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Abstract

Motivated by the new auction format introduced in the England and Wales electric-

ity market, as well as the recent debate in California, we characterize bidding behavior

and market outcomes in uniform and discriminatory electricity auctions. We find that

uniform auctions result in higher average prices than discriminatory auctions, but the

ranking in terms of productive efficiency is ambiguous. The comparative effects of

other market design features, such as the number of steps in suppliers’ bid functions,

the duration of bids and the elasticity of demand are also analysed. We also consider

the relationship between market structure and market performance in the two auction

formats. Finally, we clarify some methodological issues in the analysis of electricity

auctions. In particular, we show that analogies with continuous share auctions are

misplaced so long as firms are restricted to a finite number of bids.
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1 Introduction

Electricity wholesale markets differ in numerous dimensions, but until recently all have
been organized as uniform, first-price auctions. Recent experience - and the perceived
poor performance - of some decentralized electricity markets however, has led certain
regulatory authorities to consider adopting new auction designs. In England and Wales
a major overhaul of the electricity trading arrangements introduced in 1990 has recently
taken place, and among the reforms implemented in March 2001, a discriminatory or ‘pay-
your-bid’ auction format was adopted. The British regulatory authority (Ofgem) believed
that uniform auctions are more subject to strategic manipulation by large traders than
are discriminatory auctions, and expected the new market design to yield substantial
reductions in wholesale electricity prices. Similarly, before its collapse, the California
Power Exchange commissioned a report by leading auction theorists on the advisability of
a switch to a discriminatory auction format for the Exchange’s day ahead market, due to
the increasing incidence of price spikes in both on- and off-peak periods (see Kahn et al.,
2001).

It is well-known that discriminatory auctions are not generally superior to uniform auc-
tions. Both types of auction are commonly used in financial and other markets, and there
is now a voluminous economic literature devoted to their study.1 In multi-unit settings
the comparison between these two auction forms is particularly complex. Neither theory
nor empirical evidence tell us that discriminatory auctions perform better than uniform
auctions in markets such as those for electricity, although this has become controversial.

Wolfram (1999), for instance, argues in favor of uniform auctions for electricity, and
Rassenti, Smith and Wilson (2003) cite experimental evidence which suggests that dis-
criminatory auctions may reduce volatility (i.e. price spikes), but at the expense of higher
average prices. Other authors have come to opposite conclusions. Federico and Rahman
(2003) find theoretical evidence in favor of discriminatory auctions, at least for the polar
cases of perfect competition and monopoly, while Klemperer (2001, 2002) suggests that
discriminatory auctions might be less subject to ‘implicit collusion’.2 Kahn et al. (2001),
on the other hand, reject outright the idea that switching to a discriminatory auction will
result in greater competition or lower prices.

In Britain, Ofgem has credited the recent fall in electricity prices in England and
Wales to the new market design, however this too is controversial.3 Evans and Green

1See Ausubel and Cramton (2002) and Binmore and Swierzbinski (2000) for the theory and empiri-

cal evidence. Archibald and Malvey (1998) and Belzer and Reinhart (1996) discuss the US Treasury’s

experiments with these auction formats in more detail. See also Kremer and Nyborg (2003).
2In a theoretical model similar to that used in this paper, Fabra (2003) shows that tacit collusion is

easier to sustain in uniform auctions than in discriminatory auctions.
3Ofgem reports a 19% fall in wholesale baseload prices from the implementation of the reforms in March

2001 to February 2002, and a 40% reduction since 1998 when the reform process began. Wholesale prices

have since risen again so that they are now near their pre-reform levels.
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(2002) present some supporting evidence,4 but Bower (2002) and Newbery (2003) argue
that the decline in prices is fully explained by the reduction in market concentration
brought about by asset divestitures, an increase in imports and market excess capacity.
Fabra and Toro (2003) suggest that all of these factors, including the change in market
design, are significant in explaining the reduction in wholesale electricity prices.5

The purpose of this paper is to address this electricity market design issue in a tractable
model designed to capture some of the key features of decentralized electricity markets.6

We characterize equilibrium market outcomes in a discrete, multi-unit auction model for
uniform and discriminatory electricity auctions under a variety of assumptions concerning
costs and capacity configurations, bid formats, demand elasticities and the number of
suppliers in the market. Our purpose is to gain an improved understanding of how these
different auction formats affect suppliers’ bidding incentives, the degree of competition
and overall welfare in decentralized electricity markets.

Our analysis proceeds by first considering a ‘basic duopoly model’, similar to the
discrete, multi-unit auction described in von der Fehr and Harbord (1993), which is then
varied in several directions. In the basic duopoly model, two ‘single-unit’ suppliers with
asymmetric capacities and (marginal) costs face a market demand curve which is assumed
to be both perfectly inelastic and known with certainty when suppliers submit their offer
prices. By ‘single-unit’ we mean that each supplier must submit a single price offer for its
entire capacity (i.e. its bid function is horizontal). This assumption simplifies the analysis
considerably, but in Section 4.1 we show that it is largely inessential. The assumption of
price-inelastic demand can be justified by the fact that the vast majority of consumers
purchase electricity under regulated tariffs which are independent of the prices negotiated
in the wholesale market, at least in the short run.7 However, in order to evaluate some
of the possible effects of real-time pricing or demand-side bidding, we consider downward-
sloping demand functions in Section 4.2. In Section 4.3, we consider the oligopoly case
in order to shed some light on the relationship between market concentration and market
performance.

Finally, the assumption that suppliers have perfect information concerning market
demand is descriptively reasonable when applied to markets in which offers are ‘short-

4Evans and Green argue that the new trading arrangements may have undermined opportunities for

tacit collusion. Sweeting (2001) claims to have found evidence of collusion in the England and Wales

market during the late 1990s, although this finding has been challenged by Newbery (2003).
5Another contributing explanation for the fall in prices may be that Ofgem staked its reputation on the

market reforms delivering lower-cost electricity, and for more than a year after their introduction sought

to expand its regulatory powers to police ‘market abuses’ by smaller generators. See Bishop and McSorely

(2001) for a discussion.
6For a discussion of some methodological issues in modelling electricity markets, which has informed

our choice of models, see von der Fehr and Harbord (1998) and Fabra, von der Fehr and Harbord (2002).
7See Wolak and Patrick (1997) and Wilson (2002) on this. In most electricity markets large industrial

consumers can purchase electricity directly from suppliers or the wholesale market, but their demand

comprises only a small fraction of the total volume traded.
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lived’, such as in Spain where there are 24 hourly markets each day (see Garćıa-Dı́az and
Maŕın, 2003). In such markets suppliers can be assumed to know the demand they face in
any period with a high degree of certainty. In markets in which offer prices remain fixed
for longer periods, e.g. a whole day, such as in Australia and in the original market design
in England and Wales, on the other hand, it is more accurate to assume that suppliers
face some degree of demand uncertainty or volatility at the time they submit their offers.
Hence we allow for this type of uncertainty in Section 4.4.

Under each set of assumptions we characterize suppliers’ equilibrium bidding behavior
in uniform and discriminatory auctions, and compare the equilibrium outcomes in terms
of prices and productive efficiency. Our main insights may be summarized as follows.
Equilibrium outcomes in either auction format fall essentially into one of two categories,
depending upon the level of demand. In low-demand realizations prices are competitive,
in the sense that they cannot exceed the cost of the most efficient non-despatched supplier:
in high-demand realizations, on the other hand, prices exceed the cost of even the most
inefficient supplier. In high-demand states8 there are multiple, price-equivalent pure strat-
egy equilibria in the uniform auction, while in the discriminatory auction the equilibrium
is in mixed strategies. With certain demand (i.e. short-lived bids), payments to suppliers
(or average prices) are lower in the discriminatory auction and numerical examples suggest
that the difference can be substantial.9 The comparison in terms of productive efficiency,
however, is ambiguous and depends on parameter values as well as which pure-strategy
equilibrium is played in the uniform auction. The relative incidence of low-demand and
high-demand states depends upon structural features of the market, such as the degree of
market concentration, as well as on the market design, in particular the market reserve
price and opportunities for demand-side bidding. Structural factors that reduce the inci-
dence of high-demand states affect bidding strategies in the discriminatory, but not in the
uniform, auction. Market design changes, on the other hand, affect bidding strategies in
both types of auction.

2 The Model

In the basic duopoly model two independent suppliers compete to supply the market
with productive capacities given by ki > 0, i = 1, 2. Capacity is assumed to be perfectly
divisible. Supplier i’s marginal cost of production is ci ≥ 0 for production levels less
than capacity, while production above capacity is impossible (i.e. infinitely costly). The
suppliers are indexed such that c1 ≤ c2. Without further loss of generality we may
normalize suppliers’ marginal costs so that 0 = c1 ≤ c2 = c. The level of demand in any
period, θ, is a random variable which is independent of the market price, i.e. perfectly
price inelastic. In particular, θ ∈ [

θ, θ
] ⊆ (0, k1 + k2) is distributed according to some

8The terms ‘state’ and ‘realization’ are used interchangeably throughout this paper.
9With uncertain demand, at least in the symmetric case, payments to suppliers are equal in both auction

formats.
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known distribution function G (θ).
The two suppliers compete on the basis of bids, or offer prices, submitted to the

auctioneer. The timing of the game is as follows. Having observed the realization of
demand, each supplier simultaneously and independently submits a bid specifying the
minimum price at which it is willing to supply the whole of its capacity, bi ∈ [0, P ] ,
i = 1, 2, where P denotes the ‘market reserve price,’ possibly determined by regulation.10

We let b ≡ (b1, b2) denote a bid profile. On the basis of this profile the auctioneer calls
suppliers into operation. If suppliers submit different bids, the lower-bidding supplier’s
capacity is despatched first. If this capacity is not sufficient to satisfy the total demand
θ, the higher-bidding supplier’s capacity is then despatched to serve the residual demand,
i.e. total demand minus the capacity of the lower-bidding supplier. If the two suppliers
submit equal bids, then supplier i is ranked first with probability ρi, where ρ1 + ρ2 = 1,

ρi = 1 if ci < cj and ρi = 1
2 if ci = cj , i = 1, 2, i 6= j.

For a given bid profile b, the quantities allocated to each supplier are thus independent
of the auction format. The output allocated to supplier i, i = 1, 2, denoted by qi (θ;b), is
given by

qi (θ;b) =





min {θ, ki} if bi < bj

ρi min {θ, ki}+ [1− ρi]max {0, θ − kj} if bi = bj

max {0, θ − kj} if bi > bj ,

(1)

and is solely a function of demand and the bid profile (and costs when equal price bids
are submitted).

