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SUCCESSFUL UNINFORMED BIDDING

Ángel Hernando-Veciana

A B S T R A C T

This paper provides some striking results that arise in the unique symmetric equilibrium

of common value multiunit auction in which some bidders are better informed than others.  We

show that bidders with worse information can do surprisingly well: They can win with higher

probability than better informed bidders, and sometimes, even with higher expected utility.  We

also find a positive relationship between the success of worse informed bidders and the number

of units for sale.  Finally we argue that the correct intuitive explanation of these results relies on

the balance of the winner’s curse and the loser’s curse effects.

JEL classification number: D44, D82.
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1 Introduction

In this paper we study auctions of one or more homogeneous units of a common
value good in which some bidders have better information about this common value
than the other bidders. Such auctions are of theoretical importance because they
model reasonably well a number of real life auctions. Examples are auctions of oil
and gas leases, treasury bill auctions, and auctions of parts of the radio spectrum.

We shall provide several instances in which the equilibrium bid behaviour is quite
surprising. We show that under natural assumptions worse informed bidders can
bid very aggressively and win to better informed bidders with high probability. We
also provide an intuitive explanation based on the interaction of two e¤ects: The
winner’s curse and the loser’s curse.

In order to illustrate our results we start with the following example. Suppose
that one auctioneer puts up for sale one unit of a good through a sealed bid second
price auction to a pool of three bidders. One of the bidders, say bidder A, knows
the common value of the good, whereas the other two bidders, say bidder B and
bidder C, only know that this value is drawn from a given bounded set according to
a probability distribution.

The same reasons as in a second price, private value auction show that bidder A
has a unique weakly dominant strategy, to bid the true value of the good. Assum-
ing that bidder A follows this strategy, bidder B and C’s unique weakly dominant
strategy is to bid the minimum value of the good, i.e. bidder A’s minimum bid.
Suppose, that bidder B submits a bid above bidder A’s minimum bid. Then, bidder
B can win under two events: (i) when bidder B bids above bidder A, and bidder A
bids above bidder C, and (ii) when bidder B bids above bidder C, and bidder C bids
above bidder A. In (i) bidder B pays a price that equals bidder A’s bid, i.e. the true
value of the good. Whereas in (ii) bidder B pays a price that equals bidder C’s bid,
i.e. a price above the true value of the good. In this sense, we can say that bidder
B su¤ers a winner’s curse.

Suppose next that the auctioneer puts up for sale two identical units of the good
instead of one. In this case, we assume that the auction format is a generalisation
of the sealed bid second price auction to a two unit sale. The bidders with the two
highest bids win one unit each and the price that they pay is the third highest bid,
this is the loser’s bid. Note that this auction set-up is in fact the Vickrey auction
for multiunit sales and bidders with single unit demand.

Again, bidder A’s unique weakly dominant strategy is to bid the true value of
the good. But, in this case, if bidder A follows this strategy, bidder B and bidder
C’s unique weakly dominant strategy is to bid the maximum value of the good, i.e.
bidder A’s maximum bid. Suppose that bidder B bids below bidder A’s maximum
bid. She can lose under two events: (i) when bidder C bids above bidder A, and
bidder A bids above bidder B, and (ii) when bidder A bids above bidder C and
bidder C bids above bidder B. In (i), had bidder B bid high enough, she would have
won at a price equal to the true value of the good. Whereas in (ii), had bidder B
bid high enough, she would have won at a price below the true value of the good.
Thus, we can say that bidder B su¤ers a loser’s curse.
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Hence, if there is one unit for sale, the uninformed bidders (bidder B and bidder
C) lose with probability one and the perfectly informed bidder (bidder A) wins with
probability one at a minimum price in equilibrium. Whereas, if there are two units
for sale, the uninformed bidders win with probability one at a price equal to the
true value of the good, and the informed bidder loses with probability one. Note
that the auctioneer’s revenue is zero with one unit for sale, whereas the auctioneer
gets full surplus extraction per unit when he sells two units.

In this paper we show how the results of this simple example extend to more
general situations. We learn from our models that when there are enough number
of units for sale, worse informed bidders tend to bid very aggressively and win more
often than better informed bidders. Moreover, completely uninformed bidders get
higher expected utility than noisily informed bidders in some cases. We also provide
some results on auctioneer’s expected revenue and on the informational content of
the price. Finally, we show that our results are not a pathological equilibrium of the
game but rather the unique symmetric equilibrium. Symmetric in the sense that
bidders of the same class use the same strategy.

Our results have direct implications for an important application of auction
theory, advising in bidding contests. Moreover, our models arise new questions on
the optimal design and the e¢ciency of auctions.1 For instance, our model suggests
that if the auctioneer can choose into how many “lots” to divide what he has for sale,
increasing the number of units will allocate a bigger share of the good in expected
terms to worse informed bidders.

For the case that bidders have unit-demand, and that the number of units for sale
is smaller than the number of well-informed bidders, Milgrom (1981) has displayed an
equilibrium of a generalisation of the second price auction in which bidders without
relevant private information lose out to better informed bidders with probability
one. In this paper, we focus on the opposite case, that there are at least as many
units for sale as there are well-informed bidders. It is in this case where we show that
Milgrom’s result is in some sense reversed. Actually, we …nd a kind of monotonicity,
increasing the number of units for sale increases the probability that worse informed
bidders bid higher than better informed bidders. In practice, for example in the
auctions cited in the …rst paragraph of this Introduction, it often seems realistic
that well-informed bidders form only a small fraction of the total market.

It is important to emphasise that, although we consider multiunit auctions we
maintain the assumption that each bidder individually demands only one unit. Thus,
our results are unrelated to the di¢cult problems arising in auctions in which bidders
are allowed to submit multiunit-demands. Because we maintain the unit-demand
assumption, it is also obvious how the second price auction needs to be de…ned in

1 Although e¢ciency is not an issue in a pure common value set-up, if there are small private
value di¤erences the …nal allocation matters. Moreover, we can think of situations in which the
auctioneer can have preferences for bidders that are either better or worse informed. One example is
when the auctioneer wants to encourage (or discourage) information acquisition. Another possibility
is auctions in which there are “incumbents” and “entrants”. Incumbents will be typically better
informed than entrants. Hence, we could conjecture that the more successful worse informed bidders
are the more attractive will be the auction to entrants.
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the multiunit case, say with k units for sale: The bidders with the k highest bids
win and pay the k + 1-th highest bid.

The observation that uninformed bidders may win auctions is not original to this
paper. In fact, Engelbrecht-Wiggans, Milgrom, and Weber (1983) showed that this
may happen in the single unit case if the format is a …rst price auction. Daripa (1998)
extended Engelbrecht-Wiggans, Milgrom and Weber’s result to a multiunit set-up,
using a generalisation of the …rst price auction. Daripa also shows that a completely
uninformed bidder can get higher expected utility than a perfectly informed bidder.

The auction format of Daripa is more di¢cult to analyse than ours. His analysis
is also complicated by the fact that he allows for multiunit-demand. As a conse-
quence, we obtain a more clear-cut analysis than Daripa. For example, we do not
face as severe problems of multiplicity of equilibria as Daripa does.

Another reason for our interest in the second price format is that it allows us to
develop particularly clearly the intuition for our …ndings. We explain the relatively
good performance of poorly informed or uninformed bidders with respect to informed
bidders in terms of the e¤ect of the winner’s curse and the loser’s curse on the
incentives to bid of bidders with di¤erent quality of information.

In the (generalised) second price auction a bidder will want to raise his bid by
a small amount, say from b to b + ², if the expected value of a unit, conditional on
its price being p 2 (b; b + ²), is larger than p. The price is p if and only if the k-th
highest bid of the other bidders is p. This event is the intersection of two events,
one of which implies good news whereas the other implies bad news for the bidder.
The good news is that at least k other bidders have been willing to bid p or more. If
these bidders had any private information at all, it must have been favourable. This
is good news. This e¤ect has been called the loser’s curse as a bidder who neglects
this e¤ect will regret losing. The bad news is that at least m ¡ k other bidders
(where m denotes the total number of bidders) have bid p or less, and hence, if they
had any private information at all, this must have been unfavourable. This e¤ect
has been called the winner’s curse as a bidder who neglects this e¤ect will regret
winning.2

The winner’s curse reduces the incentives to bid higher, whereas the loser’s curse
raises the incentives to bid higher. Moreover, both e¤ects are stronger for less
informed bidders because of two reasons. Better informed bidders’ estimation is more
accurate and hence it is less sensitive to new information.3 The average informational
content of the other bidders’ signals is of less quality from the view point of a better
informed bidder than from the view point of a worse informed bidder. A better
informed bidder faces one less better informed bidder and one more worse informed
bidder than a worse informed bidder.

