–OPT.

(a) for values T = 2, 4, 6, . . . , 20 (b) for values I = 2, 3, . . . , 8

Figure 5.4: Performance ratio in terms of arsg of EDF–GRE over MPI–OPT.

certain circumstances may impose.
A challenge showing itself is to extend the model presented in this chapter to ac-

count for price changes, inventories with dependent demands and product assortment,
and obtain an appealing index-based solution. The analysis of that problem is, how-
ever, more complex and the theoretical background must be extended in order to tackle
such problems.

Our model offers a comprehensive modeling framework that may be used in other
applications, since the items considered in knapsack problems are often perishable,
either naturally or due to special restrictions. An application, for example, arises in
surgery, when only a limited number of patients may be chosen to undertake an alter-
native treatment (e.g., a transplantation). Further, the task management problem, in
which tasks have associated deadlines and one can work only on a subset of them at a
time, also falls to the general KPPI setting.
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(a) for values T = 2, 4, 6, . . . , 20 (b) for values I = 2, 3, . . . , 8

Figure 5.5: Performance ratio in terms of rsg of MPI–GRE over MPI–OPT.

(a) for values T = 2, 4, 6, . . . , 20 (b) for values I = 2, 3, . . . , 8

Figure 5.6: Performance ratio in terms of arsg of MPI–GRE over MPI–OPT.
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Sometimes everybody hurts.
< R.E.M. >

Chapter 6

Congestion Control in Routers with
Future-Path Information

6.1 Introduction

With the growth of traffic volume and traffic heterogeneity in best-effort networks, con-
gestion control has been getting more importance. The queue tail drop policy showed to
be prone to creating various serious problems including bias against bursty traffic and
global synchronization, eventually resulting in congestion collapse (cf. Braden et al.,
1998). Such a reactive congestion control has a significant negative impact on the effi-
ciency of scarce resources (bandwidth and buffer space) allocation in networks.

Alternative proposals focused on preventive congestion control developing congestion
avoidance mechanisms, such as RED (Floyd and Jacobson, 1993), BLUE (Feng et al., 2002),
and a palette of their variants, which try to detect local congestion in its early stage and
warn by random packet dropping the traffic sources expecting that they decrease their
transmission rates.

Nevertheless, packet losses in the Internet are still high and Quality of Service str-
ongly suffers from this fact. Packets drops will persist even in the networks where
explicit congestion notification (ECN) is deployed. Explicitly marked (instead of dropped)
packets should be understood by users as a warning about possible dropping of pack-
ets in a very near future. However, since users are let to decide how to react, non-
cooperative flows exist, which together with the bursty nature of traffic are the main
causes of packet drops.

This chapter deals with the congestion control at routers with future-path informa-
tion. By congestion control problem at router with future-path information we mean to
implement particular control methods using the actual network congestion information

91



92 CHAPTER 6. CONGESTION CONTROL IN ROUTERS

Figure 6.1: A design of an end-to-end connection.

to reduce overall congestion for the route. For instance, in this work we specifically deal
with dropping policy, intelligent marking, and admission control.

Our setting differs from the preventive congestion control mainly by trying to ex-
ploit available information in order to know the whole network congestion state, not
only the congestion at the node where this control is implemented. Gathering of such
information inside the network may be costly, however, increasing ECN deployment
improves the possibilities for routers to have fresh news from other network nodes (see,
e.g., Molle and Xu, 2005).

More information at network nodes may result in a more efficient resource alloca-
tion. Notice that the information about network congestion gathered by intermediate
nodes experiences a significantly lower delay than the one users obtain from packet ac-
knowledgements. Similarly, the delay in the response to congestion is also lower for
nodes than for users. Thus, the ECN may not only decrease packet losses directly by
marking instead of dropping packets, but may also provide useful information for a
more efficient resource allocation at network nodes.

As Floyd and Fall (1999) pointed out, traffic lacking end-to-end congestion control
may cause congested links sending packets that will only be dropped later in the net-
work. Since dropping a packet on its route implies that all the scarce resources it has
consumed so far are wasted, congestion control that uses future-path information may
be highly valuable for the network performance in periods of congestion. It is then intu-
itively appealing that when a scarce resource is to be allocated to a packet, the possibility
of getting that packet lost in the remainder of its route should be taken into account.

To illustrate the idea on a simple example, consider an end-to-end connection that
includes two bottleneck routers, as in Figure 6.1. If Router2 is busy (yet still has some
free capacity in the buffer) and Router1 is able to anticipate it, then congestion avoid-
ance decisions at Router1 should take into account the transmission rate of an incoming
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flow. If the rate is small, so that Router2 would be able to transmit it, the flow should
be transmitted at Router1. On the other hand, if the transmission rate is too high, so
that Router2 is very likely to drop it, the flow should be dropped already at Router1;
or, it could be a strong candidate for the congestion warning policy implemented in the
congestion avoidance mechanism at Router1.

Exploiting the network congestion information leads to a novel concept that we coin
network-capability fairness. Put simply, flows are treated fairly according to what the
network can transmit, and not according to what the flows want to transmit as it is
usually assumed in the existing concepts of fairness. For instance, we put in doubt
whether two flows arriving at the same rate should be treated equally if we know that
one of them is routed to a congested link and the other one to a congestion-free link.
The network-capability fairness arises by making the routers maximize the expected
time-average network goodput, which relies on flow’s future-path information.

We model the congestion control problem in the framework of Markov decision pro-
cesses (MDPs), which leads to a formulation as the multi-armed restless bandit prob-
lem with an additional feature of random arrivals. After decomposing the problem into
single-flow subproblems, we deploy the restless bandit indexation methodology. As we
show in this chapter, the network-capability fairness can be achieved by implementing
transmission indices which evaluate the usefulness of flow transmission as a function of
its current transmission rate and current network congestion state. The transmission
index is the marginal productivity (MP) index arising in the context of this problem.

We consider a bottleneck router with a scarce resource that is given by the band-
width available, for which several flows compete. Each flow generates certain goodput
reward for its receiver, if it is delivered, which can be achieved only if it is transmitted
by the router. The difficulty is that these flows are dynamically changing their trans-
mission rate, so the rewards may increase or decrease over time. Thus, the question
is whether to exploit the present rewards by transmitting at the arrival rate, or to take
a locally-suboptimal action which may yield higher rewards further downstream or to
the following packets arriving at the router.

In this work we assume that routers have estimates on congestion probabilities on
downstream links, i.e., on the future paths of all the flows, and that these probabilities
are available for every possible sending rate of each flow. Continuous gathering of such
information would be desirable, but it is hardly implementable due to overwhelming
amount of data transmission and data processing by the routers. Thus, we assume that
this information is gathered in certain time intervals that are bigger than the existence
of flows (for instance, once per hour). This allows us to assume that each flow finds
these congestion probabilities constant.
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6.1.1 Related Congestion Control Protocols

In this chapter we present a stochastic model of a single bottleneck router at which
multiple flows compete for available bandwidth. Models simpler in network topol-
ogy assumptions allow to incorporate more complex and more realistic dynamics. For
instance, such a problem was studied in order to design and develop congestion con-
trol schemes obeying max-min fairness, which is hard to analyze for general network
topologies. A deterministic fluid-flows model of a single bottleneck router led to sev-
eral congestion control protocol proposals, including the Explicit Control Protocol in
Katabi et al. (2002), the Rate Control Protocol in Dukkipati et al. (2005), and the Adap-
tive Control Protocol in Lestas et al. (2008). They, however, differ in the packet-level
implementation significantly, as we outline next.

Explicit Control Protocol (XCP). XCP was designed to work well in networks with
high bandwidth-delay products. This protocol assumes that users fill in the header of
each packet their current sending rate (i.e., the current TCP window) and their current
estimate of the round-trip time (RTT) for a given flow, which provides a state informa-
tion for the routers. Moreover, the packet headers carry a feedback-rate information on
a possible increase (positive or negative) in the current sending rate which is initially set
by the sender to its desired increase, and then modified by the routers encountered on
the packet’s path. At every packet acknowledgment the users are supposed to modify
their sending rate as indicated by the feedback-rate information, which carries the min-
imum of all the routers’ required or allowed increases in the sending rate. Each XCP
router maintains a per-link estimation of average RTT to control the feedback delay.
Note that XCP does not drop packets, since it operates on top of a router’s dropping
policy such as tail dropping or implicit congestion notification (e.g., RED).

Adaptive Control Protocol (ACP). This protocol assumes that users fill in the header
of each packet their current estimate of the round-trip time (RTT) for a given flow (as
in XCP), and that the header carries a feedback-rate information on a desired sending
rate modified by the routers on the path. Moreover, it assumes that there is an ECN
bit set to 1 by each of the routers on the path, whose current input rate is above 95%
of the router’s bandwidth capacity. The users are supposed to smoothly (and even
less aggressively if the ECN bit equals 1) modify their sending rate after every packet
acknowledgment as indicated by the feedback-rate information, which carries the min-
imum of all the routers’ required sending rate. As in XCP, each ACP router maintains
a per-link estimation of average RTT to control the feedback delay. It was shown by
simulations that ACP corrects the problem of XCP in achieving max-min fairness in the
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presence of multiple bottleneck routers.

Rate Control Protocol (RCP). This simple protocol tries to minimize the duration of
flows by emulating processor sharing. It assigns an equal input rate to all the flows,
i.e., it admits the same amount of data from each flow. As in ACP, it is assumed that
users fill in the header of each packet their current estimate of the round-trip time (RTT)
for a given flow, and that the header carries a feedback-rate information on a desired
sending rate modified by the routers on the path. The users are supposed to modify
their sending rate after every packet acknowledgment as indicated by the feedback-
rate information. This policy is shown to improve over TCP and XCP in the settings
when new flows arrive randomly and are finite-length, since the latter two protocols
make adapt the users’ sending rates over several RTTs, which works well only when all
flows are long-lived. Note that the RCP router does not keep flows-state and does no
per-packet calculations.

6.1.2 Congestion Control Problem of Multiple Flows at Bottleneck Router

In this subsection we present a general formulation of the congestion control problem.
While earlier formulations were based on deterministic fluid models, we develop here
a stochastic extension using the MDP framework.

Consider the time slotted into discrete time epochs t = 0, 1, 2, . . . Let us denote the
router parameters by

• W the bandwidth, i.e., the deterministic ”server capacity” (in packets per period);

• W the target time-average router throughput, or ”virtual capacity” (in packets per
period); W < W ;

• B the buffer size, possibly infinite (in packets); B ≥W ;

• B(t) the backlog process (in packets) at epochs t.

Suppose further that flow m ∈ M := {1, 2, . . . } appears at a random time epoch Tm in
the (deterministic) initial state nm and that its transmission lasts for a random number
of periods, given by the probability 0 < 1 − βm < 1 that the flow is terminated by
the sender before the next time epoch. That is, the length of the flow-m existence (i.e.,
the flow’s time between starting and terminating) follows a geometric distribution with
mean 1/(1−βm). Denote byMstarted(t) ⊂M the random process of the set of flows that
have started by time epoch t. The distributions of Tm can be arbitrary; we only require
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that the number of flows that have started, |Mstarted(t)|, grows linearly with t, i.e.,

0 < L := lim
t→∞

|Mstarted(t)|
t

<∞. (6.1)

Denote by M(t) ⊂ M the random process of the set of existing (i.e., started and not
terminated) flows at time epochs t. The above linearity condition assures that P[Tm <

t for all m ∈M] < 1 for any t = 0, 1, . . . , and thereforeM(t) ⊂Mstarted(t) is finite at all
epochs. Then, we define the following parameters for any existing flow m ∈M(t):

• Nm the number of states of flow m; Nm := {0, 1, . . . , Nm − 1};

• Am := |Am| the number of available actions by the router for flow m;

• Xm(t) ∈ Nm the state process of flow m at epochs t;

• am(t) ∈ Am the action process of flow m at epochs t;

• W sent
m,n the workload (in number of packets) sent by the sender of flow m at state n;

• W a
m,n the one-period expected bandwidth used (in number of packets) of flow m

at state n if action a is applied at the router;

• Ra
m,n the one-period expected goodput (or reward) of flow m at state n if action a

is applied at the router.

The flows dynamics is as follows (see Figure 6.2). At epoch t, the sender of each
existing flow m ∈ M(t) sets its state Xm(t) (that depends on whether the previous-
epoch workload was transmitted without congestion, given by the complete acknowl-
edgements of the receiver of flow m sent back to the sender in the previous period)
and sends the workload of W sent

m,Xm(t) packets to the bottleneck router. However, only

0 ≤W
am(t)
m,Xm(t) ≤W sent

m,Xm(t) packets are allowed to queue in the buffer for being transmit-
ted. The transmitted packets with possible losses arrive to the receiver of flow m, who
obtains the goodput (or reward) R

am(t)
m,Xm(t). If the router transmitted the flow without

any congestion warning and if there was no congestion downstream, then the receiver
sends complete acknowledgements back to the sender; otherwise only partial acknowl-
edgments are sent. Next, with probability 1 − βm the flow m terminates so that there
are no more packets sent by the sender in the future time epochs. This may well be due
to finalizing the file transmission (i.e., sending all the planned packets), an impatience
of the sender, or external factors such as broken connections (see, e.g., Massoulié and
Roberts, 1999). If not terminated, then the sender sets its next-epoch state Xm(t+1) and
repeats the process.
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Figure 6.2: A scheme of M := |M(t)| flows sharing a bottleneck router.

The congestion avoidance decision at the router is taken in the following way. At
epoch t the router controller observes the backlog B(t) and the flows states Xm(t) of
all existing flows m ∈ M(t). Based on that she decides the flow actions am(t) (which
may be viewed to be taken in virtual gates, as illustrated in Figure 6.2), instantaneously
appends (in FIFO order) W

am(t)
m,Xm(t) packets of each flow m to the buffer, and transmits (in

FIFO order) W packets (or all the packets if there are less than W packets in the buffer)
during the period. Thus, at the next epoch there is the backlog

B(t + 1) := max

B(t) +
∑

m∈M(t)

W
am(t)
m,Xm(t) −W ; 0

 .

The above description implies that B(t) +
∑

m∈M(t)

W
am(t)
m,Xm(t) ≤ B, so we have B(t) ≤

B −W at all epochs t.

