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(SUB-)OPTIMAL ENTRY FEES

Angel Hernando

ABSTRACT

We extend Myerson's (1981) model by alowing for uncertainty about the number of bidders.
In such extenson the Revenue Equivaence Theorem 4ill holds and the optima dlocation rule remains
the same. Hence, the optima auction can be implemented with an appropriate reserve price.
Nonetheless, we show that entry fees are sub-optimal. The reasons are heterogeneity in bidders beliefs
about the number of bidders, and auctioneer's uncertainty about the optimum entry fee, if any. Our result
impliesareversa of the revenue ranking by Milgrom and Weber (1982) which is consstent with many
red life Stuations auction houses, internet auctions,...
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1 Introduction

One stylised fact is the widespread use of reserve prices to enhance auctioneer’s
expected revenue, whereas, entry fees are very scarcely used. This fact is specially
true for what we can call small or popular auctions, for instance, traditional auction
houses like Christie’s or Sotheby’s, the newborn internet auctions like eBay or Yahoo,
or some second hand markets organised through auctions like those in London for
second hand cars or second hand houses. Another illustration of this observation is
that an specialised book such as Cassady (1967) dedicates several pages to the effect
of a reserve price but it provides no comment with respect to entry fees.

This empirical fact contrasts with the theoretical literature that tend to suggest
that the auctioneer can improve his expected revenue by reducing the reserve price
and increasing or introducing an entry fee.! This is for instance the case of the
celebrated model of Milgrom and Weber (1982), but also of Engelbrecht-Wiggans
(1993), or Levin and Smith (1994). Note that these results hold in spite of the
revenue equivalence established by Myerson (1981). The reason is that once we
enrich the model of Myerson (Milgrom and Weber, for example, allow for affiliation
in valuations) the equivalence between the use of entry fees and reserve prices breaks
down.

We argue in this paper that it is not necessarily the case that reality and theory
are at odds. We show that the revenue ranking provided by Milgrom and Weber (and
the other papers in the latter paragraph) can be reversed. We provide an explanation
based on a quite common feature of the examples we mention above: the uncertainty
about the number of bidders that both the bidders and the auctioneer have. The
former at the stage of deciding their participation in the auction and the latter
when he decides the auction characteristics. Other authors like Cassady (1967), and
McAfee and McMillan (1987) have argued about the importance of this fact.

We model such uncertainty assuming that the number of bidders is drawn ac-
cording to a quite general exogenous stochastic process. Under this assumption, we
show that the revenue maximising auction can be implemented with a reserve price,
for instance in a second price auction. We also show that entry fees can implement
the revenue maximising auction only in non generic cases.

The intuition of our results is better understood from the Revenue Equivalence
Theorem: Myerson (1981) shows that under independent private information about
valuations, risk neutrality, and fixed number of bidders, the auctioneer’s expected
revenue is determined by the allocation rule and the expected utility of the bid-
ders with less willingness to pay. He also shows that the optimal allocation rule is
quite simple: to sell to the bidder with highest valuation provided that her valu-
ation is above a certain cut-off. Thus, Myerson concludes that several mechanism
are optimal, among them auctions with reserve prices and entry fees appropriately
chosen.

We show that a direct consequence of the results by McAfee and McMillan
(1987) is that the Revenue Equivalence Theorem and the structure of the optimal

! An exception is Waehrer, Harstad, and Rothkopf (1998).



allocation rule remains the same when the number of bidders is not fixed but rather
exogenously stochastic. Such result directly implies that an appropriate auction set-
up, as a second price auction or an English auction, with a concrete reserve price is
expected revenue maximising. However, we cannot argue as Myerson that auctions
with entry fees are optimal.

The reason why an auction with an appropriate reserve price can implement
the optimal auction but not with an entry fee is subtle. We can argue as Myerson
that there is always an entry fee that induce a given bidder to take the same entry
decisions as with an optimal reserve price. Hence, it seems that we could appeal to
the Revenue Equivalence Theorem to claim that there must exist an optimal entry
fee.

Nonetheless, the entry fee that induces the same bidder’s entry decisions as a
given reserve price will depend on the bidder’s beliefs about the actual number of
bidders. The more bidders she expects to meet in the auction, the less incline she
will be to pay the entry fee. Thus, if there is some heterogeneity in these beliefs,
we cannot find an entry fee that induce all the bidders simultaneously to take the
same entry decisions as an optimal reserve price. Moreover, even if the bidders hold
the same beliefs, the auctioneer will not be able to compute the optimal entry fee
unless he knows the bidders’ beliefs. In a world with uncertainty about the number
of bidders this can be a quite restrictive assumption.

In reality, for instance, quite often there are experienced bidders that have clear
ideas about the number of active bidders, and less experienced bidders with more
blurred beliefs. Similarly, bidders can have access to some pieces of information
(magazines, car queues close to the auction house, a bunch of colleagues that are
considering to enter the auction,...) that were not available to the auctioneer when
he announced the entry fee.