The payments made by the auctioneer to the suppliers do depend upon the auction
format, however. In the uniform auction, the price received by a supplier for any positive
quantity despatched by the auctioneer is equal to the highest accepted bid in the auction.
Hence, for a given value of θ and a bid profile b = (bi, bj), supplier i’s profits, i = 1, 2,

i 6= j, can be expressed as

πu
i (θ;b) =

{
[bj − ci] qi (θ;b) if bi ≤ bj and θ > ki

[bi − ci] qi (θ;b) otherwise,
(2)

where qi (θ;b) is determined by (1).
In the discriminatory auction, the price received by supplier i for its output is equal

to its own offer price whenever a bid is wholly or partly accepted. Hence for a given value
of θ, and a bid profile b, supplier i’s, i = 1, 2, profits can be expressed as

πd
i (θ;b) = [bi − ci] qi (θ;b) , (3)

where again qi (θ;b) is determined by (1).11

10P can be interpreted as the price at which all consumers are indifferent between consuming and not

consuming, or a price cap imposed by the regulatory authorities. See von der Fehr and Harbord (1993,

1998).
11Note that the discriminatory auction is essentially a Bertrand-Edgeworth game. See Deneckere and

Kovenock (1996).
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Both suppliers are assumed to be risk neutral and to maximize their expected profits
in the auction.

3 Equilibrium Analysis: A Tale of Two States

We first characterize the Nash equilibria in weakly undominated strategies of the model
described in the previous section and then compare equilibrium outcomes.12

Lemma 1 In any pure-strategy equilibrium, the highest accepted price offer is in the set
{c, P}. Moreover, in the discriminatory auction, in a pure-strategy equilibrium all accepted
units are offered at the same price.

Based on this ancillary result, we can prove the main result of this section, namely
that equilibrium outcomes essentially fall into one of two categories, depending upon the
level of demand:

Proposition 1 There exists θ̂ = θ̂ (c, k1, k2, P ) such that:
(i) (low demand) if θ ≤ θ̂, in the unique pure-strategy equilibrium the highest accepted

price offer is c.
(ii) (high demand) if θ > θ̂, all suppliers are paid prices that exceed c. A pure-strategy

equilibrium exists in the uniform auction, with the highest accepted offer price equal to P ,
but not in the discriminatory auction.

As is easily seen, in low-demand realizations the equilibrium is both unique and iden-
tical across the two auction formats. In equilibrium, both suppliers submit offer prices
equal to c (i.e. the cost of the inefficient supplier) but only the most efficient supplier is
despatched. Hence the equilibrium outcomes in both auctions are competitive in the sense
that prices are constrained by the cost of the least efficient supplier. They are also cost
efficient, i.e. overall generation costs are minimized.

In high-demand realizations the equilibrium outcomes are very different. In the uniform
auction, any pure-strategy equilibrium involves one supplier bidding at the market reserve
price P , while the other supplier submits an offer price sufficiently low so as to make
undercutting unprofitable (c.f. von der Fehr and Harbord, 1993). The precise nature of
the equilibrium depends upon parameter values. There are three possible cases: (a) if
θ̂2 ≤ θ ≤ θ̂1, or k1 ≤ θ ≤ k2 + c

P k1, only equilibria in which b1 < b2 = P exist; (b) if
θ̂1 < θ ≤ θ̂2, or P

P−ck2 < θ ≤ k1 only equilibria in which b2 < b1 = P exist; and (c) if

θ > max
{

θ̂1, θ̂2

}
, or θ > max

{
k1, k2 + c

P k1

}
both types of pure-strategy equilibria exist.

Note that in Case (a) the equilibrium outcome is always cost efficient, while in Case (b) it
is always inefficient. In Case (c) cost efficiency depends on which equilibrium is played.13

12All derivations of results are relegated to the Appendix.
13There are also mixed-strategy equilibria in the uniform auction. However since these are pay-off

dominated by the pure strategy equilibria we do not consider them here. See the Appendix.
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In the discriminatory auction only mixed-strategy equilibria exist in high-demand
states. In particular, there exists a unique equilibrium in which the two suppliers mix
over a common support which lies above the cost of the inefficient supplier and includes
the market reserve price, i.e. bi ∈ (c, P ], i = 1, 2. This mixed strategy equilibrium is
not efficient in general, as there is a positive probability that the inefficient supplier will
submit the lowest offer price.

The relative likelihood of low-demand versus high-demand states depends upon struc-
tural characteristics of the industry and on the strictness of the regulatory regime. Straight-
forward calculations show that

θ̂ =

{
k1 if k1 ≤ P

P−ck2

P
P−ck2 if k1 > P

P−ck2

(4)

From this expression it follows that, for a given ratio of supplier capacities, the incidence of
low-demand states is increasing in aggregate capacity. The incidence of low-demand states
is also greater when suppliers are more symmetrically sized; more precisely, given c,P and
K, with k1 + k2 = K, θ̂ is maximized at k1 = P

P−ck2, which involves perfect symmetry if
c = 0. Further, cost asymmetry tends to make low-demand states more likely, since the
loss in profit from undercutting the inefficient rival relative to serving residual demand is
smaller the higher is his cost. Finally, since pricing monopolistically and serving residual
demand is more profitable the higher is the market reserve price, the incidence of high-
demand states is greater the higher is P . If we think of the market reserve price as a
regulatory price cap, it follows that stricter regulation can improve market performance,
not only because market power is reduced in high-demand states, but also because the
likelihood of high-demand states occurring is lowered.

In comparing market performance across the two auction formats we consider both
total generation costs and the average price paid to suppliers. For auction format f = d, u,
let Cf and Rf denote equilibrium levels of total generation costs and payments to suppliers,
respectively, and let bf

i and qf
i denote supplier i’s equilibrium offer price and output,

respectively. We have Cf =
∑

i ciq
f
i , f = u, d, Rd =

∑
i b

d
i q

d
i in the discriminatory

auction, and Ru = pu
∑

i q
u
i = puθ, where pu = maxi {bu

i | qu
i > 0} is the market price, in

the uniform auction. From Proposition 1 the following result is immediate:

Proposition 2 Market performance:
(i) Rd = Ru if θ ≤ θ̂ and Rd < Ru if θ > θ̂.
(ii) Cd = Cu if θ ≤ θ̂, Cd > Cu if θ̂2 < θ ≤ θ̂1, Cd < Cu if θ̂1 < θ ≤ θ̂2, and Cd ≷ Cu

otherwise, depending upon whether, in the uniform auction, an equilibrium is played in
which Supplier 1 or Supplier 2 submits the higher offer price.

In other words, the discriminatory auction weakly outperforms the uniform auction in
terms of payments (or the average price paid) to suppliers. In low-demand realizations
the equilibrium outcomes are identical in both auctions. In high-demand realizations, the
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market price is at its maximum (P ) in the uniform auction, while prices in the discrimina-
tory auction are below P with positive probability. Comparison of the auctions in terms
of productive efficiency is more complex, however. In low-demand realizations costs are
minimized in both auction formats. In high-demand realizations, the comparison is unam-
biguous in Cases (a) and (b) only. In the uniform auction production costs are minimized
in Case (a) and maximized in Case (b), while in the mixed-strategy equilibrium of the
discriminatory auction the more efficient supplier is undercut by the inefficient supplier
with positive probability. Hence the cost performance in the uniform auction is superior
to that of the discriminatory auction in Case (a), but worse in Case (b). In Case (c)
the comparison depends upon which pure- strategy equilibrium is played in the uniform
auction.

We conclude this section by considering how the performance of the two auction for-
mats depends upon the parameters of the model. A change in parameter values affects
outcomes in two distinct ways: first, by altering the relative incidence of high- versus low-
demand states, and secondly by affecting the intensity of price competition in high-demand
states. The importance of these two effects differ between the two auction formats. In
the uniform auction, in high-demand realizations, price always equals the market reserve
price, whereas in the discriminatory auction bidding strategies depend on the cost and
capacity configuration, as well as on the level of demand and the market reserve price.
An increase in the threshold θ̂ has a profound effect on prices in the uniform auction, as
prices jump down from the market reserve price to marginal cost over the relevant range
of demand realizations. In the discriminatory auction, however, the effect of an increase
in θ̂ is much less pronounced. Since the equilibrium outcomes in high-demand realizations
approach those of low-demand realizations as θ ↓ θ̂, a marginal increase in θ̂ has no effect
on the outcome per se.

The different ways in which outcomes are affected by changes in parameter values is
illustrated in Figure 1 below. The figure is based on an example in which

[
θ, θ

]
= [0, 1],

c = 0, P = 1 and k1 = k2 = K
2 . The two solid lines show (expected) equilibrium prices

for different realizations of demand for the two auction formats when K = 1. In both
formats, price equals c = 0 when θ ≤ θ̂ = 0.5. When θ > θ̂, price equals P = 1 in
the uniform auction, whereas it increases gradually with demand in the discriminatory
format. The thin lines show the corresponding prices for the case K = 1.2, in which
the critical threshold is now θ̂ = 0.6. Whereas the increase in the relative incidence of
low-demand realizations is the same in both auction formats, the effects on prices differ:
in the uniform auction, prices jump from P = 1 to c = 0 for some demand realizations; in
the discriminatory auction, the effect on prices is smoother but applies to a wider range
of demand realizations.

Because of this fundamental differences in the way in which the equilibrium outcomes
are affected, it is not possible in general to specify how a change in a particular parameter
affects the relative performance of the two auction formats. In particular, changes in
relative performance depend critically upon the distribution of demand G. In order to
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Figure 1: Expected Equilibrium Price for Different Demand Realizations, θ

illustrate the possible effects, as well as the potential order of magnitudes involved, we
proceed by considering a series of numerical examples. We maintain the parametrization
introduced above, with the added assumption that G (θ) = θ, and define k1 + k2 =
K ≥ 1, with k1 ≥ k2. Then expected payments to suppliers taken over all possible
demand realizations (which are equal to expected profits in this case), become ERd =
K
2

[1−k2]2

k1
and ERu = 1

2 [1− k2] [1 + k2], respectively. Table 1 presents numerical results
for different values of total installed capacity K for the case in which individual capacities
are symmetric, i.e. k1 = k2 = K

2 .

K 1 1.2 1.4 1.6 1.8 2

ERd 0.250 0.160 0.090 0.040 0.010 0

ERu 0.375 0.320 0.255 0.180 0.095 0
ERd

ERu 0.667 0.500 0.353 0.222 0.105 na

Table 1: Increasing Installed Capacity

At K = 1, total expected payments are 33% lower in the discriminatory auction. In the
uniform auction, a similar reduction in average prices would require an excess capacity
of 40% (i.e. K = 1.4).14 In both auctions, increasing the size of the players reduces
both average prices and revenues. The pro-competitive effect on bidding strategies in the
discriminatory auction is strong enough in this example so that its relative performance
improves the higher is the capacity margin.

In Table 2 we present results for different distributions of a given total capacity K = 1:
14Since in both auctions the level of demand served in equilibrium is fixed at θ, expected revenues can

be taken as a proxy for the expected (average) price paid by consumers.
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k1 0.5 0.6 0.7 0.8 0.9 1

k2 0.5 0.4 0.3 0.2 0.1 0

ERd 0.250 0.300 0.350 0.400 0.450 0.5

ERu 0.375 0.420 0.455 0.480 0.495 0.5
ERd

ERu 0.667 0.714 0.769 0.833 0.909 1

Table 2: Increasing Capacity Asymmetry

A more asymmetric distribution of capacities implies poorer performance in both types
of auction, although the effect is stronger in the discriminatory auction. Reducing the size
of the smaller supplier increases the incidence of high-demand states. In the discriminatory
auction, the larger supplier faces a larger residual demand and hence has more to gain from
submitting higher offer prices. Given this, the smaller supplier responds by increasing its
offer prices also. Overall the result is that reallocating capacity from the larger to the
smaller supplier (e.g. via capacity divestitures) improves the relative performance of the
discriminatory auction over the uniform auction.