To summarize, the senders make no decisions and therefore the flows dynamics can
be modeled as a Markov chain. Section 6.3 presents a binary-action MDP (i.e., a restless
bandit) model for the router-based control of a single flow, where the dynamics and the
parameters are defined in more detail. At this moment we present a generic formulation
of the congestion control problem.
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Let Π be the set of all history-dependent randomized policies. Denote by the symbol
Eπ

n,B0
the conditional expectation given that the initial conditions are n := (nm)m∈M,

B0 = B(0) ≤ B − W and the policy applied is π ∈ Π. The router controller’s prob-
lem to solve under the time-average criterion (which is well-defined due to bounded
operands) is

max
π∈Π

lim
T→∞

1
T

Eπ
n,B0

T−1∑
t=0

∑
m∈M(t)

R
am(t)
m,Xm(t)

 (6.2)

subject to lim
T→∞

1
T

Eπ
n,B0

T−1∑
t=0

∑
m∈M(t)

W
am(t)
m,Xm(t)

 ≤W (6.3)

B(t) +
∑

m∈M(t)

W
am(t)
m,Xm(t) ≤ B, for all t = 0, 1, 2, . . . (6.4)

The virtual capacity seen as the target time-average router throughput W is in fact a
delay- and stability-controlling parameter, since the higher the W , the higher the prob-
ability of non-zero backlogs B(t), and therefore the higher the router’s time-average
contribution to end-to-end propagation delays of the flows. We note that an analogous
constraint (6.3) formulation was used in Ma et al. (2008). To avoid the trivial problem of
underloaded router, we assume that

lim
T→∞

1
T

Eπ
n,B0

T−1∑
t=0

∑
m∈M(t)

W sent
m,Xm(t)

 > W. (6.5)

6.1.3 Related Models

Closely related to our work is a wide stream of literature on network economics and
pricing (see, e.g., Courcoubetis and Weber, 2003) aiming at improving network resource
allocation. Based on an auction model, MacKie-Mason and Varian (1995) proposed that
each user sets a bid in the packet headers. When such a packet arrives to a router,
it is accepted if and only if its bid is higher than an actual congestion threshold. If
the packet is blocked, the packet with an increased bid can be retransmitted by the
user, or it must wait until the threshold decreases. This however, leads to complex
practical problems of setting the bids and therefore such threshold policies are difficult
to implement in practice (see Shenker et al., 1996). In our model, such a bid can be
seen as given by the flow transmission rate (the higher the rate, the smaller the bid) and
clearly having analogous consequences. Nevertheless, we do not restrict ourselves to
such strict accepting/blocking decisions, yet let the routers self-calculate the price of the
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entire flow based on the bid (transmission rate) and the current congestion information.

Kelly (1997) developed decompositions of a deterministic network model, in which
a Lagrange multiplier mediates between subproblems and leads to a social optimum.
He further explained how different fairness criteria arise from different utility functions.
However, Stidham (2004) showed that if users are heterogeneous, such models may be
difficult to solve to global optimality due to the existence of various local optima. The
book by Srikant (2004) and the surveys in Lestas et al. (2008); Low and Srikant (2004);
Low et al. (2002); Low and Lapsley (1999) provide summaries of the most important
mathematical models and results on congestion control for whole networks.

The above papers are alike in optimizing the sum of user’s utility functions, and
showing that such a problem can be decomposed into per-user problems of setting
transmission rates in an adaptive (reactive to network congestion signals) manner. The
typical result is that a particular type of fairness (such as proportional fairness, max-min
fairness, etc.) is achieved if all the users have utility functions of same type. Moreover,
the flows are assumed to be persistent and their number be constant. However, in the
current and future Internet these are not appropriate assumptions, due to variability of
traffic flow types, such as FTP, VoIP, video, mice etc., that appear randomly and have a
finite duration. Such assumptions are dropped in this work.

Continuous information gathering at network nodes were considered for conges-
tion control problems in Neely et al. (2008), Paganini (2006) and Molle and Xu (2005).
They showed that communication across network nodes, especially the neighboring
ones, is beneficial and the latter two discussed also practical implementation of such
information gathering. It is crucial for our approach to the congestion control problem
to assume that routers have certain information about actual congestion downstream.
However, as noted at the beginning of this chapter, we assume that this information is
gathered in certain time intervals (and not continuously) that are bigger than the flows
lifetimes (for instance, once per hour). This greatly reduces the implementability prob-
lem of overwhelming amount of data transmission and data processing by the routers.

6.1.4 Goals and Contributions

We do not use utility functions existing in the previous work (though the model is gen-
eral enough to incorporate them), nor we want to punish users who experience conges-
tion by charging them in monetary terms. Rather, we focus on finding simple nearly-
optimal network strategies that make the network truly best-effort: transmitting all the
packets that can be transmitted, so that the expected goodput be maximized. Since the
expected goodput can be viewed as a particular utility function, it gives rise to a par-
ticular fairness criterion, which we term network-capability fairness. We will show that it
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Multi-Armed Restless Bandit Problem Congestion Control Problem

bandits ←→ flows
server ←→ router’s bandwidth
work ←→ flow transmission

reward ←→ flow delivery
marginal productivity index ←→ transmission index

Table 6.1: Analogy between the multi-armed restless bandit problem and the congestion
control problem.

possesses several desirable properties. Moreover, it is analytically fruitful, since the ex-
pected goodput does not suffer from non-concavity of some utilities functions described
in Shenker et al. (1996).

Our multiple-flow problem formulation targets the trade-off between throughput
and delay in networks with finite-length flows. Given its complexity, the problem is
relaxed and decomposed in Section 6.2 so that individual flows are treated in isolation,
building on an analogy with the multi-armed restless bandit problem introduced by
Whittle (1988) (see Table 6.1). Moreover, we show in Section 6.3 that the decisions upon
dropping and marking of flow packets can be transformed into a flow admission con-
trol problem. This decomposition thus shows that congestion control at a router can be
decomposed into a collection of per-flow admission control problems. Similar obser-
vations were made in Ferragut and Paganini (2008) and Paganini (2006), who studied
stability of the problem using a classic fluid-flow model. They illustrated that properly
designed admission control can be shown to be sufficient for both an efficient conges-
tion control and an efficient routing.

Section 6.3 presents an MDP (restless bandit) model of congestion control of an indi-
vidual flow. We build on an improved idea of Wischik (1999), who concluded that a fair
marking of a flow (in explicit congestion avoidance mechanisms) should reflect (i) how
much of the capacity it uses, and (ii) the congestion state at the router. We extend the
latter to (ii’) the congestion state at the router and the remainder of the route. We believe
that such a modification may significantly improve the efficiency of resource allocation
across the network.

Section 6.4 employs the restless bandit indexation methodology surveyed in Niño-
Mora (2007b) to obtain an optimal solution for the congestion control of an individual
flow via the marginal productivity index, called the transmission index in our context.
This index identifies locally optimal actions for the decentralized problem, and cap-
tures the value of network services to users. If multiplied by the packet size, it can be
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seen as a list of certain internal prices, and can be implemented in congestion avoidance
mechanisms in order to resolve the fairness problem between different flows.

We use these general results in Section 6.5 to obtain closed-form expressions of the
transmission index under three basic router variants with the following network con-
gestion control functions:

(i) TD router: congestion control based on tail dropping (buffer overflow),

(ii) ICN router: congestion avoidance with implicit congestion notification (packet
dropping), and

(iii) ECN router: congestion avoidance with explicit congestion notification (packet
marking).

Section 6.6 presents two simple settings in which the transmission index defines an
optimal transmission priority policy for a multiple-flow problem at a bottleneck router.

Finally, Section 6.7 discusses heuristic proposals for the implementation of the trans-
mission index in existing congestion avoidance mechanisms in order to improve the
performance of the whole network. Our proposal is very flexible and a uniform imple-
mentation across the network is not necessary.

6.2 Decomposition of the Multiple-Flows Problem

The problem (6.2)–(6.4) is difficult to solve due to the sample path constraint (6.4). One
possibility for relaxing the problem is to assume that the buffer space B is infinite, so
that the constraint (6.4) is trivially fulfilled. Another possibility is to relax that constraint
as did Whittle (1988), by requiring it only on time-average, i.e.,

lim
T→∞

1
T

Eπ
n,B0

T−1∑
t=0

∑
m∈M(t)

W
am(t)
m,Xm(t)

+ Bπ
n,B0

≤ B,

where Bπ
n,B0

is the time-average of the backlog process B(t) under policy π and initial
conditions n, B0. However, such a constraint is weaker than (6.3), because B−Bπ

n,B0
≥

W > W under any π,n, B0.

Either of these two relaxation possibilities results in omitting the constraint (6.4).
Note also that the initial backlog B0 is then irrelevant and therefore can also be omitted.
Thus, we end up with a problem formulation (6.2)–(6.3), which is precisely the Whittle
relaxation of the multi-armed restless bandit problem (Whittle, 1988), except for our
generalization into time-variant number of flows.
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The standard solution of such a formulation is by solving the Lagrangian relaxation
of (6.2)–(6.3), which is

max
π∈Π

lim
T→∞

1
T

Eπ
n

T−1∑
t=0

∑
m∈M(t)

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)+ νW, (6.6)

where ν is the Lagrangian parameter that can be interpreted as a per-packet transmis-
sion cost. The Lagrangian theory assures that there exists ν∗, for which the Lagrangian
relaxation (6.6) achieves optimum of (6.2)–(6.3). Since for any fixed ν the flows are inde-
pendent, we can decompose (6.6) into an infinite number of individual-flow problems,
as detailed in the following.1

Proposition 6.1. Let Πm be the set of all history-dependent randomized policies for flow m, and
individual-flow policies π∗m ∈ Πm such that they form the joint policy π∗ ∈ Π. If for a given
parameter ν, each policy π∗m for m ∈M optimizes the individual-flow problem

max
πm∈Πm

Eπm
nm

[ ∞∑
t=0

βt
m

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]
, (6.7)

then π∗ optimizes the multi-flow problem (6.6).

In Section 6.3 we will find under certain natural conditions an optimal solution to
such a ν-parameter problem (if Am = 2 for all m ∈ M) in terms of flow- and state-
dependent marginal productivity indices νm,n, which in our setting can be interpreted as
transmission indices. If the optimal transmission cost ν∗ is known, then these indices de-
fine the following optimal policy for problem (6.2)–(6.3): “At each time epoch transmit
all the flows of actual-state transmission index greater than the transmission cost ν∗ and
warn the remaining flows”.

Since in practice ν∗ is typically unknown, the buffer space is finite, and it is desirable
to have work-conserving transmission in order to increase bandwidth utilization, we
will use the transmission indices to define practically feasible and desirable heuristical
policies in Section 6.7.

6.3 Individual-Flow Congestion Control Problem

In this section we consider an individual flow requiring router resources (buffer space
and bandwidth capacity). We present an MDP model for flows that behave under
the any-increase/multiplicative-decrease policy (such as TCP connections). A similar

1I am grateful to Bernardo D’Auria for helping to clear the proof of this proposition.
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model could be developed for other flow types, but these have been left out of the scope
of this work. Before modeling a flow with multiplicative decrease, we develop an MDP
model of a flow with any-increase/restart behavior, henceforth called the restarting flow.

We consider that router is of one out of three variants described in Section 6.1: TD
router, ICN router, ECN router. In order to model these router variants, we assume that
the router has two available actions to choose from to control an individual flow. One of
these actions is transmitting the flow without warning in all the variants. The other action
depends on the router variant, and it is: (i) blocking the flow for TD router, (ii) dropping
some packets of the flow for ICN router, and (iii) marking some packets of the flow for
ECN router.

In order to define the problem of congestion control of an individual flow, we will
use information about the router variant (to know what to decide upon), the current
flow transmission rate (to know the flow’s bandwidth requirements), and the probabil-
ity of losses downstream the flow’s route (to calculate flow’s goodput). In the following
subsections we present a formal model of the restarting flow and define the problem.
An optimal congestion control via the transmission index is derived in Section 6.4. Since
we focus on a single flow, we drop the flow subscript m.

6.3.1 Markov Decision Process Model of Restarting Flow

The restarting flow in every period increases its transmission rate defined by the actu-
alWindow variable by a discrete increment up to a certain maximumWindow constant
unless the flow sender is warned about congestion, when it restarts by setting the
transmission rate to a certain minimumWindow constant. We assume that the constants
0 < minimumWindow ≤ maximumWindow are given in advance, as they are typically set
by the users’ operation systems. We set the MDP model in discrete time, defining one
time period as one round-trip time (RTT). We assume that all packets are of the same
size, which we further define to be one bandwidth capacity unit.

The states n ∈ N := {0, 1, . . . , N − 1} (N ≥ 1) denote possible levels of the send-
ing rate, i.e., of the actualWindow variable. The 0-th state represents actualWindow =
minimumWindow, and the (N − 1)-th state represents actualWindow = maximumWindow.
The actualWindow variable in state n assumes the value W sent

n (in packets/RTT), which
can therefore be interpreted as the bandwidth capacity the flow requires for complete
transmission at the current period. Hence, in the following we assume that 0 < W sent

0 :=
minimumWindow < W sent

1 < · · · < W sent
N−2 < W sent

N−1 := maximumWindow. The schematic
behavior of the restarting flow as a Markov chain is shown in Figure 6.3, where “OK”
represents a congestion-free reception of the flow by the receiver (complete acknowl-
edgments) and “NO” represents a congestion-experienced transmission (incomplete ac-
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Figure 6.3: A model of the restarting flow as a Markov chain. The arrows represent
one-period transitions among the states 0, 1, . . . , N − 1 after a congestion-free (OK) and
a congestion-experienced (NO) transmission.

knowledgments).
While no decisions are taken by the sender, congestion control decisions must be

taken by the routers. At a particular router on the connection route we want to decide
whether the incoming flow in state n should be transmitted without any congestion
warning (achieved by action a(t) = 1 of transmitting W 1

n := W sent
n packets), or warned

by employing a congestion control function (action a(t) = 0 of transmitting 0 ≤ W 0
n ≤

W sent
n packets) depending on the router variant.

Thus, the parameter W 0
n gives us the flexibility to consider router variants with dif-

ferent congestion warning. In particular, the warning action corresponds to

(i) blocking of entire flow (W 0
n := 0) in TD router,

(ii) dropping some of the packets (0 < W 0
n < W sent

n ) in ICN router, or

(iii) marking some of the packets (W 0
n := W sent

n ) in ECN router.

If the flow is warned at the router, the flow restarts to state 0. Notice, however, that
if the flow is transmitted without warning, then the flow being in state n restarts to
state 0 with the probability 0 ≤ 1 − pn < 1, reflecting the probability of experiencing
congestion in the remainder of its route. On the other hand, with the probability pn of
congestion-free transmission it increases the transmission rate from W sent

n to W sent
n+1 (or

remains at the maximumWindow rate if being in state N − 1). The assumption pn 6= 1 is
what makes our model suitable for exploiting the future-path congestion information
in the congestion control problem.

Given the actions interpretation given above, R1
n is the expected one-period good-

put (receiver reward) from a transmitted flow and R0
n is the expected one-period good-

put from a warned flow. We will find it convenient to further decompose R1
n into

the congestion-free reward R1+
n and the congestion-experienced reward R1−

n , so that
R1

n := pnR1+
n + (1 − pn)R1−

n . Thus, R0
n and R1

n can capture the receiver sensitivity to
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dropped or marked packets, and should also depend on W 0
n and W 1

n , respectively. The
difference of receiver rewards and transmission costs (i.e., R0

n − νW 0
n and R1

n − νW 1
n )

will be henceforth called the net reward under transmission cost ν.
In summary, our MDP model for the router-based control of the restarting flow is

defined as follows:

• State space is N := {0, 1, . . . , N − 1}.

• Actions: active action (transmitting) and passive action (warning) are available in
each state.