2 The winner’s curse is well-known in the auction literature, see for instance the survey by Milgrom
(1989). The concept of the loser’s curse is less established. It was …rst used by Holt and Sherman
(1994) in the context of a bargaining model. The concept was introduced in auction models by
Pesendorfer and Swinkels (1997). They also presented a formal de…nition of the meaning of the
winner’s curse and the loser’s curse in the spirit of that given in our paper.

3 This is true only under the usual assumption in auction theory that the bidders’ signals are
informational substitutes, see the brief discussion in Milgrom and Weber (1982).
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If the loser’s curse is su¢ciently strong in comparison to the winner’s curse we
can expect that in equilibrium bidders with less information win more often than
bidders with more information. Moreover, we can also expect that the stronger the
loser’s curse is in comparison to the winner’s curse, the more often less informed
bidders win. This explains the increase aggressiveness of the uninformed or poorly
informed bidders’ behaviour with respect to the number of units. The more units
there are for sale, the more winners and the fewer losers there are in the auction,
thus the loser’s curse will be stronger and the winner’s curse will be weaker.

Note that when there is only one unit for sale the good news of the loser’s curse
are completely o¤set by the bad news of the winner’s curse. In this case we can say
that the loser’s curse plays no role. At the opposite extreme is the case when the
number of units for sale equals the number of bidders minus one. Then the winner’s
curse is completely o¤set by the loser’s curse. The winner’s curse thus plays no role,
and it can only be the loser’s curse that a¤ects the incentives to bid higher.

The most closely related papers are those of Milgrom (1981), Engelbrecht-Wigg-
ans and Daripa (1998) which were already discussed above. Another related study
is that of Pesendorfer and Swinkels (1997). This paper, like ours, studies the gen-
eralisation of the second price auction to the multiunit case when bidders have
unit-demand. Pesendorfer and Swinkels (1997) di¤ers from our paper in two re-
spects. Firstly, they assume that all bidders have signals of equal informativeness,
whereas our focus is on the case that some bidders have more informative signals
than others. Secondly, they focus on the case that the number of units for sale and
the number of bidders are large. By contrast, our focus is on the case of a …xed,
…nite number.

This paper is structured as follows: In Section 2, we study a basic model in which
there are one bidder with relevant, although potentially incomplete information,
and several other, completely uninformed bidders. Section 3 extends the model
and analyses a case in which there are several bidders who hold relevant information
whereas other bidders are completely uninformed. In Section 4, we extend the model
of Section 2 into a di¤erent direction, and allow the bidders who were uninformed in
Section 2 to hold some pieces of information. We only assume that their information
is less signi…cant than that of the well-informed bidder. We show that the equilibria
in this set-up converge in an appropriate sense to the equilibrium in Section 2 as the
signi…cance of the less informed bidders’ signals tends to zero.

2 An Auction with One Informed and Many Uninfor-
med Bidders

An auctioneer puts up for sale through auction k indivisible units of a good. There
are n + 1 bidders,4 n ¸ 2. Each bidder can bid for one or zero units of the good.5

4 In the case n = k = 1 the auction game which we are considering has very many equilibria.
Since an analysis of these equilibria would distract from the main point of this paper, we restrict
attention to the case n ¸ 2.

5 Equivalently we could assume that a perfectly divisible good is for sale, all bidders have constant
marginal utility for the good, and the auctioneer splits the good into k identical lots and allows
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We assume that the number of bidders is greater than the number of units for sale,
n + 1 > k.

Each bidder obtains a von Neumann Morgenstern utility of v ¡ p if she obtains
one unit of the good, and she obtains a von Neumann Morgenstern utility of zero if
she obtains no unit. The value v (v 2 R+) is common to all bidders. One bidder,
the informed bidder, receives privately a signal s informative of v, whereas the other
bidders, the uninformed bidders, do not receive any signal. For simplicity we assume
that s is informative of v in the sense that the expected value of the good conditional
on signal s is a continuous and strictly increasing6 function,7 say º(s). We assume
that s is drawn from the interval [s; s] with a continuous distribution function F (s).
This distribution is assumed to have support [s; s].

We restrict to uniform price auction with neither a reserve bid nor an entry fee.
In this auction format, all bidders submit simultaneously non-negative bids. The
bidders who make the k-th highest bids win one unit each. The price which they
have to pay is the k + 1-th highest bid. If the k-th highest bid and the k + 1-th
highest bid have the same value b, then the price in the auction is b, all bidders
who make a bid strictly higher than b get one unit with probability one, and the
remaining winners are randomly selected among all bidders who have made bid b,
whereby all such bidders have the same probability of being selected.

To analyse equilibrium bidding in this auction we begin with the following ob-
servation:

Proposition 1. The informed bidder has a unique weakly dominant strategy, to bid
º(s) for all s 2 [s; s] :

Proof. This follows from the standard argument that is used to show that in single
object, private value, second price auctions bidding one’s true value is a dominant
strategy. ¥

The informed bidder’s signal is the only information available to the bidders.
Thus, the event winning does not convey any new information to the informed
bidder about the value of the good, i.e. the informed bidder’s incentives to bid
are a¤ected neither by the winner’s curse nor the loser’s curse. This explains the
simplicity of the unique weakly dominant strategy of the informed bidder.

Given Proposition 1 we can focus on the behaviour of the uninformed bidders. We
shall assume that all uninformed bidders play the same pure or mixed strategy. We
shall describe this mixed strategy by its distribution function G : [º(s); º(s)] ! [0; 1].
Notice that we rule out bids which are not in the interval [º(s); º(s)]. Such bids are
weakly dominated. We shall call a strategy of the uninformed bidders an equilibrium
strategy if together with the weakly dominant strategy of the informed bidder it
constitutes a Bayesian Nash equilibrium of the auction game.

each bidder to bid for at most one of these lots.
6 For instance, the conditional expected value º(s) is a continuous and strictly increasing function

if v and s have a joint distribution such that (i) it has a density function that satis…es strictly the
a¢liation inequality, and (ii) it has full support.

7 Note that the case that we study in the Introduction in which the informed bidder’s signal is
perfectly informative about the value of the good is a special case of this model.
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We consider …rst two cases that allow for an analysis specially clear-cut. These
two cases are generalisations of the examples in the Introduction. The …rst of these
cases is when the number of units for sale is only one. Then, the leading e¤ect on
the incentives to bid is the winner’s curse, whereas the loser’s curse plays no role.
Given that the winner’s curse is bad news and the informed bidder does not su¤er
any winner’s curse, the uninformed bidders have less incentives to bid than any of
the types of the informed bidder. The next proposition states the corresponding
result:8

Proposition 2. If there is only one unit for sale, k = 1, there is only one equilib-
rium strategy for the uninformed bidders, to bid º(s) with probability one.

Proof that the proposed strategy is an equilibrium strategy: In the proposed equili-
brium the uninformed bidders get utility zero. The only possible deviation for
uninformed bidders is to raise their bids. If all uninformed bidders except one bid
º(s), and one uninformed bidder raises her bid to some value b > º(s), then this un-
informed bidder wins if and only if the informed bidder’s bid is between º(s) and b.
Moreover, the price which the uninformed bidder has to pay is exactly the informed
bidder’s bid which equals the true value of one unit. Therefore, the expected utility
from raising the bid is zero. Thus, there is no strict incentive for uninformed bidders
to raise their bids.

Proof that there are no other equilibrium strategies: Suppose all uninformed bidders
choose the same mixed strategy, and assume that this strategy assigns positive
probability to bids above º(s). Then each uninformed bidder can gain by changing
her strategy, and bidding º(s) with probability one. To see this distinguish the
following two events: (i) the highest of all other uninformed bidders’ bids is greater
than the informed bidders’ bid; and (ii) the highest of all other uninformed bidders’
bids is less than or equal to the informed bidders’ bid. Observe that both events
occur with positive probability. In event (ii) all bids give expected utility zero, thus
the change in bidding strategy has no e¤ect. In event (i), however, there is a strict
incentive to be among the losers of the auction, this is, there is a winner’s curse. If
the bidder adopts the same mixed strategy as all other uninformed bidders, there is
a positive probability that she is among the winners. Thus, she can strictly gain by
deviating to º(s). ¥

Corollary 1. If k = 1 : (i) The price is completely uninformative, since it is always
equal to º(s). (ii) The informed bidder wins with probability one the unique unit for
sale. (iii) The informed bidder has positive expected utility whereas the uninformed
bidders have expected utility zero.