Finally, we consider how changes to the market reserve price P affect performance in
the two auctions. Using the same example, we fix total capacity so K = 1 and consider
symmetric firms, i.e. k1 = k2 = 0.5.15 Table 3 below presents the numerical results.

P 1 0.90 0.75 0.50 0.25 0

ERd 0.250 0.225 0.188 0.125 0.063 0

ERu 0.375 0.334 0.281 0.188 0.094 0
ERd

ERu 0.667 0.667 0.667 0.667 0.667 na

Table 3: Reducing the Market Reserve Price

Reducing the market reserve price reduces equilibrium price (and hence revenues) in
both types of auction without affecting the comparison of their relative performance. This
is because equilibrium revenues are proportional to the reserve price P in both auctions
when c = 0.

4 Extensions and Variations

In the preceding sections we have analyzed electricity auctions for an asymmetric duopoly
assuming that each supplier could submit only a single offer price for its entire capacity,
and that demand was both known with certainty at the time offer prices were submitted

15This implies that the incidence of high versus low demand states is unaffected by changes in the market

reserve price P in this example.
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and perfectly inelastic. In the following subsections we relax each of these assumptions in
turn.

4.1 Multiple bids

We first extend the analysis by allowing suppliers to submit upward-sloping step offer-price
functions instead of constraining them to submit a single bid for their entire capacity. An
offer-price function for supplier i, i = 1, 2, is then a set of price-quantity pairs (bin, kin) ,

n = 1, ..., Ni, Ni < ∞. For each pair, the offer price bin specifies the minimum price for the
corresponding capacity increment kin, where bin ∈ [0, P ] and

∑Ni
n=1 kin = ki, i = 1, 2. The

following lemma states that the equilibrium outcomes - but not the equilibrium pricing
strategies - are essentially independent of the number of admissible steps in each supplier’s
bid function (and whether the ‘step sizes’ are choice variables for suppliers). This implies
that our comparisons between auction types remain valid in this setting.

Lemma 2 (Multiple-unit suppliers) (i) Uniform auction: the set of (pure-strategy) equi-
librium outcomes is independent of the number of units per supplier (in particular, whether
Ni = 1 or Ni > 1). (ii) Discriminatory auction: for low-demand realizations, there is a
unique equilibrium outcome independent of the number of units per supplier. For high-
demand realizations, there exists a set of mixed strategies that constitute an equilibrium
independently of the number of units per supplier; when N1 = N2 = 1, these strategies
constitute the unique equilibrium.16

The existence of a unique, competitive equilibrium outcome in the uniform auction is
in stark contrast to analyses which assume continuously differentiable supply functions,
i.e. Ni = ∞ (see e.g. Green and Newbery, 1993). As first shown by Wilson (1979),
and further developed by Back and Zender (1993) and Wang and Zender (2002), in the
uniform auction with continuous supply functions there exists a continuum of pure-strategy
equilibria, some of which result in very low revenues for the auctioneer (or high payments
to suppliers in procurement auctions). The latter are characterized by participants offering
very steep supply functions which inhibit competition at the margin: faced with a rival’s
steep supply function, a supplier’s incentive to price more aggressively is offset by the large
decrease in price (the ‘price effect’) that is required to capture an increment in output (the
‘quantity effect’). Since the ‘price effect’ always outweighs the ‘quantity effect’ for units
of infinitesimal size, extremely collusive-like equilibria can be supported in the continuous
uniform auction, even in a one-shot game.17

16The equilibrium offer price functions, however, do depend upon the number of units or admissible

bids; for instance, there can be payoff-irrelevant units which are offered at higher prices as long as there

are sufficiently many units priced at marginal cost.
17This type of equilibrium cannot be supported in a discriminatory auction. Klemperer (2002) provides

a particularly clear discussion.
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Discreteness of the bid functions rules out such equilibria however. When suppliers
are limited to a finite number of price-quantity bids, a positive increment in output can
always be obtained by just slightly undercutting the price of a rival’s unit. Since the
‘price effect’ no longer outweighs the ‘quantity effect’, the collusive-like equilibria found
in the continuous auction cannot be implemented. This observation casts some doubt
on the relevance of applying the continuous share auction model to electricity markets in
which participants are limited to a small number of offer prices per generating unit. The
collusive-like equilibria obtained under the assumption that bid functions are continuous
do not generalize to models in which offer increments are of positive size, no matter how
small these are (see also Kremer and Nyborg, 2003). We conclude that the equilibrium
outcomes for the two types of auction are independent of the number of admissible steps
in the offer-price functions, so as long as this number is finite. Hence the characterization
of the equilibrium outcomes provided in Section 3 would remain unchanged if we had
instead assumed that suppliers submit offer-price functions rather than a single offer price
for their whole capacity.

It is tempting to draw the conclusion that limiting the number of allowable bids in
a uniform-price electricity auction would therefore improve market performance. Strictly
speaking, our analysis does not support such a conclusion. What we have shown is that
(i) moving from a continuous to a discrete-bid auction potentially improves market perfor-
mance by eliminating the ‘collusive-like’ equilibria in the uniform auction, but (ii) market
performance in a discrete-bid auction is independent of the number of allowable bids, so
long as this number is finite. It could be argued, however, that since limiting the number
of bids does not effectively restrict agents’ opportunities, it might be desirable in the inter-
ests of market simplicity and transparency. Indeed, in equilibrium players may optimally
choose not to differentiate their bids even when they are able to do so.

4.2 Price-elastic demand

Our next variation on the basic duopoly model considers the case of price-elastic demand.
For this purpose we let the market demand function be represented by D(p, θ), which is
assumed to satisfy the following standard assumptions: as a function of p, D is continuous
and bounded; there exists a price p (θ) > 0 such that D(p, θ) = 0 if and only if p ≥ p (θ);
D is decreasing in p, ∀p ∈ [0, p (θ)]; and pD is strictly quasi-concave in p, ∀p ∈ [0, p (θ)].

Given a downward-sloping demand function, in either auction format the output allo-
cated to supplier i, qi (b,θ) , as a function of the offer price profile b =(bi, bj), becomes:

qi (b, θ) =





min {D (bi, θ) , ki} if bi < bj

ρi min {D (bi, θ) , ki}
+ρj min {max {0, D (bi, θ)− kj} , ki}

if bi = bj

min {max {0, D (bi, θ)− kj} , ki} if bi > bj ,

for i = 1, 2. Note that independently of the payments made to suppliers in either auction



Designing Electricity Auctions 12

format, it is implicitly assumed that consumers are charged the market-clearing price, i.e.
the highest accepted offer price. Obviously, this leads to the market (auctioneer) running
surpluses in the discriminatory auction. Assuming that such surpluses are dealt with via
lump-sum transfers, total surplus (i.e. the sum of supplier profits and consumer surplus)
will be determined solely by the market-clearing price and the allocation of output between
suppliers.

From the above assumptions it follows that market demand is a continuous and de-
creasing function of price and that, whenever D(ci) > kj , j 6= i, there exists a unique
price pr

i that maximizes a supplier’s profits from serving the residual demand, i.e. pr
i (θ) =

arg maxp {p min [D (p, θ)− kj , ki]}. The price pr
i will be referred to as the ‘residual monopoly

price’ of supplier i.
We further assume that the parameter θ defines a family of demand functions such

that if θ1 < θ2, D (p, θ1) < D (p, θ2). Intuitively, θ is a shift parameter that affects the
position, but not the slope, of the demand function (at least not to the extent that demand
functions corresponding to different θ’s cross). It follows that pr

i (θ) is increasing in θ.
Let P r

i = min {pr
i , P} be the effective residual monopoly price of supplier i. Then

it should be clear that the argument of Lemma 1 goes through as before, with P r
1 and

P r
2 substituted for P . Furthermore, we can extend the result of Proposition 1 that there

exists a unique threshold θ̂ such that equilibrium outcomes are of the low-demand and
high-demand type, respectively, depending upon whether the shift parameter θ is below
or above the threshold. The performance comparison across auction formats is also essen-
tially the same, with the following caveat: since the consumer price is generally lower in
the discriminatory auction there is an allocative efficiency gain due to the corresponding
increase in consumption.

Our main purpose of this section, however, is to relate the critical threshold θ̂ to the
price elasticity of demand. To this end we use the following definition: for two demand
functions D1 and D2 with D1 (p, θ) = D2 (p, θ) at p = c, the demand function D1 is said
to be more elastic than the demand function D2 if D1 (p, θ) < D2 (p, θ) for all p ≥ c. If
we let prt

i denote the residual monopoly price of supplier i corresponding to the demand
function Dt, it follows that pr1

i < pr2
i if D1 is more elastic than D2. The following result

is then immediate:

Proposition 3 The critical threshold θ̂ is non-decreasing in the elasticity of the demand
function D.

In other words, the price elasticity of demand affects market performance in two dis-
tinct ways. First, given a high-demand realization, the distortion due to the exercise of
market power is smaller when demand is more price-elastic (i.e. the residual monopoly
price is lower). Second, the incidence of high-demand realizations is reduced the more
elastic is the demand curve. With a downward-sloping demand function, the gain from
exercising market power relative to residual demand is less and hence there is more incen-
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tive to compete for market share by undercutting the rival, leading to a higher incidence
of competitive outcomes.

We conclude this section by considering a numerical example. We maintain the as-
sumptions introduced in the example considered in Section 3 above - with k1 = k2 = k

- and in addition assume that D (p, θ) = θ − βp. It follows that θ̂ = k and that (for β

sufficiently small) P r
1 = P r

2 = θ−k
2β for θ < k + 2β and P r

1 = P r
2 = P = 1 otherwise. Ex-

pected payments to suppliers become ERd =
∫ k+2β
k

1
2β [θ − k]2 dθ + 2

∫ 1
k+2β [θ − β − k] dθ

and ERu =
∫ k+2β
k

1
4β [θ − k] [θ + k] dθ+

∫ 1
k+2β [θ − b] dθ, respectively. In Table 4 we present

results for different values of the slope of the demand function:18

β 0 0.025 0.050 0.075 0.100 0.125 0.150

ERd 0.250 0.226 0.203 0.183 0.163 0.146 0.130

ERu 0.375 0.350 0.327 0.304 0.282 0.260 0.240
ERd

ERu 0.667 0.646 0.621 0.602 0.578 0.562 0.542

Table 4: Increasing the Elasticity of Demand

As expected, a more elastic demand reduces payments to suppliers. In this example, the
relative incidence of low-demand and high-demand states (θ̂) is not affected, although more
elastic demand does reduce the effective residual monopoly price. In the discriminatory
auction we have the additional effect that bidding becomes more aggressive in high-demand
states. Consequently, the relative performance of the discriminatory auction increases with
the elasticity of demand here.19,20

4.3 Oligopoly

Our next variation on the basic duopoly model considers the case of oligopoly. This allows
us to generalize some of the insights from the duopoly model as well as analyze the impact
of changes in the number of suppliers on profits and pricing behavior.