We also argue that the situations in which entry fees are optimal are quite
unstable. Suppose that there is uncertainty about the number of actual bidders, but
bidders have homogenous beliefs known by the auctioneer. Under such conditions
an entry fee appropriately chosen in a second price auction is optimal. Suppose now
a slightly different game in which bidders have the possibility of acquiring secretly
some additional information about the number of actual bidders. Then, we show
that each bidder has strict incentives to acquire this additional information when all
the other bidders play the equilibrium strategies of the model with no information
acquisition.

Hence, if the cost of information acquisition is sufficiently low, some bidders
will acquire information. Then, entry fees will be no longer optimal. There will be
heterogeneity among the bidders’ beliefs because either the additional information
differs across bidders or because not all the bidders have acquired new information.
Moreover, if the auctioneer does not know the source of this additional information
he will be uncertain about the bidders’ beliefs.

In practice, for instance, this will happen if bidders are initially equally unin-
formed. Then, we could argue that entry fees make sense as bidders’ beliefs about
the number of active bidders can be somewhat homogeneous. However, the mere
fact that entry fees are used prompts the bidders to seek out information. Hence,



if some of the bidders get additional information, it will create the aforementioned
heterogeneity in bidders’ beliefs.

Our results above are achieved when the auctioneer has no private information
about the number of active bidders. We show that similar conditions although
less restrictive are required when the auctioneer has some private information. For
instance, the auctioneer can have some information that appropriately revealed to
the bidders vanishes the heterogeneity in their beliefs. However, as we illustrate in
the paper, quite often the auctioneer cannot make use of his private information to
use optimal entry fees because he cannot credibly reveal it. Note that a bidder is
more willing to pay high entry fees if she believes that there are fewer other bidders.
Hence, the auctioneer has incentives to mislead the bidders making them belief that
there are less bidders than there are in reality.

The most closely related paper is that by McAfee and McMillan (1987). They
also characterise the optimal auction in a model in which bidders have uncertainty
about the number of bidders. McAfee and McMillan, however, do not compare in
terms of expected revenue auctions with reserve prices and/or entry fees. Moreover,
our model generalises McAfee and McMillan results to the case in which the auc-
tioneer holds uncertainty about the number of bidders and the bidders hierarchies
of beliefs about the number of bidders.

We have also referred to some other papers in which entry fees are compared
with reserve prices. The model by Milgrom and Weber (1982) has been already
explained. Engelbrecht-Wiggans (1993), and Levin and Smith (1994) study a model
in which the number of bidders varies endogenously. The former paper points out
that an entry fee can implement full surplus extraction, and the latter shows that
in fact, entry fees strictly dominate reserve prices. Note, however, what they call
an entry fee should more appropriately be called an inspection fee: bidders only
learn their valuation after paying it. Hence, an entry fee can extract the bidders’
surplus because bidders have no private information at the time when they have
to pay the inspection fee. A reserve price cannot do so well because it is paid
only once the bidders have their private information and then the auctioneer cannot
extract the bidders’ informational rents. Finally, Waehrer, Harstad, and Rothkopf
(1998) provide a result in line with our ranking result. They show that a risk averse
auctioneer can achieve higher expected utility using an appropriate reserve price
than with any entry fee.

The paper is organised as follows. In Section 2 we present the set of assumptions
that describe the basic features of our model. We move in the third section to our
main results: characterisation of the optimal auction, optimality of reserve prices
and sub-optimality of entry fees. In the fourth section, we consider the incentives
of bidders to acquire information. Section 5 extends the analysis of section 3 to the
case in which the auctioneer has private information. Section 6 concludes.



2 The Model

An expected revenue? maximising auctioneer puts up for sale a single unit of a non

divisible good. A set of N bidders that we denote by B C N and call the active
bidders is interested in this good. Their preferences are characterised by a von
Neumann-Morgenster utility function equal to v; — p when bidder i gets the good
and pays p, and equal to —p when she does not get the good but pays p. We shall
refer to v; as bidder’s 7 valuation. Bidders’ valuations are assumed to be private
information and to follow each® an independent distribution F' with support [0, 1]
and density f.

Our independence assumption goes around two problems. As Cremer and McLean
(1988) have shown, optimal auctions when bidders’ valuations have strict correlation
are counterintuitive and quite sensitive to the primitives of the model. Moreover,
Milgrom and Weber (1982) show that if the joint distribution of bidders’ valuations
satisfies the affiliation inequality, reserve prices are dominated by entry fees. In this
case our independence assumption allows to provide a clear-cut set-up in which our
results do not mix with Milgrom and Weber’s result.

We restrict to what Myerson (1981) has called the regular case. This is that

the function v — l}f;()”) is strictly increasing in v € [0, 1]. Such assumption is quite

standard in auction theory and it is satisfied by many distribution functions (e.g.

the uniform). We shall denote by v* the unique solution to v* — %ﬁp = 0 and

assume for simplicity that v* exists and belongs to the interval (0,1).

