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COMPETITION AMONG AUCTIONEERS

Angel Hernando-Veciana

ABSTRACT

In this paper, we analyse a multistage game of competition among auctioneers. In a first
stage, auctioneers commit to some publicly announced reserve prices, and in a second stage,
bidders choose to participate in one of the auctions. We prove existence of Nash equilibria in
mixed strategies for the whole game. We also show that one property of the equilibrium set is
that when the numbers of auctioneers and bidders tend to infinity, almost all auctioneers with
production cost low enough to trade announce a reserve price equal to their production costs. Our
paper confirms previous results for some "limit" versions of the model by McAfee [9], Peters
[13], and Peters and Severinov [18].
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1 Introduction

In this paper, we study a multistage game of competition among auctioneers. In the
first stage auctioneers compete for a common pool of bidders by means of credible
announcements of the minimum price accepted in a second price auction. In a second
stage, that we call the entry game, each bidder chooses an auction, if any, to participate.
Finally, in the last stage, each of the announced auctions takes place among all those
bidders that have chosen it. This time structure was originally suggested by McAfee
[9] in his pioneer work on competition among auctioneers.

We provide two results in this model. First, we prove that there always exists an
equilibrium of the whole game. Second, we show that almost all the auctioneers with
types low enough to trade announce a reserve price equal to their respective produc-
tion costs with probability arbitrary close to one in equilibrium when the numbers of
auctioneers and bidders go to infinity.

Existence of an equilibrium is not at all obvious in this game. The reason is that
there are no standard existence theorems for multistage games. Instead, we proceed
analysing the game backwards. We shall show that the last stage, each of the games
generated by the auctions, has a natural equilibrium. We assume this equilibrium and
then characterise the equilibrium of the entry game. We shall show that the equilibrium
of the entry game is unique among the equilibria in which all the bidders use the same
entry strategy, i.e. among the symmetric equilibria. Moreover, this equilibrium changes
continuously with respect to the vector of reserve prices announced by the auctioneers.

The above two points make straightforward the proof of existence of an equilibrium
in the whole game. Uniqueness means that we can define in an obvious way the reduced
game of competition among auctioneers: evaluating the auctioneers’ payoff functions
at the unique symmetric equilibrium of the entry game. Continuity assures that the
auctioneers’ payoff functions of the reduced game are continuous. Hence, we can
apply standard theorems to prove existence of an equilibrium in the reduced game of
competition among auctioneers. Our characterisation of the solution of the entry game
also provides a tractable way of computing the limit payoffs in the reduced game of
competition among auctioneers. We use these limit payoffs to prove our convergence
result.

The intuition of our limit result is better understood considering first the single
auctioneer case. Myerson [11] shows that in this case it is optimal for the auctioneer to
fix a reserve price above his production cost with generality. This strategy has a cost
because it means that the auctioneer does not trade with bidders that have valuations
between the auctioneer’s production cost and the reserve price. These losses are,
however, more than offset by the increase in the price that bidders with valuation
above the reserve price pay.

Two features of our model explain why this result does not hold when the numbers
of auctioneers and bidders go to infinity. The first one is that the unique equilibrium
of the entry game is such that bidders expect to pay the same price conditional on
winning in all the auctions which they enter. The second one is that changes in a
single reserve price have a negligible effect on the price that bidders expect to pay in
the other auctions when the numbers of auctioneers and bidders approach to infinity.



Hence, when an auctioneer increases his reserve price the effect on the expected
price that the bidders with valuation above the reserve price pay conditional on winning
should vanish as the market increases to the limit. This means that the positive effect of
increasing the reserve price above the production cost disappears in the limit. However,
the negative effect of losing profitable trades still remains. Hence, the auctioneer does
not have incentives to distort trade by announcing reserve prices above his production
cost in the limit.

Note, however, that when there is a finite number of auctioneers and bidders the
auctioneer can still have incentives to increase the reserve price above his production
cost. In this case, an increase of the reserve price means that some bidders move to
other auctions and, hence, it increases the expected price in these other auctions. This
increase in the level of expected prices in the other auctions implies that in equilibrium
our auctioneer’s expected price must also increase. This explains why auctioneers can
find profitable to fix a reserve price above the production cost.

Burguet and Sakovics [6] have shown that this is the case when there are only
two auctioneers. Consequently, our result implies that this monopolistic distortion
vanishes as the numbers of auctioneers and bidders tend to infinity. Note that Burguet
and Sdkovics also prove existence of an equilibrium in the whole game when there are
only two auctioneers. Our proof supersedes their proof since we allow for more than
two auctioneers.

Our limit result is aligned with those by McAfee [9], Peters [13], and Peters and
Severinov [18]. They show that in a game of competition among auctioneers similar to
ours but with infinite numbers of auctioneers and bidders assumptions,' there exist an
equilibrium in which each auctioneer always fixes a reserve price equal to his production
cost. But, there are two differences with respect to our model. First, our result is based
on the convergence properties of the equilibrium set when the numbers of auctioneers
and bidders tend to infinity. Whereas, these other papers study an equilibrium of limit
games defined under the assumption that the numbers of auctioneers and bidders are
infinite.

Second, we provide a kind of uniqueness equilibrium prediction. We show that
the limit of the set of equilibria characterises uniquely the outcome of the game up
to a negligible fraction of auctioneers. In these other papers, only existence results
are provided. One exception is the paper by Peters and Severinov [18]. They also
provide uniqueness results although they limit to equilibria in which all the auctioneers
announce the same reserve price. Our uniqueness result consider equilibria in which
different auctioneers announce different reserve prices.

Peters [15, 16] also looks to related models under some infinite number of agents
assumptions. The first of the papers deals with the private value assumption with
correlated types, and the second with the common value assumption. Our model only
covers the private value assumption with independent types.

'McAfee [9] does not exactly assume that the numbers of auctioneers and bidders are infinite.
Instead, McAfee assumes that an auctioneer does not take into account that when he changes his
mechanism, the expected utility that bidders can get in other auction mechanisms changes. McAfee
justifies this assumption conjecturing that it should be true in the limit with infinite number of auc-
tioneers and bidders. We say in this sense that this is an infinite number of agents assumption.



All these papers study limit games, the problem is whether the equilibrium of the
limit game approximates the equilibrium of the finite game for large enough numbers
of auctioneers and bidders or not. Our paper shows that the answer to this question is
yes. Note that this answer is quite important since a negative answer will mean that
the analysis of the limit game would make much less sense.

The closest of these papers to our model is [18]. As they explain, their analysis
implies that if there exists a Nash equilibrium in which all the auctioneers announce the
same reserve price for large numbers of auctioneers and bidders, then this equilibrium
should be close to the limit equilibrium that they propose. Nevertheless, even if we
assume that all the auctioneers are identical as Peters and Severinov do, we can show
that there exists no such Nash equilibrium for finite numbers of auctioneers and bidders
with generality.

Another value added of our paper is that we are able to characterise the entry game
through a set of equations and to prove using these equations that the solution of the
entry game is well behaved in some sense. A similar analysis has been provided by
Peters and Severinov [18] and Burguet and Sakovics [6], but in both cases the result
limits to cases in which there are no more than two different reserve prices announced
by the auctioneers. In fact, the complexities of the analysis of the entry game arise
when we allow for more than two different reserve prices.

The importance of the former contribution is that the understanding of such entry
games is the first step towards the analysis of models of decentralised trade in which
there is heterogeneity in both market sides. This kind of models have presented severe
difficulties in similar set-ups to ours. This is for instance the case of the model of price
competition of Peters [17], or the model of contract competition of Peters [14]. In both
cases, the complexity of the associated entry game has forced to allow for heterogeneity
in one side of the market at most. Hopefully, our analysis can give new insights for
such models.

>From a related perspective, it is interesting to remark that our model offers a
very natural way of studying decentralised trade. Each auctioneer announces a supply
curve for the only unit that he has. This supply curve is characterised by the reserve
price of a second price auction. The bids of the bidders that participate in each auction
form the demand curve for the only unit for sale. In this sense, we can say that each
of the auctions constitutes a local market in which the auctioneer’s supply curve is
crossed with the bidders’ demand curve to determine the associated price.

One of the features of the second price auction is that to announce the true value
of the good is an equilibrium strategy for the bidders, i.e. to announce their true
demand. Moreover, we show in this paper that as the numbers of auctioneers and
bidders go to infinity, the fraction of auctioneers with production cost low enough to
trade that announce a reserve price different to their production cost tends to zero,
i.e. in the limit almost all relevant auctioneers announce their true supply curve. This
means that in the limit almost all the relevant local markets converge to a competitive
outcome.

Another interesting question is whether the global market, this is the market of
all the auctioneers and bidders, converges to a competitive outcome or not. In this
sense, we can say that the global market is not competitive in two senses. The first



one is that the price does not converge to a competitive price. The price in each of
the auctions is a random variable that it is not only determined by the global demand
and supply curves but also by the random entry strategy of bidders. The second is
that the allocations are not competitive. Since the equilibrium involves all the bidders
randomising entry it could happen that some auctions do not receive any bidder, even
if they have a relatively low production cost. Moreover, it could also be that some
other auctions receive several high valuation bidders. Then, only one of the bidders
wins the auction whereas the others are rationed.?

It is interesting to consider the source of this non competitive result contrasting with
two other types of model of competition. Consider first models that study centralised
institutions of trade with the structure of an auction. This is for instance the case
of the paper by Satterthwaite and Williams [21], and the paper by Williams [25].
These authors have shown that the incentives to misrepresent the preferences in a
double auction disappear when the numbers of auctioneers and bidders tend to infinity.
Hence, we can infer that the frictions that preclude a competitive outcome are due to
our assumption that trade happens in a decentralised fashion.

Consider now models of Bertrand competition, and more precisely, under the as-
sumption that the sellers have capacity constraints as it is the case in our model in
which each auctioneer has only one unit. Recall that this is the variation suggested
by Edgewort. One characteristic of Bertrand-Edgeworth competition is that it does
not imply that the competitive price prevails in equilibrium with generality. Note that
Burguet and Sdkovics [6] have shown that in our model this is also true. On the other
hand, when the numbers of auctioneers and bidders tend to infinity, the market price
and the allocation converge respectively to the competitive price and the competitive
allocation with probability one, see the paper by Allen and Hellwig [1].

This perspective suggests that it is not only the decentralisation of trade what
explains the inefficiency of the type of competition that we propose. However, note that
the frictions of decentralised trade are usually minimised in the Bertrand-Edgeworth
set-up by the assumption that if a buyer is rationed by one seller she can turn to
other sellers. In fact, we can deduce from the analysis of Peters [17], and Burdett,
Shi and Wright [5] that once we introduce our assumption that buyers can attend to
no more than one buyer, the same inefliciencies as in our model arise in a model of
Bertrand-Edgeworth competition, even with an infinite number of buyers and sellers.

Finally, notice that our paper also relates to another branch of papers, those that
deal with mechanism design under common agency, see for instance Stole [23]. In these
papers, several principals design simultaneously an optimal mechanism for the same
agent. Although mechanism design is a more general set-up that includes auctions, in
order to allow for such generality these models only consider one single agent. Our
model differs in that we allow for more than one agent, this is we allow for more than
one bidder.

We start with a description of the model in Section 2. In order to solve the game
we proceed backwards. In Section 3, we solve the second stage, the entry game. We

2These inefficiencies in the global market have been already pointed out by Peters [13] for a limit
version of our model with infinite numbers of auctioneers and bidders.



use the solution of the entry game to compute the reduced game of competition of
auctioneers. We study this reduced game in Section 4. Section 5 provides the limit
results of our model. Section 6 concludes. We also provide an Appendix with one
proof of Section 3 and the main proofs of Section 5.

2 The Model

There are J € N auctioneers and £J € N bidders. We shall later consider the limit
J — 0o. When doing this, we shall keep the ratio & > 0 of bidders to auctioneers fixed.

Each auctioneer has the ability to produce a single indivisible unit of output. We
assume that each auctioneer j observers his own production cost w; before the be-
ginning of the game, whereas the other auctioneers (and bidders) only know that it is
drawn independently from the set [0, 1] according to a probability distribution function
H which is the same for all auctioneers.

Each bidder wishes to purchase exactly one unit of the commodity. Each bidder ¢
observes her reservation prices x; privately before the beginning of the game. All other
players only know that reservation prices are independently drawn from the set [0, 1]
according to the same distribution function F with a density® f and support? [0, 1].

If an auctioneer j with production cost w; trades with a bidder ¢ with type x; at
a price p, they are assumed to obtain a von Neumann Morgenstern utility of p —w;
and of x; — p respectively. In the case that there is no trade, both the auctioneer and
the bidder get a von Neumann Morgenstern utility of 0. Notice that this assumption
implies that the production occurs, and production costs are incurred, only once a
trade has been agreed. The production cost could also be seen as an opportunity cost.

We consider a three stage game. In the first stage, each auctioneer announces
an auction rule. For most of the paper we assume that auctioneers can only choose
second price auctions without entry fees. Their only choice variable is the reserve price
in their auction. Auctioneers make these choices simultaneously. Once each auctioneer
has chosen his reserve price the choices are made public.

In the second stage, that we call the entry game, each bidder can either pick one and
only one auction® in which she wants to participate, or she can choose to participate

3Note that we are imposing more structure to the distribution function of the bidders’ types than to
the distribution function of the auctioneers’ types. More precisely we assume that [’ has a density and
a convex support. We introduce these assumptions to simplify the auctioneers’ payoff function that
the corresponding bidding game induces. Note also that if F' has no density, the revenue equivalence
between the first price auction and the second price auction is not assured, even in the single auctioneer
case. Hence, the results that we claim in the Subsection 3.1 could not hold.