Accordingly we now consider S suppliers, where ks is the capacity and cs the marginal
cost of supplier s, s = 1, 2, ..., S. Suppliers are ordered by efficiency, so that 0 = c1 ≤
c2 ≤ ... ≤ cS = c. As before, the types of equilibria which arise in the different auction
formats depend upon the value of the market demand θ relative to suppliers’ individual
and aggregate capacities. In particular, we have the following result:

18Note that, for β sufficiently small, β approximates the price elasticity of demand at the peak (i.e.

θ = 1) evaluated at the maximum admissible price P = 1.
19As pointed out above, the revenue comparison tends to understate the performance of the discrimi-

natory auction relative to that of the uniform auction as far as consumer prices (and, indeed, consumer

surplus) is concerned.
20The difference in total payments between the two auction formats in the case of perfectly inelastic

demand (β = 0) corresponds to the difference between the cases β = 0 and β = 0.15 in the uniform auction.
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Proposition 4 There exists θ̂−s and θ̂+
s , θ̂−s ≤ θ̂+

s , such that, for s = 1, 2, ..., S,
(i) if θ ≤ θ̂−s , in any equilibrium the highest accepted price offer is at or below cs;
(ii) if θ > θ̂+

s , in any equilibrium suppliers are paid prices that are at least equal to cs

and strictly above cs if s = S or cs < cs+1, s = 1, 2, ..., S − 1;
(iii) θ−s = θ̂+

s = θ̂s if ks ≥ maxi<S ki.

In other words, we have a series of demand threshold pairs, each pair corresponding to
the cost of a particular supplier. When demand is below the lower of these two thresholds,
equilibrium prices are limited by the cost of the corresponding supplier; when demand
is above the upper threshold, equilibrium prices always exceed the cost of that same
supplier. A sufficient condition for the two thresholds to be equal is that the capacity of
the corresponding supplier is at least as large as that of any more efficient supplier.

To demonstrate that the two thresholds may in fact differ, and hence that there may
be a range of demand outcomes for which competitive and non-competitive equilibria
coexist, consider the following example. Let S = 3, c1 = 0, c2 = 0.5, c3 = 1, k1 = 1,
k2 = 1, and k3 = 0.25. Furthermore, let P = 1.75 and θ = 1.5. Then it is easily verified
that the following equilibria exist in the uniform auction: {b1 = 1, b2 = 0.5, b3 = 1} and
{b1 = 0, b2 = 1.75, b3 = 1}. Note that the first of these equilibria is competitive in the sense
that price is limited by the cost of the inefficient supplier, whereas the second equilibrium is
not. Note further that the both equilibria are inefficient in the sense that overall generation
costs are not minimized: in particular, when the market outcome is competitive, inefficient
dispatch nevertheless results.

In the discriminatory auction, no pure-strategy equilibria exists so long as θ > θ̂−1 .
To see this, note that in any equilibrium in which more than one supplier is despatched,
profits of lower-pricing suppliers are strictly increasing in their offer prices below the offer
price of the marginal supplier. Furthermore, for the marginal supplier, undercutting is
always profitable so long as competing offer prices are sufficiently close. These opposing
forces destroy any candidate pure-strategy equilibrium. We consequently have a similar
dichotomy to that observed in the duopoly case, in which the comparison of outcomes
between the two auction formats generally depends on which equilibrium is played in the
uniform auction.

We end this section by considering the relationship between market structure and mar-
ket performance. We take as our starting point a generalization of the ‘two-state’ result of
the duopoly section, which follows as a corollary of the above equilibrium characterization:

Corollary 1 There exists θ̂− and θ̂+, θ̂− ≤ θ̂+, such that
(i) (low demand) if θ ≤ θ̂−, in any equilibrium the highest accepted price offer is at or

below c;
(ii) (high demand) if θ > θ̂+, in any equilibrium suppliers are paid prices that exceed

c;
(iii) θ̂− = θ̂+ = θ̂ if kS ≥ maxj<S ks.



Designing Electricity Auctions 15

In low-demand realizations prices are limited by costs, whereas in high-demand re-
alizations they are not. Low-demand equilibria are competitive in the sense that prices
are limited by the cost of less efficient, non-despatched suppliers. However, unlike in the
duopoly case, low-demand equilibria are not necessarily cost efficient. In the uniform auc-
tion there may exist pure-strategy equilibria in which less efficient suppliers are ranked
before more efficient suppliers, while in the mixed-strategy equilibria of the discriminatory
auction such outcomes occur with positive probability.

To highlight the relationship between market concentration and performance, we focus
on the symmetric case, in which we readily obtain the following result that corresponds
directly with the results obtained in the duopoly case:

Proposition 5 In the oligopoly model with symmetric suppliers, in particular, ks = K
S ,

s = 1, 2, ..., S:
(i) (low demand) if θ ≤ θ̂ = S−1

S K, Rd = Ru = 0.
(ii) (high demand) if θ > θ̂ = S−1

S K, Rd = PS
[
θ − S−1

S K
]

< Pθ = Ru.

Market structure affects equilibrium outcomes differently in the two auction formats.
In both formats, the threshold that determines whether demand is ‘low’ or ‘high’ is in-
creasing in the number of suppliers. In other words, pricing at marginal cost is more
likely in a more fragmented industry. However, in the discriminatory auction (as opposed
to the uniform auction), market structure also affects bidding strategies in high-demand
realizations. In the discriminatory auction suppliers play symmetric mixed strategies, and
in equilibrium these strategies strike a balance between a ‘price’ and a ‘quantity’ effect:
lowering the price offer reduces the price received, but increases the likelihood of under-
cutting rivals and hence gaining a larger market share. For a given level of demand, the
‘quantity effect’ is more important the larger is the number of competitors. Hence in the
discriminatory auction price competition will be more intense the less concentrated is the
market structure.

To illustrate the above points, we again consider the numerical example introduced
above, with the specification that ks = K

S with K = 1 and cs = 0, s = 1, 2, ..., S. Expected
payments to suppliers become ERd = 1

2S and ERu = 2S−1
2S2 , respectively. Numerical values

for different numbers of suppliers are given in the following table:

Table 5: Increasing the Number of Suppliers

S 2 3 4 5 10 100 ∞
ERd 0.250 0.167 0.125 0.100 0.050 0.005 0

ERU 0.375 0.278 0.219 0.180 0.095 0.010 0
ERd

ERu 0.667 0.600 0.571 0.556 0.526 0.503 0.5
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A more fragmented industry structure improves the performance of both auctions, as
well as the relative performance of the discriminatory auction. For a given number of
suppliers, the difference in payments between the two auctions roughly corresponds to the
effect of doubling the number of suppliers in the uniform auction.

4.4 Long-lived bids

Our final variation on the basic duopoly model considers the case in which suppliers face
time-varying, or stochastic, demand. This is of particular relevance to electricity markets
in which suppliers submit offer-prices that remain fixed for twenty-four or forty-eight
market periods, such as in Australia and the original market in England and Wales. We
therefore assume here that price offers must be made before the realization of demand
(i.e. θ) is known. It is easy to verify that our previous analysis is robust to this change in
the timing of decisions so long as the largest possible demand realization is low enough,
or the lowest possible demand realization is large enough. For instance, when demand
never exceeds the critical threshold θ̂ defined in Proposition 1 equilibria correspond to
those analyzed for low-demand realizations. The introduction of demand variability adds
a new dimension to the problem only when both low and high demand realizations occur
with positive probability. We therefore assume that demand θ takes values in the support[
θ, θ

] ⊆ (0, k1 + k2), with θ < θ̂ < θ, according to some (commonly known) distribution
function G(θ).

The equilibria of both the uniform and discriminatory auctions now differ significantly
from the case in which demand is known with certainty before bids are submitted. Demand
uncertainty, or variability, upsets all candidate pure-strategy equilibria in both types of
auction (see von der Fehr and Harbord, 1993 and Garćıa-Dı́az, 2000). We therefore con-
sider equilibria in mixed strategies. For both the uniform and discriminatory auctions
there exist unique mixed-strategy equilibria, and it is possible to derive explicit formulae
for the suppliers’ strategies:

Lemma 3 Assume
[
θ, θ

] ⊆ (0, k1 + k2), with θ < θ̂ < θ. Then there does not exist an
equilibrium in pure strategies in either auction. In the unique mixed-strategy equilibrium
suppliers submit bids that strictly exceed c.

In a mixed-strategy equilibrium in either type of auction, suppliers must strike a bal-
ance between two opposing effects: on the one hand, a higher offer price tends to result
in higher equilibrium prices; on the other hand, pricing high reduces each suppliers’ ex-
pected output, ceteris paribus. The first effect is less pronounced in the uniform auction
than in the discriminatory auction. In the uniform auction, a higher offer price trans-
lates into a higher market price only in the event that the offer price is marginal, while
in the discriminatory auction pricing higher always results in the supplier increasing the
expected price it receives, conditional on being despatched. Consequently, there is a ten-
dency for suppliers to price less aggressively in the discriminatory auction compared to a
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uniform auction. This intuition is confirmed in the symmetric case (i.e. when k1 = k2 = k

and c1 = c2 = 0), in which the equilibrium mixed-strategy distribution function in the
discriminatory auction first-order stochastically dominates the corresponding distribution
function in the uniform auction, i.e. F u

i (b) ≥ F d
i (b).21

We have not been able to characterize in detail the relationship between the model pa-
rameters and suppliers’ equilibrium strategies in the general case. In the case of symmetric
capacities, however, we can show that in the limit, as θ → k (or k → θ), so that demand
is always less than the capacity of a single supplier, the mixed-strategy equilibrium out-
come in either auction approaches the equilibrium outcome for a low-demand realization,
with price equal to the marginal cost of the higher-cost supplier. Similarly, as θ → k (or
k → θ), so that demand always exceeds the capacity of a single supplier, the equilibrium
outcomes approach those for a high-demand realization. Further, in the uniform auction
the limiting equilibrium outcome is efficient, i.e. the more efficient supplier produces at
capacity and the less efficient supplier supplies the residual demand. This is in contrast to
the model with non-stochastic demand, in which there exist both efficient and inefficient
pure-strategy equilibria in high-demand realizations in the uniform auction.22 This sug-
gests that the uniform auction performs better in efficiency terms than the discriminatory
auction, although we have not been able to demonstrate that this result holds generally.
Revenue comparisons also prove difficult, except in the symmetric case, where it is easily
demonstrated that (in expected terms) total payments to suppliers are the same in both
auction formats.

We end this section by comparing market performance under short-lived and long-
lived bids, respectively. This comparison is difficult in the general case and hence we
limit our attention to the symmetric case. Let ERf

s and ERf
l denote expected total

supplier payments in auction format f = d, u in the case of short-lived and long-lived bids,
respectively. We obtain the following result:

Proposition 6 In the symmetric duopoly model, ERu
l < ERu

s and ERd
l = ERd

s .