• Dynamics if active: If the flow is in state n and the flow is transmitted at a given
period, then during that period

– with probability pn > 0: it generates net reward R1+
n − νW 1

n and the flow
moves to state n + 1 for the next period (or remains in N − 1, if n = N − 1).

– with probability 1 − pn: it generates net reward R1−
n − νW 1

n and the flow
moves to state 0 for the next period.

• Dynamics if passive: If the flow is in state n and the flow is warned at a given
period, then during that period it generates net reward R0

n − νW 0
n and the flow

moves to state 0 for the next period.

6.3.2 The Three Router Variants: Definitions

Since W 1
n = W sent

n is the number of packets sent if the flow is in state n (i.e., the actual
flow transmission rate), the congestion-free one-period receiver reward is R1+

n := W sent
n

in all the mechanisms we consider below.
We suppose that the non-warned flow continuously increases the transmission rate,

W sent
0 < W sent

1 < · · · < W sent
N−1, and that the probabilities of congestion-free transmission

downstream, pn’s, are nonincreasing in n. We narrow our focus to networks in which
the congestion downstream the route is treated in the same way as at the router where
our policy is implemented.

The three mechanisms below differ by defining the congestion-warned transmis-
sion rate W 0

n , the expected one-period receiver reward of the congestion experienced
downstream R1−

n , and the congestion-warned expected one-period receiver reward R0
n.

In the light of the model in Section 6.3, we assume that the flow reacts by restarting
to the minimal transmission rate W 1

0 = 1 in all the mechanisms.

TD Router. The action 0 at the router refers to blocking the entire flow, i.e., W 0
n = R0

n :=
0. Naturally, the reward from the blocked flow is R1−

n := 0.
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ICN Router. While in practice there are many ways of implicit congestion notification,
as an illustration we focus on a simple one. Suppose that the action 0 at the router refers
to dropping one packet of the flow, i.e., W 0

n := W 1
n − 1. Therefore, we define R0

n = R1−
n :=

W 1
n − 1.

ECN Router. Suppose that the passive action at the router refers to marking the packets
of the flow (dropping none of them), using explicit congestion notification (ECN). Then,
W 0

n := W 1
n and R0

n := R1
n. If all the routers use ECN, dropping downstream only occurs

when the buffers overflow, which we consider very harmful, so that R1−
n := 0.

6.3.3 Optimization Problem

Consider now the individual-flow problem in (6.7). Thus, we look for a policy maximiz-
ing the expected total net rewards under the β-discounted criterion. From the above in-
terpretations we conclude that our model captures the trade-off between high through-
put and long queues on one hand, and low throughput and short queues on the other
hand for finite flows. This is known as network optimization under the throughput/delay
criterion.

To evaluate a policy π under the β-discounted criterion, we consider the following

two measures. Let gπ
i := Eπ

i

[ ∞∑
t=0

βtW
a(t)
X(t)

]
be the expected total β-discounted bandwidth

utilization if starting from state i under policy π. For convenience, we will also call gπ
i

the expected total β-discounted work, since the bandwidth utilization can be seen as
the work performed by the router in order to transmit the flow. Analogously we denote

by fπ
i := Eπ

i

[ ∞∑
t=0

βtR
a(t)
X(t)

]
the expected total β-discounted reward if starting from state i

under policy π.
The objective (6.7)2 is for each transmission cost ν,

max
π∈Π

fπ
i − νgπ

i . (6.8)

6.4 Optimal Solution via the Marginal Productivity Index

In this section we solve the problem (6.8) using the restless bandit indexation methodol-
ogy surveyed in Niño-Mora (2007b). First we reduce the optimization problem by nor-
malizing the net reward parameters and narrow the focus to stationary policies. Then,

2Similarly could be formulated the problem under the time-average criterion. The marginal productiv-
ity index under the latter are obtained in the limit β → 1 from the marginal productivity index under the
discounted criterion (Niño-Mora, 2002).
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we carry out a work-reward analysis in order to establish structural results of the opti-
mal control policy. Finally, we obtain closed formulae of the transmission index of the
restarting flow, and of the flow with fast recovery.

The MDP model for any of the router variants aims at finding the transmission index
that will be assigned to a particular flow on a particular router. The transmission index
captures the actual value of network services to the flow receiver, and falls into the con-
cept of the marginal productivity (MP) index developed in Niño-Mora (2001, 2002, 2006b).
If ν denotes the transmission cost (or, the cost of providing bandwidth capacity) paid for
each unit of router’s bandwidth required by the flow, then the transmission index is
defined as a set of state-dependent values so that the following is an optimal policy:
“Transmit the flow without congestion warning if and only if the actual transmission
index is higher than the transmission cost ν”.

Niño-Mora (2002, p. 383) showed that the above problem can be normalized so that
no passive-action net rewards are present. This is achieved by normalizing the active-
action net rewards (see also the Appendix, Section D.3) for all n ∈ N by

Rn := (R1
n −R0

n) + βpn(R0
n+1 −R0

0), Wn := (W 1
n −W 0

n) + βpn(W 0
n+1 −W 0

0 ), (6.9)

where we have defined R0
N := R0

N−1 and W 0
N := W 0

N−1.

Thus, the above-defined dynamics of the system is modified in the following way:

• Dynamics if active: If the flow is in state n and the flow is warned at a given period,
then during that period it generates net reward Rn − νWn and

– with probability pn > 0: the flow moves to state n + 1 for the next period (or
remains in N − 1, if it is already there).

– with probability 1− pn: the flow moves to state 0 for the next period.

• Dynamics if passive: If the flow is in state n and the flow is warned at a given
period, then during that period it generates no net reward and the flow moves to
state 0 for the next period.

Thus, we end up with an admission control problem, pioneered by Naor (1969) for
Poisson arrivals. For the same arrival process, Niño-Mora (2002) identified an optimal
policy via MP indices. However, the TCP-like behavior described in the previous sec-
tion does not result in a Poisson process for the number of arriving packets, therefore
we analyze it next.
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6.4.1 Reduction to Stationary Policies

Since for MDPs with finite state space and finite action space there exists an optimal
stationary policy independent of the initial state, we focus only on stationary policies
and represent them via active sets S ⊆ N . In other words, a policy S prescribes to be
active (to transmit) in states in S and passive (to warn) in states in N \ S.

In the remainder of this section we consider the normalized problem under the set of
all active sets. The above-defined total bandwidth utilization (total work) gπ

i and total
reward fπ

i can readily be defined for this problem as gSi and fSi , respectively. Moreover,
they satisfy the following balance equations, to be used in the later analysis.

Lemma 6.1. For any state n and any active set S we have:
If state n ∈ S and n 6= N − 1, then

fSn = Rn + β
(
pnfSn+1 + (1− pn)fS0

)
, gSn = Wn + β

(
pngSn+1 + (1− pn)gS0

)
.

If state N − 1 ∈ S , then

fSN−1 =
RN−1 + β(1− pN−1)fS0

1− βpN−1
, gSN−1 =

WN−1 + β(1− pN−1)gS0
1− βpN−1

.

If state n /∈ S, then fSn = βfS0 , gSn = βgS0 . If state 0 /∈ S , then fS0 = 0, gS0 = 0.

6.4.2 Marginal Reward and Marginal Bandwidth Utilization

In this subsection we define measures of marginal reward and marginal bandwidth
utilization, and present results which will be used later to derive the transmission index
of problem (6.8).

Let 〈a,S〉 be the policy that implements action a in the initial period and policy
S proceeds. We consider the (n,S)-marginal reward defined as rSn := f

〈1,S〉
n − f

〈0,S〉
n ,

and the (n,S)-marginal bandwidth utilization (or, (n,S)-marginal work) defined as wS
n :=

g
〈1,S〉
n − g

〈0,S〉
n . Finally, the (n,S)-marginal transmission rate is denoted by νSn := rSn/wS

n .
The following results are analogous to the balance equations in Lemma 6.1.

Lemma 6.2. For any state n 6= N − 1 and any active set S we have

f 〈1,S〉
n = Rn + β

“
pnfSn+1 + (1− pn)fS0

”
, g〈1,S〉

n = Wn + β
“
pngSn+1 + (1− pn)gS0

”
,

f
〈1,S〉
N−1 = RN−1 + β

“
pN−1f

S
N−1 + (1− pN−1)f

S
0

”
, g

〈1,S〉
N−1 = WN−1 + β

“
pN−1g

S
N−1 + (1− pN−1)g

S
0

”
,

f 〈0,S〉
n = βfS0 , g〈0,S〉

n = βgS0 ,

f
〈0,S〉
N−1 = βfS0 , g

〈0,S〉
N−1 = βgS0 .
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Using the above lemma and the definition of the marginal reward and marginal
work, respectively, we obtain the following identities.

Proposition 6.2. For any state n 6= N − 1 and any active set S we have

rSn = Rn + βpn(fSn+1 − fS0 ) wS
n = Wn + βpn(gSn+1 − gS0 )

rSN−1 = RN−1 + βpN−1(fSN−1 − fS0 ) wS
N−1 = WN−1 + βpN−1(gSN−1 − gS0 )

Finally, the next result is obtained by employing Lemma 6.1 into Proposition 6.2.

Proposition 6.3. If state n ∈ S, then rSn = fSn − βfS0 and wS
n = gSn − βgS0 .

For a given active set S, the above propositions allow us to narrow the focus to
quantities fSn and gSn for n ∈ S that can be obtained from the recursion in Lemma 6.1, as
we will see in the following subsection.

6.4.3 Structure of Optimal Policies

Now we prepare the ground for establishing the structure of the optimal active sets
(policies), under the following two conditions. First, we will use a natural monotonicity
assumption upon congestion probabilities, termed deteriorating QoS (Quality of service).

Assumption 6.1 (Deteriorating QoS). The one-period works Wn are positive and we

have
Wm

pm
≤ Wn

pn
for all m,n ∈ N such that m < n.

Further, we will concentrate on the case, in which the one-period reward Rn pos-
sesses a sort of concavity in Wn. The concavity behavior is a natural one for the expected
goodput in communications networks. In fact, one expects the network to increment
losses as the required bandwidth per connection is increased.

Assumption 6.2 (Concave Adjusted Rewards). There is a real-valued function R with
R(0) ≥ 0, which is concave on the domain {0,W0/p0, . . . ,WN−1/pN−1} and satisfies
Rn/pn = R(Wn/pn).

We will prove that, under these two conditions, the optimal policy for any transmis-
sion cost ν is a threshold policy belonging to family

F := {Nk−1 : k ∈ N ∪ {N}}, where Nk−1 := {0, 1, . . . , k − 1}. (6.10)

That is, for any transmission cost ν there is a threshold state k such that it is optimal
to transmit the flow if and only if it is in any state smaller than k. We will accomplish
this by establishing PCL(F)-indexability, introduced in Niño-Mora (2001, 2002), of our
problem for the family of active sets F defined in (6.10).
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Definition 6.1. Problem (6.8) is called PCL(F)-indexable if the following two conditions
hold:

(i) the marginal work w
Nk−1
n is positive for all n ∈ N and k ∈ N ∪ {N}.

(ii) the marginal transmission rates ν
Nn−1
n are nonincreasing in n ∈ N .

The two assumptions given above will be shown sufficient for conditions (i) and
(ii) of PCL(F)-indexability. They are, however, not necessary, and thus the threshold
policies defined in (6.10) may remain optimal even if our assumptions are not valid.

6.4.4 Work-Reward Analysis

To achieve the above goal, we first characterize the marginal rewards and works. For all

n ∈ N , let qn :=
n−1∏
m=0

βpm, Qn :=
n∑

m=0
qm, Q

(R)
n :=

n∑
m=0

qmRm, and Q
(W )
n :=

n∑
m=0

qmWm.

Lemma 6.3. For k, n ∈ N with n ≥ k − 1, the marginal reward and work, respectively, are

r
Nk−1
n = Rn − βpn

Q
(R)
k−1

Qk
, w

Nk−1
n = Wn − βpn

Q
(W )
k−1

Qk
. (6.11)

Proof. For k = 0 considerN−1 = ∅. Then for any state n ∈ N we have f
N−1
n = g

N−1
n = 0,

and hence r
N−1
n = Rn and w

N−1
n = Wn by Proposition 6.2.

Now for k ∈ N \ {0} consider Nk−1. Using Lemma 6.1, for n ≤ k − 1 we have

fNk−1
n = Rn + β

(
pnf

Nk−1
n+1 + (1− pn)fNk−1

0

)
, gNk−1

n = Wn + β
(
png

Nk−1
n+1 + (1− pn)gNk−1

0

)
,

and for n ≥ k we have f
Nk−1
n = βf

Nk−1

0 and g
Nk−1
n = βg

Nk−1

0 .

The solution of the two above linear-equation systems gives

(1− β)fNk−1

0 =
Q

(R)
k−1

Qk
, (1− β)gNk−1

0 =
Q

(W )
k−1

Qk
. (6.12)

Therefore, we have f
Nk−1
n − f

Nk−1

0 = −(1−β)fNk−1

0 and g
Nk−1
n − g

Nk−1

0 = −(1−β)gNk−1

0

for n ≥ k. Then Proposition 6.2 yields (6.11) for k, n ∈ N with n ≥ k − 1.

In the following lemma we establish positivity of the marginal works as required in
condition (i) of PCL(F)-indexability.

Lemma 6.4. Under deteriorating QoS, the marginal work w
Nk−1
n is positive for all n ∈ N and

k ∈ N ∪ {N}, i.e., condition (i) of PCL(F)-indexability holds.
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Proof. If k 6= N , then the marginal work w
Nk−1
n is positive for n ≥ k − 1, because from

(6.11) it can be rewritten as

w
Nk−1
n =

1
Qk

(
Wn +

k−1∑
m=0

qm+1

(
Wn −

pn

pm
Wm

))
, (6.13)

which is positive due to deteriorating QoS.
For n ≤ k − 1 ≤ N − 1 we proceed as follows. Lemma 6.1 after rearranging gives,

for n ≥ 1,
g
Nk−1
n =

(
g
Nk−1

n−1 − β(1− pn−1)g
Nk−1

0 −Wn−1

)
/βpn−1, (6.14)

whose recursive implementation yields

g
Nk−1
n =

Qn − βQn−1

qn
g
Nk−1

0 −
Q

(W )
n−1

qn
. (6.15)

Due to Proposition 6.3, we want to prove g
Nk−1
n > βg

Nk−1

0 , i.e.,

(1− β)gNk−1

0 >
Q

(W )
n−1

Qn
. (6.16)

For k = N , (6.15) evaluated for n = N − 1 together with Lemma 6.1 give

(1− β)gNN−1

0 =
Q

(W )
N−2 + WN−1

qN−1

1−βpN−1

QN−1 + βpN−1
qN−1

1−βpN−1

. (6.17)

For k 6= N , we use (6.12). In both cases, deteriorating QoS and D.1 imply (6.16).

Next we characterize and bound the marginal transmission rates ν
Nk−1

k , which will
be crucial for characterization of the transmission index in the next subsection.