8 Note that in second price auctions there always exist equilibria in which a number of bidders
equal to the number of units for sale bid very high, and all the other bidders bid very low, see
Bikhchandani and Riley (1991). It implies that we could construct asymmetric equilibria in the
model of this section such that one uninformed bidder wins with probability one at a very low price.
However, these equilibria in general require a lot of co-ordination among the bidders, and in the
case of the model of this section, these equilibria are in weakly dominated strategies.

8



The other specially simple case is when the number of units for sale equals
the number of uninformed bidders. Then, the leading e¤ect is the loser’s curse,
whereas the winner’s curse plays no role. Since the loser’s curse is bad news and
the informed bidder does not su¤er any loser’s curse, the uninformed bidders have
greater incentives to bid than any of the types of the informed bidder:

Proposition 3. If there are n units for sale, k = n, there is only one equilibrium
strategy for the uninformed bidders, to bid º(s) with probability one.

Proof that the proposed strategy is an equilibrium strategy: In the proposed equilib-
rium the uninformed bidders have utility zero. This is because they all win with
probability one, but the price equals the bid of the informed bidder, i.e. the value
of the good. If an uninformed bidder lowers her bid, she loses the auction whenever
the informed bidder’s bid is above her lower bid. Otherwise she wins, but at a price
which equals the informed bidder’s bid. Hence her expected utility is again zero.
Thus, no uninformed bidder can gain by deviating.

Proof that there are no other equilibrium strategies: Suppose all uninformed bidders
choose the same mixed strategy, and assume that this strategy assigns positive
probability to bids below º(s). Then each uninformed bidder can gain by changing
her strategy, and bidding º(s) with probability one. To see this distinguish the
following two events: (i) the lowest of all other uninformed bidders’ bids is greater
than or equal to the informed bidders’ bid; and (ii) the lowest of all other uninformed
bidders’ bids is less than the informed bidders’ bid. Observe that both events occur
with positive probability. In event (i) all bids give expected utility zero, thus the
change in bidding strategy has no e¤ect. In event (ii), however, there is a strict
incentive to be among the winners of the auction, this is, there is a loser’s curse. If
the bidder adopts the same mixed strategy as all other uninformed bidders, there
is a positive probability that she is not among the winners. Thus, she can strictly
gain by deviating to º(s). ¥

Corollary 2. If k = n : (i) The price reveals the conditional true value (º(s)). (ii)
With probability one all units are won by uninformed bidders. (iii) All bidders have
expected utility zero.

In other cases, namely when 1 < k < n, both the winner’s curse and the loser’s
curse a¤ect the uninformed bidder’s incentives to bid. The study of the interaction
of these two e¤ects requires a slightly di¤erent analysis than that of the previous
cases. This analysis is done in the next proposition:

Proposition 4. If 1 < k < n, then there exists a unique equilibrium strategy for
the uninformed bidders:

G¤(b) ´
(n ¡ k)

R º¡1(b)
s F (s)ds

(n ¡ k)
R º¡1(b)

s F (s) ds + (k ¡ 1)
R s

º¡1(b) [1 ¡ F (s)] ds
;

for all b 2 [º(s); º(s)]. This equilibrium distribution function is continuous and has
support [º(s); º(s)].
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Proof. This proof is broken down into two steps.
Step 1. In the …rst step we consider mixed strategies of the uninformed bidder

that have a continuous distribution function G. A necessary condition for such
strategies to be an equilibrium is that each uninformed bidder is indi¤erent between
all the bids in the support, if she takes as given that all the other uninformed
bidders adopt the proposed strategy, and that the informed bidder plays her weakly
dominant strategy. This is just the standard indi¤erence condition characterising
Nash equilibria in mixed strategies, extended to the case of in…nite strategy spaces.
We shall show that this indi¤erence condition implies that if G is an equilibrium
distribution of bids, it must be equal to G¤.

The above indi¤erence condition is satis…ed only if each uninformed bidder gets
zero expected utility. To see why note that the number of units for sale is less than
the number of uninformed bidders, thus the lowest bid in the support of the unin-
formed bidders’ strategy must lose with probability one, i.e. it gives zero expected
utility.

To apply this condition we distinguish two events under which an uninformed
bidder can win the auction: (i) the price in the auction equals the bid of the informed
bidder, and (ii) the price in the auction equals the bid of another uninformed bidder.
Under event (i), the expected utility of winning is trivially zero, the price equals the
value of the good. Hence, the expected utility of winning must also be zero under
event (ii). Since all the bids in the support of G must give zero expected utility, this
means that the expected utility of winning at a given price b in the support of G
conditional on event (ii) must also be zero.

To formalise the last necessary condition, we introduce for an arbitrary b in the
support of G, the notation ½(b). This stands for the probability that the informed
bidder’s bid, º(s), is greater than b, conditional on the following event: There are
exactly k ¡ 1 bids above b among n ¡ 2 uninformed bidders’ bids and the informed
bidder’s bid. This is the probability that an uninformed bidder su¤ers a loser’s curse
at price b. Similarly, 1 ¡ ½(b) is the probability that an uninformed bidder su¤ers a
winner’s curse at price b. Using this notation, we can write our necessary condition
as:9

½(b)E[vjº(s) ¸ b] + (1 ¡ ½(b))E[vjº(s) · b] ¡ b = 0; (1)

where if G is the distribution of bids of each uninformed bidder, then ½(b) equals by
de…nition: ¡n¡2

k¡2

¢
[1 ¡ F ][1 ¡ G(b)]k¡2G(b)n¡k¡

n¡2
k¡2

¢
[1 ¡ F ][1 ¡ G(b)]k¡2G(b)n¡k +

¡
n¡2
k¡1

¢F [1 ¡ G(b)]k¡1G(b)n¡k¡1
; (2)

with F ´ F (º¡1(b)) to simplify the expression.
After some algebra and with the help of the following equality which is derived

9 Here and in the following E [ :j :] denotes the expected value of the random variable in front of
the vertical line, conditional on the event which is de…ned after the vertical line.
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using the iterated expectation law:

F (º¡1(b))E[vjº(s) · b] = F (º¡1(b))E[º(s)jº(s) · b] =

Z º¡1(b)

s
º(s) dF (s);

and a similar relationship for (1 ¡ F (º¡1(b)))E[vjº(s) ¸ b], we can show that the
unique function G that solves equation (1) for a given b is G¤(b). This function is
continuous, strictly increasing and satis…es G¤(º(s)) = 0 and G¤(º(s)) = 1. Hence,
if the distribution of the mixed strategies is to be continuous, then it must be G¤(b)
for all b 2 [º(s); º(s)].

It only remains to be shown that G¤ characterises in fact an equilibrium strategy.
It is su¢cient to show that each of the bids b 2 [º(s); º(s)] gives zero expected
utility to an uniformed bidder, if all the other uninformed bidders adopt G¤, and
the informed bidder plays her weakly dominant strategy. This holds since as we
have already shown, G¤ is the unique distribution function such that the expected
utility of winning at a price b 2 [º(s); º(s)] for each uninformed bidder is zero, if all
the other uninformed bidders adopt G¤, and the informed bidder plays her weakly
dominant strategy.

Step 2. In this second step we study mixed strategies that have a discontinuous
distribution function. Assume that G is one of such strategies with an atom at b̂.
We focus on the incentives to deviate of an uninformed bidder, say bidder l. Let b(k)

be the k-th highest bid of all the bidders but l. De…ne the event “b̂ wins” to be the
event in which bidder l when making a bid b̂ wins one unit, and the event “b̂ loses”
the complement of “b̂ wins”, this is the event in which bidder l when making a bid
b̂ loses the auction.

We begin by arguing that we must have: E[vjb(k) = b̂ and b̂ wins] ¸ b̂. Suppose
instead E[vjb(k) = b̂ and b̂ wins] < b̂. If this were the case, then bidder l could gain
by shifting all probability mass that is placed on b̂ to some bid b̂ ¡ ² where ² > 0 is
close to zero. This change would obviously make no di¤erence to player l’s utility
in the case that b(k) > b̂, nor would it a¤ect l’s utility in the case that b(k) = b̂ and
b̂ loses. Finally, it would obviously also not make any di¤erence in the case that
b(k) < b̂ ¡ ². In the event that b(k) = b̂ and b̂ wins, which has positive probability,
the change in strategy would lead to a strict increase in player l’s utility. Finally,
the probability of the event that b̂ ¡ ² · b(k) < b̂ can be made arbitrarily small by
choosing a su¢ciently small ², so that it does not a¤ect the advantageousness of the
proposed deviation.

In a similar way it can be argued that we must have E[vjb(k) = b̂ and b̂ loses] · b̂.
If b̂ = º(s), the event b(k) = b̂ means that the bid of the informed bidder is

below º(s). As a consequence the …rst of the conditions above cannot be satis…ed.
Similarly, it can be shown that b̂ = º(s) violates the second of the conditions above.