1The assumption that the support of F' equals [0,1] implies that we do not consider situations in
which the production cost of an auctioneer is below the minimum valuation of the bidders. We believe
that our model could be extended to cover this case. The only required modification would be that
in the limit, as J tends to infinity, auctioneers with production costs below the lower bound of the
support of F' would set reserve prices between their production costs and this lower bound, rather
than equal to their production costs. This fact has already been mentioned by Peters [13].

®We believe that our results could be easily extended to the case in which bidders can participate
in more than one auction under the following additional assumptions. Each bidder has a constant
marginal utility for a finite number of units and zero for additional units. The number of units from
which the bidder obtains strictly positive utility is a finite number greater than the maximum number



in no auction. In the final stage those bidders who have chosen to participate in some
particular auction make their bids in that auction.

Notice that it is a weakly dominant strategy in the final stage to bid one’s true
value. This is independent of the number of other bidders in the auction. Therefore, it
is unimportant whether the outcome of the second stage is observed before the third
stage begins.

The most obvious restrictive assumption in our model is that auctioneers can only
choose second price auctions without entry fees. We make that assumption for sim-
plicity. However, we shall show later that our results extend to the case in which
auctioneers cannot only choose second price auctions but also first price auctions.
Note that in this case it might matter whether the outcome of the second stage is
observable or not. This is because optimal bidding behaviour in a first price auction
depends on the number of other bidders participating in that auction. Hence, we shall
also consider that each auctioneer can choose whether the number of bidders in his
auction becomes common knowledge before the third stage begins or not. We shall
explain why the main results which we show for the basic version of our model also
hold for this extended version.

Obviously, it would be desirable to analyse a model in which the auctioneers’
strategy space is even larger. For example, one would like to allow the auctioneers
to announce other standard auctions which treat all bidders symmetrically, such as
all pay auctions, or second price auctions with entry fees, for instance as McAfee [9]
and Peters [13] do. In addition, one could allow auctioneers to choose auctions which
treat bidders asymmetrically, for example by allowing only some but not all bidders to
participate. Finally, it is potentially important to consider mechanisms which condition
on the mechanism choice by other auctioneers, for example by including rules which
are similar to “price matching clauses”, see for instance Epstein and Peters [7]. We do
not know whether our results extend to the case in which auctioneers are allowed to
choose from these more general classes of mechanisms.

The reason why it is easy to introduce first price auctions into the auctioneers’
strategy space, but difficult to extend the strategy space further, is somewhat subtle.
If a second price auction with reserve price is replaced by a first price auction with
the same reserve price, then the equilibrium entry pattern and allocation rule remain
unchanged.® Therefore, by the revenue equivalence theorem, the auctioneer’s expected
revenue stays the same. Now suppose that we allowed the auctioneers to choose in
addition second price auctions with entry fees. We could still find an entry fee which
generates the same entry pattern and allocation rule as a second price auction with
reserve price, and hence yields the same expected revenue by the revenue equivalence
theorem. However, the appropriate entry fee would now depend on the choices of all

of auctions that the bidder can enter. Under these assumptions it is still true that it is weakly dominant
for the bidder to bid her true value of the good. If these assumptions are not met then there is no
straightforward solution for the bidding game, and hence, we cannot extend easily our analysis.

STf auctioneers offer symmetric mechanisms, we shall restrict attention to symmetric equilibria of
the entry game and of the bidding stage. If we allowed asymmetric equilibria in either of these two
stages, the revenue equivalence theorem would not even allow us to generalise our analysis to first
price auctions.



other auctioneers. As soon as there is uncertainty about the other auctioneer’s choices,
for example because of private information about their production costs, we cannot rule
out that an auction with entry fee yields higher expected revenue than an auction with
reserve price, and thus that the choices which constitute equilibria in the restricted
strategy space are no longer equilibria in the extended strategy space. Obviously,
asymmetric auctions might generate asymmetric entry patterns or allocation rules,
and hence the revenue equivalence theorem does not apply, and we cannot be certain
of any relation between the equilibria which we identify here, and the equilibria of a
game in which auctioneers are allowed to choose asymmetric auctions.

The fact that we assume that the bidders know their own type at zero cost is also
restrictive. With this assumption we disregard situations in which information acquisi-
tion is an issue. In a more general model we could distinguish two kinds of information
acquisition costs: those due to an external information acquisition technology, and
those which the auctioneer can influence. Peters and Severinov [18] analyse a model of
competition among auctioneers in which they allow for the latter type of information
acquisition cost.

Our assumption that types are known from the beginning of the game implies that
each bidder can condition her entry decision on her type. The fact that these types are
privately known implies that the entry game is a game of incomplete information. The
same entry game has been studied previously under the assumption that it is common
knowledge that bidders are identical at the stage of choosing an auction (Peters and
Severinov [18]).

We study the game using backward induction. Since we have restricted the selling
mechanisms that can be used in the third stage game to second price auctions, the
solution of this game is trivial. We assume that bidders play the unique weakly dom-
inant strategy, to bid their true value. Hence, in equilibrium the bidder with highest
valuation among those that have entered the auction and bid above the auctioneers’
reserve price, wins the auction and pays a price equal to the maximum of the second
highest valuation and the reserve price announced by the auctioneer. This fully de-
termines the bidders’ expected utility of participating in an auction given the entry
decisions of the other bidders. With these bidders’ payoffs we can define the reduced
game that bidders play in the second stage, the entry game. We solve this game in the
next section.

3 The Entry Game

In this section we study the second stage game. In this game, bidders choose the
auction that they will attend, if any, after observing the auctioneers’ announced reserve
prices. We shall show that this game has a unique symmetric Nash equilibrium and
that this equilibrium is continuous in the auctioneers’ reserve prices. We shall use
the first result to define the reduced game that the auctioneers play in the first stage
in a straightforward manner and the second result will assure the continuity of the
auctioneers’ payoffs in this auctioneers’ game. We shall also characterise the symmetric
equilibrium of the entry game in a way which facilitates the proof of the convergence



result in Section 5.

Bidders take their entry decision conditioning on the vector of reserve prices an-
nounced by the auctioneers, ¥ € [0,1]”, and on their private types. For notational
convenience we shall assume that the elements of the vector of reserve prices are or-
dered increasingly. The expected utility of entering an auction given the entry decisions
of the other bidders are computed assuming that the bidders bid the true value of the
good. We restrict attention to equilibria in which all the bidders play the same entry
strategy, possibly mixed. This means that two bidders with the same type assign in
equilibrium the same probability of entering to a given auction.

Although the restriction to symmetric equilibrium is a standard practice, it is
clearly restrictive in this game. To understand these restrictions it is useful to consider
the following example. Assume that there are two second price auctions with no reserve
price and two bidders both with the same valuation x > 0. It is trivial to show that
this game has three Nash equilibria: a symmetric equilibrium in which each bidder
enters each of the auctions with the same probability, and two asymmetric equilibria
in which each bidder enters a different auction.

This example shows in particular that the symmetric equilibria of the entry game
may be Pareto dominated by the asymmetric equilibria.” On the other hand, the
asymmetric equilibria seem to require that bidders co-ordinate their entry behaviour.
Therefore, by restricting attention to the symmetric equilibria of the entry game we
are implicitly assuming that frictions prevent bidders from co-ordinating their entry
decisions. This is probably a reasonable assumption for many markets, mainly those
in which the numbers of auctions and bidders are large. This assumption has also been
made in other papers like those by McAfee [9], Peters and Severinov [18], and Peters
[13] that have studied similar models of competition among auctioneers.

We characterise the (possibly random) entry decision of the bidders with a function
7 :[0,1] x [0,1]7 — [0,1]7. This function gives a vector of probabilities of entering
each of the auctions 7 (x; 7) for a bidder with type x given the announcement of reserve
prices 7. We denote the j-th component of this vector by 7;(«,7). Define the set E; to
be the closure of the interior of the set {x : m;(x,7) > 0}. Moreover, define the cut-off
valuation for a given auction j to be equal to y; = min{x : « € E;}. Then:

Lemma 1. A symmetric Nash equilibrium of the entry game must satisfy for all auc-
tions j,1:

(a) Ej = [y;,1].
(b) If r; > rj, then y; > y; and if 1 = rj, then y; = y;.

(¢c) If rp > rj. then for almost all x >y, wj(x,7) = m(x, 7).

Proof. See [13, Lemma 2]. [ |

"Peters [13] provide examples of other asymmetric equilibria when there are many bidders with
different types and many auctioneers announcing different reserve prices.



In the following, we shall call strategies of the type described in Lemma 1 “cut-off
strategies”. Lemma 1 thus says that any symmetric Nash equilibrium of the entry
game must be an equilibrium in cut-off strategies. One surprising feature of cut-off
strategies is that bidders who enter several auctions with positive probability always
randomise uniformly among these auctions. We shall provide some intuition for this
feature, later, following Lemma 3.

Our next goal is to derive necessary and sufficient conditions for cut-off strategies
to constitute an equilibrium. We begin with the following lemma:

Lemma 2. If all the bidders play the same cut-off strateqy, the probability that a bidder
with type x > y;,y; wins if she enters auction j is the same as the probability that this
bidder wins if she enters auction .

Proof. A bidder with type = can win in equilibrium a given auction if and only if each
of the other bidders either has a valuation below x, or enters any of the other auctions.
The first condition is trivially the same in auction ! and in auction j. The second
condition holds with the same probability for both auctions given that each bidder
randomises uniformly among all the auctions that she enters. |

Now recall the following standard result:

Lemma 3. The expected utility of a bidder with type x in a second price auction is a
continuous conver function (of x) which is almost everywhere differentiable with first
derivative equal to the probability of winning that auction for a bidder with type x.

Proof. See [11] and also [13, Lemma 1]. [ |

Suppose that all the bidders play the same cut-off strategies. Then, the last two
lemmas imply that if a bidder with a type & > y;,y; is indifferent between auction
j and auction [, she will also be indifferent between auction j and auction [ for all
types above x. This result depends on the bidders randomising uniformly among
all the auctions that they attend. Otherwise, both the probability of winning and
the expected utility will differ in auction [ and auction j. This also explains why
in equilibrium if bidders randomise among the auctions that they attend, they must
randomise uniformly. Otherwise, bidders will have incentives to deviate.

The above paragraph suggests a way in which the task of checking whether a given
cut-off strategy constitutes a symmetric Nash equilibrium can be simplified. One of the
conditions which one needs to check for this is that bidders who enter different auctions
with positive probability are indifferent between these auctions. The above paragraph
indicates that it is sufficient to check this condition for the smallest type which enters
two auctions, and that then all bidders with higher type will automatically also be
indifferent.

Typically, the smallest type which enters two auctions with positive probability
will be a cut-off point. In fact, we shall show in the next Lemma that necessary and
sufficient conditions for a cut-off strategy to constitute a symmetric Nash equilibrium
can be constructed which refer only to the incentives of bidders with cut-off types.
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Our conditions will compare the expected price paid by a bidder with a type equal to
an arbitrary cut-off y; conditional on winning in auction j with the same conditional
expected price in auction j — 1. Given that Lemma 2 says that the probability of
winning is the same in both auctions we are in fact comparing the expected utility of
entering auction j and auction j — 1.

In order to formalise these conditions we first introduce a function W¥,_;, where
U,_1(x,yj-1,Yj,---»ys) is the expected price paid by a bidder with type x conditional on
winning auction j — 1, and given that all the other bidders play some cut-off strategies
represented by ¥1,...,y7. Note that we only allow W¥;_; to depend on the cut-offs
Yj—1,.--,Ys. The reason is that changes in the other cut-offs do not affect entry in
auction j — 1 and hence, do not affect the expected price in that auction. We shall
restrict the domain of ¥;_1 tox >y, y; > foralll > j—1, andyj—1 <y; < ... <
yg. Other values do not make sense in an equilibrium in cut-off strategies.

In the following Lemma, the first condition has an obvious meaning. Point (ii) says
that a bidder ¢ with type x; = y; is indifferent between auction j and auction j — 1 if
y; < 1. Recall, that y; is the minimum type that enters auction j. Hence, a bidder
with type y; only wins auction j if no other bidder enters auction j and then she pays
rj. Similarly, point (iii) says that a bidder ¢ with type x; = y; weakly prefers auction
j — 1 to auction j if y; = 1 this is that bidder ¢ enters with zero probability auction j.

Lemma 4. A necessary and sufficient condition for a Nash equilibrium in cut-off
strategies is that each cut-off y; is greater than or equal to r; and satisfies that:

(i) If rj =1, then y; = r1.
(it) If rj #r1 and y; < 1, then rj = Vi1 (Y5, Yj—1,Yjs > YJ)-

(i11) If ry #r1 and y; = 1, then rj > Vi 1(Y;,Y5-1,Yjs --» YJ)-

Proof. We start by showing that our conditions are sufficient. Since we impose that
y; > r; for all j, all bidders who enter an auction get non-negative expected utility.
Hence they do not have incentives to stay out of the market. Point (i) guarantees that
the minimum type that participates in any auction is r1. Since bidders with types
below 71 cannot profitably trade in the market, point (i) assures that these types do
not have incentives to deviate and enter an auction. Hence, we only need to show that
points (ii), and (iii), imply that: (*) a bidder with a given type is indifferent among all
the auctions which she enters with positive probability conditional on her type; and
(**), a bidder with a given type does not gain from entering auctions which she does
not enter with positive probability conditional on her type.