Lemma 6.5. Under concave adjusted rewards and deteriorating QoS, for k ∈ N , we have

Rk −
pk

pk−1
Rk−1

Wk −
pk

pk−1
Wk−1

≤ ν
Nk−1

k =
Rk +

k−1∑
m=0

qm+1

(
Rk −

pk
pm

Rm

)
Wk +

k−1∑
m=0

qm+1

(
Wk −

pk
pm

Wm

) ≤ Rk

Wk

. (6.18)

Proof. The expression for ν
Nk−1

k is a simple reformulation of (6.11), as in (6.13). Having
Rm/Wm ≥ Rk/Wk for all m < k from D.4(ii), we can rewrite it as

Rk − pk
pm

Rm

Wk − pk
pm

Wm
≤ Rk

Wk
. (6.19)
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Then, D.2 yields the upper bound for ν
Nk−1

k .

We prove the lower bound next. D.2 together with the upper bound implies

min

{
Rk − pk

pm
Rm

Wk − pk
pm

Wm
for all 0 ≤ m ≤ k − 1

}
≤ ν

Nk−1

k . (6.20)

Further, we have

Rk −
pk
pm

Rm

Wk −
pk
pm

Wm

≥
Rk −

pk
pk−1

Rk−1

Wk −
pk

pk−1
Wk−1

for all 0 ≤ m ≤ k − 1 (6.21)

by D.3(iii), which gives the lower bound.

Further, we will need the following monotonicity result for transmission rates.

Lemma 6.6. Under concave adjusted rewards and deteriorating QoS, ν
Nk−1

k ≥ ν
Nk−1
n for all

k, n ∈ N with n ≥ k + 1.

Proof. Denote by

ak :=
βQ

(R)
k−1

Qk
, bk :=

βQ
(W )
k−1

Qk
.

Using the identities in (6.11), we are to show that, for all N − 1 ≥ n ≥ k + 1,

ν
Nk−1

k =
Rk
pk
− ak

Wk
pk
− bk

≥

(
Rk
pk
− ak

)
+
(

Rn
pn
− Rk

pk

)
(

Wk
pk
− bk

)
+
(

Wn
pn
− Wk

pk

) =
Rn
pn
− ak

Wn
pn
− bk

= ν
Nk−1
n . (6.22)

Having
Rk
pk
− ak

Wk
pk
− bk

≥
Rn
pn
− Rk

pk

Wn
pn
− Wk

pk

for all N − 1 ≥ n ≥ k + 1

is equivalent to
Rk
pk
− ak

Wk
pk
− bk

≥
Rk+1

pk+1
− Rk

pk

Wk+1

pk+1
− Wk

pk

. (6.23)

since the right-hand side is nonincreasing in n, due to concave adjusted rewards with
D.3(ii). The last inequality holds due to the lower bound in Lemma 6.5 and, again,
concave adjusted rewards with D.3(iv). Therefore, by D.1(ii), (6.22) holds.

Next we establish condition (ii) of PCL(F)-indexability.
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Lemma 6.7. Under concave adjusted rewards and deteriorating QoS, marginal transmission
rates ν

Nn−1
n are nonincreasing in n ∈ N , i.e., condition (ii) of PCL(F)-indexability holds.

Proof. Niño-Mora (2002, Proposition 6.4(c)) showed that under positive marginal works
ν
Nn−1
n ≥ νNn

n+1 is equivalent to ν
Nn−1
n ≥ ν

Nn−1

n+1 , which is satisfied due to Lemma 6.6.

To summarize, in this subsection we have proved the following.

Proposition 6.4. Under concave adjusted rewards and deteriorating QoS, problem (6.8) is
PCL(F)-indexable for the family F defined in (6.10).

6.4.5 Transmission Indices

Now we are ready to give a complete characterization of the transmission index, which
is the MP index interpreted in the setting of the congestion control problem.

Proposition 6.5. Under concave adjusted rewards and deteriorating QoS, the optimal active
sets for problem (6.8) are Nk−1, for k ∈ N ∪ {N} and the transmission index of state n under
the β-discounted criterion is

νn =
Rn +

n−1∑
m=0

qm+1

(
Rn −

pn

pm
Rm

)
Wn +

n−1∑
m=0

qm+1

(
Wn −

pn

pm
Wm

) . (6.24)

Proof. Since the problem (6.8) is PCL(F)-indexable by Proposition 6.4, the transmission
index exists and is defined by ν

Nn−1
n for n ∈ N .

The transmission index can be bounded by quantities independent of the discount
factor β. Given the interpretation of the discount factor as the probability that the flow
continues in the next period, these bounds are valid for flows of any length.

Proposition 6.6. Under concave adjusted rewards and deteriorating QoS, for any β,

Rn −
pn

pn−1
Rn−1

Wn −
pn

pn−1
Wn−1

≤ νn ≤
Rn

Wn

. (6.25)

Proof. By Lemma 6.5, because the transmission index is defined by ν
Nn−1
n for n ∈ N .

We further show that the transmission index is higher for shorter flows.

Proposition 6.7. The transmission index νn is nonincreasing in β. Further, νn →
Rn

Wn

as

β → 0.
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Proof. Notice first in the transmission index expression in Proposition 6.5 that qm+1 de-
pends multiplicatively on β. Further, we have

Rn −
pn

pm
Rm

Wn −
pn

pm
Wm

≥
Rn −

pn

pm+1
Rm+1

Wn −
pn

pm+1
Wm+1

for all 0 ≤ m ≤ n− 2 (6.26)

by D.3(iii). Therefore, D.5 implies that the expression for the transmission index in
Proposition 6.5 nondecreases when β is decreased. The convergence as β → 0 is ob-
tained directly since qm+1 depends multiplicatively on β.

6.4.6 Flows with Fast Recovery

Now we consider a flow which restarts to state i ∈ N instead of state 0, which resembles
the Fast Recovery (i.e., multiplicative decrease) mechanism commonly implemented in

several TCP variants. Let qi,n :=
n−1∏
m=i

βpm and Qi,n :=
n∑

m=i
qi,m for all i ≤ n.

Proposition 6.8. Under concave adjusted rewards and deteriorating QoS, if the flow restarts
to state i ∈ N , the transmission index of state n ≥ i under the discounted criterion is

νi,n =
Rn +

n−1∑
m=i

qi,m+1

(
Rn −

pn

pm
Rm

)
Wn +

n−1∑
m=i

qi,m+1

(
Wn −

pn

pm
Wm

) . (6.27)

The transmission index of flows restarting at different minimum transmission rates
(i.e., at different states) seem to be quantitatively very akin. In fact, the numerator and
denominator of the above index formulae are dominated by terms Qi,nRn and Qi,nWn,
respectively, and hence the parameters of other states, apart from being smaller, become
negligible for larger values of n. This is especially true if the flow uses slow start.

We believe that the above formulae can remain sound even for more complex pro-
tocols, like those that can react both by restarting and by fast recovery following a more
complex rule. The reason being that, from the probabilistic perspective, these protocols
can be approximated as randomizations of the two extreme variants we explored above.
Their indices thus should rather closely follow the above formulae and the results pre-
sented here could be considered quite robust. Nevertheless, only a profound analysis
of such protocols may verify this intuition.
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6.5 The Three Router Variants: Solutions

In this section we employ the above general results to obtain the transmission index
under three common router variants, maximizing the throughput/delay criterion. For
notational convenience, we define pN := pN−1, W 1

N := W 1
N−1 and W 1

−1 := 0.

The requirements needed in the propositions below should be commonly satisfied
in practice. For instance, the concavity of the throughput functions R(·) holds if the
congestion probability downstream is proportional to the transmission rate. Note also
that in a congestion-free network (i.e., pn = 1 for all n ∈ N ), the transmission index
equals 1, independently of the router variant and of the actual flow transmission rate.

6.5.1 TD Router

Proposition 6.9. Suppose that R(0) := 0 and R(W 1
n/pn) := W 1

n for all n ∈ N is concave on
the domain {0,W 1

0 /p0,W
1
1 /p1, . . . ,W

1
N−1/pN−1}, i.e.,

W 1
n −W 1

n−1

W 1
n

pn
− W 1

n−1

pn−1

≥
W 1

n+1 −W 1
n

W 1
n+1

pn+1
− W 1

n
pn

, for all n ∈ N \ {0, N − 1}. (6.28)

Then, the transmission index of state n ∈ N is

νn =
W 1

n +
n−1∑
m=0

qm+1

(
W 1

n −W 1
m

)
W 1

n
pn

+
n−1∑
m=0

qm+1

(
W 1

n
pn
− W 1

m
pm

) . (6.29)

Proof. By (6.9), Wn := W 1
n and Rn = pnW 1

n for all n ∈ N . It is easy to check that
deteriorating QoS holds. The result then follows from Proposition 6.5.

6.5.2 ICN Router

Proposition 6.10. Suppose that R(0) := 0 and R(1/pn +β(W 1
n+1− 1)) := 1+β(W 1

n+1− 1)
for all n ∈ N is concave on the domain {0, 1/p0+β(W 1

1 −1), 1/p1+β(W 1
2 −1), . . . , 1/pN−1+

β(W 1
N − 1)}, i.e.,

W 1
2

W 1
1

≥ p0

p1
and

W 1
n+2 −W 1

n+1

W 1
n+1 −W 1

n

≤
1

pn+1
− 1

pn

1
pn
− 1

pn−1

, for all n ∈ N \ {0, N − 1}. (6.30)
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Then, the transmission index of state n ∈ N is

νn =
1 + β(W 1

n+1 − 1) +
n−1∑
m=0

qm+1β
(
W 1

n+1 −W 1
m+1

)
1
pn

+ β(W 1
n+1 − 1) +

n−1∑
m=0

qm+1

(
1
pn
− 1

pm
+ β

(
W 1

n+1 −W 1
m+1

)) . (6.31)

Proof. By (6.9) and using W 0
0 = R0

0 = 0, Wn = 1 + βpn(W 1
n+1 − 1) and Rn = pn +

βpn(W 1
n+1− 1) for all n ∈ N . It is easy to check that deteriorating QoS holds. The result

then follows from Proposition 6.5.

6.5.3 ECN Router

Proposition 6.11. Suppose that R(0) := 0 and R(β(W 1
n+1 − 1)) := β(pn+1W

1
n+1 − p0) for

all n ∈ N is concave on the domain {0, β(W 1
1 − 1), β(W 1

2 − 1), . . . , β(W 1
N−1 − 1)}, i.e.,

pn+2W
1
n+2 − pn+1W

1
n+1

pn+1W 1
n+1 − pnW 1

n

≤
W 1

n+2 −W 1
n+1

W 1
n+1 −W 1

n

, for all n ∈ N \ {N − 2, N − 1}. (6.32)

Then, the transmission index of state n ∈ N is

νn =
(pn+1W

1
n+1 − p0) +

n−1∑
m=0

qm+1

(
pn+1W

1
n+1 − pm+1W

1
m+1

)
(W 1

n+1 − 1) +
n−1∑
m=0

qm+1

(
W 1

n+1 −W 1
m+1

) . (6.33)

Proof. By (6.9) and using W 0
0 = R0

0 = 1, Rn = βpn(pn+1W
1
n+1 − p0) and Rn = Wn =

βpn(W 1
n+1− 1) for all n ∈ N . It is easy to check that deteriorating QoS holds. The result

then follows from Proposition 6.5.

6.6 Transmission Index Priority Policies for Bottleneck Prob-
lem

We now have all the necessary results for the individual flows to tackle the multi-flow
problem in the following sections. In this section we consider the bottleneck problem, in
which several flows compete for router’s resources. We show how transmission index
policies can be optimal in two particular bottleneck problems, which are special cases
of the real-life situations. LetM := {1, 2, . . . ,M} be the set of flows and write (m,n) if
flow m is in state n. Thus, e.g., νm,n is the transmission index of flow m in state n.
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6.6.1 Optimality in Single-Transmitted-Flow Problem

In this subsection we treat the problem of transmitting a single flow, while all the re-
maining flows are warned. We show that the optimal policy for such a case is to trans-
mit the flow with the highest MP (transmission) index.

Suppose that the router has enough resources to transmit flows of any arrival rate.
We prove optimality of the transmission priority policy using a similarity of the above
problem with the classic bandit problem, where warned flows are not allowed to change
state. In our problem, a warned flow is allowed to change state, however, the transition
is made to state 0, where it remains until transmitted next time. The idea of our proof
below draws on Weber (1992), who observed that a priority policy in multiple-flow
problem is optimal if it is a holding policy: If flow m of index νm,n is transmitted in the
initial time period, then it must be transmitted in all subsequent periods while its index
is greater than νm,n; if its index equals or drops below νm,n at certain time period, then
that time period is considered initial and the requirement is repeated.

Proposition 6.12. Suppose that each flow in isolation satisfies concave adjusted rewards and
deteriorating QoS after its normalization. If each flow m is initially in state (m, 0), then the
following is an optimal policy for the above problem: “At each time period transmit the flow of
highest actual transmission index and warn the remaining flows”.

Proof. Suppose that in the initial period flow m’s index νm,0 is higher than or equal to
other flows’ indices, and the flow m is transmitted. Then, in the next period the flow m

will move to state 1, whose index is by Lemma 6.7 not greater than νm,n. Therefore, we
can consider that period as a new initial period and repeat the argument, which implies
that the transmission priority policy is a holding policy, and thus optimal.

6.6.2 Optimality in Expected-Queue-Length Problem

Some congestion avoidance mechanisms proposed in the literature or currently imple-
mented in the Internet try to control the average buffer queue length. Suppose that
our objective is to find a policy that maximizes the aggregate sum of expected total dis-
counted rewards obtained from all the flows, given that queue length equals to a given
target value W at each time period in expectation. This requirement can be seen as a
relaxation of having the queue length equal to W at each time period, and it became
known as the Whittle relaxation (see Whittle, 1988; Niño-Mora, 2001). The Whittle re-
laxation, using a Lagrangian approach, can be perfectly decomposed into parametric
problems (6.8), where each flow is considered in isolation.

Proposition 6.13 (Whittle (1988), Proposition 3). Suppose that each flow in isolation sat-
isfies concave adjusted rewards and deteriorating QoS after its normalization. For every target
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queue length W there exists a value ν(W ) such that the following is an optimal policy for the
above problem: “At each time period transmit all the flows of actual transmission index higher
than ν(W ) and warn the remaining flows”.

Note that the value ν(W ) depends on the number of flows and their characteristics.

6.7 Practical Implementation

While the indices have usually been used as an ordinal measure in priority policies, re-
sults in Chapter 5 suggest that their pricing interpretation can give rise to novel policies.
Next we develop a packet-pricing policy using the MP (transmission) indices.

6.7.1 Transmission Indices Implementation in Congestion Avoidance Mech-
anisms

Consider any congestion avoidance mechanism (e.g., RED, REM, etc.) with the follow-
ing property: on an arrival or while a packet is queued in the buffer, the mechanism
calculates the probability of dropping/marking it, generates a random event, and even-
tually drops/marks the packet. We will now discuss how such a mechanism may be
modified so that it takes into account the transmission index of the packet during the
dropping/marking decision stage.