We can complete our indirect proof by arguing that if º(s) < b̂ < º(s), then
E[vjb(k) = b̂ and b̂ wins] < E[vjb(k) = b̂] < E[vjb(k) = b̂ and b̂ loses], this is, that
there is a winner’s and a loser’s curse at price p̂. This last inequality obviously
contradicts the other two inequalities. Suppose you knew that b(k) = b̂, but you did

11



not know whether the informed bidder is bidding above or below b̂. If you learned
that the informed bidder is bidding above b̂, then the probability that b̂ wins would
drop. Hence, b̂ wins has strictly negative correlation with the event that the informed
bidder is bidding above b̂, conditional on b(k) = b̂. This implies that whenever b̂ wins
it is ex post more likely that the informed bidder is bidding below b̂, and vice versa
when b̂ loses. ¥

Corollary 3. If 1 < k < n : (i) The price contains information about the condi-
tional true value (º(s)), but it is an imperfect signal. (ii) All bidders have positive
probability of winning. (iii) The informed bidder has positive expected utility, but
the uninformed bidders have expected utility zero.

In the case 1 < k < n, with some probability the informed bidder will be among
the winners and with some probability the informed bidder will be among the losers.
The …rst event means that the price will be below the conditional value of the object
º(s). This is the good news that refers the loser’s curse. The second event means
that the price is above the conditional value of the object º(s). This is the bad
news that refers the winner’s curse. If all the poorly informed bidders follow the
equilibrium distribution function of Proposition 4 the probabilities of these events
are such that the expected value of the good conditional on the event that a poorly
informed bidder wins the auction at a given price b below her bid equals b.

One surprising feature of this model is that increasing the number of units for
sale instead of ease competition, increases uninformed bidders’ bid aggressiveness.
This result is stated next:

Corollary 4. Increasing the number of units for sale shifts to the right in the sense
of …rst order stochastic dominance the equilibrium distribution of uninformed bid-
ders’ bids. However, the informed bidder equilibrium bid function is invariant with
respect to the number of units for sale.

Proof. The corollary follows trivially from Proposition 2 and Proposition 3 when
the starting number of units for sale is 1 or when the …nal number of units for sale
is n respectively. In other cases, it is veri…ed because G¤ decreases with k. ¥

The intuitive explanation of this result is that increasing the number of units
increases the number of winners and decreases the number of losers. It thus produces
a direct increase in the probability that the informed bidder is among the winners
and hence, a decrease in the probability that she is among the losers, i.e. it increases
the strength of the loser’s curse with respect to the winner’s curse. In equilibrium,
this leads to an increase in the bid aggressiveness of the uninformed bidders that
decreases the probability that the informed bidder is among the winners.

Figure 1 illustrates the last corollary. It shows the plot of the density of the
distribution of the equilibrium mixed strategy of the uninformed bidders for k 2
f2; 3; 4; 5g given that F is a uniform distribution function on [0; 1], º(s) = s and
n = 6.

Note that one interesting implication of Corollary 4 is that increasing the number
of units for sale has not only a direct e¤ect on the bidders’ probability of winning
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Figure 1: Plot of the density (g¤) of G¤ for n = 6.

the auction, there are more winners, but also an indirect e¤ect. It changes the
relative proportion with which bidders with di¤erent quality of information win.
The consequence of this indirect e¤ect is that increasing the number of units for
sale will always increase the probability with which the uninformed bidders win.
However, if the indirect e¤ect is su¢ciently strong, it can imply that an increase in
the number of units for sale decreases the probability that the informed bidder wins.
This happens in at least two cases. When we move from a situation in which there
is one unit for sale, or when we move to a situation in which there are n units for
sale.

3 An Auction in Which Uninformed Bidders have Pos-
itive Expected Utility

In the model of the previous section the uninformed bidders can win with positive
probability but they always receive zero expected utility. The purpose of this section
is to construct a model in which the uninformed bidders can win, and their expected
payo¤ is strictly positive.

As before, we assume that there are k units of the same good for sale. The
number of bidders is now assumed to be nI + nU , where nI + nU > k. Among
the bidders, nI bidders are called informed bidders. Each of these bidders receives
privately a signal si. The other nU bidders are called uninformed bidders. They
receive no signal. We assume that the number of uninformed bidders is strictly
greater than the number of uninformed bidders, nI < nU . If this assumption is not
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satis…ed our analysis is less clear due to multiplicity of equilibria.10

The value of the good, v, is assumed to be a simple arithmetic mean
PnI

i=1 si

nI
.

Moreover, we assume that the signals si are independently drawn11 from the set
[s; s] (0 · s < s) according to the same continuous distribution function F with
support [s; s]. Bidders’ preferences and the auction game are the same as in Section
2.

As in Section 2, we shall focus on symmetric equilibria. In this section, this
will mean that all informed bidders play the same strategy, and all uninformed
bidders play the same strategy. For simplicity, we shall focus on equilibria in pure
strategies instead of allowing for mixed strategies as in Section 2. We shall denote
by bI : [s; s] ! R+ the strategy of the informed bidders and by bU 2 R+ the bid of
the uninformed bidders. We shall further simplify our arguments by assuming that
the informed bidders play a continuous and strictly increasing strategy.

Some of the results of the previous section generalise in natural ways to the model
of the current section. For example, in the case k · nI , it can be proved that in the
unique equilibrium outcome the uninformed bidders lose with probability one. Such
equilibria generalise the equilibrium in Proposition 2. For the case nI < k < nU one
can show that there is no equilibrium in pure strategies. In this respect this case is
similar to the case of Proposition 4.

We shall not deal explicitly in this paper with the two cases mentioned in the
previous paragraph. We shall also omit the rather special case k = nU . Instead,
we shall focus on the case that k > nU . This case yields for our purposes the most
interesting result. The result is similar to Proposition 3.

Proposition 5. Suppose k > nU . Then the bid functions (bI ; bU ) constitute an
equilibrium if and only if:12

bI(s) = E
£
vj s(q) = s(q+1) = s

¤
bU ¸ E

£
vj s(q) = s(q+1) = s

¤
:

Here, we de…ne q ´ k ¡ nU .
These conditions are such that the uninformed bidders win with probability one

in equilibrium.

We …rst provide an example of equilibrium bid functions. In this example we
assume nI = 16, nU = 18, k = 30 and F (x) = x4 with support [0; 1]. Then

bI(s) = 22s
5 + 44(1+s+s2+s3+s4)

5(1+s+s2+s3) and bU = 77
5 satisfy the conditions given in Proposition

5. A plot of these equilibrium bid functions appears in Figure 2.
10 If nI ¸ k ¸ nU there exist equilibria similar to those in Proposition 5 in which the uninformed

bidders win with probability one. Moreover, there exists some other equilibria similar to those
suggested by Milgrom (1981) in which uninformed bidders lose with probability one. Note that in
fact the case that Milgrom studies is a special case of nU · k · nI in which nU = 1 and nI > k.

11 We assume that the value is a simple arithmetic mean of the signals and that the signals are
stochastically independent for presentation convenience. Our analysis generalises directly to the
usual information structure used in common value auctions in which signals and the true value are
a¢liated random variables.

12 We denote by s(r) the r-th highest signal of the signals si.
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Figure 2: Equilibrium bid functions with nI = 16, nU = 18 and k = 30.

Proof that the conditions in the proposition are su¢cient: The strategy of the in-
formed bidders is the same as in the standard symmetric equilibrium in an auction of
q units and no uninformed bidders. The arguments used for the standard symmetric
equilibrium by Milgrom (1981) to show that the bidders do not have incentives to
deviate also explain why the informed bidders do not have incentives to deviate if
the conditions in the proposition are satis…ed.

To see that the uninformed bidders do not have incentives to deviate suppose that
all the bidders stick to some strategies that satisfy the proposed conditions. Under
this assumption we can state the following arguments. First, each uninformed bidder
does not have incentives to arise her bid since she is already winning with probability
one. Second, if one uninformed bidder lowers her bid below bU she does not improve
her payo¤s. This is because by deviating the bidder loses when the price in the
auction is between her deviating bid and bU , and the expected value of winning at
a given price is positive for all the equilibrium prices. To see why, take an arbitrary
price of the auction p. This price p must correspond to the equilibrium bid of a
type s of the informed bidders. Then, the expected utility of winning at price p is
the di¤erence between the expected value of the good conditional on the q + 1-th
highest signal equals s, and the price p. Since the price p equals the expected value
of the good conditional on the q-th and q + 1-th highest signals equal s by de…nition
of s, the di¤erence is positive.