We allow for bidders and auctioneer uncertainty about the number of bidders,
although consistent with a common prior. This common prior is modelled* assuming
that the set of active bidders B is drawn from a set of potential bidders according to
an exogenous random process.” In our model, the fact of being active conveys the
bidder private information about B. On top of this private information, we allow
bidders to have some additional private information about B. To do so, we assume
that the exogenous process that selects active bidders also generates a signal per
active bidder. We denote by S; the private signal that corresponds to bidder 7, and
by &; its support. In some instances, we shall also allow the auctioneer to have
private information about B, we shall refer to this additional information by S,
with support Sg. For simplicity we assume that the signals’ support is countable.’

2Qur results would also hold if the auctioneer puts some reserve value in retaining the good but
in two trivial cases: when the reserve value is so low that the auctioneer wants to sell always; and
when it is so high that the auctioneer never wants to sell.

3We consider a private value set-up for simplicity. Our results directly generalise to a common
value set-up under two assumptions: the common value is a linear function of the private signals
of the bidders, and the bidders’ private information about the value of the object is statistically
independent.

"We make explicit the procedure through which the number of bidders is selected in order to be
able to construct in a Bayesian fashion bidder’s beliefs about the number of active bidders. McAfee
and McMillan (1987) use a similar construction to model exogenous uncertainty about the number
of active bidders.

®More formally, we assume that the support of B is a countable subset of 2", and B is the union
of all the sets in this support.

®That the support of S; is countable is restrictive. Note, however, that Mertens and Zamir



Our model to generate beliefs about the set of active bidders is that a direct
generalisation Mc Affe and Mc Millan’s (1987) model. We generalise it by allowing
private signals about the set of active bidders. The reason of such extension is
that we are interested in the issue of information acquisition about the set of active
bidders. Note that this extension makes our model differ in that the identity of the
bidder does not convey the beliefs of the bidder about the set of active bidders as
in the model of Mc Affe and Mc Millan.

We refer to the probability measure that describes the common prior that gen-
erates B and the signals S;’s and Sy with Pr[.]. We also denote by Pr[.|.] to the
probability of the event on the left side of the vertical bar conditional on the event
on the right side of the vertical bar. Finally, denote by E[.] and E[.|.] the respective
expected values associated to the common prior. We shall assume that that for
any set A with positive probability (with respect to the probability measure Pr)
E[N]A] < oo.

Recall that we have implicitly assumed that bidders’ information about their
valuations is orthogonal to the process that captures the information about the set
of active bidders. There is little hope that our results hold under more general
information structures but in rather specific examples. To see why note that this
assumption avoids two problems: First, if bidders’ signals provide some information
about the other bidders’ valuations, we can expect that active bidders’ beliefs about
the other active bidders’ valuations will differ unless we make strong symmetry
assumptions. This would imply working with “asymmetric” auctions whose analysis
is complex and does not provide clear-cut predictions in general (some partial results
have been provided by Maskin and Riley (2000)). Second, the assumption that
bidders’ valuations are statistically independent is less plausible since they could
(although not necessarily) be statistically related through the set of active bidders.

3 Optimal Auctions

In this section we show that the revenue maximising auction can be implemented in
general through a second price auction with an appropriate reserve price, but not
with an entry fee. To provide such results we start characterising the set of optimal
auctions:

Proposition 1. An auction is optimal if and only if the following conditions hold"
a.s.: (1) The good is allocated to the active bidder with highest valuation if this is
higher than v*; otherwise, the auctioneer retains the good. (ii) Each active bidder
that has value 0, and for each possible realisation of their private signal S;, gets zero
expected utility.

Proof. Our proof makes use of the results of McAfee and McMillan (1987). Their
analysis of the optimal auction differs from us in only one aspect: they assume that

(1985) have proved that a general belief space can be arbitrarily approximated by a finite belief
space, hence a fortiori by a countable belief space.
"We write “a.s.” for almost surely with respect to the probability measure denoted by Pr.



bidders do not hold private signals. This assumption in principle can be reinterpret
assuming that bidders with different private signals are different potential bidders.
Note that under our assumptions the new set of potential bidders is also countable
as required by McAffe and McMillan’s assumptions. However, by doing this trick
we miss one important detail of our model. This assumption implies that the bid-
der’s identity tells the auctioneer the bidder’s beliefs about the set of active bidders
(and hierarchies of beliefs). We show that this assumption turns out to be unre-
strictive. Theorem 4 by McAfee and McMillan implies that the optimal mechanism
must satisfy the conditions provided in Proposition 1 when the auctioneer can infer
bidder’s beliefs from bidder’s identity. But, this result implies the proposition since
the former optimal mechanism can be implemented even if the auctioneer does not
know the bidders’ beliefs. For instance, a second price auction with reserve price v*
implements the optimum (see below). [

The proof of this proposition is based on McAfee and McMillan (1987). They
apply an adaptation of Myerson’s (1981) proof to the case in which the set of active
bidders is stochastic. They show that bidders risk neutrality plus independency of
bidders’ valuations imply the revenue equivalence. From this, it is easy to deduce
that condition (i) characterises the optimal allocation rule, and condition (ii) the
zero profit condition of the minimum type. Note that condition (i) imposes the same
restrictions on the optimal allocation as in Myerson’s model, whereas condition (ii)
is just a direct generalisation of an equivalent condition of optimality in Myerson’s
model.