The price of dropping/marking a packet can be evaluated via the transmission index
multiplied by its size in Bytes, say νnsn. Let the dropping/marking probability calcu-
lated by the congestion avoidance mechanism for this packet at a given time moment
be πn. We next set out to calculate what should be the dropping/marking probability
πm if a packet with price νmsm arrived instead.

For a fair admission control we may want to impose that the expected loss of drop-
ped/marked packets be equal: πmνmsm = πnνnsn. Hence,

πm =
νnsn

νmsm
πn. (6.34)

Therefore, either all or none of the incoming packets have zero dropping/warning prob-
ability.

When the router is heavily congested and the dropping/marking probability πn = 1,
then all other packets should experience the same dropping/marking probability. Yet in
that case, according to (6.34), the dropping/marking probability πm will be larger than
1 for lower priced packets, and smaller than 1 for higher priced packets. An alternative
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formula satisfying both πn = 0⇐⇒ πm = 0 and πn = 1⇐⇒ πm = 1 is

πm = 1− (1− πn)
νnsn
νmsm . (6.35)

Note that the two formulae are roughly equivalent for small values of dropping/-
marking probability πn. Any of them can hence be implemented in the congestion
avoidance mechanisms, in which the dropping/marking probability is maintained at
very low levels (except when the buffer overflows and all incoming packets are be-
ing dropped). For congestion avoidance mechanisms, in which the dropping/marking
probability smoothly increases to 1, the latter might be the preferred formula.

6.8 Conclusions and Further Work

We have presented a decentralized approach to model congestion control at network
nodes with future-path information. We have focused on the most representative type
of traffic with finite or infinite length and additive-increase/multiplicative-decrease
mechanism. Other flow types are likely to be tractable in our framework with mod-
erate modifications. Our analytical approach is flexible and it directly applies to both
wired and wireless networks. By the means of the transmission index we have obtained
locally optimal solution that can be interpreted as the packet price (when multiplied by
the packet size) and easily implemented in congestion avoidance mechanisms to im-
prove their resource allocation decisions.

From the modeling perspective, several challenges remain open. For instance, our
model assumes that the congestion information is instantaneously received by network
nodes. A more realistic model would take into account information delays and censor-
ing due to unobserved dropped packets. Existence of finite buffers and non-cooperative
flows further raises the necessity of consideration of three actions at the router: trans-
mitting, warning, and dropping. However, index policies are only known in the litera-
ture for optimization problems with two actions such as transmitting and warning, as
we have considered here.

From the practical point of view, however, we believe that the outcome of our model
is roughly preserved also in more complicated mechanisms. The reason being that the
transmission index depends on the actual transmission rate much more strongly than
on other aspects of the dynamics of the mechanism.

Apart from the congestion avoidance mechanisms on which we have focused in this
work, the transmission index could be also implemented in scheduling algorithms. The
use of transmission indices as weights in weighted fair queueing would imply that each
flow is transmitted accordingly to its actual network price.
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We could also take advantage of our approach turning it upside-down. Instead of
improving congestion avoidance mechanisms for a given protocol, we could set out to
develop a protocol that is economically sound given a congestion avoidance mecha-
nism. The task would then be to formulate a protocol for which the transmission index
would be constant in transmission rate. Then, the fairness considered accordingly to
the packet size would be correct.
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Appendix A

Appendix to Chapter 3

A.1 Pure-Active-Action Normalization

In this section we show that the ν-wage problem can be transformed into an equiva-
lent problem with normalized active-action parametric rewards and zero passive-action
(parametric) rewards. Such a normalization typically leads to a simpler solution proce-
dure for the problem.

The ν-wage problem (3.7) starting from initial state i ∈ N admits a standard LP
formulation arising as the dual of the LP formulation of its Bellman equations (cf. Niño-
Mora, 2002, Section 6). The LP formulation (under the β-discounted criterion) is the
following

vLP(ν) := max
x0,x1

x0(R0 − νW 0) + x1(R1 − νW 1)

subject to x0(I − βP 0) + x1(I − βP 1) = ei (LP)

x0,x1 ≥ 0

where all vectors’ subscripts run over N and those of matrices run over N ×N . Here,
ei is the i-th unit coordinate vector defining the initial state and I is an identity matrix.
The variable xa

n has the interpretation as the state-action frequency measure denoting the
expected total β-discounted amount of time when action a is taken in state n.

If the matrix I − βP 0 is invertible, let us define the following pure-active-action
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normalized LP formulation:

vNLP(ν) := max
x

x(R− νW )

subject to ei(I − βP 0)−1 − x(I − βP 1)(I − βP 0)−1 ≥ 0 (NLP)

x ≥ 0

where

R := R1 − (I − βP 1)(I − βP 0)−1R0, W := W 1 − (I − βP 1)(I − βP 0)−1W 0.

(A.1)

It was shown in Niño-Mora (2001, 2002) that the two formulations are equivalent, as
stated in the following proposition. Let v∅(ν) := ei(I − βP 0)−1(R0 − νW 0) be the (LP)
objective value of the pure-passive-action policy, i.e., the policy taking the passive action
in all states, for which by definition x1 = 0.

Proposition A.1. Let the wage parameter ν be fixed and suppose that I − βP 0 is invertible. A
solution x is an optimal solution to (NLP) if and only if

(x0,x1) :=
(
ei(I − βP 0)−1 − x(I − βP 1)(I − βP 0)−1,x

)
is an optimal solution to (LP). We further have vLP(ν) = vNLP(ν) + v∅(ν).
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Appendix to Chapter 4

B.1 Admission Control Problem with Delay: Marginal Work
Analysis

In this section we set out to obtain closed formulae for marginal works in the admission
control problem with delay and present results in terms of action-differences in total
work that will facilitate the proof of their positivity.

B.1.1 Preliminaries

Recall the definition of the expected total β-discounted work (briefly, total work) in (4.11).
The following is the work balance equation for a fixed active set S:

gS(a,i) =

W(a,i) + β
∑

j∈I pa
ijg

S
(1,j) if (a, i) ∈ S

W(a,i) + β
∑

j∈I pa
ijg

S
(0,j) if (a, i) /∈ S

(B.1)

The following two implications of the work balance equation were found useful in
the problem analysis. First, we give a characterization of total works gS(a,i)’s in terms of
their action-differences ∆1g

S
(1,i)’s and state-differences ∆2g

S
(a,i)’s.
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Lemma B.1. For a fixed active set S,

(1− β)gS(1,i) = λ− βµ∆2g
S
(1,i) if (1, i) ∈ S (B.2)

(1− β)gS(1,i) = λ− βµ∆2g
S
(0,i) − β∆1g

S
(1,i) if (1, i) /∈ S (B.3)

(1− β)gS(0,i) =

λ− βµ∆2g
S
(1,I) + β∆1g

S
(1,I) if i = I

βζ∆2g
S
(1,i+1) − βη∆2g

S
(1,i) + β∆1g

S
(1,i) otherwise

if (0, i) ∈ S (B.4)

(1− β)gS(0,i) =

λ− βµ∆2g
S
(0,I) if i = I

βζ∆2g
S
(0,i+1) − βη∆2g

S
(0,i) otherwise

if (0, i) /∈ S (B.5)

Proof. Suppose first that (1, i) ∈ S. By adding −βgS(1,i) at both sides of identity (B.1) for
(1, i), we obtain

(1− β)gS(1,i) = W(1,i) − β
∑
j∈I

p1
ij

(
gS(1,i) − gS(1,j)

)
,

which simplifies to (B.2) after plugging the definition of W(1,i) in (4.10) and that of p1
ij in

(4.5)-(4.6), and finally using (4.23).
The remaining identities are obtained analogously by adding −βgS(a,i) at both sides

of identity (B.1), then plugging the definition of W(a,i) in (4.10) and that of pa
ij in (4.5)-

(4.6), and finally using (4.22)-(4.23).

The following lemma characterizes action-differences ∆1g
S
(1,i)’s in terms of state-

differences ∆2g
S
(a,i)’s.

Lemma B.2. For a fixed active set S and any state 0 ≤ i ≤ I − 1,

∆1g
S
(1,i) = λ− βζ∆2g

S
(1,i+1) − β(µ− η)∆2g

S
(1,i) if (0, i), (1, i) ∈ S (B.6)

∆1g
S
(1,i) = λ− βζ∆2g

S
(0,i+1) − β(µ− η)∆2g

S
(0,i) if (0, i), (1, i) /∈ S (B.7)

(1 + β)∆1g
S
(1,i) = λ− βζ∆2g

S
(1,i+1) − βµ∆2g

S
(0,i) + βη∆2g

S
(1,i) if (0, i) ∈ S, (1, i) /∈ S

(B.8)

(1− β)∆1g
S
(1,i) = λ− βζ∆2g

S
(0,i+1) − βµ∆2g

S
(1,i) + βη∆2g

S
(0,i) if (0, i) /∈ S, (1, i) ∈ S

(B.9)

∆1g
S
(1,I) = 0. (B.10)

Proof. If (0, i), (1, i) ∈ S, identity (B.6) is obtained by subtracting (B.4) from (B.2), and
using (4.22). The remaining identities are obtained analogously.

Recall the definition of marginal works wS
(a,i) in (4.16). In order to obtain a character-
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ization of marginal works in terms of ∆1g(1,i)’s, we specialize the work balance equation
in (B.1) for policies 〈0,S〉 and 〈1,S〉.

Lemma B.3. For a fixed active set S,

g
〈1,S〉
(a,i) = W(a,i) + β

∑
j∈I

pa
ijg

S
(1,j)

g
〈0,S〉
(a,i) = W(a,i) + β

∑
j∈I

pa
ijg

S
(0,j)

Now we are ready to express marginal works wS
(a,i) in terms of action-differences

∆1g
S
(1,i)’s.

Lemma B.4. For a fixed active set S,

wS
(1,i) =

β∆1g
S
(1,0) if i = 0

βµ∆1g
S
(1,i−1) + β(1− µ)∆1g

S
(1,i) otherwise

(B.11)

wS
(0,i) =


β(1− ζ)∆1g

S
(1,0) + βζ∆1g

S
(1,1) if i = 0

βη∆1g
S
(1,i−1) + βε∆1g

S
(1,i) + βζ∆1g

S
(1,i+1) otherwise

wS
(1,I) if i = I

(B.12)

Proof. From plugging the identities in Lemma B.3 into the definition of wS
(a,i), we obtain

wS
(a,i) = β

∑
j∈I

pa
ij∆1g

S
(1,j).

Then, using the definition of pa
ij in (4.5)-(4.6) gives the result.

The last lemma shows that marginal work is equal to the expected next-period β-
discounted increment in total work if starting from state (1, i) instead of (0, i), i.e.,

wS
(a,i) = Ea

i

[
∆1g

S] , (B.13)

where the random variable ∆1g
S has value ∆1g

S
(1,j) with probability pa

ij . This suggests
a way for establishing positivity of marginal works needed in Definition 4.1(i) by estab-
lishing positivity of ∆1g

S
(1,i)’s for all states 0 ≤ i ≤ I−1 (recall that by (B.10), ∆1g

S
(1,i) = 0

for state I).

Before calculating the action-differences needed above, we prepare notation and
state an auxiliary result. These quantities will appear in the action-differences recur-
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sion developed in the following subsection. For j ≥ 0 we define

A0 := 0, Aj+1 :=
βζ

1− β + βζ + βη(1−Aj)
, B :=

βµ

1− β + βµ
. (B.14)

and

A′
j := βζ + β(µ− η)Aj , Zj+1 := Aj+1

A′
j

A′
j+1

, B′ := βζB + β(µ− η). (B.15)

Lemma B.5.

(i) 0 < B < β;

(ii) 0 < Aj+1 < β and Aj ≤ Aj+1 for all j ≥ 0;

(iii) 0 < Zj+1 < β for all j ≥ 0.

Proof. (i) The positivity is straightforward from the definition of B in (B.14), because
βµ > 0 and 1− β > 0 by the model parameter assumptions given in (4.7). On the
other hand, the same assumptions imply B < β.

(ii) We proceed by induction. Since βη(1−A0) ≥ 0, we have A1 ≤ βζ
1−β+βζ < β, where

the last inequality is due to the model parameter assumptions. Hence, assuming
inductively βη(1 − Aj) ≥ 0, we have Aj+1 ≤ βζ

1−β+βζ < β. The positivity of Aj+1

follows from βζ > 0, 1− β > 0 and βη(1−Aj) ≥ 0.

Similarly by induction we prove the monotonicity. As the first step, the above
implies 0 = A0 < A1. Hence we have βη(1 − A0) ≥ βη(1 − A1), which implies
A1 ≤ A2. Inductively, assuming Aj−1 ≤ Aj analogously implies Aj ≤ Aj+1.

(iii) The model parameter assumptions given in (4.7) imply that A′
j > 0, since µ > η

for all j ≥ 0. Therefore, the definition of Zj+1 in (B.15) implies Zj+1 > 0. On the
other hand, using (B.15) we can write

Zj+1 =
βζ + β(µ− η)Aj

βζ
Aj+1

+ β(µ− η)
<

βζ + β(µ− η)β
βζ
β + β(µ− η)

= β,

where the inequality is due to Aj , Aj+1 < β by (ii).

B.1.2 Calculation of Action-Differences in Total Work

Since Lemma B.4 characterizes marginal works wS
(a,i)’s as weighted averages of action-

differences ∆1g
S
(1,i)’s, in this subsection we focus on the calculation of the latter. The
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ultimate goal of proving positivity of marginal works under F in order to establish
condition Definition 4.1(i), will be reached by proving positivity of action-differences in
subsection B.1.3 and subsection B.1.4 for active sets ĨK,K and ĨK,K+1, respectively.

In the following we show that all the relevant state-differences can be obtained by
recursion from two pivot state-differences associated to the two thresholds K0,K1 un-
der any policy ĨK0,K1 . Denote by K ′

0 := min{K0, I} and note that the relevant state-
differences needed in the subsequent analysis are ∆2g

S
(0,i)’s for 1 ≤ i ≤ K ′

0 − 1, and
∆2g

S
(1,i) for K1 + 1 ≤ i ≤ I .

Lemma B.6. For a fixed active set S = ĨK0,K1 ,

∆2g
S
(0,i) = ∆2g

S
(0,K′

0)

K′
0−1∏

j=i

Aj , for 1 ≤ i ≤ K ′
0 − 1, (B.16)

∆2g
S
(1,i) = ∆2g

S
(1,K1)B

i−K1 , for K1 + 1 ≤ i ≤ I. (B.17)

Proof. For 1 ≤ i ≤ K ′
0− 1, augmented states (0, i), (0, i− 1) /∈ S, so taking the difference

of (B.5) for i and for i− 1 gives

(1− β + βη + βζ)∆2g
S
(0,i) = βη∆2g

S
(0,i−1) + βζ∆2g

S
(0,i+1).

Expressed for i = 1 and divided by 1 − β + βη + βζ, we have ∆2g
S
(0,1) = ∆2g

S
(0,2)A1,

since, by definition,

∆2g
S
(0,0) = 0 and A1 =

βζ

1− β + βζ + βη
.