Proof that the conditions in the proposition are necessary: Assume that the bid
of the uninformed bidders is above all the bids of the informed bidders, then the
informed bidders’ equilibrium strategy must be an equilibrium strategy of the same
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auction game with q units for sale, nI informed bidders and no uninformed bidders.
In this last case, we can use a proof similar to that by Harstad and Levin (1986) to
show that there is a unique equilibrium strategy. This equilibrium strategy is such
that each informed bidder bids the expected value of the good given that the q and
the q + 1 highest signal of the informed bidders equal her own private signal. This
is the equilibrium bid function that appears in the proposition.

In order to complete the proof it only remains to be shown that the uninformed
bidder cannot lose the auction with positive probability in equilibrium. This proof
follows a similar structure and notation to Step 2 of the proof of Proposition 4.

Assume that the uninformed bidders’ bid, bU , is below the maximum bid of the
informed bidders. We focus on the incentives to deviate of an uninformed bidder,
say bidder l. We reintroduce the notation b(k) for the k-th highest bid of all the
bidders but l. De…ne the event “l wins” to be the event in which bidder l wins when
making the bid bU and the event “l loses” as its complement, this is, the event in
which bidder l loses when making the bid bU .

We can use the same arguments as in Step 2 of the proof of Proposition 4 to show
that two necessary conditions of equilibrium are: E[vjb(k) = bU and l wins] ¸ bU

and E[vjb(k) = bU and l loses] · bU .
We start showing that these inequalities cannot be met simultaneously if bU is

between the minimum and the maximum bid of the informed bidders. We prove this
using a random variable13 ~I that stands for the number of informed bidders that bid
above bU . Our indirect proof is to show that the conditional distribution of ~I shifts
in the sense of strictly …rst order stochastic dominance, to the right when l loses
and to the left when l wins. Since we restrict attention to equilibria in which the
informed bidders’ bid function is strictly increasing, this is su¢cient for our claim.

By de…nition:14

Pr
³

l winsj ~I = I; k ¡ nU < ~I < k
´

= k¡I
nU

Pr
³

l losesj ~I = I; k ¡ nU < ~I < k
´

= nU ¡k+I
nU

;

where k ¡ nU < ~I < k is the same event than b(k) = bU . If ~I is less than k but
more than k ¡ nU , the k-th highest bid of the other bidders is the bid of one of the
uninformed bidders, all of which bid bU .

Hence,
Pr

³
l winsj ~I = I; b(k) = bU

´
Pr

³
l losesj ~I = I; b(k) = bU

´
decreases strictly with I. Therefore, l wins and l loses, conditional on b(k) = bU

can be interpreted as a pair of signals that satisfy the Monotone Likelyhood Ratio
Property. Consequently, the distribution of ~I conditional on l loses and b(k) = bU

13 We use the notation ~I for the random variable and I for its realisation.
14 Here and in the following Pr( :j :) denotes the expected probability of the random variable in

front of the vertical line, conditional on the event which is de…ned after the vertical line.
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strictly …rst order stochastically dominates the distribution of I conditional on l
wins and b(k) = bU .

We complete our proof with the case in which bU is equal or below the minimum
bid of the informed bidders. In this case, the informed bidders and k ¡ nI of the
poorly informed bidders get one unit each at a price equal to bU . Since the events
l wins, l loses and b(k) = bU are uninformative of v, the two inequalities that must
satisfy bU imply that bU = E[v]. But this means that an informed bidder whose
type is such that the expected value of the good conditional on her type is strictly
less than E[v] has incentives to deviate. She gets strictly negative expected utility
when she wins, and if she bids below bU she loses with probability one and hence,
she gets zero utility. ¥

Proposition 6. If k > nU , then the expected utility of each uninformed bidder is
strictly positive and strictly greater than the unconditional expected utility of each
informed bidder in equilibrium.

Proof. The ex ante expected utility of wining is the same for both classes of bidders.
They get one unit and pay a price equal to the bid of the q+1-th highest signal of the
informed bidders. Moreover, this ex ante expected utility is strictly positive because
the price is below the expected value of the good conditional on the information
contained in the price. The proposition then follows because each uninformed bidder
wins with probability one and each informed bidder with probability q=nI . ¥

This result shows that uninformed bidding can be quite attractive. Note, how-
ever, that this result does not necessarily imply that an uninformed bidder that wins
with probability one does not have incentives to acquire information and become an
informed bidder. The reason is that although when she becomes informed she loses
with some positive probability, the other informed bidders can bid less aggressively,
even if they are one more, because they compete for one more unit. This decreases
the average price in the auction and can in fact, o¤set the decrease in the probability
of winning. For instance, if there is one single informed bidder and nU = k > 3 un-
informed bidders, we now from Section 2 that the each uninformed bidder wins with
probability one but gets zero expected utility. However, if one of the uninformed
bidder acquires information and becomes informed bidder, we now from this section
that she will lose with positive probability but will get strictly positive expected
utility.

4 An Auction with One Informed and Many Poorly In-
formed Bidders

In this section we extend the analysis of Section 2 by allowing the worse informed
bidders to hold some relevant information although less informative than the in-
formed bidder’s information. We thus talk of one bidder with better information
(the informed bidder) and some other bidders with worse information (the poorly
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informed bidders), although not completely uninformed. The purpose of this exten-
sion is double. First, to show that similar results to those in Section 2 also hold in
this more general set-up. Second, to check the robustness of the equilibria in Section
2, by showing that the equilibria in this extended model converge in an appropriate
sense to the equilibria in the model of Section 2 when the informativeness of the
poorly informed bidders’ signals vanishes.

In this section we keep all the assumptions of Section 2 except the information
structure. This is modi…ed to allow for less informative signals. We assume that
the value of the good v is a simple arithmetic mean of some n + 1 signals si (i =
1; 2; :::n + 1). The signals si are assumed to be statistically independent and to
follow the same continuous distribution function F with a bounded support [s; s]
(0 · s < s).

We assume that the informed bidder observes one of these signals (say sn+1),
that we call sI in what follows, whereas each of the poorly informed bidders observes
a garble of a di¤erent signal si, that we call sP

i (i = 1; 2; :::; n). These garbles are
generated by the following simple procedure: With a probability independent of the
other random variables of the model, say ¸ (0 < ¸ < 1), sP

i equals si, and with the
complementary probability 1 ¡ ¸, sP

i equals another random variable statistically
independent of the other random variables of the model and that follows the same
distribution as si, i.e. F .

According to this procedure, the signal sI is more informative of v than each
of the signals sP

i in Blackwell’s sense. Moreover, when ¸ tends to one, each signal
sP

i becomes as informative of v as sI , and when ¸ tends to zero, each signal sP
i be-

comes completely uninformative of v. Note also that the signals sP
i have a marginal

distribution function F . We also introduce the following assumption:

Assumption 1. s ¡ E [sij si · s] and E [sij si ¸ s] ¡ s are respectively strictly in-
creasing and strictly decreasing in s.

Assumption 1 is satis…ed by many distribution functions, e.g. the uniform dis-
tribution function. If F has a continuously di¤erentiable density, see Lemma 3 in
Bikhchandani and Riley (1991), a su¢cient condition for the …rst part of the as-
sumption is that F (s) is strictly log-concave. Similarly, if F has a continuously
di¤erentiable density, a su¢cient condition for the second part is that 1 ¡ F (s) is
strictly log-concave, this is that F (s) has an increasing hazard rate.

We explain in the paragraph before Lemma 1 the role that our simple information
structure including this last assumption play in the model of this section.

We de…ne an equilibrium of the game as a bid function bI : [s; s] ! R+ for the
informed bidder and a bid function bP : [s; s] ! R+ for the poorly informed bidders
that form a Bayesian Nash equilibrium of the game. Note that we study symmetric
equilibrium in the sense that all poorly informed bidders use the same bid function.

For simplicity we shall only consider equilibria in continuous and strictly in-
creasing strategies. In order to rule out some strange equilibria that exist in the
case k = 1 and k = n we also restrict attention to equilibria in which all the bidders
have an unconditional positive probability of winning the auction.15

15 For instance, if k = 1, there exists a set of equilibria where the informed bidder bids very high

18



We start our analysis proposing an indi¤erence condition that we use to formulate
some strategies. We shall show later that these strategies constitute the unique
equilibrium of the game. Our condition says that each bidder’s bid conditional on
her type equals the expected value of the good conditional on: The bidder’s private
information, and the information that the bidder infers from the event that the k-th
highest bid of the other bidders equals her own bid. Such condition assures that a
bidder is indi¤erent between winning and losing when the price equals her bid and
she wins. Note that this condition is satis…ed by the bid function of the symmetric
equilibrium that it is usually analysed when bidders are ex ante symmetric, see for
instance Milgrom (1981).