Note that our proof generalises McAfee and McMillan’s result by allowing bidders
to have some additional private information about the set of active bidders. We
show that this new addition does not affect to the set of optimal auctions. This is
so because a second price auction with a reserve price equal to v* implements the
optimal auction. It is weakly dominant for the bidders to: (a) enter the auction if
and only if their valuations are above v* and (b) bid the true valuation conditional
on entering. Hence,

Corollary 1. A second price auction (or an English auction) with reserve price v*
and no entry fee implements the optimal auction.

Since the revenue equivalence holds, we could expect that entry fees appropriately
chosen are also optimal with generality. We show below that this conjecture is not
true. We provide such proof considering entry fees in any auction mechanism, and
even if combined with a reserve price. To provide such general result we define an
entry fee as a front payment to the auctioneer that each of the bidders must do
in order to participate in the auction.® We also define a reserve price as the price
that the winner of the auction pays (on top of the entry fee) when no other bidder
submits a serious bid. Note that these definitions cover entry fees and reserve prices
in standard auction mechanisms (first price auctions,” second price auctions,...)

8Obviously, this payment must be non refundable, so we disregard mechanisms in which front
payments are (partially) refund by whatever means to the losers of the auction. For instance, an
all pay auction that allows for negative bids.

Tf the number of bidders that will submit serious bids is observed before the bids are submitted.



For the sake of simplicity we focus in this section in the case in which the auc-
tioneer does not have private information about the set of active bidders or their
respective signals S;. We show in Section 5 how to modify Proposition 2 when the
auctioneer has some private information.

Proposition 2. Ifthe auctioneer has no private information, an entry fee is optimal
only if:

(a) “Active bidders have homogeneous beliefs” in the sense that for all i,j € B,

E[F(v)N"18,,i € B] = E[F(v*)N7!S;,j € B, a.s.

(b) “The auctioneer knows the common beliefs of the potential bidders” in the
sense that there exists a k € [0,1] such that for all i € B,

E[Fw*NLS,,i € Bl =k, as.

Proof. We start providing an indifference condition that must be satisfied by each
bidder if condition (i) in Proposition 1 hold in equilibrium. We then show that this
indifference condition can be satisfied simultaneously by all the active bidders only if
(a) holds. Then, we show that (b) is also necessary since the auctioneer can compute
the optimal entry fee only if he knows E[F(v*)N¥~1|S;,i € B].

If condition (i) holds active bidders with valuation v* must be indifferent be-
tween entering the auction or not. Suppose, for instance, that an active bidder with
valuation v* strictly prefers to stay out of the auction. Then, the continuity!’ of
the active bidders expected utility with respect to valuations implies that she would
not participate in the auction if she had a type close to v*. This means that with
positive probability this active bidder will not get the object when she has the high-
est valuation and this valuation is above v*, i.e. condition (i) does not hold with
positive probability.

When condition (i) verifies, a generic active bidder ¢ with valuation v* wins the
auction if and only if no other active bidder has a valuation above v*. Bidder ¢ puts
probability E[F(v*)N~1|S;,i € B] on this event. In this case, she pays the reserve
price, say r. This means that our indifference condition implies that the entry fee e
must be such that:

e= (v —r)E[F()N1S;,i € B, as. (1)

This condition can be satisfied simultaneously by all active bidders only if (a)
holds. Note also that (b) must hold as otherwise the auctioneer would not be able to
compute the optimal entry fee either by itself or combined with a reserve price. W

10We do not provide the proof that bidder’s expected utility is continuous with respect to the
bidder’s valuation. This proof follows from Equation (47) in McAfee and McMillan (1987).
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The reason why there is no optimal entry fee with generality is somewhat subtle.
It is true that we can always find an entry fee that can induce a given bidder to take
the same entry decisions as with an optimal reserve price. Hence, we could think of
appealing to the revenue equivalence to claim that there must exist an optimal entry
fee. However, the entry fee that corresponds to the optimal reserve price will depend
on the bidder’s beliefs about the number of active bidders. Thus, if these beliefs
differ in a particular sense across bidders, we cannot find an entry fee that produces
the same entry level as an optimal reserve price. Another difficulty is that even if
all the active bidders had the same beliefs, the auctioneer could be uncertain about
which are the bidders’ beliefs and hence, the optimal entry fee. Since we assume
that the auctioneer does not have private information, this will happen when the
bidders’ beliefs are common but random and this randomness shifts in a particular
sense the common beliefs.'!