In other words, while there is no difference in the discriminatory auction, in the uni-
form auction long-lived bids outperform short-lived bids. With short-lived bids, the poor
performance of the uniform auction is caused by the extreme equilibrium outcome for high-
demand realizations, in which suppliers are paid the market reserve price. This equilibrium
is supported by the inframarginal supplier bidding sufficiently low so as to discourage un-
dercutting by the high-bidding, price-setting supplier. With long-lived bids, however, the
low-bidding supplier determines the market price in low-demand realizations, and hence
has an incentive to increase its offer price. As a result, incentives for undercutting and

21The result follows from the observation that F u
i (b) < F d

i (b) =⇒ πu
i > πd

i , whereas in the symmetric

case πu
i = πd

i .
22The fact that with uncertain demand the efficient outcome is unique might be viewed as a justification

for treating this as a natural ‘focal point’ in the certain-demand case also.
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competing for market share are increased, leading to more aggressive bidding and lower
prices overall in the uniform auction.

5 Conclusions

In this paper we have characterized equilibrium pricing behavior in uniform and discrimi-
natory auctions in a multi-unit auction model reflecting some key features of decentralized
electricity markets. Equilibria in the two auction formats have been compared in terms
of both average prices paid to suppliers and productive efficiency. In the case of certain
demand (i.e. short-lived bids), we found that uniform auctions yield higher average prices
than discriminatory auctions. Comparison of the auctions in terms of productive efficiency
is more complex, however, as it depends on which equilibrium is played in the uniform
price auction as well as on parameter values. When demand is uncertain (or bids are
long-lived), at least in the perfectly symmetric case, expected payments to suppliers are
the same in both auction formats.

Our theoretical model is obviously highly stylized, and while it does lead to a number
of qualitative results, it does not allow us to draw conclusions about their quantitative
importance. Nevertheless, numerical examples suggest that some of the effects identified
may be significant. For example, moving from a uniform to a discriminatory auction
format in the certain demand case may have a similar effect on average prices to either
doubling the number of suppliers or increasing the capacity of two symmetric duopolists
by almost 40%. Without overstating the importance of these findings, they suggest that
the new market rules may have been responsible for at least part of the initial reduction
in England and Wales wholesale electricity prices in 2001/2. The effects of these changes
on productive efficiency remains a matter for speculation, however.23

A key determinant of market performance in our analysis is the relative incidence of
low-demand and high-demand states, and this does not depend upon the auction format.
Rather, it depends on other market design issues and on structural features of the market.
In particular, the incidence of high-demand states is lower when there is more excess ca-
pacity in the industry, the market structure is more fragmented, suppliers have symmetric
capacities, demand is price elastic and the market reserve price is low. These factors affect
not only the relative incidence of low and high-demand states, but may also influence bid-
ding strategies. Changes in total capacity, the capacity distribution and market structure
(i.e. ‘structural factors’) have no effect on prices in the uniform auction in high-demand
states, but can lead to more vigorous price competition in the discriminatory auction.
Regulatory interventions to change the market rules, on the other hand, affect bidding
strategies in both types of auction. A reduction in the market reserve price reduces aver-
age market prices in both auctions. Measures that increase the elasticity of demand (e.g.

23See Kahn et al (2001), for instance, who argue against adopting discriminatory auctions on the grounds

that they are likely to result in increased inefficiency.
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the introduction of demand-side bidding) have similar effects. A change from short-lived to
long-lived bids, however, which makes the demand state uncertain when suppliers’ submit
their bids, may have a greater effect on prices in the uniform auction.

From a methodological point of view, the paper has also contributed to the analysis of
multi-unit electricity auctions in a number of ways.24 First, we have shown that the set of
equilibrium outcomes in uniform and discriminatory auctions is essentially independent of
the number of admissible steps in suppliers’ offer-price functions, so as long as this number
is finite. This reduces the complexity involved in the analysis of multi-unit auctions as it
allows us to focus on the single-unit case with no significant loss in generality. Secondly, we
have demonstrated that the ‘implicitly collusive’ equilibria found in the uniform auction
when offer prices are infinitely divisible are unique to this formulation of the auction
(i.e. to share auctions), and do not arise when offer-price functions are discrete. Hence
the concerns expressed in the literature that uniform auctions may lead to ‘collusive-
like’ outcomes even in potentially competitive periods when there is considerable excess
capacity, are likely misplaced.25 Though we cannot conclude that simplifying the bidding
format will typically improve market performance in electricity auctions, it appears that
there may be little to lose from adopting such a measure.
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Appendix

A Derivations of Results

Proof of Lemma 1

Let p denote the highest accepted price offer and let bi = p. Clearly, we must have p ≥ ci.
Let cp = maxcj≤p cj and cp =

{
mincj>p cj if p < c; and P otherwise}. Suppose p > cp.

Then, for j 6= i with cj < p, we must have bj ≤ p (with strict inequality if cj = ci)
since otherwise supplier j could gain by matching (undercutting) bi. But then i’s profit
is strictly increasing in bi on [p, cp], proving the first part of the result. Lastly, in the
discriminatory auction, in a pure-strategy equilibrium we cannot have bj < p, given that
supplier j’s profit is strictly increasing in bj up to p.
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Proof of Proposition 1

Consider first the possibility of a pure-strategy equilibrium in which the highest accepted
offer price equals c. Profits to Supplier i are given by [c− ci]min {θ −Ki−1, ki}, where
Ki =

∑i
j=1 kj , i = 1, 2 and K0 = 0, while the profits from deviating to a higher price is

at most [P − ci]max {θ −K−i, 0}, where K−i =
∑

j 6=i kj . A necessary (and, indeed, suffi-
cient) condition for such an equilibrium to exist consequently is [c− ci]min {θ −Ki−1, ki}−
[P − ci]max {θ −K−i, 0} ≥ 0. Given that, for θ ≥ K−i, the left-hand side of this expres-
sion is non-increasing in θ, there exists a unique θ̂i such that the condition is satisfied iff
θ ≤ θ̂i. Existence of the equilibrium then requires θ ≤ min θ̂i ≡ θ̂.

Consider next the possibility of an equilibrium in which supplier i submits the highest
accepted price offer bi = P . Clearly, for such an equilibrium to exist we must have θ −
K−i > 0. By the argument in the proof of Lemma 1, it follows that i’s equilibrium profits
are [P − ci] [θ −K−i]. Obviously, any profitable deviation by i would involve undercutting
the competitor so as to increase output (with a consequent fall in price). If the competitor
prices at cost, the maximum gain from undercutting is given by [cj − ci]min {θ −Ki−1, ki}
when θ ∈ (Kj−1,Kj ] . Consequently, a necessary condition for such an equilibrium to exist
is that [P − ci] [θ −K−i] − [cj − ci]min {θ −Ki−1, ki} ≥ 0. By the monotonicity of the
left-hand side of the condition, it follows that the condition is satisfied iff θ ≥ θ̂i, implying
that a monopolistic pure-strategy equilibrium can exist only if θ ≥ θ̂.

The existence of a monopolistic pure-strategy equilibrium in the uniform auction when
θ ≥ θ̂i for some i is straightforward and involves Supplier i pricing at P while the competi-
tor prices sufficiently low so as to make undercutting by i unprofitable. In the discrimi-
natory auction, by the result in Lemma 1 that in a pure-strategy equilibrium all accepted
units are offered at the same price, it follows that there cannot exist an equilibrium in
which accepted price offers exceed c, since then at least one supplier could increase output
by (marginally) undercutting its competitor. When θ ≥ θ̂i, Supplier i’s rival knows that
a price offer of c being undercut is a probability-zero event, and hence will surely price
above c also.

For further reference, we register the following results. Noting that we must have
θ̂1 ≥ k2, θ̂1 is implicitly defined by the equation c min

{
θ̂1, k1

}
= P

[
θ̂1 − k2

]
. It follows

that θ̂1 = P
P−ck2 if θ̂1 ≤ k1 and θ̂1 = k2 + c

P k1 if θ̂1 > k1. This may alternatively be stated
as θ̂1 = P

P−ck2 if P
P−ck2 ≤ k1 and θ̂1 = k2 + c

P k1 otherwise. Similar reasoning leads to the
result that θ̂2 = k1. Consequently, θ̂ = P

P−ck2 if P
P−ck2 ≤ k1 and θ̂ = k1 otherwise.

Mixed-strategy equilibria in the basic model

In this section we characterize the mixed-strategy equilibria of the uniform auction for
the case in which there are multiple pure-strategy equilibria (i.e., for demand realizations
θ ≥ max

{
θ̂1, θ̂2

}
), as well as for the corresponding discriminatory auction for high-demand

realizations (i.e., θ > θ̂ = min
{

θ̂1, θ̂2

}
).
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Uniform auction

Assume θ ≥ max
{

θ̂1, θ̂2

}
= max

{
k1, k2 + c

P k1

}
. Let F u

i (b) = Pr {bi ≤ b} denote the
equilibrium mixed-strategy of supplier i, i = 1, 2, with density fu

i (b) = F ′u
i (b), and let Su

i

be the support of F u
i . Furthermore, let Su = (max {inf Su

1 , inf Su
2 } , min {supSu

1 , supSu
2 }).

Note first that F u
i cannot have a mass point on Su. To see this, suppose, for contradiction,

that F u
i has a mass point at some b′ ∈ Su. Then, for some interval [b′, b′ + ε), ε > 0, i’s

competitor would be better off by offering to supply at a price just below b′ than to
offer prices in this interval. But then i’s profit would be strictly increasing on [b′, b′ + ε),
contradicting the assumption that b′ is in the support of i’s strategy. A similar argument
establishes that Su

i is an interval (i.e. without ’holes’). Furthermore, since P must be in
the support of at least one supplier’s strategy, we have Su = Su

1∩ Su
2 = (b, P ). We want

to demonstrate that any mixed-strategy equilibrium has the form

F u
1 (b) =





A1

[
b−c
P−c

] θ−k2
k1+k2−θ

for b < b < P

1 for b = P

F u
2 (b) =





A2

[
b
P

] θ−k1
k1+k2−θ for b < b < P

1 for b = P

b = c

where either (i) A1 = 1 and 0 < A2 ≤ 1 or (ii) 0 < A1 ≤ 1 and A2 = 1.
On (b, P ), strategies must satisfy the following differential equations:

F u
2 (b) [θ − k2]− fu

2 (b) b [k1 + k2 − θ] = 0,

F u
1 (b) [θ − k1]− fu

1 (b) [b− c] [k1 + k2 − θ] = 0.

On the interior of the support of the mixed strategies the net gain from raising the bid
marginally must be zero. The first elements on the left-hand side of the above expressions
represents the gain to a supplier from the resulting increase in the price received in the
event that the rival bids below. The second element represents the loss from reducing the
chance of being despatched at full capacity instead of serving the residual demand only
(the difference being, for supplier i, ki − [θ − kj ] = k1 + k2 − θ). The above expressions
may alternatively be written:

fu
2 (b)− 1

b

θ − k2

k1 + k2 − θ
F u

2 (b) = 0,

fu
1 (b)− 1

b− c

θ − k1

k1 + k2 − θ
F u

1 (b) = 0,

and have solutions

F u
1 (b) = Â1 [b− c]

θ−k2
k1+k2−θ

F u
2 (b) = Â2b

θ−k1
k1+k2−θ ,
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with Âi > 0, i = 1, 2.
Since at most one supplier can play P with positive probability (i.e., either Pr (b1 = P ) =

0 or Pr (b2 = P ) = 0), we have either (i) limb→P F u
2 (b) ≤ limb→P F u

1 (b) = 1, implying Â1 =
[

1
P−c

] θ−k2
k1+k2−θ and Â2 ≤

[
1
P

] θ−k1
k1+k2−θ or (ii) limb→P F u

1 (b) ≤ limb→P F u
2 (b) = 1, implying

Â1 ≤
[

1
P−c

] θ−k2
k1+k2−θ and Â2 =

[
1
P

] θ−k1
k1+k2−θ .