However, the statement of the above indi¤erence condition has an additional
di¢culty in asymmetric models like ours. We need to specify a function that gives
the type of the informed bidder that submits the same bid that a given type of the
poorly informed bidders. We solve this problem proposing one such function and we
later show that this function is the one that corresponds to the unique equilibrium
of the game.

Let Á : [s; s] ! [s; s] be a function implicitly de…ned by the condition that the
expected value of the good conditional on the event that the k-th highest signal
of the poorly informed bidders is s, and that the informed bidder’s signal is Á(s)
equals:

(i) If k = 1, the expected value of the good conditional on the event that the two
highest signals of the poorly informed bidders are equal to s, and the informed
bidder’s signal is below Á(s). Formally:16

E[vjsI = Á; sP
(1) = s] = E[vjsI · Á; sP

(1) = sP
(2) = s]: (3a)

(ii) If k = n, the expected value of the good conditional on the event that the
n ¡ 1-th and the n-th highest signals of the poorly informed bidders are equal
to s and the informed bidder’s signal is above Á(s):

E[vjsI = Á; sP
(n) = s] = E[vjsI ¸ Á; sP

(n¡1) = sP
(n) = s]: (3b)

(iii) If 1 < k < n, the expected value of the good conditional on the event that
either the k ¡ 1-th and the k-th highest signals of the entrants’ signals equal
sP and the informed bidder’s signal is above Á(s), or the k-th and the k + 1-
th highest signals of the poorly informed bidders equal s and the informed
bidder’s signal is below Á(s):

E[vjsI = Á; sP
(k) = s] = µ(Á; s)E[vjsI ¸ Á; sP

(k¡1) = sP
(k) = s]

+ (1 ¡ µ(Á; s))E[vjsI · Á; sP
(k) = sP

(k+1) = s]; (3c)

and the poorly informed bidders bid very low. Thus, the informed bidder wins with probability one
and each poorly informed bidder wins with probability zero. See Footnote 8.

16 Again, we denote here and in what follows sP
(r) the r-th highest signal of the poorly informed

bidders. We also drop the dependence of Á on s in the equations (3a), (3b), and (3c) to simplify
the notation.
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where µ(Á; s) is the probability that the k ¡ 1-th and the k-th highest signals
of the entrants’ signals equal s and the informed bidder’s signal is above Á
conditional on the following event: Either the k ¡ 1-th and the k-th highest
signals of the entrants’ signals equal s and the informed bidder’s signal is above
Á, or the k-th and the k + 1-th highest signals of the poorly informed bidders
equal s and the informed bidder’s signal is below Á(s). Hence,

µ(Á; s) = ¡n¡2
k¡2

¢
[1 ¡ F (Á)][1 ¡ F (s)]k¡2F (s)n¡k¡n¡2

k¡2

¢
[1 ¡ F (Á)][1 ¡ F (s)]k¡2F (s)n¡k +

¡n¡2
k¡1

¢
F (Á)[1 ¡ F (s)]k¡1F (s)n¡k¡1

:

In an equilibrium in continuous and strictly increasing bid functions, if Á is the
function that relates types of the informed bidder and types of the poorly informed
bidder that submit the same bid, Á must be continuous and strictly increasing. We
use next our simple assumptions on the information structure to proof the …rst
part of the following result. Under more general information structures, e.g. a
general a¢liated model, we would need more additional and probably more complex
assumptions to assure that the next result holds.

Lemma 1. Each equation (3a), (3b), and (3c) de…nes implicitly a unique function
Á(s). This function Á is continuous and strictly increasing in s. Moreover,

(i) If k = 1, then Á(s) = s and Á(s) < s.

(ii) If k = n, then Á(s) > s and Á(s) = s.

(iii) If 1 < k < n, then Á(s) = s and Á(s) = s.

Proof. See the Appendix. ¥

Another implication of this lemma is that the range of Á is [s; s] only if 1 < k < n.
This means that in the other cases, according to this function there are some types
of the informed bidder that submit bids that are not in the range of the poorly
informed bidder’s strategy. We see below the implications of this property of Á.

If we assume that Á is actually the function that relates types of the informed
bidder and of the poorly informed bidder that submit the same bid, we can use
our indi¤erence condition to de…ne the informed bidder’s bid function for types
s 2 [Á(s); Á(s)]:

bI(s) = E
h

vj sI = s; sP
(k) = Á¡1(s)

i
: (4)

Note that Lemma 1 means that this bid function is de…ned for all types of the
informed bidders only if 1 < k < n. If k = 1 this function does not de…ne the bid of
types s 2 (Á(s); s]. Similarly, if k = n this function does not de…ne the bid of types
s 2 [s; Á(s)). We provide later conditions that restrict the bids of these types.
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We next propose a bid function for the poorly informed bidders and we later
discuss why in fact it satis…es our indi¤erence condition:

bP (s) = E
h

vj sI = Á(s); sP
(k) = s

i
; (5)

for s 2 [s; s].
To see why bP also satis…es our indi¤erence condition note that the event that

the k-th highest signal of the other bidders equals the bidder’s bid can mean two
things to a poorly informed bidder. Either the k-th highest bid of the other bidders
is submitted by the informed bidder or by another poorly informed bidder. The
function bP veri…es by de…nition our indi¤erence condition under the …rst of the
events. Moreover, the de…nition of the function Á guaranties that bP also veri…es
our indi¤erence condition under the latter event.

We complete the de…nition of the informed bidder’s bid function. If k = 1, all
bids of the informed bidder above bI(Á(s)), i.e. the maximum bid of the poorly
informed bidders, are payo¤ equivalent to the informed bidder. However, these bids
cannot be too low, otherwise, some poorly informed bidders could have incentives
to deviate. We give in the next equation a condition that assures that this does not
happen: Z s

Á(s)
(E[vjsI = ~s; sP

(1) = s] ¡ bI(~s))dF (~s) · 0; (6)

for all s in (Á(s); s].
Similarly, if k = n, all bids below bI(Á(s)), i.e. the minimum bid of the poorly

informed bidders, are payo¤ equivalent to the informed bidder. All these bids lose
with probability one. However, these bids cannot be too low, otherwise, some poorly
informed bidders could have incentives to deviate. We give such condition below:Z Á(s)

s
(E[vjsI = ~s; sP

(n) = s] ¡ bI(~s))dF (~s) ¸ 0; (7)

for all s in [s; Á(s)).
Finally, note that both bI and bP satisfy that for all s 2 [s; s], Á(s) is the type of

the informed bidder that submits the same bid as a type s of the poorly informed
bidders.

Figures 3, 4 and 5 show examples of bid functions that satisfy equations (4), (5),
(6), and (7). All these examples are done assuming that F is a uniform distribution
function with support [0; 1].
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Figure 3: Equilibrium bid functions with k = 1, n = 3 and ¸ = 0:5.

Figure 4: Equilibrium bid functions with k = 2, n = 3 and ¸ = 0:5.

Figure 5: Equilibrium bid functions with k = 3, n = 3 and ¸ = 0:5.
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Proposition 7. The pair of strategies (bI ; bP ) are an equilibrium of the game if
and only if bP is as de…ned in equation (5), and bI as de…ned in (5), and satis…es
equation (6) if k = 1, and equation (7) if k = n.

Proof. See the Appendix. ¥

In what follows we shall assume for the sake of simplicity that the inequalities
(6), if k = 1, and (7), if k = n, hold with equality. It is easy to see that this
assumption implies that there is a unique equilibrium bid function bI in cases k = 1
and k = n: If k = 1, bI(s) = E[vjsI = s; sP

(1) = s], for s 2 ((Á(s); s]; and if k = n,

bI(s) = E[vjsI = s; sP
(n) = s], for s 2 [s; Á(s)).

Our next goal is to illustrate the robustness of the conclusions of Section 2. We
start showing that the equilibrium in this section converges in an appropriate sense
to the equilibrium in the model of Section 2, when the signals of the poorly informed
bidders become fully uninformative of the value of the good.

In order to state this result we shall use the function º(s) of Section 2. This is
the expected value of the good conditional on the informed bidder’s signal. This is
the only information available for the bidders in the model of Section 2, and in the
model of this section when ¸ tends to zero.

Proposition 8. When ¸ goes to zero, the equilibrium bid function of the informed
bidder converges (uniformly) to º(s), and:

(i) If k = 1, then the equilibrium bid function of the poorly informed bidders
converges (uniformly) to º(s).

(ii) If k = n, then the equilibrium bid function of the poorly informed bidders
converges (uniformly) to º(s).