Inductively, if ∆2g
S
(0,i−1) = ∆2g

S
(0,i)Ai−1, then

(1− β + βη + βζ(1−Ai−1))∆2g
S
(0,i) = βζ∆2g

S
(0,i+1).

which is the same as ∆2g
S
(0,i) = ∆2g

S
(0,i+1)Ai for all 1 ≤ i ≤ K ′

0 − 1. This recursion gives
(B.16).

Similarly for K1 + 1 ≤ i ≤ I , augmented states (1, i), (1, i − 1) ∈ S, so taking the
difference of (B.2) for i and for i − 1 gives ∆2g

S
(1,i) = ∆2g

S
(1,i−1)B. This recursion gives

(B.17).

Further we identify a recursion to calculate action-differences ∆1g
S
(1,i)’s in terms of

the two pivot state-differences ∆2g
S
(0,K′

0) and ∆2g
S
(1,K1). Thus, this is a simplification of

Lemma B.2.
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Proposition B.1. For a fixed active set S = ĨK0,K1 ,

∆1g
S
(1,K′

0−1) = λ−A′
K′

0−1∆2g
S
(0,K′

0), if 1 ≤ K ′
0, (B.18)

∆1g
S
(1,i) = λ(1− Zi+1) + ∆1g

S
(1,i+1)Zi+1, for 0 ≤ i ≤ K ′

0 − 2, (B.19)

∆1g
S
(1,K1) = λ−B′∆2g

S
(1,K1), if K1 ≤ I − 1, (B.20)

∆1g
S
(1,i) = λ(1−B) + ∆1g

S
(1,i−1)B, for K1 + 1 ≤ i ≤ I − 1. (B.21)

Proof. As a consequence of plugging (B.16) into (B.7) we have

∆1g
S
(1,i) = λ−A′

i∆2g
S
(0,K′

0)

K′
0−1∏

j=i+1

Aj , for 0 ≤ i ≤ K ′
0 − 1,

This identity expressed for i = K ′
0− 1 gives (B.18), and expressed for i and i+1 implies

(B.19).
Similarly, by plugging (B.17) into (B.6) we have

∆1g
S
(1,i) = λ−B′∆2g

S
(1,K1)B

i−K1 , for K1 ≤ i ≤ I − 1.

This identity expressed for i = K1 gives (B.20), and expressed for i and i − 1 implies
(B.21).

The above results help significantly simplify the subsequent analysis, which we
present in separate subsections for optimal active sets ĨK,K and ĨK,K+1. In each sub-
section we first present expressions for the pivot state-differences in a lemma and then
establish positivity of ∆1g

S
(1,i) > 0 for all 0 ≤ i ≤ I − 1.

B.1.3 Positivity of Action-Differences in Total Work under Active Set ĨK,K

Lemma B.7. Under active set S = ĨK,K ,

(i) if K = 0, then

∆2g
S
(1,0) = 0. (B.22)

(ii) if 1 ≤ K ≤ I − 1, then

∆2g
S
(0,K) =

βλ (1 + B′)
A′

K
AK

+ βA′
K−1B

′ + βζβµ(1−BAK−1)
, (B.23)

∆2g
S
(1,K) =

1 + A′
K−1

1 + B′ ∆2g
S
(0,K). (B.24)
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(iii) if K = I , then

∆2g
S
(0,I) =

λ(1 + βµ)
A′

I
AI

+ βµA′
I−1

. (B.25)

(iv) if K = I + 1, then

∆2g
S
(0,I) =

λAI

A′
I

. (B.26)

Proof. (i) The identity is by definition.

(ii) Taking the difference of (B.2) for i = K and (B.3) for i = K − 1, and plugging (B.7)
for i = K − 1, gives

(1− β + βµ)∆2g
S
(1,K) = βλ + β [µ− β(µ− η)]∆2g

S
(0,K−1) − β2ζ∆2g

S
(0,K). (B.27)

Similarly, taking the difference of (B.4) for i = K and (B.5) for i = K − 1, and
plugging (B.6) for i = K, gives

(1− β + βζ)∆2g
S
(0,K) = βλ + (1− β)βζ∆2g

S
(1,K+1)

− β [η + β(µ− η)]∆2g
S
(1,K) + βη∆2g

S
(0,K−1). (B.28)

Using (B.16) for i = K − 1 and (B.17) for i = K + 1, and solving the above system
of two equations yields the results.

(iii) The proof goes along the same lines as in the previous case, yet the latter identity
becomes

(1− β + βζ)∆2g
S
(0,I) = λ− βµ∆2g

S
(1,I) + βη∆2g

S
(0,I−1). (B.29)

(iv) Taking the difference of (B.5) for i = I and for i = I − 1, and plugging (B.16) for
i = I − 1, yields the result.

Proposition B.2. Under active set S = ĨK,K with 0 ≤ K ≤ I + 1, action-differences
∆1g

S
(1,i) > 0 for all 0 ≤ i ≤ I − 1 and ∆1g

S
(1,I) = 0.

Proof. We will divide the proof into three steps, in which we prove the following:

(i) if 1 ≤ K ′ := min{K, I}, then action-difference ∆1g
S
(1,K′−1) > 0;
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(ii) if K ≤ I − 1, then action-difference ∆1g
S
(1,K) > 0;

(iii) action-differences ∆1g
S
(1,i) > 0 for all 0 ≤ i ≤ I − 1 and ∆1g

S
(1,I) = 0.

(i) Suppose first that 1 ≤ K ≤ I − 1. Identity (B.18) gives

∆1g
S
(1,K−1) = λ−A′

K−1∆2g
S
(0,K).

In order to show ∆1g
S
(1,K−1) > 0, using (B.23) we need to have

λ >
βλ (1 + B′) A′

K−1
A′

K
AK

+ βA′
K−1B

′ + βζβµ(1−BAK−1)
.

Since the denominator is positive due to Lemma B.5, this is equivalent to

βA′
K−1 <

A′
K

AK
+ βζβµ(1−BAK−1).

This is true, because Lemma B.5(iii) with β < 1 implies βA′
K−1 <

A′
K

AK
, and

Lemma B.5(i)-(ii) implies βζβµ(1−BAK−1) > 0.

For K = I and K = I + 1, we have ∆1g
S
(1,I−1) = λ − A′

I−1∆2g
S
(0,I) as above. In

order to show ∆1g
S
(1,I−1) > 0, using (B.25) for K = I we need to have

λ >
λ(1 + βµ)A′

I−1
A′

I
AI

+ βµA′
I−1

, which is equivalent to 1 >
A′

I−1
A′

I
AI

,

which is true by Lemma B.5(iii).

Finally, using (B.26) for K = I + 1 we need to have

λ >
λAIA

′
I−1

A′
I

, which is equivalent to 1 >
AIA

′
I−1

A′
I

,

which is again true by Lemma B.5(iii).

(ii) Similarly, for 1 ≤ K ≤ I − 1 identity (B.20) gives

∆1g
S
(1,K) = λ−B′∆2g

S
(1,K).

In order to show ∆1g
S
(1,K) > 0, using (B.24) we need to have

λ >
βλ
(
1 + A′

K−1

)
B′

A′
K

AK
+ βA′

K−1B
′ + βζβµ(1−BAK−1)

,
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which is equivalent to

βB′ <
A′

K

AK
+ βζβµ(1−BAK−1).

This is true, because βB′ <
A′

K
AK

using the definitions of B′ and A′
K in (B.15) and

properties from Lemma B.5.

Finally, for K = 0, plugging (B.22) into (B.6) gives ∆1g
S
(1,0) = λ > 0.

(iii) We will show that positivity of action-difference ∆1g
S
(1,K′−1) implies ∆1g

S
(1,i) > 0

for all 0 ≤ i ≤ K ′−1, and positivity of action-difference ∆1g
S
(1,K) implies ∆1g

S
(1,i) >

0 for all K ≤ i ≤ I − 1.

Recursion (B.19) shows that ∆1g
S
(1,i) is a weighted average of λ > 0 and ∆1g

S
(1,i+1)

for all 0 ≤ i ≤ K ′ − 2 (the weights are between 0 and 1 due to Lemma B.5). Since
state-difference ∆1g

S
(1,K′−1) > 0 by (i), by induction we obtain ∆1g

S
(1,i) > 0 for all

0 ≤ i ≤ K ′ − 1.

Similarly, recursion (B.21) shows that ∆1g
S
(1,i) is a weighted average of λ > 0 and

∆1g
S
(1,i−1) for all K + 1 ≤ i ≤ I − 1 (the weights are between 0 and 1 due to

Lemma B.5). Since state-difference ∆1g
S
(1,K) > 0 by (ii), by induction we obtain

∆1g
S
(1,i) > 0 for all K ≤ i ≤ I − 1.

In summary, we have shown that ∆1g
S
(1,i) > 0 for all 0 ≤ i ≤ I − 1. Finally,

∆1g
S
(1,I) = 0 by (B.10).

B.1.4 Positivity of Action-Differences in Total Work under Active Set ĨK,K+1

Lemma B.8. Under active set S = ĨK,K+1,

(i) if 1 ≤ K ≤ I − 1, then

∆2g
S
(0,K) =

βλ [1− β(1− ζ − µ)]

[1− β2(1− ζ − µ)] A′
K

AK
+ βηβ(1− µ) [1− β + βµ(1−AK−1)]

,

(B.30)

∆2g
S
(1,K+1) =

[1− β(1− ζ − µ)] + βη [β −AK−1 − βµ(1−AK−1)]
1− β(1− ζ − µ)

∆2g
S
(0,K),

(B.31)

∆1g
S
(1,K) = λ−

A′
K

AK
∆2g

S
(0,K). (B.32)
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(ii) if K = 0, then

∆1g
S
(1,0) = λ

1− β + βµ

1− β2(1− ζ − µ) + βµ
, (B.33)

∆1g
S
(1,1) = λ

1− β2(1− ζ − µ) + βµ− βB′

1− β2(1− ζ − µ) + βµ
. (B.34)

Proof. (i) Taking the difference of (B.2) for i = K + 1 and (B.3) for i = K, gives

∆2g
S
(1,K+1) = B∆2g

S
(0,K) +

B

µ
∆1g

S
(1,K). (B.35)

Taking the difference of (B.3) for i = K and for i = K − 1, employing the identity
(4.24) together with (B.16) for i = K − 1 and the expression of AK in (B.14) gives

∆2g
S
(1,K) = [β − βµ(1−AK−1)]∆2g

S
(0,K). (B.36)

Taking the difference of (B.4) for i = K and (B.5) for i = K−1, and plugging again
(B.16) for i = K − 1 and (B.14), gives

βζ

AK
∆2g

S
(0,K) = β∆1g

S
(1,K) − βη∆2g

S
(1,K) + βη∆2g

S
(0,K) + βζ∆2g

S
(1,K+1). (B.37)

By (B.8), the right-hand side of the above identity is equal to λ − ∆1g
S
(1,K) −

βµ∆2g
S
(0,K), yielding (B.32).

Using (B.32), (B.35) can be reformulated as

∆2g
S
(1,K+1) =

Bλ

µ
− B

µ

[
A′

K

AK
− µ

]
∆2g

S
(0,K). (B.38)

Further, (B.17), (B.35) and (B.36) can be used to reformulate (B.37) as (B.31). Finally,
(B.31) and (B.38) after some algebra yield (B.30).

(ii) (B.35) holds as before and simplifies to

∆2g
S
(1,1) =

B

µ
∆1g

S
(1,0). (B.39)

By (B.8),

(1 + β)∆1g
S
(1,0) = λ− βζ∆2g

S
(1,1). (B.40)

Solving and rearranging yields (B.33).
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Further, (B.20) together with (B.39) and (B.33) give (B.34).

Proposition B.3. Under active set S = ĨK,K+1 with 0 ≤ K ≤ I − 1, action-differences
∆1g

S
(1,i) > 0 for all 0 ≤ i ≤ I − 1 and ∆1g

S
(1,I) = 0.

Proof. We will divide the proof into four steps, in which we prove the following:

(i) if 1 ≤ K, then action-difference ∆1g
S
(1,K−1) > 0;

(ii) action-difference ∆1g
S
(1,K) > 0;

(iii) if K ≤ I − 2, then action-difference ∆1g
S
(1,K+1) > 0;

(iv) action-differences ∆1g
S
(1,i) > 0 for all 0 ≤ i ≤ I − 1 and ∆1g

S
(1,I) = 0.

(i) Suppose first that 1 ≤ K. Identity (B.18) gives

∆1g
S
(1,K−1) = λ−A′

K−1∆2g
S
(0,K)

and identity (B.32) gives

∆1g
S
(1,K) = λ−

A′
K

AK
∆2g

S
(0,K).

Because of Lemma B.5(iii), we have ∆1g
S
(1,K−1) > ∆1g

S
(1,K). The positivity of the

latter is proved in (ii).

(ii) In order to show ∆1g
S
(1,K) > 0 for 1 ≤ K ≤ I − 1, using (B.30) we need to have

λ >
βλ [1− β(1− ζ − µ)] A′

K
AK

[1− β2(1− ζ − µ)] A′
K

AK
+ βηβ(1− µ) [1− β + βµ(1−AK−1)]

.

Since the denominator is positive due to Lemma B.5, this is equivalent to

β
A′

K

AK
<

A′
K

AK
+ βηβ(1− µ) [1− β + βµ(1−AK−1)] .

This is true, because of the properties in Lemma B.5(iii).

For K = 0, positivity of action-difference ∆1g
S
(1,0) can be seen directly in (B.33).

(iii) Similarly, if K ≤ I − 2 identity (B.20) gives

∆1g
S
(1,K+1) = λ−B′∆2g

S
(1,K+1).
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In order to show ∆1g
S
(1,K+1) > 0 for 1 ≤ K, using (B.31) where we have plugged

(B.30), we need to have

λ >
B′βλ {[1− β(1− ζ − µ)] + βη [β −AK−1 − βµ(1−AK−1)]}
[1− β2(1− ζ − µ)] A′

K
AK

+ βηβ(1− µ) [1− β + βµ(1−AK−1)]
,

which is equivalent to

[
1− β2(1− ζ − µ)

] A′
K

AK
+ βηβ(1− µ) [1− β + βµ(1−AK−1)]

> B′β {[1− β(1− ζ − µ)] + βη [1−AK−1 − 1 + β − βµ(1−AK−1)]} .

This can be further reformulated as

β2(ζ + µ)
A′

K

AK
+
(
1− β2

) A′
K

AK
+ βηβ(1− µ) [1− β + βµ(1−AK−1)]

> B′β {[1− β(1− ζ − µ)] + βη(1−AK−1)} −B′β {βη [1− β + βµ(1−AK−1)]} .

This is true, if the first terms of both sides (divided by β > 0) satisfy

β(ζ + µ)
A′

K

AK
> B′ {[1− β(1− ζ − µ)] + βη(1−AK−1)} ,

because the remaining two terms on the left-hand side are non-negative, and the
last term on the right-hand side is non-positive. We further reformulate the last
inequality as(

A′
K

AK
−B′

)
[1− β(1− ζ − µ) + βη(1−AK−1)] > [1− β + βη(1−AK−1)]

A′
K

AK
.