Note that, because there are no mass points on (b, P ) and limb→c F u
1 (b) = 0, we must

have b = c. Since limb→c F u
2 (b) = Â2c

θ−k1
k1+k2−θ > 0, while F u

2 cannot have a mass point at
c, it follows that for a mixed-strategy equilibrium to exist it must involve, with positive
probability, Supplier 2 offering to supply at prices below his own cost (note that this implies
that there does not exist a mixed-strategy equilibrium in weakly undominated strategies).
The only constraint that F2 (b) must satisfy for b ≤ c follows from the condition that
undercutting by Supplier 1 must be unprofitable; one solution satisfying this constraint is
given by the above first-order condition, but a continuum of other solutions exist as well.

In a mixed-strategy equilibrium profits become:

πu
1 = P {Pr (b2 = P ) k1 + [1− Pr (b2 = P )] [θ − k2]} ,

πu
2 = [P − c] {Pr (b1 = P ) k2 + [1− Pr (b1 = P )] [θ − k1]} .

Note that, for the class of equilibria in which limb→P F u
1 (b) = 1, total industry profits

are maximized in the limiting case Pr (b2 = P ) = 1 (which corresponds to A1 = 1 and
A2 = 0), in which case we have πu

1 = Pk1 and πu
2 = [P − c] [θ − k1]. Note that this is

the same as in the corresponding pure-strategy equilibrium in which Supplier 2 is bidding
high, implying that profits in this pure-strategy equilibrium dominate those in any mixed-
strategy equilibrium. A corresponding result holds for the other class of mixed-strategy
equilibria.

Discriminatory auction

Assume θ > θ̂. From the proof of Proposition 1, there are two cases to consider; P
P−ck2 ≤

k1, in which case θ̂ = P
P−ck2, and P

P−ck2 > k1, in which case, θ̂ = k1.
Let F d

i (b) = Pr {bi ≤ b} denote the equilibrium mixed strategy of supplier i and let
Sd

i be the support of F d
i . Standard arguments (see above) imply that S = (b, P ) ⊆ Sd

1 ,

Sd
2 ⊆ [b, P ] and that F d

i and F d
j do not have mass points on [b, P ). We want to show that

there exists a unique equilibrium with,

F d
1 (b) =

{
min{θ,k2}

min{θ,k1}+min{θ,k2}−θ
b−b
b−c for b < P

1 for b = P
,

F d
2 (b) =

{
min{θ,k1}

min{θ,k1}+min{θ,k2}−θ
b−b
b for b < P

1 for b = P
,

where b = c + [P − c] θ−k1
min{θ,k2} if Pk2 > [P − c] k1and b = P θ−k2

min{θ,k1} if Pk2 ≤ [P − c] k1

(note that, in both cases, b ≥ c).
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Suppliers’ profits may be written

πd
1(b) = b

{
F d

2 (b)max {θ − k2, 0}+
[
1− F d

2 (b)
]
min {θ, k1}

}
,

πd
2(b) = [b− c]

{
F d

1 (b)max {θ − k1, 0}+
[
1− F d

1 (b)
]
min {θ, k2}

}
.

A necessary condition for supplier i to be indifferent between any price in Sd
i is that,

for all b ∈ Sd
i , πd

i (b) = πd
i , implying

F d
1 (b) =

[b− c]min {θ, k2} − πd
2

[b− c] [min {θ, k1}+ min {θ, k2} − θ]
,

F d
2 (b) =

b min {θ, k1} − πd
1

b [min {θ, k1}+ min {θ, k2} − θ]
,

where we have used the fact that max {θ − ki, 0} = θ −min {θ, ki}.
Observe that the boundary condition F d

1 (b) = F d
2 (b) = 0 implies

πd
1 = b min {θ, k1} ,

πd
2 = [b− c]min {θ, k2} .

Furthermore, we have

lim
b→P

[
F d

1 (b)− F d
2 (b)

]
=

P − b

min {θ, k1}+ min {θ, k2} − θ

[
min {θ, k2}

P − c
− min {θ, k1}

P

]
.

If k1 < P
P−ck2, in which case θ > k1, we cannot have limb→P F d

2 (b) = 1 since this would
imply limb→P F d

1 (b) > 1. Consequently, we have the boundary condition limb→P F d
1 (P ) =

1, which implies
πd

2 = [P − c] [θ − k1] ,

and, together with the condition F d
1 (b) = 0,

b = c + [P − c]
θ − k1

min {θ, k2} ≥ c.

If, on the other hand, k1 > P
P−ck2, in which case θ > P

P−ck2, we have the boundary
condition limb→P F d

2 (P ) = 1, which implies

πd
1 = P [θ − k2] ,

and, together with the condition F d
2 (b) = 0,

b = P
θ − k2

min {θ, k1} ≥ c.

Note that, in both cases, b → c as θ → θ̂, and so, in the limit, π1 = c
[
θ̂ − k2

]
and

π2 = 0.
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In the case k1 < P
P−ck2 (similar results are obtained in the alternative case), equilibrium

profits, expected costs and expected revenues may be written:

πd
1 = ck1 + [P − c] [θ − k1]

k1

min {θ, k2} and πd
2 = [P − c] [θ − k1]

ECd = Pr {b1 ≤ b2} c [θ − k1] + Pr {b1 > b2} cmin {θ, k2}
ERd = πd

1 + πd
2 + ECd

where

Pr {b1 ≤ b2} =

P∫

b

F d
1 (b)dF d

2 (b) + 1− k1

k1 + min {θ, k2} − θ

P − b

P

With some algebra,

P∫

b

F d
1 (b)dF d

2 (b) =
k1 min {θ, k2}

[k1 + min {θ, k2} − θ]2
b

c

[
P − b

P
− b− c

c
ln

(
P − c

b− c

b

P

)]

In the limit,

lim
c→0

Pr {b1 ≤ b2} = 1− 1
2

k1

min {θ, k2} ≥
1
2
,

lim
c→P

Pr {b1 ≤ b2} = 1,

and hence
1
2
≤ Pr {b1 ≤ b2} ≤ 1,

c [θ − k1] ≤ ECd ≤ c min {θ, k2}+ c [θ − k1]
2

,

πd
1 + πd

2 + c [θ − k1] ≤ ERd ≤ πd
1 + πd

2 +
c min {θ, k2}+ c [θ − k1]

2
.

Furthermore, we know that we cannot have ERd = Pθ, since this would require both
suppliers playing P with positive probability. Thus, ERd < Pθ.

Proof of Lemma 2

Verifying that the arguments of Lemma 1 and Proposition 2 go through with multiple bids
is straightforward. Below we want to demonstrate that, in the discriminatory auction, the
best response to a rival offering all of his capacity at the same price according to an
equilibrium distribution function is to bid a flat bid function also. Under the assumption
that bjn = bj , n = 1, ..., Nj , with bj chosen according to the distribution function Fj ,
supplier i’s expected profits may be written

πi (bi) =
Ni1∑

n=1

[bin − ci]

{
Fj (bin)min

{
kin, max

{
θ − kj −

n−1∑

m=1

kim, 0

}}

+ [1− Fj (bin)] kin} ,
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where we have defined
∑0

m=1 kim ≡ 0. Suppose bi is set optimally, that Ni > 1 and that
bin < bin+1 for some n = 1, 2, ..., Ni−1 (i.e., there is at least two steps in i’s bid function).
We want to show that this leads to a contradiction. Consider first the case that θ > kj

and let n̂ be chosen such that 0 < θ−kj−
∑n̂−1

m=1 kim < kin̂. Clearly such an n̂ exists and is
unique. Note that we have θ−kj −

∑n−1
m=1 kim > kin for n < n̂ and θ−kj −

∑n−1
m=1 kim < 0

for n > n̂. Supplier i’s profit can then be rewritten as,

πi (bi) =
n̂−1∑

n=1

[bin − ci] kin

+ [bin̂ − ci]

{
Fj (bin̂)

[
θ − kj −

n̂−1∑

n=1

kin

]
+ [1− Fj (bin̂)] kin̂

}

+
Ni∑

n=n̂+1

[bin − ci] [1− Fj (bin)] kin

= [bin̂ − ci] {Fj(bin̂) [θ − kj ] + [1− Fj (bin̂)] ki}

+
n̂−1∑

n=1

[bin − bin̂] kin

+
Ni∑

n=n̂+1

{[bin − ci] [1− Fj (bin)]− [bin̂ − ci] [1− Fj (bin̂)]} kin.

The first term in the last expression equals the profit Supplier i would obtain if all of his
units were bid in at the same price bin̂. The second term is clearly negative: it is always
profitable to increase offer prices on units that will be despatched with probability 1. The
last term is negative also. To see this, note that if Fj is the mixed-strategy corresponding
to an equilibrium in which supplier i offer all units at the same price, it must satisfy

πi (bi) = [bi − ci] {Fj (bi)min {ki, max {θ − kj , 0}}
+ [1− Fj (bi)]min {ki, θ}} = πi,

where πi is some constant. Consider two offer prices b̂ > b̃ on the support of Fj . Then

0 =
[
b̂− ci

] {
Fj

(
b̂
)

min {ki, max {θ − kj , 0}}+
[
1− Fj

(
b̂
)]

min {ki, θ}
}

−
[
b̃− ci

] {
Fj

(
b̃
)

min {ki, max {θ − kj , 0}}+
[
1− Fj

(
b̃
)]

min {ki, θ}
}

=
{[

b̂− ci

]
Fj

(
b̂
)
−

[
b̃− ci

]
Fj

(
b̃
)}

min {ki, max {θ − kj , 0}}

+
{[

b̂− ci

] [
1− Fj

(
b̂
)]
−

[
b̃− ci

] [
1− Fj

(
b̃
)]}

min {ki, θ}

≥
{[

b̂− ci

] [
1− Fj

(
b̂
)]
−

[
b̃− ci

] [
1− Fj

(
b̃
)]}

min {ki, θ} ,

where the inequality follows from the observation that [b− ci] Fj (b) is increasing in b (the
inequality is strict if θ > ki). In the case that θ ≤ kj , supplier i’s profits simplify to

πi (bi) =
Ni∑

n=1

[bin − ci] [1− Fj (bin)] kin,
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and so we can a apply a similar argument to the one immediately above to demonstrate
that profits are maximized for bi1 = bi2 = ... = biNi = bi. We conclude that for supplier i

to offer all capacity at a single price is a best response to Fj .

Proof of Proposition 4

Let Ks =
∑s

i=1 ki be the accumulated capacity of the s most efficient suppliers and K−i
s =

Ks − ki, i ≤ s, the accumulated capacity of the s most efficient suppliers not including
supplier i. Note first that accepted price offers cannot exceed cs if θ ≤ mini≤s

{
K−i

s

}
. To

see this, suppose that the highest accepted price offer were indeed b > cs. Since at most
one supplier will offer b with positive probability, all other suppliers i 6= s, ci < b, will
price below b. But then, since θ < mini≤s

{
K−i

s

}
a price offer of b will never be accepted.