(iii) The equilibrium distribution of bids of each of the poorly informed bidders
converges (weakly) to G¤(b), the equilibrium distribution of the bids of each
uninformed bidder in Section 2.

Proof. See the Appendix. ¥

Note that this result is not only a robustness test of the equilibria in Section
2, but also a proof that the claim that worse informed bidders can do surprisingly
well against a better informed bidder does not only hold for completely uninformed
bidders but also for poorly informed bidders. To see why, we provide as a corollary
of Proposition 8, the following result:

Corollary 5. (i) If k = 1, then the probability that a poorly informed bidder wins
the auction converges to zero as ¸ tends to zero. (ii) If k = n, then the probability
that the poorly informed bidder win all the units for sale converges to one as ¸ tends
to zero.

We …nally consider what is the e¤ect of increasing the number of units for sale
in this set-up.
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Proposition 9. The probability that a poorly informed bidder with type s 2 (s; s)
bids higher than the informed bidder strictly increases when the number of units for
sale increases.

Proof. See the Appendix. ¥

This result is similar to Corollary 4 in the sense that it illustrates that increasing
the number of units for sale makes the worse informed bidders bid relatively more
aggressively than the better informed bidder. Note, however, that this result does
not necessarily imply that increasing the number of units for sale shifts to the right
in the sense of …rst order stochastic dominance, the distribution of bids of the poorly
informed bidders.

As we mentioned after Corollary 4, one interesting implication of Proposition 9
is that increasing the number of units for sale has not only a direct e¤ect on the
bidders’ probability of winning, but also an indirect e¤ect. It changes the relative
proportion with which bidders with di¤erent quality of information win. This means
that increasing the number of units for sale always increases the probability with
which poorly informed bidders win the auction. However, it is not clear that it
increases the probability with which the informed bidder wins. In fact, if ¸ is
su¢ciently close to zero, we can show that it decreases the probability with which
the informed bidder wins the auction at least in two cases: When the initial number
of units for sale is one, and when the …nal number of units for sale is n.

Our results have also a translation into expected utility comparisons. Note …rst
the following result.

Lemma 2. The expected utility of an informed bidder (poorly informed bidder) with
type s is a continuous function with …rst derivative equal to the probability that she
wins times 1

n+1 ( ¸
n+1).

Proof. This result can be proved with a straightforward adaptation of the analysis
of Myerson (1981). We can do this adaptation because of our assumption that
the bidders’ signal are independent and the value of the good is additive in the
signals. ¥

This lemma says that each bidder’s expected utility is a linear function of the
probability of winning the auction for types below the bidder’s type. Since the ex-
pected utility of each bidder’s minimum type is invariant with respect to the number
of units for sale, i.e. it is always zero,17 this means that an increase in the number
of units for sale has similar e¤ects on the expected utility of the bidder to those on
the probability of winning. There is one direct e¤ect which increases the probability
that each bidder wins the auction, and hence, the bidders’ expected utility, and one
indirect a¤ect that changes the relative proportion with which bidders with di¤er-
ent quality of information win. This indirect e¤ect increases the expected utility of
poorly informed bidders and decreases the expected utility of the informed bidder.

17 This is true under the assumption that constraint (7) is satis…ed with equality when k = n.
Otherwise, the minimum type of the poorly informed bidders gets strictly positive expected utility
when k = n.
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We can also argue that since both the direct and the indirect e¤ect have the same
direction for poorly informed bidders, their expected utility increases unambiguously
with the number of units for sale. However, since the e¤ects take opposite directions
for the informed bidder, her expected utility could be decreasing in the number of
units for sale. We can show that this is the case if ¸ is close to zero and either the
initial number of units for sale is one or the …nal number of units for sale is n.

5 Conclusions

In this paper we have provided some natural common value auction models with
asymmetric bidders that have a striking equilibrium behaviour. Basically, we have
shown that worse informed bidders can win with a surprisingly high probability, and
some times even with high expected utility, when competing with better informed
bidders. We have also shown that the number of units for sale is a key variable
for the relative success of better informed-worse informed bidders: Increasing the
number of units for sale makes the worse informed bidders more willing to outbid
better informed bidders. We have also provided an intuitive explanation of these
phenomena based on the interaction of the winners’ curse and the loser’s curse and
their di¤erent qualitative e¤ect on bidders with better or worse information.

We have seen how the increase in the loser’s curse and the decrease in the loser’s
curse (in our model changing the number of units for sale) increases the relative suc-
cess of worse informed bidders. We believe that this e¤ect could have consequences
in frameworks in which bidders’ information acquisition is an issue or in situations in
which entry of new bidders, probably less informed, is important for the auctioneer.

One of the limitations of our analysis is that we only consider one auction format,
a generalised second price auction. The di¢culty to analyse other auction formats
comes from the di¢culty to study auctions with asymmetric bidders. These di¢cul-
ties are, however, less severe if we consider generalisations of the English auction.
We provide this extension in a companion paper and compare the second price and
the English auction when bidders are asymmetrically informed. We also believe that
we could extend our analysis without many di¢culties to generalisations of the …rst
price auction if we limit to the case in which there is one informed bidder and several
completely uninformed bidders. This extension could provide a new robustness test
of our results.

Appendix

In this appendix we provide the proofs of Section 4. We start introducing two
functions that will be useful to simplify the notation: ´ : [s; s] ! R+, where ´(s) =
s¡E [sij si · s], and ¹ : [s; s] ! R+, where ¹(s) = E [sij si ¸ s]¡s. These functions
have the following properties:

Lemma 3. The function ´ is continuous, strictly increasing and bounded, more-
over, ´(s) = 0 and ´(s) > 0. The function ¹ is continuous, strictly decreasing and
bounded, moreover, ¹(s) = 0 and ¹(s) > 0.
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Proof. Continuity follows from the continuity of F , the monotonic properties from
Assumption 1, the functions are bounded because si has bounded support, and the
value of the functions at s and s is direct from the de…nitions of ´ and ¹. ¥

With the help of these two functions and using the following equivalence:

E[vjsI = s; sP
(k) = s0] =

s + ¸ (s0 + (k ¡ 1)E[sijsi ¸ s0] + (n ¡ k)E[sijsi · s0]) + (1 ¡ ¸)nE[si]

1 + n
;

and other similar expressions that also hold for the other expected values in equations
(3a), (3b), and (3c), we can simplify these equations:

(i) If k = 1, then Á(s) = ´¡1(¸´(s)).

(ii) If k = n, then Á(s) = ¹¡1(¸¹(s)).

(iii) If 1 < k < n, then:

(k ¡ 1)(1 ¡ F (Á(s)))F (s) [¹(Á(s)) ¡ ¸¹(s)] ¡
(n ¡ k)F (Á(s))(1 ¡ F (s)) [´(Á(s)) ¡ ¸´(s)] = 0: (8)

Proof of Lemma 1.

(i) Case k = 1. Á is continuous and strictly increasing because ´ is continuous
and strictly increasing. Since, ´(s) = 0, then Á(s) = ´¡1(¸´(s)) = ´¡1(0) = s.
Finally, Á(s) = ´¡1(¸´(s)) < ´¡1(´(s)) = s.

(ii) Case k = n. Á is continuous and strictly increasing because ¹ is continuous and
strictly decreasing. Since ¹(s) = 0, then Á(s) = ¹¡1(¸¹¡1(s)) = ¹¡1(0) = s.
Finally, Á(s) = ¹¡1(¸¹(s)) > ¹¡1(¹(s)) = s.

(iii) Note that ¹(Á(s)) ¸ ¸¹(s) and ´(Á(s)) ¸ ¸´(s). If one of these inequalities is
not satis…ed, equation (8) implies that the other is not satis…ed. Then, since
¹ is decreasing Á > s from the …rst inequality, and since ´ is increasing Á < s
from the second inequality, that is a contradiction. Hence, the left hand side
of equation (8) is decreasing in Á and increasing in s around the solutions
of equation (8). These monotonic properties together with the continuity of
both sides of equation (8) with respect to Á and s are su¢cient to show that
Á is uniquely de…ned and that it is continuous and strictly increasing. Finally,
Á(s) = s and Á(s) = s follows from the unique solution of equation (8). Recall
that ´(s) = ¹(s) = 0.