Proposition 2 specifies the particular sense in which if beliefs differ there is no
optimal entry fee. This sense is that active bidders put different probability on
winning the auction when they have a valuation v*, all the active bidders follow
entry strategies characterised by the cut-off v*, and the outcome of the auction
is such that bidders with higher valuations outbid bidders with lower valuations.
Similarly, Proposition 2 specifies in a parallel way the sense in which shifts of an
active bidder’s beliefs can make entry fees sub-optimal.

We only find two scenarios in which the necessary conditions for optimal entry
fees are naturally satisfied: when the number of active bidders is common knowledge,
and in a “fully symmetric” model in which all bidders have the same beliefs about
the number of active bidders and the auctioneer knows these beliefs. Once we
admit that there is some kind of heterogeneity or auctioneer’s uncertainty about the
beliefs about the number of bidders, the general result will be that entry fees are
sub-optimal.

For instance, if some active bidders beliefs about the number of active bidders
dominate the beliefs of some other active bidders in the sense of strict first order
stochastic dominance, condition (a) of Proposition 2 will be violated. The reason
is that F(v*)V~! is a strictly decreasing function. Hence, the active bidders with
dominated beliefs in the above sense will put strictly higher probability on the
expected value of F(v*)¥~! than the active bidders with dominant beliefs. The same
thing happens when all the active bidders’ beliefs are common but they randomly
shift in the sense of first order stochastic dominance.

3.1 An Example with Heterogeneity among Bidders

We provide a simple example in which active bidders do not receive any private
signal S;. The source of heterogeneity on bidders’ beliefs will come from the fact

1We could think that the auctioneer can avoid this problem by fixing a “contingent” entry fee
that varies with the number of bidders that submit bids. But, this is actually what a reserve price
is: an entry fee that it is paid only if one bidder enters the auction. In fact, it can be shown that
when entry fees are sub-optimal, the only contingent entry fee that implements the optimum is a
reserve price.

11



that being active provides different bidders different information. More precisely,
we shall assume that the probabilities that bidders are active are correlated, and
this correlation is asymmetric. For simplicity, we assume a very simple model of
correlation. There are two groups of bidders Gi and Ga, each with N7 and Np
potential bidders respectively. All the bidders in a given group are active with a
probability p € (0,1) and inactive with probability 1 — p. These probabilities are
identical and independent for both groups. The asymmetries will come from the
fact that we assume that N7 > No.

Figure 1 shows that the distribution of N conditional on bidder ¢« € G active
(N|G1) dominates the distribution of N conditional on bidder j € G active (N|G2)
in the sense of strict first-order stochastic dominance. Hence, the expected value of
F(v*)N=1 conditional on bidder i € Gy active will be strictly lower than the same
expected value conditional on bidder j € Gy active. Since this situation will happen
with positive probability, the conditions of Proposition 2 are violated and thus, entry
fees are sub-optimal.

Pr

Figure 1: Distribution functions of N conditional on a bidder of group G; active
(N|G1) and conditional on a bidder of group Gs active (N|G2).

3.2 An Example with Auctioneer’s Uncertainty

We illustrate auctioneer’s uncertainty assuming that the each bidder knows the
number of active bidders but the auctioneer does not know it. More formally, we
assume that B has a non degenerate prior and that each active bidder’s signal informs
of the set of active bidders, i.e. S; equals B for all ¢ € B. Under this assumption the
first condition of Proposition 2 is trivially satisfied. However, the auctioneer does

12



not know the active bidders’ beliefs in the sense required by Proposition 2. Hence,
entry fees will be sub-optimal because of the auctioneer’s uncertainty.

4 Acquisition of Information and Optimal Entry Fees

In this section, we provide an example that illustrates that the situations in which
entry fees are optimal are quite unstable. We show that if the auctioneer uses an
entry fee, bidders have strict incentives to acquire secretly additional information
about the number of active bidders. Once, some bidders acquire this additional
information with positive probability, in general it is no longer optimal to fix an
entry fee.

For this purpose we assume that the auctioneer first makes an announcement
of the auction structure, and then bidders upon observing!'? this announcement can
decide to acquire or not some private signal. We start assuming that all the bidders
are ex ante symmetric in the sense that there exists'® a distribution function G such
that the distribution of N conditional on bidder i active equals G for all potential
bidders ¢ € B. We also assume that active bidders do not observe any private signal.
Under these assumptions, the necessary conditions for optimality of entry fees of
Proposition 2 are satisfied. In fact, it is easy to show that under such conditions a
second price auction with an appropriate entry fee is optimal (for instance, an entry
fee that satisfies equation (1)).