It follows that mini≤s

{
K−i

s

}
is a lower bound for θ̂−s .

Consider next events in which θ ≥ Ks−1. Then, since supplier s never price below cs,
any supplier i < s who offers bi < cs will be accepted with probability 1 and despatched
at full capacity. It follows that there cannot exist an equilibrium in which some supplier
accepts to be paid a price below cs. Furthermore, if cs < cs+1, or s = S (so θ ≥ KS−1),
supplier s will price above cs with probability 1 and hence suppliers i < s will not accept
to be paid prices equal to cs either. Consequently, Ks−1 is an upper bound for θ̂+

s .
Lastly, we observe that mini≤s

{
K−i

s

}
= Ks−1 if ks = maxi≤s ki (or ks ≥ maxi<s ki),

in which case we must have θ̂−s = θ̂+
s .

Proof of Lemma 3

We start by showing that a pure-strategy equilibrium does not exist in either auction
format. To see this, note first that in a pure-strategy equilibrium all effective offer prices
(i.e., offers that with positive probability affect the prices suppliers are paid) must be equal;
if not, some supplier could profitably increase his offer price towards the next higher bid,
thereby increasing profits in the event that this offer is effective without reducing output
in any event. Next, observe that this common price cannot exceed c; if it did, some
supplier could profitably deviate to a slightly lower price, thereby increasing the expected
quantity despatched with only a negligible effect on the expected price. Lastly, bidding
at c cannot constitute an equilibrium either, since the supplier with costs equal to c could
obtain positive profits in the event that demand exceeds the capacity of his rival by raising
his offer price.

We next characterize the unique equilibrium for each auction format.

Uniform auction

Let F u
i (b) = Pr {bi ≤ b} denote the equilibrium mixed-strategy of supplier i, i = 1, 2, in

the uniform auction, with fu
i (b) = F u′

i (b), and let Su
i be the support of F u

i . Standard



Designing Electricity Auctions 29

arguments imply that Su
1∩ Su

2 = [bu, P ), bu ≥ c, and that F u
1 and F u

2 do not have mass
points on (bu, P ).

We focus on the case in which θ < min {k1, k2} ≤ max {k1, k2} < θ. Supplier i’s profit,
when bidding b, may then be written

πu
i (b) = F u

j (b)
∫ θ

kj

[b− ci] [θ − kj ] dG (θ)

+
∫ P

b

[∫ ki

θ
[b− ci] θdG (θ) +

∫ θ

ki

[υ − ci] kidG (θ)

]
dF u

j (υ).

The first term on the right-hand side represents supplier i’s profits in the event that the
rival bids below b, in which case supplier i produces a positive quantity only when demand
is above the capacity of the rival. The second term represents supplier i’s profits in the
event that the rival bids above b. As given by the first element of this term, supplier i

will then serve all demand at his own price when his capacity is sufficient to satisfy all of
demand. On the other hand, and as given by the second element, supplier i will produce
at full capacity and receive a price determined by the rival’s bid in the event that demand
exceeds his capacity.

On (bu, P ), strategies must satisfy the following differential equations:

F u
j (b)

∫ θ

kj

[θ − kj ] dG (θ) +
[
1− F u

j (b)
] ∫ ki

θ
θdG (θ)

− [b− ci] fu
j (b)

{∫ ki

θ
θdG (θ) +

∫ θ

ki

kidG (θ)−
∫ θ

kj

[θ − kj ] dG (θ)

}
= 0

On the interior of the support of the mixed strategies the net gain from raising the bid
marginally must be zero. The first element on the left-hand side represents the gain to a
supplier from the resulting increase in the price received in the event that demand exceeds
the capacity of the rival and the rival bids below. The second element represents the gain
to a supplier from the resulting increase in the price in the event that demand is lower
than his capacity and the rival bids above. Lastly, the third term represents the loss from
being despatched with a smaller output: in case demand falls below the supplier’s capacity
the loss of output equals total demand; in case demand exceeds the supplier’s capacity the
loss equals the difference between being despatched at full capacity and serving residual
demand only (i.e., ki − [θ − kj ]). The above expressions may alternatively be written

fu
j (b)− λj

b− ci
F u

j (b) =
βj

b− ci
,

where

λj =

∫ θ
kj

[θ − kj ] dG (θ)− ∫ ki

θ θdG (θ)
∫ θ
θ θdG (θ)− ∫ θ

ki
[θ − ki] dG (θ)− ∫ θ

kj
[θ − kj ] dG (θ)

βj =

∫ ki

θ θdG (θ)
∫ θ
θ θdG (θ)− ∫ θ

ki
[θ − ki] dG (θ)− ∫ θ

kj
[θ − kj ] dG (θ)
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which have solutions

F u
j (b) =

{
βj ln (b− ci) + Ωj

1 for λj = 0

Ωj
2 [b− ci]

λj − βj

λj
for λj 6= 0

where Ωj
1, Ω

j
2, j = 1, 2, are constants of integration. Note that, if ki ≤ kj , βi ≥ βj .

Furthermore, β1 = β2 and λ1 = λ2 when k1 = k2. Also, if ki ≤ kj , βj → 0 as θ ↑ ki while
βj + λj → 0 as θ ↓ kj .

Given the boundary condition F u
j (bu) = 0, these equations yield the mixed-strategy

distribution functions for b ∈ [bu, P ):

F u
j (b) =





βj ln
(

b−ci
bu−ci

)
for λj = 0,

βj

λj

{[
b−ci
bu−ci

]λj − 1
}

for λj 6= 0.

Suppose limb↑P F u
2 (b) ≤ limb↑P F u

1 (b) = 1 (in the opposite case, i.e. when limb↑P F u
1 (b) ≤

limb↑P F u
2 (b) = 1, a corresponding argument can be applied). Then it is straightforward

to verify that bu is given uniquely as

bu =





c2 + [P − c2] e
− 1

β1 for λ1 = 0,

c2 + [P − c2]
[

β1

λ1+β1

] 1
λ1 for λ1 6= 0.

Substituting for bu, we find

F u
1 (b) =





1 + β1 ln
(

b−c2
P−c2

)
for λ1 = 0,

β1

λ1

{
λ1+β1

β1

[
b−c2
P−c2

]λ1 − 1
}

for λ1 6= 0,

while F u
2 (P ) = 1 and, for b ∈ [bu, P ),

F u
2 (b) =





β2 ln

(
b−c1

[P−c2]e
− 1

β1 +c2−c1

)
for λ1 = λ2 = 0,

β2

λ2






 b−c1

[P−c2]
[

β1
λ1+β1

] 1
λ1 +c2−c1




λ2

− 1





for λ1, λ2 6= 0.

Equilibrium profits become

πu
1 = [P − c1]

{
Pr (b2 < P )

∫ θ

k2

[θ − k2] dG (θ) + Pr (b2 = P )
∫ θ

θ
min (θ, k1) dG (θ)

}
,

πu
2 = [P − c2]

∫ θ

k1

[θ − k1] dG (θ) ,

where
Pr (b2 < P ) = lim

b↑P
F d

2 (b) .
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Symmetric Capacities: When k1 = k2 = k and 0 = c1 ≤ c2 = c, one can show that we
must have limb↑P F u

2 (b) ≤ limb↑P F u
1 (b) = 1 and so we find

bu =





c + [P − c] e−
1
β for λ = 0

c + [P − c]
[

β
λ+β

] 1
λ for λ 6= 0

F u
1 (b) =





1 + β ln
(

b−c
P−c

)
for λ = 0

β
λ

{
λ+β

β

[
b−c
P−c

]λ
− 1

}
for λ 6= 0

F u
2 (b) =









β ln
(

b

[P−c]e
−1
β +c

)
for λ = 0

β
λ






 b

[P−c]
[

β
λ+β

] 1
λ +c




λ

− 1





for λ 6= 0
, b ∈ [bu, P ) ,

1, b = P

where

λ =

∫ θ
k [θ − k] dG (θ)− ∫ k

θ θdG (θ)
∫ θ
θ θdG (θ)− 2

∫ θ
k [θ − k] dG (θ)

β =

∫ k
θ θdG (θ)

∫ θ
θ θdG (θ)− 2

∫ θ
k [θ − k] dG (θ)

Furthermore,

πu
1 = P

{
Pr (b2 < P )

∫ θ

k
[θ − k] dG (θ) + Pr (b2 = P )

∫ θ

θ
min (θ, k) dG (θ)

}
,

πu
2 = [P − c]

∫ θ

k
[θ − k] dG (θ) .

Consequently, at equilibrium the low-cost supplier bids more aggressively than the high-
cost supplier; in particular, the strategy of the low-cost supplier stochastically first-order
dominates the strategy of the high-cost supplier.

Again, β → 0 (while λ 6= 0) as θ ↑ k. In particular,

lim
θ↑k

bu = c,

lim
θ↓k

F u
1 (b) =

[
b− c

P − c

]λ

lim
θ↑k

F u
2 (b) =

{
0, b < P

1, b = P

lim
θ↑k

πu
1 = Pk,

lim
θ↑k

πu
2 = [P − c] [Eθ − k] ,
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where we have used the fact that limθ↑k
∫ θ
k θdG (θ) =Eθ. Consequently, as the probability

that demand falls below the capacity of an individual supplier goes to zero, equilibrium
approaches something with the flavour of the equilibrium found for high-demand realiza-
tions, with the high-cost supplier bidding at P and the low-cost supplier mixing over a
range between c and P so as to make undercutting by the high-cost supplier unprofitable.

Also, β → 1 and λ → −1 as θ ↓ k. In particular,

lim
θ↓k

bu = c,

lim
θ↓k

F u
1 (b) = 1

lim
θ↓k

F u
2 (b) = 1− c

b
, b < P

lim
θ↓k

πu
1 = cEθ

lim
θ↓k

πu
2 = 0,

where we have used the fact that limθ↓k
∫ k
θ θdG (θ) = Eθ. Consequently, as the probability

that demand exceeds the capacity of an individual supplier goes to zero, equilibrium
approaches something with the flavour of the Bertrand-like equilibrium found for low-
demand realizations, with the low-cost supplier bidding at the cost of the high-cost supplier
and the high-cost supplier mixing between c and P (with a mass point at P ).

Symmetric costs: When c1 = c2 = 0 and k1 ≤ k2, we again must have limb↑P F u
2 (b) ≤

limb↑P F u
1 (b) = 1 and so

bu =





Pe
− 1

β1 for λ1 = 0

P
[

β1

λ1+β1

] 1
λ1 for λ1 6= 0

F u
1 (b) =





1 + β1 ln
(

b
P

)
for λ1 = 0

β1

λ1

{[
λ1+β1

β1

[
b
P

]λ1 − 1
]}

for λ1 6= 0

F u
2 (b) =









β2 ln
(

b

Pe
−1
β1

)
for λ1 = λ2 = 0

β2

λ2

{[
λ1+β1

β1

]λ2
λ1

[
b
P

]λ2 − 1

}
for λ1, λ2 6= 0

, b ∈ [bu, P )

1, b = P

πu
1 = P

{
Pr (b2 < P )

∫ θ

k2

[θ − k2] dG (θ) + Pr (b2 = P )
∫ θ

θ
min (θ, k1) dG (θ)

}
,

πu
2 = P

∫ θ

k1

[θ − k1] dG (θ) .
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Consequently, at equilibrium the smaller supplier bids more aggressively than the larger
supplier; in particular, the strategy of the smaller supplier stochastically first-order dom-
inates the strategy of the larger supplier.