By the definition of cut-off strategies (*) says that bidder ¢ with a type x; > y; (if
y; < 1) must be indifferent between all auctions ! such that [ < j. Point (ii) implies the
indifference of bidder 7 conditional on a type z; = y; between auction j and auction
j — 1. Lemma 2 and Lemma 3 thus say that bidder 7 with type x; > y; is indifferent
between auction j and auction j — 1. We can apply the same argument to show that
bidder i conditional on type x; > y; is indifferent between auction j — 1 and auction
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J — 2. Repeating this argument, we can show that bidder ¢ is indifferent among all the
auctions [ < j.

If we take account of the definition of cut-off strategies, condition ( says that
a bidder ¢ with type x; € [y;,y;) cannot improve by deviating and entering auction j.
This claim holds trivially if x; < r;. Consider the case x; > r;. If x; were equal to
y; and y; < 1 (the case y; = 1 is considered below), the expected utility of entering
auction j would be the same as the expected utility of entering auction [ because of
(*). Hence we only need to prove that the derivative of the expected utility of entering
auction [ with respect to the type is not larger than the derivative of the expected
utility of entering auction j with respect to the type for bidder ¢ with type x; <y;. If
bidder ¢ deviates and enters auction j, she cannot do better than bidding ;. In this
case, she only wins if no other bidder enters auction j, and then she pays the reserve
price r;. This implies that the derivative with respect to the type of the expected
utility that bidder ¢ can achieve in auction j equals the probability that no other
bidder enters auction j. According to Lemma 2 this probability equals the probability
that bidder ¢ wins auction [ if she had type x; = y;. On the other hand, Lemma 3
says that the derivative of the expected utility of entering auction [ is the probability
that bidder ¢ wins auction [ with her true type x;. Since this type is lower than y;, the
probability of winning is lower with this type. This proves that the derivatives verify
the required condition.

If y; = 1, then point (iii) implies that a bidder ¢ with type x; = y; weakly prefers
auction j — 1 to auction j. We can show as in the above paragraph that this implies
that bidder 7 with type x; = y; weakly prefers auction , for [ < j, to auction j. Hence,
we can repeat the argument above.

Finally, we show that the points (i)-(iii) are necessary. Point (i) is trivial. Suppose
that there is a cut-off y; < 1 (and r; # r1) for which (ii) does not hold, this is that
bidders with type y; strictly prefer entering auction j —1 to entering auction j. Then,
the continuity of the bidder’s expected utility in the bidder’s type, implied by Lemma
3, means that there must exist a non-empty interval of types [y;,y) that strictly prefer
entering auction j — 1 to entering auction j. Therefore, these types have incentives to
deviate. We can proceed symmetrically in the case that bidders with type y; (y; <1
and r; # 1) strictly prefer entering auction j to entering auction j — 1.

We prove that (iii) is necessary in a similar fashion. Suppose that bidders with
type y; = 1 strictly prefer entering auction j to auction j — 1. First, note that this
can only be if y;_1 <1, otherwise, types y; = 1 would prefer auction j — 1 because by
assumption 7j_1 < rj. Then, the continuity of the bidders’ expected utility guaranties
that there exists a set of types (y/,1], such that y > y;_1, that strictly prefer auction
j to auction j — 1. Again, these types would have incentives to deviate. |

**)

In order to solve the condition in Lemma 4 for the cut-offs, we first give an explicit
formula for ¥;_ and derive some of this function’s properties. We begin by introducing
the following notation. Consider a bidder ¢ who follows a cut-off strategy 7, and a type
x with x > y;. Let auction [ be the auction which has the highest index among all
auctions in which a bidder with type x participates with positive probability. Then
we denote by z(z;7) the probability that the bidder ¢ either does not submit a bid in
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auction [ or that she has a type below x. This probability is given by:

Fly) = F(@) <~ Flygrn) — Flyy)
ST O DT @

z(xym) =1—
g=I+1

where G (1) is the fraction of auctioneers that announce a reserve price equal or below
the I-th highest reserve price, and where® ;1 = 1.

We can now construct the conditional distribution function of the price paid by
bidder ¢ with type x conditional on winning in auction j — 1, supposing, of course, that
x > y;—1. If all bidders other than some bidder 7 follow the same cut-off strategy m,
then the probability that bidder i with type > y;_1 wins auction j —1 is z(z;7)*/ L.
This implies that for z # 0 and weakly above y;_;, and & € [y;_1,«] the probabil-
ity that the price in auction j — 1 is below & given that bidder ¢ with type = wins
auction j — 1 is 2(&,7)*/ =1 /z(x, m)*/~1. It also implies that the probability that no
other bidder enters auction j — 1 conditional on bidder ¢ winning that auction equals
2(yj—1, )" 71 /z(z,7)* L. In this last case bidder i pays the reserve price r;_i.

Denote by v;_1|, the conditional distribution function of the price paid by bidder 4
with type x # 0 conditional on winning in auction j — 1. Then we can summarise the
arguments in the preceding paragraph with the following formal description of vj_1|;:

o If & <rj 1, then v;_1|,(Z) =0.

3 \kJ—1
o Ifr; 1 <& <y; 1, then v 1],(%) = %
. N ~ \kJ—1
o If yj 1 <& <z, then vj_1|,(Z) = %
e Otherwise, v;_1[,(%) = 1.
Hence for x > y;_1:
'JFOO
U1 (2, Y51, Y55 - Y) =/ T dvj_1|2(%). (2)
—00

Using this formula, we can now obtain some useful properties of ¥;_;.

Lemma 5. The function V;_; is continuous in all its arquments, strictly increasing
in x, and in all cut-offs y;, Yj+1, ..., Y, and strictly decreasing in y;_1.

Proof. In order to prove the continuity of W;_; with respect to a parameter that
affects the distribution function v;_1|,(.) we only need to show that this distribution
function vj_1|4(.) changes continuously with respect to the parameter of interest in
all the points of continuity of the distribution function vj_1|(.) [4, Theorem 25.8, p.
335]. The continuity of this distribution function in these parameters follows from the
continuity of F.

®Note that the formula which we have given has on the right hand side one minus the probability
of the event which is complementary to the event described in the text.
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We prove that W;_; is monotonic with respect to the parameters by showing that
changes in the parameters produce shifts of the distribution function v;_1|;(.) in the
sense of first order stochastic dominance. It is easy to see that a decrease in y;_1 or
an increase in x shifts the distribution function v;_1|,(.) in the sense of first order
stochastic dominance downwards. An increase in y; for [ > j — 1 decreases the ratio
2(&;m)/z(x; ), as one can verify through differentiation, and hence it also shifts the
distribution function v;j_1|4(.) in the sense of first order stochastic dominance down-
wards. |

It seems worthwhile to explain the intuition behind the monotonic properties in
Lemma 5. That W;_; is increasing in x is self-explanatory. Next, Lemma 5 says that
an increase in the minimum type that enters auction j — 1, say from y;_1 to y;;l,
keeping other things constant, decreases the price that a bidder ¢ with type x expects
to pay conditional on winning auction j — 1. To understand this result note that the
price that ¢ pays only changes if the maximum type of the other bidders that enters
auction j —1 with cut-off y;_1 is between y;_1 and y;;l. If the cut-off is y§'717 then the
price is fixed by this maximum type of the other bidders whereas, if the cut-off is y;-_l,
the price equals the reserve price r;_1. Since y}q is strictly above 7;_1, it explains
the decrease in the expected price.

The effect of an increase in a cut-off associated to another auction [ to which bidders
with type x enters, say y; < x to yj, is slightly different. Then, the only difference
in the price that bidder ¢ with type x pays when she wins occurs under the following
event: a bidder with type & € (y;,y;) is the bidder with maximum type among those
bidders that enter auction j — 1 when the cut-off is ¥}, and this bidder enters auction
[ when the cut-off is y;. This means that the price that ¢ pays when the cut-off is y; is
Z, and the price that ¢ pays when the cut-off is y; is below Z.

More subtle is the effect of an increase in a cut-off associated to another auction
[ to which bidders with type x do not enter, say y; (y; > x) to y;. A bidder i with
type x does not win auction j — 1 under the event that there is another bidder with
type between y; and y; that enters auction j — 1. But, the probability of this event is
higher when the cut-off is g than when the cut-off is ;. The reason is that bidders
with these types enter with higher probability to auction j — 1 when the cut-off is y)
than when the cut-off is y; because in the latter case these types also enter auction I.
As a consequence, the probability that the other bidders have a type between y; and y;
conditional on the event that bidder ¢ wins with a type z is lower when the cut-off is y;
than when the cut-off is y;. Hence, the probability that the other bidders have types
between y;_1 and x conditional on the event that i wins with a type x is higher when
the cut-off is y] than when the cut-off is y;. This implies that moving y; to y; should
produce a downwards shift in the sense of first order dominance to the distribution of
number of entrants in auction j — 1 conditional on bidder ¢ wins with a type x. This
increase of entry explains why the expected price that ¢ pays increases.

We apply the results of last lemma to show that there is a unique solution to the
conditions of Lemma 4. We start by proving the existence of an implicit function that
relates yy and ys_1.

Lemma 6. If r; > 1y, then for each y;—1 € [rj-1,1], there exists a unique func-
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tion V¥y(ys—1) € [Yj—1,1] such that y; = j(ys_1) satisfies condition (i) and (iii).
Moreover, ¥ ;(yj—1) is continuous and strictly increasing if ¥y < 1, and satisfies
Vi(ys—1) =ys-1, if rg-1=ry.

Proof. Define the function A(yy) =V 1(ys,ys-1,y5) —rj_1 for a given value y;_1 €
[rj—1,1]. Lemma 5 says that ¥ (z,ys_1,y7) is continuous and strictly increasing in
x and in yy. This implies that A(.) must be continuous and strictly increasing. Since
\I]J_l(yj_17yj_17yj_1) =Tj-1 < Ty, then A(yj_l) < 0, with equality when rj—1="7y.
Hence, either: (*) A(1) > 0 and then there exists a unique ¥ ;(yj_1) € [ys-1,1) such
that A(¢s(ys—1)) = 0; or (**) A(1) < 0. In case (*), ys = ¥s(ys_1) satisfies condition
(i), and in case (**) let ©¥;(yj—1) = 1, then y; = ¥ ;(yj—1) verifies condition (iii).
Note also that if ry_; = ry, then ¥ ;(ys_1) = ys_1. The monotonic properties of ¥y 1
stated in Lemma 5 also imply that 1 is strictly increasing under case (*), this is when

Py <1 ]

Now, assume that there exist some functions {1#5}{2 j+1 Where y; = ¢ (y;—1) and
that have the same properties as ¥ ;. The next lemma shows that then there exists a
function 1 such that y; = 1;(y;_1) that relates y; with y; 1 with the same properties.

Lemma 7. SUPPOSE that there exist some functions {¢l}i’:j+1 such that iy : [r;_1,1]
— [y1-1,1] and that each function vy gives y; as a function of y;—1. Assume also that
these functions are continuous, and strictly increasing if ¥ < 1.

THEN, ifr; > 11, for eachy;_1 € [rj—1,1], there exists a unique function ;(y;—1) €
[yj—1,1] such thaty; = ;(y;—1) satisfies condition (ii) and (iii). Moreover, ¥;(y;_1) is
continuous and strictly increasing if v; < 1, and satisfies Vj(y;—1) = yj—1, if rj—1 = rj.

Proof. The sequence of functions {wl}lJZj 41 defines each y; (1>j) as a continuous and
increasing function w : [, 1] — [r,1] of y; where wi(y;) = Yy oY1 0...0 Vjp1(y;)-
The properties of each function 1; assure that y; > y;_1 > ... > y;. Then, we can
substitute these functions wj; in the conditions (ii) and (iii), and we get the following
two conditions:

o Ifr; #r; and y; <1, then rj = U1 (yj,yj—1,wj+1(¥;), -, wi(y;)).
o Ifr; £ry and y; = 1, then r; > W, 1(Yj,Yj—1,Y5>Wj+1(Y5)5 -y 07 (Y5))-

We can apply the arguments in the proof of Lemma 6 to show that these conditions
define the required function with the properties stated in the lemma. ]

Corollary 1. The equilibrium cut-off strategy computed in the lemma above s invari-
ant to changes in the indezes of the reserve prices of the vector T

One direct implication of Lemmas 6 and 7 is that we can prove by induction that
there exists a set of increasing functions v, ..., that give y; as a function of y;_; for
all j > 1. Hence, according to Lemma 4, the first part of the next proposition follows
(and so we omit the proof). The second part proves continuity of the equilibrium with
respect to the auctioneers’ reserve prices.
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Proposition 1. There exists a unique symmetric Nash equilibrium of the entry game.
The associated cut-offs of this equilibrium are defined by y; = 1j o ;1 0 ...0a(ry).
These equilibrium cut-offs change continuously with respect to the vector of announced
reserve prices T.