Suppose that the auctioneer fixes an optimal entry fee in a second price auction.
Suppose also that the common distribution G is non degenerate. This means that
active bidders hold some uncertainty about the number of active bidders. We then
study the incentives of a generic bidder ¢ to reduce this uncertainty by acquiring
secretly a signal S; when all the other bidders follow the entry decisions that corre-
spond to the model with no information acquisition, i.e. enter if and only if v; > v*
(j # 7). For simplicity we assume that S; is a dicothomic signal such that it shifts
the conditional distribution of the number of active bidders in the sense of strict first
order stochastic dominance. More precisely, we assume that for s; and s, the two
realisations of S;, the distribution of NV conditional on ¢ € B and S; = s, dominates
the distribution of N conditional on ¢ € B and S; = s; in the sense of strict first
order stochastic dominance. The labelling of s; and s, is without loss of generality.

Proposition 3. Bidder ¢ has strict incentives to acquire secretly the additional in-
formation S;.

Proof. We start recalling that bidder #’s expected utility when she has a valuation v*,
enters the auction, and all the other bidders enter the auction if and only if v; > v*
(j # 1), equals (v* —7)E[F(v*)N~1|Inf] —e where 7 is the reserve price, e the entry fee,

12The analysis can also be extended to the case in which the bidders take the decision before the

auctioneer makes the announcement. In this case, we could argue that if the bidders forecast that
the auctioneer is going to announce a positive entry fee, they have strict incentives to acquire some
additional information.

Y Example 1 by McAfee and McMillan (1987) shows how to construct the active bidders selection
rule to assure that all the active bidders have the same beliefs about the number of active bidders.

13



and “Inf” is bidder #’s private information. Recall also that in an optimal auction
a bidder with valuation v* must be indifferent between entering the auction or not,
this is (v* —r)E[F(v*)N¥~1|i € B] —e = 0. Finally, a consequence of strict first order
stochastic dominance is that E[F(v*)N~"1|i € B,S; = s3] < E[F(v*)N~1}i € B] <
E[F(v*)N-1i € B,S; = s;]. Therefore, (v* — r)E[F(v*)N1)i € B,S; = 5] —e <
0 < (v* =7r)E[F(v*)N~1i € B,S; = s;] —e. This is, if bidder 7 acquires signal S; and
enter the auction with a valuation v* (or close to v* by continuity), she gets strictly
negative expected utility if S; = s;, and strictly positive expected utility if S; = s;.
Thus, bidder ¢ can strictly improve by acquiring secretly the signal S; and revising
his entry strategy when her valuation equals v* (or it is close to v*): not entering
the auction if S; = sp and entering if S; = s;. |

If at least one bidder acquires secretly her corresponding signal S; the conditions
of Proposition 2 do not hold. Thus, we can figure out that that even if the conditions
of Proposition 2 are satisfied, if the cost of information acquisition is sufficiently low,
entry fees cannot be optimal.

5 The Auctioneer Has Private Information

In this section we assume that the auctioneer privately observes a signal Sp infor-
mative of the number of active bidders and of the bidders’ hierarchies of beliefs
associated, this is of B and the S;’s signals. The signal Sy was already introduced
in Section 2.

Private information allows the auctioneer to make entry fees optimal even if
the conditions of Proposition 2 are not satisfied. There are two ways by which a
privately informed auctioneer can make entry fees optimal. First, by (partially)
revealing his private information the auctioneer can eliminate the heterogeneity of
active bidders’ beliefs in the sense of Proposition 2. Second, the auctioneer will have
more information to compute the optimal entry fee.

To restate the necessary conditions of Proposition 2, we need to formalise infor-
mation revelation. We introduce an independent random variable Z with uniform
distribution function on [0,1]. Then, we model the information that the auctioneer
reveals with what we call reporting functions. These are functions II that assign
to each realisation of Sy and Z a value 7 that we call a report.! We assume that
this function and its realisations are common knowledge. Note that such reporting
functions allow for pooling of information and for noisy revelation of information,
or even no information revelation.

We also make the perfect Bayesian equilibrium assumption that bidders learn
the information on which the auctioneer conditions his auction rules. For instance,
if the auctioneer chooses a given entry fee e if and only if he observes a given
realisation of his private information Sy = sg, the bidders will learn that Sy = sg
upon observing e.!” This is equivalent to say that the auctioneer can condition his

" These functions has also been used by Milgrom and Weber (1982).
More precisely, we think of a two stage game. In a first stage, the auctioneer makes an an-
nouncement of his auction mechanism contingent on his private information (and possibly he also
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auction mechanism only on the information that he conveys, i.e. on the realisations
of his report function.

Proposition 4. Given a reporting function 11, an auctioneer can implement the
optimal auction conditional on a realisation 7 in the support of I, only if:

(a) “Active bidders have conditional homogeneous beliefs” in the sense that for all
i,j €8,

E[F (NS, i € B,I(So, Z) = @] = E[F(v*)N!|S;, j € B, 11(So, Z) = 7], a.s.

(b) “The auctioneer knows the common conditional beliefs of the active bidders”
in the sense that there exists a constant k such that for all i € B,

E[F(v)N7YS;,i € B,1I(So, Z) = 7] = k, a.s.