In the limit,

lim
θ↑k1

F u
2 (b) = 0, b < P

lim
θ↑k1

πu
1 = Pk1

lim
θ↑k1

πu
2 = P [Eθ − k1] ,

where we have used the fact that limθ↑k1

∫ θ
k1

θdG (θ) =Eθ. Consequently, as the probability
that demand falls below the capacity of the smaller supplier goes to zero, equilibrium
approaches something with the flavour of the high-low bidding equilibrium found for high-
demand realizations, with the larger supplier bidding at P and the smaller supplier mixing
over a range below P so as to make undercutting by the larger supplier unprofitable.

Symmetric costs and capacities: When k1 = k2 = k and c1 = c2 = 0, we have
F u

1 (b) = F u
2 (b) and so we find

bu =





Pe
− 1

β for λ = 0

P
[

β
λ+β

] 1
λ for λ 6= 0

F u
1 (b) = F u

2 (b) =





1 + β ln
(

b
P

)
for λ = 0

β
λ

{
λ+β

β

[
b
P

]λ − 1
}

for λ 6= 0

πu
1 = πu

2 = P

∫ θ

k
[θ − k] dG (θ) .

Discriminatory auction

Let F d
i (b) = Pr {bi ≤ b} denote the equilibrium mixed-strategy of supplier i, i = 1, 2, in

the discriminatory auction, and let Sd
i be the support of F d

i and fd
i (b) its density function.

Standard arguments imply that Sd
1∩ Sd

2 =
[
bd, P

)
, bd ≥ c, and that F d

1 and F d
2 do not

have mass points on
[
bd, P

)
.

Again we focus on the case in which θ < min {k1, k2} ≤ max {k1, k2} < θ. Supplier i’s
profit, when bidding b, may then be written

πd
i (b) = [b− ci]

{
F d

j (b)
∫ θ

kj

[θ − kj ] dG (θ)

+
[
1− F d

j (b)
] [∫ ki

θ
θdG (θ) +

∫ θ

ki

kidG (θ)

]}
.
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A necessary condition for supplier i to be indifferent between any price in Sd is that,
for all b ∈ Sd, πd

i (b) = πd
i , implying

F d
j (b) =

∫ θ
θ θdG (θ)− ∫ θ

ki
[θ − ki] dG (θ)− πd

i
b−ci∫ θ

θ θdG (θ)− ∫ θ
ki

[θ − ki] dG (θ)− ∫ θ
kj

[θ − kj ] dG (θ)
.

Observe that the boundary condition F d
j (bd) = 0 implies

πd
i =

[
bd − ci

] [∫ θ

θ
θdG (θ)−

∫ θ

ki

[θ − ki] dG (θ)

]
,

and so

F d
j (b) =

∫ θ
θ θdG (θ)− ∫ θ

ki
[θ − ki] dG (θ)

∫ θ
θ θdG (θ)− ∫ θ

ki
[θ − ki] dG (θ)− ∫ θ

kj
[θ − kj ] dG (θ)

b− bd

b− ci
.

We have

F d
1 (b) ≷ F d

2 (b) ⇐⇒ b− c1

b− c2
≷

∫ θ
θ θdG (θ)− ∫ θ

k1
[θ − k1] dG (θ)

∫ θ
θ θdG (θ)− ∫ θ

k2
[θ − k2] dG (θ)

.

Suppose F d
1 (b) > F d

2 (b) (in the opposite case a corresponding argument to the follow-
ing may be applied). Then we cannot have limb↑P F d

2 (b) = 1 since this would imply
limb↑P F d

1 (b) > 1. Consequently, we have the boundary condition limb↑P F d
1 (P ) = 1,

which implies

πd
2 = [P − c2]

∫ θ

k1

[θ − k1] dG (θ) ,

and, together with the condition F d
1 (bd) = 0,

bd = c2 + [P − c2]

∫ θ
k1

[θ − k1] dG (θ)
∫ θ
θ θdG (θ)− ∫ θ

k2
[θ − k2] dG (θ)

.

Equilibrium profits become

πd
1 = [P − c1]

{
Pr (b2 < P )

∫ θ

k2

[θ − k2] dG (θ) + Pr (b2 = P )
∫ θ

θ
min (θ, k1) dG (θ)

}
,

πd
2 = [P − c2]

∫ θ

k1

[θ − k1] dG (θ) ,

where

Pr (b2 < P ) = lim
b↑P

F d
2 (b) =

P − c2

P − c1

∫ θ
θ θdG (θ)− ∫ θ

k1
[θ − k1] dG (θ)

∫ θ
θ θdG (θ)− ∫ θ

k2
[θ − k2] dG (θ)

.
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Symmetric capacities: When k1 = k2 = k and 0 = c1 < c2 = c, F d
1 (b) > F d

2 (b) and so
we find

bd = c + [P − c]

∫ θ
k [θ − k] dG (θ)

∫ θ
θ θdG (θ)− ∫ θ

k [θ − k] dG (θ)

πd
1 = [P − c]

∫ θ

k
[θ − k] dG (θ) + c

[∫ k

θ
θdG (θ) +

∫ θ

k
kdG (θ)

]
,

πd
2 = [P − c]

∫ θ

k
[θ − k] dG (θ) .

Consequently, at equilibrium the low-cost supplier bids more aggressively than the high-
cost supplier; in particular, the strategy of the low-cost supplier first-order stochastically
dominates that of the high-cost supplier.

In the limit, we find

lim
θ↑k

bd = c + [P − c]
Eθ − k

k
,

lim
θ↑k

F d
1 (b) =

k

2k − Eθ

b− bd

b− c

lim
θ↑k

F d
2 (b) =

{
k

2k−Eθ
b−bd

b , b < P

1 , b = P

lim
θ↑k

πd
1 = [P − c] [Eθ − k] + ck,

lim
θ↑k

πd
2 = [P − c] [Eθ − k] .

Consequently, when the probability that demand falls below the capacity of any individual
supplier goes to zero, equilibrium approaches the mixed-strategy equilibrium for high-
demand realizations.

Furthermore,

lim
θ↓k

bd = c,

lim
θ↓k

F d
1 (b) = 1,

lim
θ↓k

F d
2 (b) =

{
1− c

b , b < P

1, b = P

lim
θ↓k

πd
1 = cEθ,

lim
θ↓k

πd
2 = 0.

Consequently, as the probability that demand exceeds the capacity of an individual sup-
plier goes to zero, equilibrium approaches the Bertrand-like equilibrium for low-demand
realizations, with the low-cost supplier bidding at the cost of the high-cost supplier and
the high-cost supplier mixing between c and P (with a mass point at P ).
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Symmetric costs: When c1 = c2 = 0 and k1 < k2, F d
1 (b) > F d

2 (b) and so we find

bd = P

∫ θ
k1

[θ − k1] dG (θ)
∫ θ
θ θdG (θ)− ∫ θ

k2
[θ − k2] dG (θ)

πd
1 = P

∫ θ

k1

[θ − k1] dG (θ)

∫ θ
θ θdG (θ)− ∫ θ

k1
[θ − k1] dG (θ)

∫ θ
θ θdG (θ)− ∫ θ

k2
[θ − k2] dG (θ)

πd
2 = P

∫ θ

k1

[θ − k1] dG (θ)

In the limit,

lim
θ↑k1

bd = P
Eθ − k1

Eθ − ∫ θ
k2

[θ − k2] dG (θ)

lim
θ↑k1

F d
1 (b) =

Eθ − ∫ θ
k2

[θ − k2] dG (θ)

k1 −
∫ θ
k2

[θ − k2] dG (θ)

b− bd

b

lim
θ↑k

F d
2 (b) =





k1

k1−
∫ θ

k2
[θ−k2]dG(θ)

b−bd

b , b < P

1 , b = P

lim
θ↑k1

πd
1 = P [Eθ − k1]

k1

Eθ − ∫ θ
k2

[θ − k2] dG (θ)

lim
θ↑k1

πd
2 = P [Eθ − k1]

Again, when the probability that demand falls below the capacity of any individual sup-
plier goes to zero, equilibrium approaches the mixed-strategy equilibrium for high-demand
realizations.

Furthermore,

lim
θ↓k2

bd = P

∫ k2

k1
[θ − k1] dG (θ)

Eθ

lim
θ↑k1

F d
1 (b) =

Eθ

Eθ − ∫ k2

k1
[θ − k1] dG (θ)

b− bd

b

lim
θ↑k

F d
2 (b) =

{
b−bd

b , b < P

1 , b = P

lim
θ↓k2

πd
1 = P

∫ k2

k1

[θ − k1] dG (θ)
Eθ − ∫ θ

k1
[θ − k1] dG (θ)

Eθ

lim
θ↓k2

πd
2 = P

∫ k2

k1

[θ − k1] dG (θ)

Consequently, as the probability that demand exceeds the capacity of the larger supplier
goes to zero, equilibrium approaches the mixed-strategy equilibrium for high-demand re-
alizations, with the smaller supplier bidding more aggressively.
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Symmetric capacities and costs: When k1 = k2 = k and c1 = c2 = 0, F d
1 (b) = F d

2 (b)
and so we find

bd = P

∫ θ
k [θ − k] dG (θ)

∫ θ
θ θdG (θ)− ∫ θ

k [θ − k] dG (θ)
,

F d
1 (b) = F d

2 (b) =

∫ θ
θ θdG (θ)− ∫ θ

k [θ − k] dG (θ)
∫ θ
θ θdG (θ)− 2

∫ θ
k [θ − k] dG (θ)


1− P

b

∫ θ
k [θ − k] dG (θ)

∫ θ
θ θdG (θ)− ∫ θ

k [θ − k] dG (θ)


 ,

πd
1 = πd

2 = P

∫ θ

k
[θ − k] dG (θ) .

Proof of Proposition 6

Uniform auction format: With short-lived bids total payments to suppliers equal zero
for low-demand realizations and Pθ for high-demand realizations, and so overall expected
payments equal ERu

s = PE {θ | θ ≥ k}G (k). With long-lived bids, for given demand
realization θ, total payments equal 2P max {θ − k, 0}, and so in expected terms we have
ERu

l = 2P [E {θ | θ ≥ k} − k] G (k). From these expressions we find

ERu
l −ERu

s = P [E {θ | θ ≥ k} − 2k]G (k) < 0.

Discriminatory auction format: With short-lived bids total payments to suppliers
equal zero for low-demand realizations and 2P [θ − k] for high-demand realizations, and
so overall expected payments equal ERd

s = 2P [E {θ | θ ≥ k} − k]G (k). With long-lived
bids, for given demand realization θ, total payments equal 2P max {θ − k, 0}, and so in
expected terms we have ERd

l = 2P [E {θ | θ ≥ k} − k] G (k) = ERd
s .