Proof. The equilibrium cut-offs are the unique solution of a set-of equations (condi-
tions (i), (ii), and (iii)). The functions that form these equations (i), (ii), and (iii)
are continuous and have some monotonic properties (see Lemma 5). Moreover, these
functions change continuously with respect to changes of the reserve prices. These
continuity and monotonic properties of the equations that define the equilibrium cut-
offs imply that the map from reserve prices to equilibrium cut-offs is invertible. Since
these map is also unique, this implies that we can prove that the map is continuous.
We provide this proof in Appendix A. We show that if we take a sequence of vectors of
reserve prices {7 }2°; that converges to vector of reserve prices 7, then the sequence
of equilibrium cut-offs associated to {7 }2°; converges to the equilibrium cut-offs as-
sociated to 7. This result implies continuity of the equilibrium cut-offs with respect to
the vector of reserve prices. ]

The importance of this result is that shows that the continuation game that the
bidders play after the auctioneers announce their reserve prices is well behaved. This
point is crucial to obtain continuous auctioneers’ payoff functions. This result shows
that the worries expressed by Peters [13] that the equilibrium selection of the entry
game could have discontinuities when the number of agents is finite when auctioneers
offer mechanisms from a wider class does not hold if we restrict to second price auctions
with reserve prices.

Note that the continuity of the equilibrium bidders’ entry behaviour can seem para-
doxical if we think of our model as an extension of the Bertrand model. In the standard
Bertrand model, buyers attend with probability one to the seller with minimum price.
This produces a discontinuity in the buyers’ equilibrium entry decision when we de-
crease one sellers’ price slightly below the minimum price offered by the other sellers.
The difference of our model with the entry game that it is induced by the standard
Bertrand competition is that in our model it is not obvious that the bidder should
enter the auction with minimum reserve price. The reason is that low reserve prices
can be associated with a higher probability of rationing or even with a higher expected
price. In fact, Peters [12] has shown that once we modify the Bertrand game introduc-
ing capacity constraints and restricted mobility in a similar fashion to our model, the
entry decisions of buyers are continuous with respect to the sellers price offers.

To understand the originality of our result is important to remark that both unique-
ness and continuity can be deduced from the analysis of Peters and Severinov [18] in
two cases, when the vector of reserve prices 7 is restricted to have no more than two
different reserve prices and when all the bidders are identical at the stage of choosing
auction. We generalise this result in some sense by eliminating these restrictions and
considering general heterogeneity in both market sides.
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3.1 First Price Auctions

In the main text of this section we have assumed that each of the auctioneers uses a
second price auction to allocate the good among those buyers that match with him.
We relax this assumption in this subsection and we study entry games in which some or
all of the auctioneers conduct a first price auction and the other auctioneers a second
price auction. Note that in the case of a first price auction, it is relevant whether the
number of bidders that enters the auction is observable or not. The reason is that the
bidder’s optimal behaviour depends on the number of other bidders.

We shall show that from the point of view of both the bidders and the auctioneers,
the second price auction and the first price auction, with or without observable entry,
are equivalent. In order to prove this, we proceed in two steps. First, we verify that for
a given entry strategy bidders get in the equilibrium associated to each auction format
the same expected utility. Next, we show that the set of symmetric equilibria of the
entry game is invariant to changes in the auction format of some of the auctions.

We shall refer to the different auction formats with a set F = {second price auction,
first price auction with observable entry, first price auction with unobservable entry}.
Let f; € F be the auction format of a generic auction j, and f € F7, the vector of
auction formats of all the auctions.

Conditional on an entry strategy 7 that it is used by all the bidders,? each auction
format specifies a continuation game, that we call bidding game. The strategy for a
bidder when auction j’s format is a first price auction with unobservable entry is a bid
function that maps types that enter auction j according to m into bids. If the auction
format is a first price auction with observable entry, then the strategy is a bid function
that maps types that enter auction j according to 7, and number of bidders that enter
auction j into bids. For the second price auction we shall assume that each bidder
bids her true value of the good. Note that this is the unique symmetric equilibrium of
a second price auction.

Lemma 8. Consider the different bidding games generated in an auction j for a fized
entry strategy m, a fived reserve price rj, and for each f; € F. Then:

o There exists a unique symmetric equilibrium for the induced bidding game asso-
ciated to each auction format f; € F. These equilibria are in strictly increasing
strategies. They are such that the bidder with highest type that enters auction j
wins auction j if her type is weakly above r;. Otherwise, the auctioneer keeps the
good.

o Suppose that all the bidders follow the unique symmetric equilibrium of each
bidding game. Then, the bidder’s expected utility of participating in auction j,
conditional on a type x that enters with positive probability auction j according
to m, is independent of j’s auction format.

9Note that we do not study continuation games induced by asymmetric entry strategies, i.e. when
not all the bidders use the same entry strategy. They are technically complex since they imply
asymmetric first price auctions.
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Proof. The first of the points can be proved with an adaptation of the proofs given by
Matthews [8, Section 6] to our model.

We prove the second point starting with a bidder with type y;, i.e. the infimum of
the closure of the set of types that enters with positive probability auction j according
to m. If y; is less than 7;, independently of the auction format, the bidder will bid
below 7; and hence, will get zero expected utility. Suppose now that y; > r;. As
stated in point one of this lemma, the unique symmetric equilibrium associated to
each auction format is such that a bidder with type y; only wins if no other bidder
enters auction j. We next show that a bidder with type y; pays price r; conditional
on winning in each of the auction formats. This remark is obvious for the second price
auction and also for the first price auction with observable entry. In the case of the
first price auction with unobservable entry, the result follows because the equilibrium
bid of a type y; in auction j is r;. This is a consequence of the parallel analysis to [§]
that we suggested above. This result follows for other types because given the results
above, the revenue equivalence theorem implies that the second price auction and the
first price auction with observable entry are equivalent in terms of expected utility for
bidders conditional on types and conditional on the number of bidders that enter the
auction. The same implication holds but unconditional on the level of entry for the
second price auction and the first price auction with unobservable entry. Hence, the
three auctions are equivalent for the bidders unconditional on the level of entry. W

We next show that a given entry strategy 7 is a symmetric equilibrium for a given
vector 7 that describes the auctioneers’ reserve prices, independently of the auction
format that it is used by each auctioneer.

Lemma 9. Consider a family of entry games defined by {F,fl} and the as-

fleFd?
sociated bidding games. Assume that bidders play the unique symmetric equilibrium
associated to each auction when all the bidders play the same entry strategy. Then, the
set of symmetric equilibrium of the entry game is invariant with respect to the auction

format of each auction, i.e. with respect to fl.

Proof. Lemma 8 says that the bidders’ expected utility is invariant across auction
formats if the bidders play a symmetric entry strategy. Hence, we only need to show
the following. Consider a given entry strategy m and the symmetric equilibrium of the
induced bidding games. If one bidder conditional on a type x; deviates and enters an
auction j that she does not enter according to 7, the maximum payofls in auction j
that the bidder can get are independent of the auction format f; € F.

The case in which x; < r; is trivial. For the other cases, note that in a first price
auction, the incentives to increase the bid for a type x; are weakly below the incentives
to increase the bid for types above x;. Similarly, the incentives to increase the bid for a
type x; are weakly above the incentives to increase the bid for types below x;. Hence, if
x; € [rj,y;], the optimal bid for the bidder must be between r; and the optimal bid of
;. The same reasoning that we use in the proof of Lemma & for a bidder with type y;
can be used here to show that the optimal bid gives the same expected utility in auction
J across auction formats. Finally, if ; > y;, the consequence of the above argument
is that x;’s optimal bid must lie between the equilibrium bid of the maximum type
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below x; that enters auction j with positive probability, say x—_, and the equilibrium
bid of the minimum type above x; that enters auction j with positive probability if
defined, say x4. If the auction is a first price auction, it is clear that a bidder with
type x4 will submit the same bid as a bidder with type x_. The reason is that if x;’s
bid were above x_’s bid, a bidder with type x; would have incentives to deviate and
decrease her bid. This implies that x;’s optimal bid in auction j must be x_’s bid in
a first price auction. If the auction format is a second price auction x;’s optimal bid is
x;. But note that bidding x; in a second price auction gives the same expected utility
as bidding x_. The reason is that in a second price auction a bid z; wins under the
same circumstances than a bid x_. Since the revenue equivalence theorem we proof in
Lemma 8 implies that a bidder with type x_ pays the same expected price and wins
with the same probability in the three auction formats, the maximum expected utility
that a bidder with type x; can get in the three auction formats is the same. If x, is
not defined the proof is similar. Note only that in a first price auction, a bidder with
type x; does not have incentives to bid above x_’s bid if z is not defined. |

Corollary 2. Consider a family of entry games defined by {7, fz} and the con-

fleFr
tinuation bidding games. Suppose that bidders play the unique symmetric equilibrium
associated to each auction when all the bidders play the same entry strateqy. Then,
bidders’ expected wutility conditional on the type and the auctioneers’ expected profit,

are independent of fl in the unique symmetric equilibrium of the entry game.

4 The Auctioneers’ Game

In this section, we study the reduced game of competition among auctioneers. This
reduced game is defined by the auctioneers’ payofls evaluated at the unique symmetric
Nash equilibrium of the entry game. This equilibrium was characterised in the previous
section.

We first describe the expected profit of a generic auctioneer j. For this, we assume
that the auctioneer j announces a reserve price r;, the other auctioneers announce
;€ [0, 1]7~1, and these announcements of reserve prices generate an equilibrium 7
in the entry game characterised by the cut-offs {y; ngl-

We compute the auctioneer’s expected profit as the expected price that the bidder
that wins the auction pays minus the production cost w; whenever there is a sale. The
probability that at least one bidder enters auction j equals 1 — z(y;; 7)kJ. Conditional
on the former event, the probability that the bidder that wins has a type below x, for
x € [yj,1], equals z(z; )" /(1 — 2(y;; 7)¥/). Hence, the auctioneer’s expected profit
equals:

1
/ (‘I’j(373yj—1,yj, s Yg) — wj) dZ(J}';’]r)kJ_ 3)

J

Lemma 10. The auctioneer’s payoff function is continuous in wj, r;, and r_;.
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Proof. The continuity with respect to wj; is trivial. In order to prove continuity with
respect to the vector of reserve prices, let ‘I’; : [0,1] — [0,1] be a function such that
Vi(x) = Vj(595-1,Y5, -+ ) if @ >y, and Wi(x) = ¥;(y53Y-1,Yj, -, Ys) otherwise.
Let also 2z’ be a measure defined on the measurable space ([0, 1], B), where B is the class
of Borel sets, and generated by a function equal to z(x;m)* if z € [y;,1], and equal
to 2(y;; )% if 2 € [0,y,]. Hence, the auctioneer j’s expected profits equal fol Wl dz'.
Next, note that the function z(x;7) for a fix x changes continuously with respect to
changes in the cut-offs. Moreover, the equilibrium cut-offs change continuously with
respect to changes in the vector of reserve prices, see Proposition 1. Hence, the function
z(x;m) for a fix x changes continuously with respect to the vector of reserve prices.
This is sufficient for set-wise continuity of the measure 2’ with respect to the vector of
reserve prices. We have also shown that the function ¥; is continuous with respect to
the cut-offs, see Lemma 5, hence, \I/; changes continuously with respect to the vector
of reserve prices. As a consequence, we can apply the generalised Lebesgue bounded
convergence theorem (see [19, Proposition 18, p. 270]) to prove the continuity of the
integral with respect to the vector of reserve prices. |

The reader can find this result surprising because other papers that study similar
models have suggested that the auctioneers’ payoff functions could be discontinuous.
Peters [13] argues that in a game in which auctioneers are allowed to choose auctions
from a wider class of mechanisms the equilibrium selection of the entry game could
be discontinuous in the reserve prices. We have already discussed in the previous
section why this is not the case in our model. Peters and Severinov [18] proves that
the auctioneers’ payoffs are discontinuous in the limit game with infinite numbers of
auctioneers and bidders. But, the discontinuity that they prove depends crucially on
the assumption of infinite number of agents. In this case, even if the bidder’s individual
behaviour is continuous in the auctioneers’ reserve prices, the aggregate behaviour can
produce a discontinuity on the level of entry to the auctions. This will be the case
when an infinite number of bidders change their entry behaviour with respect to a
finite number of auctions.

The continuity result given above allows us to use standard theorems to prove
existence of an equilibrium. For this, we consider the mixed extension of the strategy
space of the auctioneers. We use Milgrom and Weber’s [10] notion of distributional
strategy. Milgrom and Weber shows that a distributional strategy is simply another
way of representing mixed strategies.!’ Let IIz be the support of the distribution of
auctioneers’ types H, then j’s distributional strategy is a probability measure p; on
the set Il x [0,1], such that the marginal distribution on Il is the distribution of
the auctioneers’ types H.

Proposition 2. The auctioneers’ reduced game has at least one Nash equilibrium in
distributional strategies.

Y0More precisely, Aumann [2] shows that there is a many-to-one mapping from mixed to behavioral
strategies that preserves the players’ expected payoffs, and Milgrom and Weber [10] show that there is
another many-to-one payoff-preserving mapping from behavioral strategies to distributional strategies.

20



Proof. We use Milgrom and Weber’s (1985) existence theorem (Theorem 1). This
theorem can be used because the set of actions (reserve prices) and types (produc-
tion costs) are compact metric spaces, auctioneers’ types are statistically independent
across auctioneers, and the auctioneer’s payoff function is continuous in the auction-
eer’s production cost and the vector of reserve prices (Lemma 10). n

With this proposition we complete the analysis of the finite game.

5 Limit Results

In this section we study the convergence properties of the equilibrium set of the reduced
game of competition among auctioneers when the numbers of auctioneers and bidders
go to infinity. As we explained in the last section, this reduced game is obtained by
substituting into the auctioneers’ payoff functions the unique symmetric equilibrium
strategies of the bidders’ game.