Proof. The above conditions are the necessary conditions in Proposition 2 condi-
tional on the information revealed by the report function. |

Corollary 2. The auctioneer can find optimal to fix an entry fee for some realisa-
tions of his private signal only if there exists a reporting function that verifies the
conditions of Proposition 4.

Although the fact that the auctioneer has some private information makes more
feasible that the he can implement the optimum with an entry fee, the conditions
are still quite restrictive. Note that only if the auctioneer’s information can vanish
the active bidders’ heterogeneity in the sense of the proposition, entry fees can be
optimal. A natural example where the conditions of Proposition 4 hold is when the
auctioneer knows the number of active bidders. Example 5.1 illustrates a simple
case in which the conditions of Proposition 4 are not satisfied.

Moreover, the above conditions are sufficient for entry fees appropriately chosen
to be optimal only if the auctioneer has full commitment power. This commitment
refers not only to the mechanism rules, as in the standard set-up, but also to the
veracity of the information that the auctioneer conveys, i.e. to the report function.
Example 5.2 shows that the auctioneer can have incentives to mislead the bidders
by revealing false information.

5.1 An Example with Conditional Heterogeneity among Bidders

We consider a similar case to the example in sub-section 3.1. We assume that active
bidders do not receive any private signal S;. The source of heterogeneity are the
asymmetries among bidders. We assume that there are two groups of bidders G

reveals part of his private information). In a second stage, the bidders observe the auction mecha-
nism announced by the auctioneer and take the bidding decisions. The perfect Bayesian equilibrium
restrictions imply that the bidders update their beliefs in a consistent way with the auctioneer’s
map from his private information to the set of auction mechanisms along the equilibrium path.
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and Go, each with N7 and No potential bidders respectively. All the bidders in
the first group are always active, whereas all the bidders in the second group are
simultaneously active with a probability p € (0,1), and simultaneously inactive with
probability 1 — p.

Figure 2 shows that the distribution of N conditional on bidder ¢ € G5 active
(N|G3) dominates the distribution of N conditional on bidder j € G active (N|G1)
in the sense of strict first-order stochastic dominance. The difference is that whereas
bidders of group G2 know the number of active bidders to be N; + No when they
are active, bidders of group 1 do not know whether the bidders of G2 are active,
and then N = Nj + Ny, or the bidders of G are not active and then N = N;. This
implies that condition (ii) of Proposition 2 is not satisfied, and hence, entry fees
cannot be optimal.

Pr

Figure 2: Distribution functions of N conditional on a bidder of group G; active
(N|G1) and conditional on a bidder of group Go active (N|Gz).

Bidders in the second group always know (when they are active) the number
of active bidders. Hence, if bidders in the first group have some uncertainty about
whether bidders in the second group are active or not, condition (a) in Proposition 4
cannot be satisfied. This means that there are only two ways by which the necessary
conditions of Proposition 4 can be satisfied. The first one is when the auctioneer
knows when bidders of G2 are active. Then, if bidders G are active, the auctioneer
can convey this information to the bidders and eliminate the heterogeneity in the
sense of Proposition 4. The other case is when the auctioneer knows when bidders
of GGy are inactive. Then, if bidders G, are inactive the auctioneer knows that all
the active bidders hold the same beliefs about the number of active bidders. He can
convey this information to the bidders so that condition (a) is satisfied and compute
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the active bidders beliefs in the sense of condition (b). Hence, entry fees can be
optimal only if the auctioneer has very precise information about the number of
active bidders.

5.2 Auctioneer Incentives to Reveal False Information

Proposition 4 states necessary conditions for entry fees to be optimal. It is easy to
show that these conditions are sufficient if the auctioneer’s announcements of his
private information are credible, i.e. if the auctioneer can commit to a given report
function. Note, however, that the information revealed by the auctioneer affects the
bidders’ behaviour. And hence, the auctioneer could have incentives to mislead the
bidders with false information.

We illustrate with a simple example that entry fees can be sub-optimal even if
the conditions of Proposition 4 are met. The reason is that it could be that the
auctioneer has no way of conveying credibly his private information.

We assume that there are two potential bidders, bidder 1 and bidder 2. Each
of them is active with an independent probability, say p1 and ps respectively, where
p1 # p2. Moreover, suppose they do not receive any private signal S;. We also
assume that the auctioneer knows the number of active bidders, i.e. So = N. If the
auctioneer cannot convey his private information, condition (a) of Proposition 4 im-
plies that entry fees are sub-optimal. However, if the auctioneer reports the number
of active bidders, this is uses a reporting function II(Sy, Z) = Sy, the conditions of
Proposition 4 are satisfied.

We consider the case in which the auctioneer reveals the number of active bidders.
We shall show that:

Lemma 1. Suppose that the bidders think that the auctioneer reports truthfully.
Suppose also that the auctioneer use a positive entry fee when he announces that
there is one bidder active. Then, the auctioneer increases his expected payoffs if
he announces that there is one bidder active when in reality there are two bidders
active.