Now, definitions in (B.14)-(B.15) imply the following identities:

A′
K

AK
−B′ =

βζ

AK
− βζB

1− β(1− ζ − µ) + βη(1−AK−1) =
A′

K

AK
+ βη

1− β + βη(1−AK−1) =
βζ

AK
− βζ.

The above inequality is therefore equivalent to(
βζ

AK
− βζB

)(
A′

K

AK
+ βη

)
>

(
βζ

AK
− βζ

)
A′

K

AK
,
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which is true because B < 1 and βη ≥ 0.

For K = 0, positivity of action-difference ∆1g
S
(1,1) given in (B.34) is straightfor-

ward after substituting for B′ and using Lemma B.5(i).

(iv) As in the proof of Proposition B.2(iii), one can show that positivity of action-dif-
ference ∆1g

S
(1,K−1) implies ∆1g

S
(1,i) > 0 for all 0 ≤ i ≤ K − 1, and positivity of

action-difference ∆1g
S
(1,K+1) implies ∆1g

S
(1,i) > 0 for all K + 1 ≤ i ≤ I − 1.

Therefore, ∆1g
S
(1,i) > 0 for all 0 ≤ i ≤ I − 1. Finally, ∆1g

S
(1,I) = 0 by (B.10).

B.2 Admission Control Problem with Delay: Marginal Reward
Analysis

General case.
Analogously to Section B.1, in this section we set out to obtain closed formulae for

marginal rewards in the admission control problem with delay. The proofs are similar
to the formers and therefore they are omitted.

B.2.1 Preliminaries

Next we state analogies of Lemma B.1, Lemma B.2, and Lemma B.4 for reward mea-
sures in the admission control problem with delay. First we give a characterization of
total rewards fS(a,i)’s in terms of their action-differences ∆1f

S
(1,i)’s and state-differences

∆2f
S
(a,i)’s.

Lemma B.9. For a fixed active set S,

(1− β)fS(1,i) = R(1,i) − βµ∆2f
S
(1,i) if (1, i) ∈ S

(B.41)

(1− β)fS(1,i) = R(1,i) − βµ∆2f
S
(0,i) − β∆1f

S
(1,i) if (1, i) /∈ S

(B.42)

(1− β)fS(0,i) =

R(0,I) − βµ∆2f
S
(1,I) + β∆1f

S
(1,I) if i = I

R(0,i) + βζ∆2f
S
(1,i+1) − βη∆2f

S
(1,i) + β∆1f

S
(1,i) otherwise

if (0, i) ∈ S

(B.43)

(1− β)fS(0,i) =

R(0,I) − βµ∆2f
S
(0,I) if i = I

R(0,i) + βζ∆2f
S
(0,i+1) − βη∆2f

S
(0,i) otherwise

if (0, i) /∈ S

(B.44)
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The following lemma characterizes action-differences ∆1f
S
(1,i)’s in terms of state-

differences ∆2f
S
(a,i)’s.

Lemma B.10. For a fixed active set S and any state 0 ≤ i ≤ I − 1,

∆1f
S
(1,i) = ∆1R(1,i) − βζ∆2f

S
(1,i+1) − β(µ− η)∆2f

S
(1,i) if (0, i), (1, i) ∈ S (B.45)

∆1f
S
(1,i) = ∆1R(1,i) − βζ∆2f

S
(0,i+1) − β(µ− η)∆2f

S
(0,i) if (0, i), (1, i) /∈ S (B.46)

(1 + β)∆1f
S
(1,i) = ∆1R(1,i) − βζ∆2f

S
(1,i+1) − βµ∆2f

S
(0,i) + βη∆2f

S
(1,i) if (0, i) ∈ S, (1, i) /∈ S

(B.47)

(1− β)∆1f
S
(1,i) = ∆1R(1,i) − βζ∆2f

S
(0,i+1) − βµ∆2f

S
(1,i) + βη∆2f

S
(0,i) if (0, i) /∈ S, (1, i) ∈ S

(B.48)

∆1f
S
(1,I) = 0. (B.49)

Now we are ready to express marginal rewards rS(a,i)’s in terms of action-differences
∆1f

S
(1,i)’s.

Lemma B.11. For a fixed active set S,

rS(1,i) =

β∆1f
S
(1,0) if i = 0

βµ∆1f
S
(1,i−1) + β(1− µ)∆1f

S
(1,i) otherwise

(B.50)

rS(0,i) =


β(1− ζ)∆1f

S
(1,0) + βζ∆1f

S
(1,1) if i = 0

βη∆1f
S
(1,i−1) + βε∆1f

S
(1,i) + βζ∆1f

S
(1,i+1) otherwise

rS(1,I) if i = I

(B.51)

Let, for j ≥ i ≥ 0,

Ci,i := 0, Ci,j+1 :=
[
Ci,j −

∆2R(1,j+1)

βµ

]
B, C ′′

i,j := ∆1R(1,j) + βζCi,j+1, (B.52)

D0 := 0, Dj+1 :=
[
βηDj −∆2R(1,j+1)

] Aj+1

βζ
, D′

j := ∆1R(1,j) + β(µ− η)Dj . (B.53)

B.2.2 Calculation of Action-Differences in Total Reward

Since Lemma B.11 characterizes marginal rewards rS(a,i)’s in terms of action-differences
∆1f

S
(1,i)’s, in this subsection we focus on the calculation of the latter. In the following

we show that all the relevant state-differences can be obtained by recursion from two
pivot state-differences associated to the two thresholds K0,K1 under any policy ĨK0,K1 .
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Lemma B.12. For a fixed active set S = ĨK0,K1 ,

∆2f
S
(0,i) = ∆2f

S
(0,i+1)Ai −Di, for 1 ≤ i ≤ K ′

0 − 1, (B.54)

∆2f
S
(1,i) = ∆2f

S
(1,K1)B

i−K1 − CK1,i, for K1 + 1 ≤ i ≤ I. (B.55)

Further we identify a recursion to calculate action-differences ∆1f
S
(1,i)’s in terms of

the two pivot state-differences ∆2f
S
(0,K′

0) and ∆2f
S
(1,K1). Thus, this is a simplification of

Lemma B.10.

Proposition B.4. For a fixed active set S = ĨK0,K1 ,

∆1f
S
(1,K′

0−1) = D′
K′

0−1 −∆2f
S
(0,K′

0)
A′

K′
0−1, if 1 ≤ K ′

0, (B.56)

∆1f
S
(1,i) = D′

i(1− Zi+1) +
[
∆1f

S
(1,i+1) + βµDi −∆2R(1,i+1)

]
Zi+1, for 0 ≤ i ≤ K ′

0 − 2,

(B.57)

∆1f
S
(1,K1)

= C ′′
K1,K1

−∆2f
S
(1,K1)

B′, if K1 ≤ I − 1, (B.58)

∆1f
S
(1,i) =

[
C ′′

K1,i + β(µ− η)CK1,i

]
−
[
C ′′

K1,i−1 + β(µ− η)CK1,i−1

]
B + ∆1f

S
(1,i−1)B,

for K1 + 1 ≤ i ≤ I − 1. (B.59)

The above results help significantly simplify the subsequent analysis, which we
present in the next subsection for optimal active set ĨK,K , and where we identify closed-
form expressions for pivot state-differences in total reward. The results under the active
set ĨK,K+1 are not necessary, since they are not implemented in the algorithm FA.

B.2.3 Pivot State-Differences under Active Set ĨK,K

Lemma B.13. Under active set S = ĨK,K

(i) if K = 0, then

∆2f
S
(1,0) = 0. (B.60)

(ii) if 1 ≤ K ≤ I − 1,

∆2fS
(0,K)

=−
βζ

AK
DK−∆1R(1,K)+(1−β)C′′

K,K+1−(βD′
K−1+∆2R(1,K))B

′+βµ(βζDK−1B+C′′
K,K+1−∆1R(1,K−1))

A′
K

AK
+βA′

K−1
B′+βζβµ(1−BAK−1)

,

(B.61)

∆2fS
(1,K)

=−
βζ

AK
DK−∆1R(1,K)+(1−β)D′

K−1−(βC′′
K,K+1+∆2R(1,K))A

′
K−1+βµ(βζDK−1+(C′′

K,K+1−∆1R(1,K−1))AK−1)

A′
K

AK
+βA′

K−1
B′+βζβµ(1−BAK−1)

.

(B.62)
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(iii) if K = I ,

∆2f
S
(0,I) = −

βζ
AI

DI − βµD′
I−1

A′
I

AI
+ βµA′

I−1

. (B.63)

(iv) if K = I + 1,

∆2f
S
(0,I) = −βζDI

A′
I

. (B.64)
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Appendix to Chapter 5

C.1 Work-Reward Analysis

In order to prove Proposition 5.1, we describe some crucial points from the restless
bandit framework in more detail. For a survey on this methodology refer to Niño-Mora
(2007b). Note that any set S ⊆ T can represent a stationary policy, by being active
in all the states belonging to S and being passive in all the states belonging to T \ S.
We will call such a policy an S-active policy, and S an active set. Note also that we can
restrict our attention to stationary deterministic policies, since it is well-known from the
MDP theory that there exists an optimal policy which is stationary, deterministic, and
independent of the initial state.

Let S ⊆ T be an active set. We can reformulate (5.5) as

fSt − νgSt := ESt

[
t−1∑
s=0

βsP
s|S
t,t−sR

IS(t−s)
t−s

]
− νESt

[
t−1∑
s=0

βsP
s|S
t,t−sW

IS(t−s)
t−s

]
, (C.1)

where P
j−i|S
i,j is the probability of moving from state i ∈ X to state j ∈ X in exactly j− i

periods under policy S and IS(s) is the indicator function IS(s) =

1, if s ∈ S,

0, if s /∈ S.
We

will call fSt the expected total discounted revenue under policy S if starting from state t,
and we will write it in a more convenient way as

fSt = ESt

[
t∑

s=1

βt−sP
t−s|S
t,s RIS(s)

s

]
. (C.2)

Similarly, we will call gSt the expected total discounted promotion work under policy S

147



148 APPENDIX C. APPENDIX TO CHAPTER 5

if starting from state t, and we will write it in a more convenient way as

gSt = ESt

[
t∑

s=1

βt−sP
t−s|S
t,s W IS(s)

s

]
. (C.3)

Let, further, 〈a,S〉 be the policy which takes action a ∈ A in the current time epoch
and adopts an S-active policy thereafter. For any state t ∈ T and an S-active policy, the
(t,S)-marginal revenue is defined as

rSt := f
〈1,S〉
t − f

〈0,S〉
t , (C.4)

and the (t,S)-marginal promotion work as

wS
t := g

〈1,S〉
t − g

〈0,S〉
t . (C.5)

These marginal revenue and marginal promotion work capture the change in the ex-
pected total discounted revenue and promotion work, respectively, which results from
being active instead of passive in the first time epoch and following the S-active policy
afterwards. Finally, if wS

t 6= 0, we define the (t,S)-marginal productivity rate as

νSt :=
rSt
wS

t

. (C.6)

In order to verify that a perishable item satisfies PCL-indexability (which implies
existence of MP indices), we need to postulate a family F of optimal active sets. We
define it as a family of nested sets F := {S0,S1, . . . ,ST }, where Sk := {1, 2, . . . , k}. The
following assumption must be verified.

Assumption C.1 (Positive Marginal Works). The marginal promotion work wS
t > 0 for

all states t ∈ T under any S-active policy from a feasible family of active sets F ⊆ 2T .

If Assumption C.1 holds and the quantities ν̂τk+1
computed in the adaptive-greedy

algorithm presented in Figure C.1 are nonincreasing in k, then the marginal productivity
indices exist and equal ν∗t := ν̂t and F contains an optimal active set for any ν.

C.2 Proofs

C.2.1 Proof of Proposition 5.1

We next show that Assumption C.1 holds and derive a closed-form expression for the
MP index given in Proposition 5.1. Plugging (C.2) and (C.3) into (C.4) and (C.5), respec-
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set Ŝ0 := ∅;
for k := 0 to T + 1 do

choose τk+1 ∈ {τ ∈ T \ Ŝk; ν
bSk
τ ≥ ν

bSk
t for all t ∈ T \ Ŝk};

set Ŝk+1 := Ŝk ∪ {τk+1};
set ν̂τk+1

:= ν
bSk
τk+1

;
end {for};

Figure C.1: Adaptive-greedy algorithm for calculation of MP indices.

tively, we obtain two expressions that will be used in the following analysis:

rSt =
(
R1

t −R0
t

)
− (βq − βp)

t−1∑
s=1

βt−s−1P
t−s−1|S
t−1,s RIS(s)

s , (C.7)

wS
t =

(
W 1

t −W 0
t

)
− (βq − βp)

t−1∑
s=1

βt−s−1P
t−s−1|S
t−1,s W IS(s)

s . (C.8)

It is well known from the MDP theory that the transition probability matrix for mul-
tiple periods is obtained by multiplication of transition probability matrices for subpe-
riods. Hence, given an active set S ⊆ T , we have

P t−s|S =
(
P 1|S

)t−s
, (C.9)

where the matrix P 1|S is an (T + 1)× (T + 1)-matrix constructed so that its row x ∈ X
is the row x of the matrix P 1|T if x ∈ S, and is the row x of the matrix P 1|∅ otherwise.
For definiteness, we remark that P 0|S is an identity matrix.
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Lemma C.1. Let t ∈ T and consider any integer 0 ≤ k ≤ T . Then,

rSk
t =



R(q − p)
[
(1− β)

1− (βp)t−1

1− βp

+(1− βα) (βp)t−1
]
, if k ≥ t− 1 ≥ 0,

R(q − p)
[
(1− β)

1− (βq)t−k−1

1− βq

+(1− β) (βq)t−k−1 1− (βp)k

1− βp

+(1− βα) (βq)t−k−1 (βp)k
]
, if T − 1 ≥ t− 1 ≥ k.

(C.10)

wSk
t =


W

[
1− (βq − βp)

1− (βp)t−1

1− βp

]
, if k ≥ t− 1 ≥ 0,

W

[
1− (βq − βp) (βq)t−k−1 1− (βp)k

1− βp

]
, if T − 1 ≥ t− 1 ≥ k.

(C.11)

Proof. Under an active set Sk, from (C.9) we get for T ≥ t− 1 ≥ s ≥ 1,

P
t−s−1|Sk
t−1,s =


pt−s−1, if k ≥ t− 1 ≥ s ≥ 0,

qt−s−1, if T ≥ t− 1 ≥ s ≥ k,

qt−k−1pk−s, if T ≥ t− 1 ≥ k ≥ s ≥ 0,

These expressions together with the definitions of Ra
t and W a

t plugged into (C.7)–(C.8)
after simplifying conclude the proof.

Lemma C.2. For any integer k ≥ 0 we have

(i) wSk
k > 0;

(ii) wSk
t > 0 for all t ∈ T .

Proof. Denote by

h(k) := (βq − βp)
1− (βp)k

1− βp
, (C.12)

so that, using (C.11), wSk
k = W [1− h(k)].