We shall proceed in four steps. First, we compute the limit of the cut-offs that
characterise the unique symmetric equilibrium of the entry game. Second, we shall use
these limits to compute the limit of the auctioneers’ payoff functions. Third, we show
that in the limit game defined by these payoff functions, for each auctioneer the unique
best response to most of the other auctioneers’ announcements of reserve prices is to
set a reserve price equal to the auctioneer’s production cost. In fact, we shall show
that this is the unique weakly dominant strategy in the game defined with the limit
payoff functions. More importantly, we show that the limit payoff functions allow for
strict payoff comparisons. We use this limit strict payoff comparisons to deduce that
we can rule out certain strategies in the finite game, provided that J is large enough.
We then show that this process gives a precise equilibrium prediction: as J tends to
infinity, almost all auctioneers with production costs low enough to get positive surplus
from trade announce a reserve price equal to their production cost with probability
arbitrary close to one.

Note that by working with the limit payoffs we avoid dealing with the more complex
payoff functions of the finite game. Payoffs in the finite game are complex because the
change of an auctioneer’s reserve price produces not only a direct effect on the cut-off
associated to this auction but also a complex indirect effect on the other cut-offs. To
see why note the following argument. When an auctioneer changes his reserve price he
affects the entry decisions of some types of the bidders. This change will be associated
to a change in the entry decisions of the same types with respect to some other auctions.
These are all the auctions with reserve prices below our auction reserve price. This has
an impact on the expected price in such auctions, but it does not affect the expected
price in the other auctions. Remember that a feature of the equilibrium is that bidders
are indifferent among all the auctions in which they participate. Hence, if a bidder was
indifferent between the auctions that have been affected by the change in our auction
reserve price and the other auctions, she will no longer be indifferent between both
groups of auctions after the change in the reserve price. The indifference conditions
required by the equilibrium of the entry game are restored through a complex change
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in the level of entry to the different auctions, this is, a change in all the equilibrium
cut-offs.

In the limit game, with infinite numbers of auctioneers and bidders, the indirect
effect that we pointed out in the last paragraph should be negligible. The change in
the entry decisions of types with respect to one single auction should have no effect on
the level of entry in each of the other auctions. In other words, in the limit, changes
of the reserve price of one single auctioneer should not affect to the expected utility
that bidders could get in other auctions.!!

In order to simplify the characterisation of the limit of the equilibrium cut-offs
when the numbers of auctioneers and bidders go to infinity we shall discretise the
auctioneer’s strategy space. Under this assumption, we guarantee that in the limit
when the numbers of auctioneers and bidders go to infinity there is only a finite number
of different reserve prices. We can thus use a finite number of conditions similar to
conditions (i), (ii), and (iii) in Section 3 to characterise the limit of the equilibrium cut-
off associated to each reserve price. In fact, we can show that these limit conditions are
the limit of a reformulation of the original conditions (i), (ii), and (iii). This approach
is more complex when we allow for a continuum of different reserve prices. Since our
conditions compare the expected price in two auctions with two adjacent reserve prices,
in the limit they typically turn into a complicated differential equation.

In the following we thus assume that the auctioneers choose the reserve price from
a given finite subset IT of [0, 1]. We also assume that the distribution of the auctioneers’
production cost H has support 11y contained in the set II. Under this assumption, we
can prove that in the limit of the equilibrium of the game, the auctioneers announce
reserve prices equal to their production costs with probability one. Otherwise we could
only prove that the auctioneers’ equilibrium randomisation puts positive probability
on the two reserve prices closest to their production costs.

STEP 1: Convergence of the Equilibrium Cut-offs

Our first aim is to prove that the equilibrium cut-offs converge when J goes to
infinity under some conditions and to characterise their limits. For this, we consider a
sequence of entry games in which J is the number of auctioneers and kJ is the number
of bidders. Along the sequence we keep k > 0 fixed and let J take values in an infinite
subset of the natural numbers, N*, such that if J € N* then kJ is a natural number.
Then we let J tend to infinity, and consider the limit behaviour of the equilibrium
strategies.

To formalise this approach we need additional notation. Instead of referring explic-
itly to the vector of reserve prices chosen by J auctioneers, it is sufficient to refer to the
frequency distribution of reserve prices. Lemma 1 shows that this frequency distribu-
tion alone determines bidders’ equilibrium entry behaviour. For every J € N*, we thus
denote by G” the set of probability distributions that can describe the announcement
of reserve prices of J auctioneers. A probability distribution G’ € G’ must satisfy the
following conditions:

"' This result was originally conjectured by McAfee [9]. See after Lemma 15.
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e supp G’ C II, # supp G/ < J; and

e for all x € [0,1], G’(x) = j/J for some j =0,1,....J.

We also denote by G the set of probability distributions with support contained in
II. Note that each set G7 is a compact subset of G which is itself compact.

For the sake of clarity, we shall concentrate in the main text of the paper on
sequences of entry games such that in each entry game each of the reserve prices in II
is announced by at least one auctioneer. These are games in which the support of the
associated distribution function G is II. We define some functions for each of these
games. Next, we use these functions to re-formulate in the notation of this section
conditions (i), (ii), and (iii) in Lemma 4. Remember that these are the conditions that
characterise the set of equilibrium cut-offs. We shall show in the Appendix that the
re-formulated conditions converge in an appropriate sense when J tends to infinity to
some limit conditions. These limit conditions will be used to prove that the equilibrium
cut-offs converge and to characterise their limits. We show in the Appendix (see the
proof of Lemma 12) how to extend our analysis to general convergence sequences of
entry games, i.e. sequences whose elements do not have necessarily support II.

In the following we denote by R the number of elements of IT and by {ﬂ}f; ; an
increasing sequence that describes II itself. As we mention above, we shall focus on
distributions G’ € G7 that have support {#}{*,. According to Lemma 1, in order to
describe a given cut-off strategy 7 for a given entry game we only need to specify two
things: an increasing sequence of cut-offs # = {Ql}f; 1, Where g is the cut-off associated
to auctions with reserve price #;; and the distribution of reserve prices GY. We shall
denote with P the set of increasing sequences of R elements in the interval [0, 1]. Note
that P is a compact set.

Hence, for all # € P and 2 > 91, we can define the function 2/ (z; %, G7) = z(x; )
for a given entry game described by G”. Remember that this function specifies the
probability that a given bidder either has a type below x, or that she does not submit
a bid in a given auction with associated cut-off §; < x. Hence, let #; be the maximum
reserve price of the auctions which type x enters and ¢j; its associated cut-off, then:

. R . .
ZJ( A)GJ) _1_ F(?Jf;(lgj(—fﬁ(x) B Z F(y?ngfS(yq)’ (4)

q=l+1

where Jri1 = 1.

We also provide a new function for the expected price that a bidder pays in an
auction [ — 1 conditional on winning with a type x > ¢; 1. We define this function
as \iff_l(x;gjl_l,yl,...,ij,GJ) = V_1(2;95-1,Yj,---ys), where 7;_; = r;_1 and hence
D1—1,71, -, Jr and G’ are sufficient to describe Yj—1,Yj,---ys. This function can also
be computed as the integral:

~ —+oo
B @i s i, G = / Fdvy |, 5)

—00
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where 77 ||4(.) is a different way of referring to the measure v,_1|,(.), i.e. using the
new notation:

0 ifr < Tr_1
2.] :g7 ;ﬁ',G'] kJ—1 N o .
T ~\ g(J(lm;AnGJ)k)J—l ifr 1 <T<g 6
Vl_1|z($) = 27 (&:7,G7 )1 o 5 ( )
2 (z;7,GI)FI—1 fg <2<z
1 otherwise.

We use the above functions to re-formulate the conditions that characterise the
equilibrium cut-offs in Lemma 4. The unique symmetric equilibrium strategy of an
entry game G € G7 where G” has support II is characterised by the unique sequence
of cut-offs & such that for all g; € 7:

(I) If fl = fl, then Zjl = fl.
(IT) 1If 7 # 7 and §; < 1, then 7 = O | (41, Gi—1, G, -, IR, G7).
(ITT) If 7 # 71 and §; = 1, then # > O (41, 611,91, -, IR, G7).

Note that these conditions in general imply less restrictions than those imposed by
conditions (i), (ii), and (iii) in Lemma 4. The reason is that we have eliminated those
conditions that relate auctions with the same reserve prices. We can do so, because as
Lemma 1 says, auctions with the same reserve price have the same equilibrium cut-off.

Next, we compute the limit of these conditions when J tends to infinity. For this, we
consider a sequence of entry games described by a sequence of distributions of reserve
prices {G7} jen+ (G7 € G7) that converges to a limit distribution of reserve prices
G € G. This will give us some limit conditions that we shall use to prove convergence
of the equilibrium cut-offs and to characterise their limit. In order to state the limit
of conditions (I), (II), and (III) we first define three functions. We show in the proof
of Lemma 12 in the Appendix that these functions are the limit of the functions 37,
\i/lJ_l, and 19[7_1|z in an appropriate sense.

We denote with r(G) the minimum reserve price in the support of a given distribu-
tion G € G. Note that we need to define the lower bound of the support of G because
we do not restrict G to have support II. We also denote with y the cut-off associated
to a reserve price r(G). Then, we define the function z for a gi;en increasing sequence
7t with R elements in [0,1] (i.e. # € P), and a type x € [fi,J141] and x >y, as follows:

Z2(z; 7, G) = eil~€ F(ylgl(;z)F(I) g F(ngl()qu(yq) ;
where recall that yri1 = 1. We also define the function z to be equal to zero for
T e [gh y)

We define the function ¥;_; for a sequence @ € P, and = > 9j;_1, as follows,

00
\Ill—l(x7:gl—lagl7"'7yR7G) = / ‘i‘dﬂl—”x(‘%)?

—00
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where the probability measure 7;_1|;(.) is defined below:

0 ifz <74

Z(9 i ;A7G H = ol ~
% ifr 1 <T <P
(&
(z;

77l—1|;c(53) =

wi
<8

fe. e n -
:Gg ifg1<z<x

<8

=Ny

otherwise,

if x > y, and it is defined by a single point with mass one at x for all z <y.
With these equations we can define the following set of conditions, similar in spirit
to conditions (i), (ii), and (iii) but defined for a limit game G.

(i’) Ifr < f(G), then g; = 7y.

(117) If ’ﬁl (G) and :gl < ]-7 then ’ﬁl = \ill—l(ylvgl—layh "'7?)R7 G)

1=

>
(1117) If ’ﬁl > f(G) and :gl = ]-7 then ’ﬁl > \ill—l(ylvgl—layh "'7?)R7 G)

Lemma 11. There is a unique sequence of values {gjl}ﬁ:l € P that satisfies conditions
(i), (i), and (iii’).

Proof. We could show with a similar approach to Lemma 5 that the functions ¥;_; are
continuous in x,%;_1,¥i, ..., Yr, and that verify some monotonocities similar to those
proved in Lemma 5 for ¥; ;. Hence, we can use the same method as in Section 3 to
show that conditions (i’), (ii’), and (iii’) define implicitly a unique sequence @ € P. W

We next provide the central result of this step that we prove in the Appendix. The
proof of this lemma involves some technical steps to show that the conditions (I), (II),
and (IIT) converge in some sense to the conditions (i’), (ii’), and (iii’). Then, we use
the same arguments as in the proof of Proposition 1 to show that the unique solution
of conditions (I), (II), and (III) also converges to the unique solution of conditions
(i), (ii’), and (iii’). It is important to note that we do not restrict in this lemma to
sequences of distribution functions that have support II.

Lemma 12. Consider a reserve price ; € 11 that it is announced infinitely often in a
sequence of entry games {G”} jen+ (G7 € G7) that converges to G € G when J tends
to infinity. Then, the equilibrium cut-off associated to this reserve price converges
when J tends to infinity and its limit is the l-th entry of the R-dimensional solution
of conditions (i’), (ii’), and (iii’).

Corollary 3. Consider two sequences of entry games whose associated sequences of
distributions of reserve prices converge to the same limit distribution function G € G
when J tends to infinity. If the reserve price 7 € Il 4s announced infinitely often in
both sequences, then, the equilibrium cut-off associated to 7; converges when J tends to
infinity to the same value for the two sequences.

STEP 2: The Limit Auctioneers’ Payoff Function
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The next step is to use the limits of the equilibrium cut-offs to compute the limit
of the auctioneer’s expected profit. In what follows we shall denote by #/ = {g/}1%,
the unique solution of conditions (I), (II), and (III) for a given entry game G” € G”.
Although in the main text these conditions are defined only for distribution functions
with support II, the reader can find in the Appendix (proof of Lemma 12) how to
generalise these conditions to general distribution functions in G’. According to this
extension, conditions (I), (II), and (IIT) define a value associated to each reserve price in
I1. This value play no role but when the reserve price, say 7;, is announced by at least
one auctioneer. In this case, the element g)]J denotes the equilibrium cut-off associated
to auctions with a reserve price #;, where #; denotes without loss of generality the j-th
lowest reserve price in II. We also denote with #* the limit of #/ when J tends to
infinity. Let also yA}]H_l =land g, =1

Using this new notation we can write the expected profit of an auctioneer with pro-
duction cost w; and that announces a reserve price 7; € II, given that the auctioneers’
announcements are described by G’ € G7 as:

1
& (75, G |wy) = / (\Ifj(m;gj_l,gj, G — wj) A2’ (@377 .G (8)
5

The next result gives us the limit of the auctioneer’s expected profit in terms of a
function ®. This function is defined for w; € Iy, #; € II, and G € G, if #; > r(G),
then:

-1
(7, Glw;) z/ (T30 1,55 B G) — 05) da(a; 7, G,

Sk

Yj

and if 7; <r(G):
O(5, Glwy) =

-1
/(G) (U@ 051,05 - R G) — wj) d2(2; 7%, G) + (2(G) — w))2(z(G); 7%, G).