Proof. For the sake of simplicity we restrict the proof to the case in which the
auctioneer uses a second price auction and he can only choose the reserve price and
the entry fee. If bidders belief his announcement of the number of active bidders,
the optimal auction can be implemented with a combination of reserve price and
entry fee (ry,ep), where n is the announced number of active bidders, only if they
satisfy (see, for instance the arguments in the proof of Proposition 2):

(v* — Tn)F(v*)n_l —e, =0, forn=1,2. (2)

In this case, it is an equilibrium for each active bidder to enter the auction if
and only if her type is greater than v*, in both cases: when the auctioneer reports
one active bidder and the combination of reserve price and entry fee is (71, e1), and
when the auctioneer reports two active bidders and the combination of reserve price
and entry fee is (72, e3).
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Consequently, the auctioneer’s expected revenue when there are two active bid-
ders equals:

1
2/ v(l = F(v))f(v)dv+2(1 — F"))(r F(v*) +ey), for n=1,2,
o
if the auctioneer reports that there is one active bidder and announces (e, 1), or if
he reports that there are two active bidders and announces (eg,r2).

The first term is the expected revenue from the bids. This is the expected
value of the second highest valuation conditional on being greater than v* times the
probability that the second highest valuation is greater than v*. The second term is
the expected revenue from the reserve price and the entry fee. The probability that
only one bidder has valuation above v* times the reserve price plus the probability
that a bidder enters the auction by the number of bidders, two, times the entry fee.

Note that from equation (2), F(v*)ra + ea = F(v*)v* = F(v*)v* + F(v*)e; <
F(v*)v* + e1, hence r1 F(v*) + e; > r2F(v*) 4+ ea when e; > 0. This means that
the auctioneer gets strictly higher revenue reporting that there is only one active
bidder and announcing (71, e1) than reporting that there are two active bidders and
announcing (r2, es), when there are two active bidders and e; > 0. [ |

The intuition is clear. Bidders are less willing to pay an entry fee if they expect
to meet much competition in the auction. Hence, the auctioneer has incentives to
mislead the bidders making them believe that there will face less competition than
they will do.

6 Concluding Remarks

In this paper we have shown that when there is uncertainty about the number of
bidders the auctioneer can achieve his maximum expected utility with an appropriate
auction (e.g. a second price auction) with a reserve price. We have also shown that
entry fees are, however, sub-optimal mainly due to two reasons: heterogeneity in
bidder’s beliefs about the number of active bidders; and, auctioneer’s uncertainty
about the bidders’ beliefs and hence, the optimal entry fee, if any. Under these two
conditions, an entry fee will act distorting the entry with respect to the bidders’
entry decisions when the auction only has an optimal reserve price.

The problem of uncertainty about the number of bidders seems to be crucial in
real life auctions. We have provided a quite general model to analyse exogenous
uncertainty, however it is still missing a general model that considers not only ex-
ogenous uncertainty but also endogenous uncertainty. Models in which endogenous
uncertainty about the number of bidders play an important role as Levin and Smith
(1994) restrict to the case in which all bidders are symmetric, and hence hold ho-
mogenous beliefs. We have shown in this paper that this restriction can play an
important role.

18



References

Cassapy, R. (1967): Auctions and Auctioneering. University of California Press,
Berkeley and Los Angeles, California.

CREMER, J., axD R. P. McCLEAN (1988): “Full Extraction of Surplus in Bayesian
and Dominant Strategy Auctions,” Econometrica, 56(6), 1247-1257.

ENGELBRECHT-WIGGANS, R. (1993): “Optimal Auctions Revisited,” Games and
Economic Bahaviour, 5, 227-239.

LEvIN, D., axp J. L. SmMITH (1994): “Equilibrium in Auctions with Entry,” The
American Economic Review, 84(3), 585-599.

MaskiN, E., axp J. RiLEY (2000): “Asymmetric Auctions,” The Review of Eco-
nomic Studies, Forthcoming.

McAFEE, R. P., axp J. MCMILLAN (1987): “Auctions with a Stochastic Number
of Bidders,” Journal of Economic Theory, 43, 1-19.

MERTENS, J. F., aAxD S. ZAMIR (1985): “Formulation of Bayesian Analysis for
Games with Incomplete Information,” International Journal of Game Theory, 10,

619-632.

MiLGrom, P.; axp R. WEBER (1982): “A Theory of Auctions an Competitive
Bidding,” Econometrica, 50, 1089-1122.

MYERSON, R. B. (1981): “Optimal Auctions Design,” Mathematics of Operation
Research, 6(1), 58-73.

WAEHRER, K., R. M. HARSTAD, axD M. H. ROTHKOPF (1998): “Auction Form
Preferences of Risk-Averse Takers,” Rand Journal of Economics, 29(1), 179-192.

19