(i) For k = 0, we have h(0) = 0 by definition. For k ≥ 1, we have

h(k) = (1− (βp)k)
βq − βp

1− βp
< 1.
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(ii) Implied by (i) and (C.11).

Lemma C.3. In each step k = 0, 1, . . . , T − 1 of the adaptive-greedy algorithm presented in
Figure C.1, Assumption C.1 is satisfied and the algorithm sets

τk+1 = k + 1; Ŝk+1 = {1, . . . , k + 1};

ν̂k+1 =
R(q − p)

[
(1− β)

1− (βp)k

1− βp
+ (1− βα) (βp)k

]
W

[
1− (βq − βp)

1− (βp)k

1− βp

]
Proof. Consider the step k. Having Ŝk = {1, 2, . . . , k}, for t ∈ T \ Ŝk, by Lemma C.1 we
have

r
bSk
t = R(q − p)

[
(1− β)

1− (βq)t−k−1

1− βq

+ (1− β) (βq)t−k−1 1− (βp)k

1− βp

+(1− βα) (βq)t−k−1 (βp)k
]
,

w
bSk
t = W

[
1− (βq − βp) (βq)t−k−1 1− (βp)k

1− βp

]
> 0,

where the positivity is due to Lemma C.2 (which also holds for t ∈ Ŝk), implying that
Assumption C.1 is satisfied. Furthermore, then r

bSk
t is nondecreasing and w

bSk
t is nonin-

creasing as t diminishes (i.e. as t gets closer to the deadline). Hence the maximum ν
bSk
t

is attained at t = k + 1 and the algorithm sets what is stated.

Lemma C.3 is a crucial result in the proof of Proposition 5.1. It verifies that the family
F required in Assumption C.1 is the family of nested active sets F = {S0,S1, . . . ,ST }.
Finally, Proposition 5.2(iii) assures that the algorithm’s output ν̂t is nondecreasing as t

diminishes. This concludes the proof of Proposition 5.1.

C.2.2 Proof of Proposition 5.2

(i) Immediate from (5.6).

(ii) Formally, we are to prove the following statement: If the probability q is replaced
by q′ ≤ q, then ν∗′t ≤ ν∗t for any t ∈ T . It is straightforward to see that (5.6) is
nondecreasing in q.

(iii) In order to see that the MP index is nondecreasing as t diminishes, it is enough
to compare the MP indices for t ∈ T \ {T} and t + 1. Niño-Mora (2007b, p. 172)
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showed that under positive marginal works, ν∗t ≥ ν∗t+1 is equivalent to ν
St+1

t ≥
ν
St+1

t+1 , which is satisfied as shown in the proof of Lemma C.3.

(iv) The expression is obtained readily by letting T →∞.

C.2.3 Proof of Corollary 5.0.1

In order the set {τ ∈ T : ν∗t > ν for all t ∈ T such that t ≥ τ} to be nonempty, due to
Proposition 5.2(iii) we need to have ν∗1 > ν, that is, R

W (1− βα)(q − p) > ν.

C.2.4 Proof of Proposition 5.3

(i) The MP index for β = 1 is given by the limit of the discounted MP index (5.6), if it
exists. The limit exists and is equal to the stated expression.

(ii) Straightforward from (5.6) after setting q := 1 and β := 1.

C.2.5 Proof of Proposition 5.4

Under the above assumptions, all the products perish within one period, and promoting
is equivalent to avoiding the deadline cost. The problem thus reduces to a combinatory
problem of choosing a subset of items not to be promoted that minimizes the aggregate
cost of not promoted items while the remaining items do not occupy more than W .
Since the aggregate cost of all items is constant, this problem is equivalent to choosing
a subset of items to be promoted that maximizes the aggregate cost of promoted items
while their aggregate volume is not greater than W , which is the knapsack problem.
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Appendix to Chapter 6

D.1 Proofs

D.1.1 Proof of Proposition 6.1

Note first that the additive term νW is constant and can be ignored. Further,

lim
T→∞

1
T

Eπ
n

T−1∑
t=0

∑
m∈M(t)

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)

= lim
T→∞

1
T

T−1∑
t=0

Eπ
n

 ∑
m∈M(t)

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)

= lim
T→∞

1
T

T−1∑
t=0

∑
m∈Mstarted(T−1)

P [m ∈M(t)] Eπm
nm

[(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]

= lim
T→∞

L

|Mstarted(T − 1)|
∑

m∈Mstarted(T−1)

T−1∑
t=0

P [m ∈M(t)] Eπm
nm

[(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]
,

153



154 APPENDIX D. APPENDIX TO CHAPTER 6

where we have used (6.1). Further, using

lim
T→∞

T−1∑
t=0

P [m ∈M(t)] Eπm
nm

[(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]
= Eπm

nm

[ ∞∑
t=Tm

βt−Tm
m

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]
<∞,

the Lagrangian relaxation (6.6) (without the additive constant) can be written as

max
π∈Π

lim
T→∞

L

|Mstarted(T − 1)|
∑

m∈Mstarted(T−1)

Eπm
nm

[ ∞∑
t=Tm

βt−Tm
m

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]
,

which we can rewrite due to flow independence as

lim
T→∞

L

|Mstarted(T − 1)|
∑

m∈Mstarted(T−1)

max
πm∈Πm

Eπm
nm

[ ∞∑
t=Tm

βt−Tm
m

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]
.

Notice that the operator lim
T→∞

L

|Mstarted(T − 1)|
∑

m∈Mstarted(T−1)

is equivalent to the oper-

ator lim
M→∞

L

M

M∑
m=1

, so the Lagrangian relaxation (6.6) (without the additive constant) is

the same as

lim
M→∞

L

M

M∑
m=1

max
πm∈Πm

Eπm
nm

[ ∞∑
t=Tm

βt−Tm
m

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]
.

Therefore, the maximizing policy π∗ is the one that decomposes into π∗m for each
m ∈M that maximize the individual-flow subproblems

max
πm∈Πm

Eπm
nm

[ ∞∑
t=Tm

βt−Tm
m

(
R

am(t)
m,Xm(t) − νW

am(t)
m,Xm(t)

)]
for each m ∈M.

Note that the flow-m subproblem is independent of Tm whenever Xm(Tm) = nm, and
therefore it is enough to solve it for Tm = 0.

D.2 Auxiliary Results

Lemma D.1. Let b0, b1, α1 > 0. Then the following statements are equivalent:

(i)
a0

b0
≥ a1

b1
;
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(ii)
a0

b0
≥ a0 + α1a1

b0 + α1b1
;

(iii)
a0 + α1a1

b0 + α1b1
≥ a1

b1
.

Further, the above equivalence holds also if all inequalities are strict.

Proof. A simple algebraic exercise.

Lemma D.2. Let for a positive integer K be
a0

b0
≥ a1

b1
≥ · · · ≥ aK

bK
such that b0, b1, . . . , bK > 0

and α1, . . . , αK ≥ 0. Then

a0

b0
≥ a0 + α1a1 + · · ·+ αKaK

b0 + α1b1 + · · ·+ αKbK
≥ aK

bK
. (D.1)

Proof. For k = 1 see Lemma D.1. To proceed by induction, suppose that the claim holds
for all k = 1, 2, . . . ,K − 1. If α1 = 0, then we are in the case k = K − 1, so suppose
α1 > 0. Then, by the induction assumption for k = K − 1, we have

a1

b1
≥

a1 + α2
α1

a2 + · · ·+ αK
α1

aK

b1 + α2
α1

b2 + · · ·+ αK
α1

bK
. (D.2)

Since
a0

b0
≥ a1

b1
, we have

a0

b0
larger than or equal to the right-hand side of (D.2). Applying

Lemma D.1 gives

a0

b0
≥ a0 + α1a1 + · · ·+ αKaK

b0 + α1b1 + · · ·+ αKbK
≥

a1 + α2
α1

a2 + · · ·+ αK
α1

aK

b1 + α2
α1

b2 + · · ·+ αK
α1

bK
, (D.3)

where the right-hand side expression is, again by the induction assumption for k =
K − 1, larger than or equal to

aK

bK
. This completes the proof for k = K.

Lemma D.3 (Equivalent Definitions of Concavity). Consider a real-valued function a(·),
a positive integer K, and a set B := {0, b0, b1, . . . , bK} such that 0 < b0 < b1 < · · · < bK .
Denote by ak := a(bk) for any k = 0, 1, . . . ,K. Then the following statements are equivalent:

(i) the function a(·) is concave on B;

(ii)
ak1 − ak0

bk1 − bk0

≥ ak2 − ak0

bk2 − bk0

for any bk0 , bk1 , bk2 ∈ B with bk0 < bk1 < bk2 ;

(iii)
ak2 − ak0

bk2 − bk0

≥ ak2 − ak1

bk2 − bk1

for any bk0 , bk1 , bk2 ∈ B with bk0 < bk1 < bk2 ;

(iv)
ak1 − ak0

bk1 − bk0

≥ ak2 − ak1

bk2 − bk1

for any bk0 , bk1 , bk2 ∈ B with bk0 < bk1 < bk2 .



156 APPENDIX D. APPENDIX TO CHAPTER 6

Lemma D.4. Let a be a concave real-valued function with a(0) ≥ 0. Consider a positive integer
K and a set B := {0, b0, b1, . . . , bK} such that 0 < b0 < b1 < · · · < bK . Denote by ak := a(bk)
for any k = 0, 1, . . . ,K. Then

(i)
ak2

bk2

≥ ak2 − ak1

bk2 − bk1

for any bk1 , bk2 ∈ B with 0 < bk1 < bk2 ;

(ii)
a0

b0
≥ a1

b1
≥ · · · ≥ aK

bK
;

(iii)
ak1

bk1

≥ ak2 − ak1

bk2 − bk1

for any bk1 , bk2 ∈ B with 0 < bk1 < bk2 ;

Proof. (i) By setting bk0 = 0 in Lemma D.3(iii), for any k1 ∈ {0, 1, . . . ,K − 1},

ak2

bk2

≥ ak2 − a(0)
bk2

≥ ak2 − ak1

bk2 − bk1

,

where the first inequality is due to a(0) ≥ 0.

(ii) By rearranging the terms in (i) we get ak1/bk1 ≥ ak2/bk2 for any k1 ∈ {0, 1, . . . ,K−
1} and k2 > k1.

(iii) Since (i) holds and by (ii), ak1/bk1 ≥ ak2/bk2 , the result is immediate.

Lemma D.5. Let for a positive integer K be
a0

b0
≥ a1

b1
≥ · · · ≥ aK

bK
such that b0, b1, . . . , bK >

0. Let α1, . . . , αK ≥ 0 and 1 ≥ γ1 > γ2 > · · · > γK ≥ 0. Then

a0 + α1a1 + · · ·+ αKaK

b0 + α1b1 + · · ·+ αKbK
≤ a0 + γ1α1a1 + · · ·+ γKαKaK

b0 + γ1α1b1 + · · ·+ γKαKbK
. (D.4)

Proof. Consider k = 1 and γ1 < 1 (for γ1 = 1 it trivially holds). Hence, we can multiply
a0

b0
≥ a1

b1
by the positive expression α1(1 − γ1)b0b1, and add a0b0 + γ1α

2
1a1b1, which

after rearranging gives the desired result. To proceed by induction, suppose that the
claim holds for all k = 1, 2, . . . ,K − 1, and suppose α1 > 0 (otherwise it is true by the
induction assumption). Denote

da := a1 +
γ2

γ1

α2

α1
a2 + · · ·+ γK

γ1

αK

α1
aK , db := b1 +

γ2

γ1

α2

α1
b2 + · · ·+ γK

γ1

αK

α1
bK ,

and further denote by ca and cb the expressions obtained from da and db by omitting
γ’s. Note that we want to show

a0 + α1ca

b0 + α1cb
≤ a0 + γ1α1da

b0 + γ1α1db
. (D.5)
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Using Lemma D.2 and multiplying both numerator and denominator by α1(1− γ1)
we obtain

a1

b1
≥ α1(1− γ1)a1 + α2(1− γ2)a2 + · · ·+ αK(1− γK)aK

α1(1− γ1)b1 + α2(1− γ2)b2 + · · ·+ αK(1− γK)bK
,

and therefore we can write
a0

b0
≥ α1ca − γ1α1da

α1cb − γ1α1db
,

which is the same as a0(α1cb − γ1α1db + b0) ≥ b0(α1ca − γ1α1da + a0).

On the other hand, the induction assumption implies ca
cb
≤ da

db
, hence 0 ≥ α2

1γ1(cadb−
dacb). Adding up the last two inequalities and rearranging yields (D.5).

D.3 Normalization of the Optimization Problem

Next we develop the matrices needed for normalization of the above general model
setting. We have

P 0 =



0 1 2 · · · N − 1

0 1 0 0 0 0
1 1 0 0 0 0
2 1 0 0 0 0
... 1 0 0

. . . 0
N − 1 1 0 0 0 0

,

and therefore

I − βP 0 =



0 1 2 · · · N − 1

0 1− β 0 0 0 0
1 −β 1 0 0 0
2 −β 0 1 0 0
... −β 0 0

. . . 0
N − 1 −β 0 0 0 1


.

Is is easy to see that I − βP 0 is invertible if and only if β 6= 1, and the inverse is

(I − βP 0)−1 =



0 1 2 · · · N − 1

0 1
1−β 0 0 0 0

1 β
1−β 1 0 0 0

2 β
1−β 0 1 0 0

... β
1−β 0 0

. . . 0
N − 1 β

1−β 0 0 0 1


.
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Further,

P 1 =



0 1 2 · · · N − 2 N − 1

0 1− p0 p0 0 0 0 0
1 1− p1 0 p1 0 0 0
2 1− p2 0 0 p2 0 0
...

... 0 0 0
. . . 0

N − 2 1− pN−2 0 0 0 0 pN−2

N − 1 1− pN−1 0 0 0 0 pN−1


,

and therefore

I − βP 1 =



0 1 2 · · · N − 2 N − 1

0 1− β(1− p0) −βp0 0 0 0 0
1 −β(1− p1) 1 −βp1 0 0 0

2 −β(1− p2) 0 1
. . . 0 0

...
... 0 0

. . . . . . 0
N − 2 −β(1− pN−2) 0 0 0 1 −βpN−2

N − 1 −β(1− pN−1) 0 0 0 0 1− βpN−1


.

Finally,

(I − βP 1)(I − βP 0)−1 =



0 1 2 · · · N − 2 N − 1

0 1 + βp0 −βp0 0 0 0 0
1 βp1 1 −βp1 0 0 0

2 βp2 0 1
. . . 0 0

...
... 0 0

. . . . . . 0
N − 2 βpN−2 0 0 0 1 −βpN−2

N − 1 βpN−1 0 0 0 0 1− βpN−1


.

Thus, for the normalized LP formulation we set (cf. (A.1)), for all n ∈ N ,

Rn := (R1
n −R0

n) + βpn(R0
n+1 −R0

0), Wn := (W 1
n −W 0

n) + βpn(W 0
n+1 −W 0

0 ).

where we have defined R0
N := R0

N−1 and W 0
N := W 0

N−1.
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