Note that this definition implies that if g7 = 1, the above limit expected profit
equals zero. This means that the auctioneer’s expected profit converges to zero when
the associated cut-off converges to one. Intuitively this means that the auctioneer gets
no expected profit when in the limit he attracts no bidder with probability one.

Lemma 13. Consider a sequence of distribution functions {G”} jen+, where G7 € G7
for all J € N*, that converges to G € G when J tends to infinity. Then, for w; € Iy,
and 7; € 1I,

B (7, G Jwy) 25 B (55, Gluy).
See the proof in the Appendix.

STEP 3: Properties of the Limit of the Auctioneers’ Payoffs
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Let 7(G) be the minimum reserve price in IT that has an associated limit equilibrium
cut-off one. Then, we can state the following result:

Lemma 14. The limit of the auctioneers’ expected profit verifies,
O(wj, Glw;) > ©(r, Glw;), 9)
for all r; € IT\ {w;}. Moreover, the inequality is strict but in the following cases:
(1) When r; <r(G) and w; < r(G).
(2) When rj,w; >7(G).

Proof. Corollary 3 says that changes in the reserve price r; do not affect to the limit
of the equilibrium cut-offs associated to the other auctions. Hence, the sequence 7* =
{97 f;l is invariant with respect to changes in one single reserve price. This means
that the change in the reserve price only changes the lower bound of the integral that
constitutes the auctioneer’s limit expected profits. The function that we integrate is
strictly increasing in x, and equals zero at the limit equilibrium cut-off that corresponds
to the reserve price w;. This implies our first result. It is a bit tedious, but mechanical,
to show using the results in Lemma 13 that the inequality is strict but in the cases
that we mention. |

Corollary 4. In the limit game defined by the limit payoff functions ®, each auction-
eer has a unique weakly dominant strateqy to announce a reserve price equal to his
production cost.

As we explain in the introduction the intuition underlying this result is based on
two properties of the entry game. The first one is a direct conclusion from the fact
that bidders randomise entry among a set of auctions: the bidders must be indifferent
among entering any of these auctions. The second property is that in the limit when
the number of auctioneers and bidders go to infinity changes in one auction’s reserve
price should not affect to the expected utility that bidders can get in other auctions.
This is shown in the next Lemma, see the Appendix for the proof.

Lemma 15. Consider a family S of convergent sequences of entry games such that
each of them only differs from the others in the reserve price announced by a given
auctioneer j. Then, the expected utility that a generic bidder i with type x; gets in an
auction | # j converges to the same value for all the sequences in S when the numbers
of auctioneers and bidders go to infinity.

This lemma proves a property of the limit game that was conjectured by McAfee
[9] to solve his pioneer model. McAfee assumed that each auctioneer computes the
payoffs of changing the design of his auction assuming that the expected utility that
bidders can get in the mechanisms offered by the other auctioneers is unaffected by
the change in his auction design. McAfee admits that in general this assumption is
not consistent with the Nash equilibrium analysis of the entry game of bidders when
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the numbers of auctioneers and bidders are finite. However, McAfee conjectures that
it should be true when there are infinite numbers of auctioneers and bidders.

Peters and Severinov [18] have proved this claim when auctioneers offer second
price auctions and when there are no more than two different reserve prices announced
by the auctioneers. They have proved McAfee’s conjecture as we do. They look to the
unique equilibrium of the entry game with finite number of auctioneers and bidders
and compute its limit when the numbers of auctioneers and bidders go to infinity.
Then, they show that the limit of the unique equilibrium verifies McAfee’s conjecture.
Our result supersedes Peters and Severinov analysis in the sense that we study entry
games in which there are more than two different reserve prices announced by the
auctioneers.

Peters [13] also proves McAfee’s conjecture for more than two reserve prices, but
his analysis is quite different. Peters considers a non generic sequence of entry games
and a sequence of equilibria associated to that sequence of entry games. Then, Peters
shows that in the limit of this sequence of equilibria when the numbers of auctioneers
and bidders go to infinity McAfee’s conjecture holds. Our analysis improves Peters’
approach in the sense that we show that McAfee’s conjecture holds for the limit of the
equilibrium of the entry game for all sequences of entry games that converge to a given
limit entry game. On the other hand, Peters’ analysis is more general than us in the
sense that he allows for a continuum of different reserve prices in the limit, whereas we
only consider entry games with finitely many different reserve prices. Moreover, Peters
proves McAfee’s conjecture when we allow our auctioneer to choose from a wider set
of mechanisms than second price auctions with reserve price. Although Peters also
restricts to the case in which the other auctioneers offer second price auctions with
reserve price.

STEP 4: Properties of the Limit of the Equilibria Set

In order to study the limit properties of the equilibria set we use the limit payoff
comparisons in Lemma 14. With these payoff comparisons we eliminate certain strate-
gies that cannot belong to the equilibrium set when J is large enough. This procedure
allows us to determine the equilibrium strategies up to a negligible fraction of auction-
eers when J goes to infinity. Note that although the payoffs comparisons in Lemma 14
are for the limit game we can use them for payoff comparisons in the finite game. The
reason is that they provide strict comparisons. Since the payoff functions of the limit
game are the limit of payoff functions of the finite game (see the convergence results
in Lemma 13, and Lemma 20 in the Appendix) the strict payoff comparisons in the
limit game should also hold for the finite game for J large enough.

This procedure differs from the method by McAfee [9], by Peters [13], and by Peters
and Severinov [18]. They instead compute the equilibrium of the limit game. Peters
and Severinov [18] suggest that a similar method to ours implies that if there exists an
equilibrium in the finite game in which all the auctioneers announce the same reserve
price for J finite but large, it must be closed to the equilibrium of the limit game that
they propose. However, since it is not clear that such equilibria exists, they cannot
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provide any limit result as we do.

Note that the strict payoff comparisons in Lemma 14 extend only up to the thresh-
olds r(G) and 7(G). We next explain why we cannot extend our strict payoff compar-
isons out of these bounds.

The boundary 7(G) specifies the minimum reserve price that has a limit equilibrium
cut-off equal to one. All reserve prices above 7(G) will have an equilibrium cut-off equal
to one, thus they will attract bidders with probability zero in the limit and give zero
limit payoffs. The auctioneer achieves his maximum expected revenue in the limit
fixing a reserve price equal to his production cost (Lemma 14). This means that if the
production cost is weakly above 7(G), then the maximum limit payoff of the auctioneer
is zero. Moreover, the auctioneer can achieve this maximum payoff with all the reserve
prices weakly above 7(G). Since we do not have strict payoff comparisons in the limit
for reserve prices weakly above 7(G), we cannot use the limit payoffs to get a single
equilibrium strategy in the finite game.

Note, however, that the limit payoffs establishes that an auctioneer with production
cost weakly above 7(G) gets strictly higher expected utility with reserve prices weakly
above 7(G) than with reserve prices strictly below 7(G). Hence, the limit payoffs
can be used to rule out such strategies in the finite game. This means that although
we cannot determine the announcement of auctioneers with production costs weakly
above T(G), we can assure that in equilibrium they announce reserve prices weakly
above T(G) when J is large enough, and hence trade with probability zero in the limit.

Next definition determines the set of types of the auctioneers that we are going to
be able to determine their limit equilibrium reserve price.

Definition: Consider an arbitrary auctioneer j and an infinite sequence of reduced
games in which all the auctioneers but j announce a reserve price equal to their produc-
tion cost. We say that a given production cost w; in the support of the distribution
of the auctioneers’ types is tradable in the limit if and only if the probability that
auctioneer j attracts no bidder announcing w; is bounded away from zero when the
numbers of auctioneers and bidders tend to infinity, i.e. all types w; < 7(H), where H
is the auctioneers’ distribution of types.

Lemma 16. There exist a unique set of production costs tradable in the limit.

Proof. The Lemma follows because the value 7(H) is uniquely defined according to
Lemma 11. |

The other important boundary is r(G). This is the minimum reserve price that is
announced by a strictly positive fraction of auctioneers in the limit when J goes to
infinity. The limit auctioneers’ payoff function in Lemma 14 is flat for types strictly
below r(G). The reason is that an auction with a reserve price strictly below r(G)
attracts an infinite number of bidders with the valuation immediately below r(G).
This fixes the minimum price in such auction to the valuation immediately below
r(QG), producing the same effect in the limit auctioneer’s payoffs as if the auctioneer
announces a reserve price equal to this valuation.
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This last problem makes the task of computing the limit of the equilibrium of the
auctioneers’ game more tedious. Moreover, it limits the reach of our results. We shall
not be able to show that the minimum of the support of the equilibrium auctioneers’
randomisation converges to the minimum of the support of the auctioneers’ production
costs.

We can now state our main limit result that it is proved in the Appendix.

Proposition 3. For all € > 0, the fraction of auctioneers that announce in equilib-
rium a reserve price different to his production cost with probability greater than € and
conditional on having a production cost tradable in the limit goes to zero as J tends to
nfinity.

6 Conclusions

In this paper we have analysed a multistage game of competition among auctioneers
with a finite number of auctioneers and bidders. First, we have proved that the second
stage game, the bidder’s entry game, has a unique symmetric Nash equilibrium and
we have provided a characterisation of the solution. With the unique solution of the
entry game we have been able to compute the auctioneers’ reduced game. We have
shown that this reduced game is nice behaved and hence, we have used standard game
theory theorems to show that the game always has an equilibrium (possibly in mixed
strategies).

The originality of our approach is that we have been able to provide these results
allowing for heterogeneity in both market sides. Similar models to ours have faced
technical difficulties in dealing with this extension. In this sense, we think that our
method to prove the existence of an equilibrium of the game can have two implications.
First, it can give light on how to solve similar models of decentralised trade with
heterogeneity in both market sizes. Second, it can suggest either how to construct
models or how to modify existing models in order to assure the existence of equilibrium
even under heterogeneity in both market sides.

We have also connected our results for the finite version of the game with the limit
model in which there is a continuum of auctioneers and bidders. In this sense, we have
given a result in the spirit of upper-hemicontinuity of the equilibrium correspondence.
More precisely, we have shown a kind of convergence of the equilibrium set when the
numbers of auctioneers and bidders go to infinity to the equilibrium already computed
for limit versions of our model by Peters and Severinov [18], and Peters [13]. But, our
result is more than a mere upper-hemicontinuity proof, it also shows that in the limit
the equilibrium set contains an almost unique prediction.

The convergence that we have proved connects the results of imperfect competition
by Burguet and Sdkovics [6] for two auctioneers with the competitive results provided
by McAfee [9], Peters [13], and Peters and Severinov [18], for the limit with infinite
numbers of auctioneers and bidders. It proves the intuitive idea that the larger is
the market the less monopolistic distortions will exist. Nevertheless, our convergence
result has been provided only for a given class of equilibria of the entry game, the
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symmetric equilibria. It still remains unclear whether our results are robust when we
allow for asymmetric equilibria of the entry game.

Our paper has one technical inconsistency. We proof the first result, existence
of an equilibrium of the whole game, assuming that the auctioneers’ strategy space
is continuous, whereas in the second result, convergence of the equilibrium set, we
assume that the auctioneers’ strategy space is discrete. We believe that the existence
result is more interesting when we allow for a continuous strategy space. Restricting
to the case of a discrete strategy space would not clear up whether the existence
result is a consequence of the finiteness of the game, or a consequence of the internal
consistency of the game. On the other hand, the study of the convergence properties of
the game assuming a discrete auctioneers’ strategy space allows us to extend naturally
the analysis of the game with a finite number of auctioneers and bidders to the limit
game.

Had we wanted to prove our convergence result under the assumption that auc-
tioneers’ strategy space is a continuum, the main difficulty would be to prove the
convergence of the equilibrium cut-offs and to characterise their limit. We could follow
at least two approaches. The first one is to prove the convergence of the conditions
that we provide to characterise the equilibrium cut-off in this more general set-up. The
second one could be to use an approach similar to Peter’s [13]. He studies the map
from equilibrium cut-offs to reserve prices instead of the map from reserve prices to
equilibrium cut-offs. The former map is more simple, and hence, allow for more simple
proofs. The only difficulty is that this map is not in general a 1-1 map, mainly due to
the fact that all high reserve prices have the same associated equilibrium cut-off, i.e.
maximum cut-off. Moreover, it would imply to use a method completely different to
the one we use to prove existence of an equilibrium.
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Appendix

A Proof of Proposition 1

In order to study continuity of the equilibrium cut-offs we consider a sequence of vectors
of reserve prices {7 }5° ; that converges to a given limit vector of reserve prices 7. We
assume without loss of generality that the elements of each of these vectors are ordered
increasingly. We shall show that the sequence of equilibrium cut-offs associated to
the sequence of vectors of reserve prices always converges to the equilibrium cut-offs
associated to the limit vector of reserve prices.

To simplify the notation we shall only consider the case in which all the equilibrium
cut-offs are interior, i.e. strictly less than one. In this case, the equilibrium cut-offs
are defined by condition (i) plus condition (i). The proof can be generalised to the
case in which there are some equilibrium cut-offs that equal one, i.e. when condition
(iii) also matters.