¥

Proof of Proposition 7.
Su¢cient Proof. We check that bidders do not have incentives to decrease their
bids. The proof that they do not have incentives to increase their bids is symmetric.
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Similar arguments to those used in symmetric, common value, second price auctions
show that a bidder does not have incentives to decrease her bid if the expected value
of winning at each price below her bid is non negative. Suppose that a given bidder
with type s wins at a price b that belongs to the range of her bid function. This
means that there exists a type s0 < s, such that if our bidder had received type s0,
she would have bid b. According to our indi¤erence condition, this means that our
bidder would be indi¤erent between winning and losing, if she had type s0 instead
of type s. Since s > s0, our bidder prefers winning, i.e. gets non negative expected
utility. Finally, note that the price that a bidder pays can be …xed out of the range
of her bid function only for the poorly informed bidders and when there are n units
for sale. In all these cases, condition (7) assures that a bidder with type s weakly
prefers winning. Hence, poorly informed bidders with a type s ¸ s get non negative
expected utility.

Necessary proof. We start the proof with the case 1 < k < n. Suppose that the
bid functions bI ; bP are an equilibrium of the game. Let b be a bid that belongs to
the intersection of the interior of the range of bI and bP , assuming by now that this
intersection is not empty. The standard logic used in second price auctions shows
that bI and bP must satisfy our indi¤erence condition as otherwise bidders would
have local incentives to deviate.

If we call the types of the informed bidder and the poorly informed bidders that
submit bid b, s and s0 respectively, then the indi¤erence condition for the informed
bidder implies that in an equilibrium in increasing strategies b = bI(s) = E[vjsI =
s; sP

(k) = s0]. Similarly, the indi¤erence condition for the poorly informed bidders
implies,

b = bP (s0) = °E[vjsI = s; sP
(k) = s0] +

(1 ¡ °)
n

µ(s; s0)E[vjsI ¸ s; sP
(k¡1) = sP

(k) = s0]

+(1 ¡ µ(s; s0))E[vjsI < s; sP
(k) = sP

(k+1) = s0]
o

;

where ° is a number between 0 and 1 that corresponds to the probability that the
k-th highest bid of the other bidders is the bid of the informed bidder given that
the k-th highest bid of the other bidders equals b.

By de…nition of Á, the unique functions that satisfy these two necessary condi-
tions for a given b are bI in equation (4) and bP in equation (5) for types s and s0, and
where s = Á(s0). Moreover, since we restrict to continuous and strictly increasing
bid functions, equation (4), must be veri…ed by all s in the range of Á and equation
(5) by all s in the domain of Á, i.e. in the case of 1 < k < n these two conditions
completely specify the bid functions.

The proof is similar in the cases k = 1 and k = n, the only novelty is that we
need to show why condition (6) if k = 1, and condition (7) if k = n are necessary.
Consider for instance, the case k = 1, and suppose that the poorly informed bidders’
bid function and the informed bidder’s bid function are as in equations (4) and (5).
Then, if condition (6) is not satis…ed for a type s 2 (Á(s); s] of the informed bidder,
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a poorly informed bidder with a type s (or arbitrary close to s) has incentives to
deviate arising her bid to bI(s). This deviation only changes her payo¤s when the
informed bidder’s bid is between [bI(Á(s)); bI(s)), and then she wins and gets strictly
positive expected utility.

We …nally show that the intersection of the range of bI and bP cannot be empty
in equilibrium. Since we restrict to equilibrium in continuous and strictly increasing
functions, this intersection can be empty if and only if either bI(s) ¸ bP (s) or
bP (s) ¸ bI(s). We only need to check that none of these two possibilities can
happen in equilibrium.

We start with bI(s) ¸ bP (s). If k = 1 this possibility is rule out by our as-
sumption that we restrict to equilibria in which all the bidders have an ex ante
positive probability of winning. If k > 1, then the informed bidder gets one unit
with probability one (independently of her signal) and the poorly informed bidders
compete for the k ¡ 1 units left. We can use an analysis similar to Harstad and
Levin (1986) to show that there is a unique symmetric equilibrium strategy for the
poorly informed bidders and this is such that: bP (s) = E[vjsP

(k¡1) = sP
(k) = s]. If all

the poorly informed bidders follow this strategy, the informed bidder with a type
s (or arbitrarily close to s) has incentives to deviate lowering her bid slightly be-
low bP (s). This deviation only changes the informed bidder payo¤s when the k-th
highest type of the poorly informed bidders is arbitrarily close to s. In this case,
the informed bidder’s expected utility of winning is strictly negative. Hence, the
deviation is pro…table since it allows losing.

The case bP (s) ¸ bI(s) is ruled out by assumption, the informed bidder loses
with probability one. Note, however, that for the case 1 < k < n we could also use
a symmetric argument to the one in the former paragraph. ¥

Proof of Proposition 8.

It is easy to show that since v =
sI+¸(sP

1 +:::+sP
n )+(1¡¸)nE[si]

1+n , jbI(s)¡º(s)j · ¸n s¡s
n+1

for all s 2 [s; s]. Hence, bI converges uniformly to º as ¸ tends to zero.

(i) Case k = 1. Since bP (s) = bI(Á(s)), and bI converges uniformly to º when ¸
goes to zero, we only need to prove that Á converges uniformly to s.

lim
¸!0

max
s

jÁ(s) ¡ sj = lim
¸!0

jÁ(s) ¡ sj =

lim
¸!0

¯̄
´¡1(¸´(s)) ¡ s

¯̄
=

¯̄
´¡1(0) ¡ s

¯̄
= 0;

where we have used that Á is increasing and Á(s) = s (Lemma 1) in the …rst
step, and that ´ is continuous and ´¡1(0) = s (Lemma 3) in the last two steps.

(ii) Case k = n. We proceed as in (i).

lim
¸!0

max
s

jÁ(s) ¡ sj = lim
¸!0

jÁ(s) ¡ sj =

lim
¸!0

¯̄
¹¡1(¸¹(s)) ¡ s

¯̄
=

¯̄
¹¡1(0) ¡ s

¯̄
= 0

where we have used that Á is increasing and Á(s) = s (Lemma 1) in the …rst
step, and that ¹ is continuous and ¹¡1(0) = s (Lemma 3) in the last two steps.
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(iii) Case 1 < k < n. The probability that the bid of a poorly informed bidder is less
than b equals F

¡
Á¡1(bI

¡1(b))
¢
. We …rst prove the convergence of F (Á¡1(s0)).

Note that F (Á¡1(s0)) is a probability distribution function with support [s; s].
We can use equation (8) to show that F (Á¡1(s0)) satis…es:

F (Á¡1(s0)) =

(n ¡ k)F (s0)
£
¹(s0) ¡ ¸¹(Á¡1(s0))

¤
(n ¡ k)F (s0) [¹(s0) ¡ ¸¹(Á¡1(s0))] + (k ¡ 1)(1 ¡ F [s0]) [´(s0) ¡ ¸´(Á¡1(s0))]

:

Thus,

(n ¡ k)F (s0) [¹(s0) ¡ ¸¹]

(n ¡ k)F (s0)
£
¹(s0) ¡ ¸¹

¤
+ (k ¡ 1)(1 ¡ F [s0])

£
´(s0) ¡ ¸´

¤
· F (Á¡1(s0)) ·

(n ¡ k)F (s0)
£
¹(s0) ¡ ¸¹

¤
(n ¡ k)F (s0) [¹(s0) ¡ ¸¹] + (k ¡ 1)(1 ¡ F [s0]) [´(s0) ¡ ¸´]

;

where ´ and ´ are respectively a lower and an upper bound of ´, and ¹ and ¹
are respectively a lower and an upper bound of ¹ (Lemma 3 says that ´ and
¹ are bounded). Hence,

lim
¸!0

F (Á¡1(s0)) =

(n ¡ k)F (s0)¹(s0)
(n ¡ k)F (s0)¹(s0) + (k ¡ 1)(1 ¡ F [s0])´(s0)

=
(n ¡ k)

R s0
s F (s)ds

(n ¡ k)
R s0

s F (s) ds + (k ¡ 1)
R s

s0 [1 ¡ F (s)] ds
;

where the simpli…cation of the last step is the same as that done in the proof
of Proposition 4. Point-wise convergence implies that the distribution func-
tion F (Á¡1(s0)) converges weakly to the last expression. This result together
with the uniform convergence of bI to º when ¸ tends to zero, implies that
F

¡
Á¡1(bI

¡1(b))
¢

converges weakly to G¤(b) when ¸ tends to zero (see for
instance Hildenbrand (1974), 38, page 51).

¥

Proof of Proposition 9. To prove the corollary it is enough to show that the type of
the informed bidder that bids the same bid as a given type of the poorly informed
bidders in equilibrium increases when the number of units increases. Since by Propo-
sition 7, bP (s) = bI(Á(s)), the statement before follows if Á(s) shifts upwards when
we increase k. We can use the same arguments as in the proof of Lemma 1 to show
that the left hand side of equation (8) increases with k around the solutions of equa-
tion (8). The proof then follows since for a given s, the left hand side of equation
(8) decreases with Á. ¥
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