The equilibrium cut-offs {y?}‘j]:l associated to a given vector of reserve prices ™
are the unique solution of the following set of equations:

Uy WLy yy) =0

U oW1, Y0 Y1, Y) =1 =0

(10)
\Iﬂll(ygvy?vyg7 7y?}) - Tg =0
yi =11,

where that U7 (j € {2,3,...,J}) plays the same role as ¥; in the main text, but
associated to the vector of reserve prices 7. Recall that each of the functions W7 have
compact domain and each is continuous in all the arguments, strictly increasing in the
first argument, strictly decreasing in the second argument, and strictly increasing in
the other arguments (see Lemma 5).

We can use a recursive argument similar to that in Lemmas 6 and 7 to show that the
above equations define implicitly some functions ¢} such that y = ¢7 o¢? 0.0 (r})
for all j € {2,3,...,J}.

Similarly, the equilibrium cut-offs associated to the limit vector of reserve prices 7
are the unique solution of:

Uy 1(ys,95-1,95) =715 =0

Ui o(Ys—1,Y7-2,Y5-1,Y7) =771 =0

(11)
U1 (Y2, Y1, Y25 -, Y7) =12 =0
Y1 =11,

or applying again the recursive argument of Lemmas 6 and 7, y; = 1j01;_10...42(r1)
for all j € {2,3,...,J}.

It is easy to see that the sequence of functions W7 associated to the sequence of 7™
converges point-wise to the function ¥; associated to the limit vector of reserve prices
7, when 7 tends to 7. Hence, we can apply recursively Lemma 17 (see below) starting
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from the top equation of equations (10) to show that each function Y7 converges
uniformly to 1p;. This implies that the sequence of equilibrium cut-offs associated
to the sequence of vectors of reserve prices 7 converges to the equilibrium cut-offs
associated to the vector of reserve prices 7.

Finally, we state and prove the lemma that we have used above to prove the con-
vergence of the solution of equations (10). Basically, the next lemma says that the se-
quence of implicit functions defined by a convergence sequence of equations converges
to the implicit function defined by the limit equation if some continuity properties hold
and our equations are invertible. Note that we can show that the convergence is in

fact uniform because the domain of our functions is compact.

Lemma 17. Let {Y,}>2 be a sequence of continuous functions with compact domain
in R? that converges point-wise to a function Y. If each of the functions Y, and Y
are increasing in the first argument and decreasing in the second argument, then the
sequence of functions y,, uniquely defined by Yy, (yn(z),z) = 0 converges uniformly to
the function y uniquely defined by Y (y(x),x) = 0.

Proof. We start taking an € > 0. Note next that the monotonic properties and continu-
ity of Y imply that y must be continuous. Hence, for each x in the domain of y, there
exists a 6(z) > 0 such that if 2’ € (x—6(x), z+6(x)), then y(a') € (y(z) — £, y(x) + %).
We denote by J(x) the set of such 2/, i.e. J(x) = (x —6(x),z+ 6(x)). Since by defini-
tion Y (y('), /) = 0, and y(z) — § < y(x) — § < y(a') and y(z) +§ > y(z) — & > y(z'),
the monotonic properties of Y imply that for all 2’ € J(x), Y (y(z) — §,2) <0, and
Y(y(z) + §,2') > 0.

Point-wise convergence of Y, to Y implies that there exists a ng(z) € N such that
if n > ng(x), then Y, (y(x) — 5,2') <0, and Y, (y(z) + 5,2') > 0, for all 2’ € J(x).
Hence, the continuity of Y;, implies that for all 2’ € J(x) and n > ng(z),

€

yn (') € (y(:v) — %,y(x) + 5) C (y(x') -6 y(@) + 6) .

Note that z € J(x), thus the domain of y, say D, is a subset of UzcpJ(x). Since D
is compact, the Heine-Borel theorem (see [19, Theorem 15, p. 44]) implies that there
exists a finite collection of sets in {J(x)}zep that covers D, i.e. D C UM_, J(z,,), for
M finite. Take ng = max{ng(z1),no(z2),...,no(xrr)}, then for all n > nyg,

yn(2') € (y(2') — e, y(a") +¢),

for all 2/ € D, this is for all 2/ in the domain of y. This proves uniform convergence of
Yn tO Y. ]

B Proofs of the Results in Section 5
Proof of Lemma 12.

We first prove the statement of the Lemma assuming that the distribution functions
{G”7} jen+ have support 11 for all J. For this, we start with the next result.
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Lemma 18. Consider a sequence of entry games described by a sequence of distribu-
tion functions {G”} jen+ that converges to G € G, and where G belongs to G’ and
has support 11 for all J € N*. Then, for any & € P and x € [§1,1]:

o 2 (x;7, GT )R it N Z(x; T, G), where recall that for x <y, Z(x;7,G) = 0.
o 0/ |.(%) N/ 1]e(Z), for all Z € R. Recall that if & < x <y, 1j_1|.(Z) = 0.
e if x> g;_q1, then:
U/ (@591, Gty s U, G7) 225 Wy (2, G0 1,6, s U, G-
Where remember that y is the cut-off associated to the reserve price r(G).

Proof. We start with the following mathematical result:'? for any sequence a s oo, a,
J—o00

then (14 ay/J)” <=2 ¢® Thus, for any sequence of cut-offs # € P and x such that
x € [J1,9141) and = >y,

F(z F(§o11)—F(§ kJ—1
(yg}zn ) +Zq - (yqéi)(fq)(yQ) e

J

F(9141)—F(=) F(gg41)—F(dq)

—k am g4t G(7q) (12)

e

where recall that gry1 = 1.
F(g141)-F(x) F(9g41)—F(dq)
W@q TGy

If z € [§1,y), then 1 — is bounded away from one.
This is because for all #; < r(G), limj_,« J G(74) is finite and non zero. Hence,

F)—F@) | R Fg)—Fig) \ M7
1 G () q=l+ G7(7q) J—o0 0. (13)

J

The second convergence result in the lemma follows directly from the first result
but in the case in which # < y. In this last case, note that for £ < z, the quotient
#(&,7%,G7) )z’ (x,7,G7) is bounded away from one. As a consequent, 7/ ||,(Z) goes
to zero when J tends to infinity.

The last convergence result of the lemma follows because the second result proves
convergence of the probability distribution function with respect to which we integrate.
Convergence in probability distribution is sufficient for convergence in expectations (see
[4, Theorem 25.8, p. 335]). |

2 This result can be proved using (1 + %)J < (1 + %;L)J < (1 + ﬂ}'—e)J7 for J large enough, and

(1+ %)J L7, ¢® for q rational. The last result is provided for instance by White [24, Exercise 14,
p. 93]. Continuity assures that the last convergence result is valid for all a € R.
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This lemma states a kind of point-wise convergence of the conditions (I), (II), and
(ITI) to conditions (i), (ii’), and (iii”) for a sequence of entry games. Note also that the
limit functions ¥ ; are also continuous with respect to the cut-offs values, and they have
similar monotonistic properties to the functions ¥; in Section 3. Hence, we can use a
similar proof to that of Proposition 1 (see Appendix A) to show that the equilibrium
cut-offs converge when J goes to infinity and that their limit is characterised by the
unique solution of conditions (i’), (ii’), and (iii’). Note that in this case, the vector of
different reserve prices is fixed, but the functions \ifl{l change because the distribution
of reserve prices changes.

We next show how to modify the above proof to allow for general sequences of
distribution of reserve prices. We can extend in a trivial way the method above to
characterise the equilibrium cut-offs of an arbitrary entry game G/ € G”. In fact, if
the support of G7 is constant with respect to J, we can generalise in a trivial way
the method above to prove convergence of the associated equilibrium cut-offs. The
problem is that in general the support of G will change with respect to J. In this
case, our method does not work because of two reasons. First, it is based on the
convergence of some functions @{71, and these functions have the same domain along
J with generality only if the support of G is constant with respect to J. Second, the
number of such functions changes if the support of G changes.

Our approach in this case is to introduce some conditions similar to (I), (II), and
(I1I), defined with respect to some functions similar to @{71, but with two important
differences. The first one is that we shall introduce a condition associated to each of
the reserve prices in II and not only to the reserve prices in the support of G’. The
second is that the functions ‘i’lJ_l will depend on a number of parameters independent
of the support of G”.

The solution of these conditions will give us a value associated to each reserve price
in II. These values will be such that the equilibrium cut-off associated to a reserve
price 7, € II that belongs to the support of G is the I-th entry of the R-dimensional
solution of our conditions, where recall that R is the cardinality of II. We shall also
show that these new conditions converge to conditions (i’), (ii’), and (iii’). Hence,
these conditions will also characterise the limit of the associated cut-offs.

Basically, we extend the definition of the functions \TJlJfl(m; #,G7) for distribution
functions G € G” that do not have support II. In order to do so, we first extend the
definition of the function /. Note that for z > 1, where ¢; is the cut-off associated
to the minimum reserve price in the support of G, the definition given above for 2/
does not depend on the fact that G has support II. We thus use this definition to
extend the domain of 2/ to all G’ € G/, and for x € [§;,1]. With the new definition
of 27 we define the measure 7;_1|,(.) as above and we use this measure to extend the
definition of ¥;_; to all G’. Note that we can only extend the domain of U, | with
such an approach if I —1 > j. For [ —1 < j we need to evaluate 2/ (z; 7, G7) at x < U;
in order to construct \i/lJ_l, and we have not defined this function for such points. We

thus complete the extension of the definition of \~IflJ71 by letting i’l_l(:v;fr,GJ) =z
for all | —1 < j. This extension makes condition (II) (7 = @{71(Ql;gl_1,yl, s UR))
consistent with condition (i) (y1 = r1) for the cut-off §;. Remember that g; is the cut-
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off associated to the minimum reserve price in the support of G, this is the cut-off 4
according to the notation in Section 3. For other values, note that for finite J they do
not represent any cut-off, and for the limit, they are consistent with condition (i’).

We can now apply conditions (I), (II), and (III) to an arbitrary entry game de-
scribed by G7 € G7. We next argue that these conditions define a unique sequence
7 € P, and that this sequence is such that the elements that correspond to reserve
prices in the support of G’ are in fact the equilibrium cut-offs associated to these
reserve prices.

The uniqueness proof is quite similar to that of conditions (i), (ii), and (iii) given
in Section 3. The only difference is that we only need to apply the inductive argument
to construct the solution for reserve prices above 7;, this is the minimum reserve price
in the support of G, instead of reserve prices above 71 as in Section 3. Note that we
can repeat the arguments in Section 3 because for [ — 1 > j, \i/l,l(a:,@]l,l,g)l, - UR) 18
continuous in all the variables, strictly increasing in x, strictly decreasing in ;1 and
weakly increasing in all the other variables.

In order to prove that conditions (I), (II), and (III) applied to an arbitrary distri-
bution function G’ € G define the actual equilibrium cut-offs, we deduce from these
conditions new conditions. We shall show that these conditions are essentially equiv-
alent to conditions (i), (ii), and (iii) in Lemma 4, i.e. the conditions that characterise
the equilibrium cut-offs.

Conditions (I), and (II) imply that with generality g§; = 7;, this is that the cut-off
associated to auctions with the minimum reserve price in the support of G equals this
minimum reserve price. Note that with different notation, this condition is essentially
the same as condition (i).

Consider next two consecutive reserve prices in the support of G” that are also
consecutive in the increasing sequence {7}, that describes II. Then condition (II),
and condition (IIT) applied to these reserve prices are essentially the same as conditions
(ii) and (iii), respectively. The only difference is that in conditions (II) and (III) the
functions ‘i’lJ_l depend on values associated to all the reserve prices in II, whereas
conditions (ii) and (iii) only depend on cut-offs associated to reserve prices in the
support of G/. This does not imply any difference because the functions 0, , are
actually invariant with respect to changes in the values ¢j;_1 € 7 that are associated
to reserve prices out of the support of G. This is clear from the definition of 27, see
Eq.(4).

Finally, consider two consecutive reserve prices in the support of G’ such that there
are other reserve prices between them in the increasing sequence {fl}ﬁ: ; that describes
I1. Then, we can substitute recursively conditions (II) and (III) for the reserve prices
that are in between and get some new conditions that relate directly the two reserve
prices in the support of G” and their corresponding cut-offs. These conditions are
essentially the same as conditions (ii) and (iii), respectively. This completes the proof
that Conditions (I), (II), and (III) with an appropriate extension of the definition of
U, ; define the equilibrium cut-offs associated to an arbitrary distribution function
G’ eg’.

The final step is to prove convergence of conditions (I), (II) and (III) in this ex-
tended version to the limit conditions (i’), (ii’), and (iii’), when J tends to infinity. This
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proof is quite similar to the proof that we provide for sequences of distribution func-
tions G’ with support II. Again, this proof assures convergence of the values {gle }lR: 15
and that their limit is in fact the solution of conditions (i’), (ii’), and (iii’). [ |

Proof of Lemma 13.

We start the proof with the following result.

Lemma 19. Consider a given sequence of distributions of reserve prices {G”} jen
(G € G7) that converges to G € G, and a type = € [}, 1], then:

(a) For all x & 7t*:

(27 G L2 2 (7%, Q).
(b) For allx ¢ #*, and x > §;:

v (2377, G7) 22 By (a7, ).

(¢) Forallj € {1,2,...,R}:

(d) For all x < r(G):
kJ 3 (w77, GTYH -1 222,
Remember that for x < r(G), zZ(x;7*,G) = 0.
Proof. The first result (a) is direct for x = 1. Consider now, = € (r(G),1). It can
be deduced from conditions (i’), and (ii’) that g; < g, for all §; < 1. Hence,!3 if

x € (§),9;,1), for an 1 € {1,2,..., R}, remember that g5 | = 1:

lim 27/ (a; 77, G7)F =

J—o00
J R ~J ~J kJ
lim | 1— F(yl+1) — F(z) _ Z F(yq+1) - F(yq) _
J—00 JG‘](fl) gl JG‘](T‘Aq)
FOL)—F@) R F )R ket
) G () Zq:l“ GY(7q)
lim | 1-— —
J—00 J
@ )-F @) —F (@,
T et
Z(x, 7", G)

3See Footnote 12 for the computation of the limit.

37



Consider next the case z € (yf,r(G)). In this case, Z;(z;%7,G’) is bounded
away from 1. Then, there exists an > 0, such that, lim; . 2/ (z; 77, G7)* <
limy (1 — 1) =0.

We can proof (b) following similar steps to those followed in the proof of Lemma
18. The proof of (c) can be done in a similar way to the proof of (a). In order to prove
(d) we note again that for all x € (y§,r(Q)), Z;(z;#7,G’) is bounded away from 1.
Then, there exists an 1 > 0, such that,

lim kJ(1 — 2/ (x; 727, G7)) 27 (2727, GTYF 71 < lim kJ(1 —n)F "1 =0,

J—00 — J—oo

for an n > 0. The last step follows from [20, Theorem 3.20 (d), p. 57]. |

For 7#; > r(G), and using Lemma 19 (a) and (b), and the Lebesgue bounded
convergence theorem (see [19, Theorem 16, p. 91]) in the third step below:

lim &)J(fj, GJ|wj) =

J—o0
1
lim {/ (Q’]J(m;gjf,gﬁ_l,._.,gé,GJ) _wj) d,%J(a:;frJvGJ)} —
Y

J—o0 J
J
R -7
lim Z e (@J(xﬁj 971, s 91 G7) —w-) 3 (77, G 71 J(z) dx
Joe0 — gle j s Jdjordi4+1r IR J 3 ) GJ(T'l)
@l+1 T Ak Ak ~ % = * f(ﬂ?)
/: (\Il](aj?y‘]?y]—i-h "'7yR7G) _w]) Z(SC,’]T 7G kG(T )dﬂ? =
1=5 U !
1
[ 30335551050 G) — ) de(i 7, G) =
Yj
(75, Glw;).

Consider now the case r; < r(G), then we split the integral in the following two
halves:

@3 s GT) —wy) 42 (@377, G7) +

K
<
>
Q
)
£
I
S—
&
~~
=k

1
/ <\I"]](I,gj,gf+1,,y}']%,GJ) _w]) déJ(x;ﬁJvGJ%

Yi
where le is the equilibrium cut-off associated to an announcement r(G) in the game
with J auctioneers.
Note that we can compute the limit of the second part of the above integral fol-
lowing exactly the same steps as in the case r; > r(G). For the second part note the
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following algebraic transformations:'*

b,
/ (\I’]J(x;yf,yjﬂrl, e U, G7) — wj) dz’ (z) =
g

~J
SN L (T PN,
/QJ deJ(m)kJ T+ 7 2 ()R- dz*(z)™ =

¥ kJ—-1 . 2] 7 kJ—1
/@,J [33 —Wj; — (Z%] — 7 ) Zj(ég]))kj_l . /QJ %di} dZJ(m)kJ _

— (] =) kT Z (@GN [E (9]) - 27 (5])]
—kJ wo 37 ( RI=1 g =
f, [ =@

@ —w)2@) — (G — wy) ) — / (@) do

J

=@ =) k2 @) @) - 2 5))]

'Z?J
_ / kI F (@ [ @) — 2 (@) de
Yi
Hence, we can apply results (a), (c¢), and (d) in Lemma 19 to prove using the

Lebesgue bounded convergence theorem (see [19, Theorem 16, p. 91)):

tim [ (U @] 5 s 0 GT) = wy) 42 (577, GT =
Y;
(2(G) — wy) 2(e(G); 7%, G)
This last result completes the proof of the Lemma. |

Proof of Lemma 15.

Suppose that we have a family S of sequences of distribution of reserve prices
{G”} jen+ that converge to G. The lemma follows if we show that the expected utility

"o simplify the notation we denote 27 (z; %7, G7) simply by 27 ().
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of a bidder ¢ with type x; evaluated at the unique symmetric equilibrium of the entry
game converges to the same value for each sequence in the family S. Again for the sake
of simplicity assume that each distribution of reserve prices has support G”. Then,
Lemma 3 implies that the expected utility of bidder ¢ is simply the integral of the prob-
ability of winning for all types & € (§{,2;) (i.e. the integral j;i} #(z, 77, G 1dz).
We can show as in Lemma 19 that 27(#,#7, G7)*/~1 converges to z(Z,#*,G) for all
Z ¢ 7* and all sequences in S when J tends to infinity. Hence, we can apply the
Lebesgue bounded convergence theorem (see [19, Theorem 16, p. 91]) to show that
the expected utility of bidder ¢ converges to the same value for all sequences in S. W

Proof of Proposition 3.

The basic idea of the proof is to use the strict payoff comparisons of the limit
auctioneer’s payoffs to rule out strategies from the equilibrium set in the finite game,
for J large enough. Lemma 13 computes the limit of the auctioneer’s expected profit
for convergence sequences of games in which each of the other auctioneers announces a
reserve price with probability one. This result is, however, insufficient for our purpose.
The reason is that typically, in equilibrium the other auctioneers randomise among a
set of reserve prices instead of announcing a reserve price with probability one. Hence,
if we want to approximate the auctioneer’s payoffs for J large we must use the limit
when the other auctioneers are allowed to randomise.

Consider an infinite sequence of reduced games of competition among auctioneers
defined by the sequence of payoff functions {&)J(fj, G’|w;)} jen+, each of which corre-
sponds to a reduced game with J auctioneers. Let also u’/ = {uf, 1, ..., pg} be some
distributional strategies for each of the auctioneers. Recall that j’s distributional strat-
egy is a probability measure u]J on the set Il x II, such that the marginal distribution
on Il is the distribution of the auctioneers’ types H. The empirical distribution of
reserve prices generated by these distributional strategies in any play of the game is
a random variable given by fi’ with expectation % ijl ﬂ]J , where ﬂ]J is the marginal
distribution of /13-7 on II. Let &7 be the probability measure that this induces on G7 in
the game consisting of J auctioneers. Then, if one generic auctioneer j with production
cost w; announces a reserve price 7; (without loss of generality) with probability one,
then his expected payoffs equal: [,.gs 7 (75, G lwy)de? (G7).

Lemma 20. Let {u/} be any sequence of distributional strategies having the property
that %Zj:l ﬂ]J converges to some probability distribution G € G. Then:

e the probability measure £/ converges weakly to a measure that assigns point mass
one to the distribution G.

e if there is one auctioneer j that plays a distributional strateqy ,u]J which marginal
distribution on II puts probability mass one in 7; € II for all J € N*, then:

lim i)J(fj,quj)de(GJ) = (i)(fjvc”wj)'
J—o0 GJleg/
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Proof. The reserve prices offered by the auctioneers form a triangular system of row-
wise independent random variables. Thus sup‘ﬁj (z) — ijl ﬂ]J (x)| converges almost

surely to zero when J goes to infinity by an extension of the Glivenko-Cantelli the-
orem, see [22, Theorem 1, page 105]. Almost surely convergence implies that the
probability measure £/ converges weakly to a measure that assigns point mass one to
the distribution G.

>From Lemma 13, ®/(#;, G’ |w;) oo, ®(7;, Glwj) for any sequence {G”}jen-
such that G7 22> G, Moreover, the distribution ¢7 converges weakly to a degenerate
distribution with mass point one in the distribution G. Thus,

lim &7 (75, G w;)de? (G7) = B(75, Gluwy),
J—oo GIcg
by [3, Theorem 5.5, p. 34].
|

Assume next that we have a convergent sequence of reduced games of competition
among auctioneers with increasing numbers of auctioneers and bidders. Each of these
games must have at least one Nash equilibrium.' Hence, we can always take a subse-
quence of equilibrium distributional strategies with convergence mean in the sense of
Lemma 20. We shall call the limit distribution function of this mean G € G.

Lemma 20 shows that we can approximate the auctioneer’s payoffs when J is large
enough with the limit of the auctioneer’s payoffs evaluated at the limit distribution
of reserve prices G. We can thus use the strict payoff comparisons in Lemma 14 to
rule out certain strategies from the auctioneer’ strategy set that will not be played in
equilibrium for J large enough. We proceed in three steps.

Step 1: In equilibrium, if w < F(G) and for all w € Iy, no auctioneer announces
with positive probability a reserve price above w conditional on having a production
cost w for J large enough.

Lemma 14 says that in the limit when J goes to infinity if an auctioneer has a
production cost w < T(G), he gets strictly higher expected utility with a reserve price
w against the limit distribution of reserve prices G than with any other reserve price
strictly above w and weakly above r(G). Strictness implies that this should also be
true for J large enough. Hence, in equilibrium no auctioneer with production cost w
announces a reserve price weakly above r(G) and strictly above w for J large enough.
We next show that this actually implies the above statement.

The strong law of large numbers implies that when J goes to infinity, with prob-
ability one the fraction of auctioneers with production cost w equals the probability
measure that a given auctioneer has a production cost w (see [4, Theorem 6.1, p.

15 Proposition 2 shows that all these games have a Nash equilibrium in distributional strategies.
Although this proof was done under the assumption that the strategy space is continuous some obvious
modifications show that we can apply it also to a discrete strategy space. Nevertheless, given the
discrete nature of the auctioneers’ strategy space and the auctioneers’ private types we can more
naturally apply Nash’s (1950) existence theorem.
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85]). Hence, the finiteness assumption of the support of the distribution of production
costs H implies that limy o P} > r(G), where P; is the maximum reserve price
that is announced with positive probability in equilibrium by an auctioneer condi-
tional on a production cost w. According to the paragraph above this implies that
limy_ o P;) < w. This completes the proof of Step 1.

Step 2: Let w be the minimum production cost in the support of the distribution of
production costs H. Then, for all w in Iy such that w < w < T(G), all auctioneers
conditional on having a production cost w announce a reserve price w in equilibrium
and for J large enough.'®

Lemma 14 says that in the limit when J goes to infinity if 7(G) < w < 7(G), then
an auctioneer with a production cost w strictly prefers a reserve price w against the
limit distribution of reserve prices G. Strictness implies that this is also true for J
large enough. This means that in equilibrium, and for J large enough, all auctioneers
with a production cost w such that r(G) < w < 7(G) announce a reserve price equal
to w. Hence, we only need to show that w > w implies that w > r(G).

Since w < T(G), Step 1 implies that the auctioneers with production cost w an-
nounce a reserve price smaller than or equal to w in equilibrium and for J large enough.
Due to the finiteness of the support of the distribution of production costs, the strong
law of large numbers implies that when J goes to infinity, the fraction of auctioneers
with production cost w is strictly positive with probability one, see [4, Theorem 6.1,
page 85]. This means that in the limit when J goes to infinity w > r(G) for all w > w.
This completes the proof of Step 2.

In step 2, we rule out some strategies that involve reserve prices below the produc-
tion cost mainly when the production cost is strictly above w. The impossibility to
compare payoffs for J large enough with the limit payoffs when J goes to infinity for
reserve prices below or equal to r(G) precludes to extend Step 2 to production costs w.
In the next step, we produce a weaker statement for the production cost w = w than
Step 2 for w = w. This weaker statement is, nonetheless, sufficient for the Proposition.

Step 3: For all € > 0, the fraction of auctioneers that announce in equilibrium a
reserve price different to his production cost with probability greater than € and condi-
tional on a production cost w goes to zero as J tends to infinity if w < T(Q).

Similarly to Step 2, we only need to show that if the conditions in the statement of
Step 3 are not met then w > r(G). Step 1 says that no auctioneer with production cost
w < T(G) announce a reserve price above w in equilibrium and for J large enough.
Suppose next that there exists an € > 0 such that the fraction of auctioneers that
announce in equilibrium a reserve price different to his production cost, i.e. strictly
below w, with probability greater than ¢ and conditional on a production cost w goes
to 6 > 0 as J tends to infinity. The strong law of large numbers (see [4, Theorem 6.1,
p. 85]) says that the limit of the fraction of auctioneers that announce a reserve price
strictly less than w is at least € 6 > 0 with probability one. This means that w > r(G).

Note that in this step and in the first step we prove more than required by the Proposition.
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This completes the proof of Step 3.

In order to complete our proof, we only need to show that Step 1, Step 2, and
Step 3 imply the Proposition. Step 1, Step 2, and Step 3 imply that for all € > 0 the
fraction of auctioneers that announce a production cost different to their production
cost conditional on having a production cost below the reserve price 7(G) tends to
zero as J goes to infinity. Lemma 14 says that auctioneers with production costs
weakly above 7(G) strictly prefer to announce a reserve price weakly above 7(G) for
J large enough. Hence, we can use Lemma 20 to show that the distribution of reserve
prices strictly below 7(G) that are observed in equilibrium when J tends to infinity
converges weakly to the distribution of production costs strictly below 7(G). Note
that production costs weakly above 7(G) never trade in the market and hence, they
do not actually affect to the level of 7(G). This implies that the 7(G) associated to
the limit of the equilibrium strategies must be actually equal to the 7(H), where H
is the distribution of the auctioneers’ production costs. This completes the proof of
Proposition 3. |
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