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1 Introduction

In many durable goods industries, used products are traded in decentralized secondary markets
which are not directly controlled by the producers of new goods: the automobile industry is perhaps
the most prominent example. In this paper we seek to understand the effects of durability and
secondary markets on equilibrium production behavior in this industry. In the context of a dynamic
equilibrium model, we model explicitly how product durability and trade in secondary markets
affects equilibrium producer behavior in the automobile market.

The durability of cars and the existence of a secondary market have important competitive impli-
cations for new car producers. The secondary market introduces, in the form of used cars, a large
number of (imperfect) substitutes to the new cars produced each period, which limits the market
power of each producer. In turn, rational firms recognize that their current production will reach the
secondary market in the future and, by lowering prices in those markets, will erode future profits. A
monopolist fully internalizes this effect by curtailing current production. In an oligopoly, however,
each producer internalizes only the effect this has on its own future profits, but not the detrimental
effect it has on its rivals’ future profits.1 Indeed, each oligopolistic producer derives an indirect
benefit from increases in current production if this causes its rivals to lower their future production
levels; in equilibrium, therefore, a firm may choose to overproduce today if these indirect benefits
outweigh the costs of more vigorous competition tomorrow.

Moreover, the presence of a secondary market also introduces an additional component — the resale
value — to consumers’ valuations of new cars. This dependence of new car valuations on expected
future prices introduces an intertemporal linkage between a firm’s current profits and its own future
behavior, as well as the future behavior of its competitors. Given these linkages, the firm wishes
to commit to low levels of production in the future to increase the expected resale value. Such
behavior, however, would not be time consistent, because once the future arrives, the firm no longer
cares about its past profits, and is tempted to increase its production. Rational consumers will
anticipate the firm’s future actions and expect low resale prices, thus curbing current demand.

The intertemporal linkages between each firm’s current profits and its own current, past and future
production, as well as the current, past and future production of its rivals, makes for a rich dynamic
game. In this paper, we examine the equilibrium dynamics of this game within the context of the au-
tomobile industry. First, we construct a dynamic oligopoly model of a differentiated product market
which incorporates durability of the goods and their active trade in secondary markets. Second, we
use data from the automobile market to estimate a tractable linear-quadratic version of the model.

1This dynamic effect was also identified in (Carlton and Gertner, 1989).
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While the empirical model is quite stylized, and incorporates restrictive assumptions, it represents
(as far as we are aware) a first attempt at structural estimation of a dynamic durable goods model
for this industry.

Background and existing literature

As the discussion above emphasized, durability and secondary markets introduces dynamics into
both producers’ output decisions and consumers’ purchase decisions in the automobile market,
which creates challenges for both theoretical and empirical work. In this paper, we overcome these
challenges by constructing a dynamic equilibrium model of the car market in which tractability is
provided by its linear-quadratic structure.2 Our model captures four key characteristics of the car
industry: (i) oligopolistic time-consistent multi-product automobile producers; (ii) an active, decen-
tralized secondary market; (iii) differentiated products; and (iv) depreciation schedules which differ
across the competing car models.

However, we make some restrictive assumptions in deriving the linear-quadratic model: (a) con-
sumers face no transactions costs in buying or selling cars, which makes the secondary market
active by increasing the substitutability between new and used cars; (b) the automobile market is
vertically differentiated, which places strong restrictions on the substitutability between cars in con-
sumers’ choice sets; and (c) there is perfect information, so we abstract away from adverse selection
issues.3 While the resulting model is quite stylized, our empirical results demonstrate the feasibil-
ity of estimating a dynamic durable goods model for this industry and, we hope, encourage future
progress.

Since the seminal work of (Coase, 1972), a large theoretical literature has analyzed how durability
erodes market power for a monopoly producer.4 Coase conjectured that a monopolist producing
an infinitely-durable good may lose all of its market power due to its inability to commit to high
prices (or low production) in the future. (Stokey, 1981; Gul, Sonnenschein, and Wilson, 1986;
Ausubel and Deneckere, 1989) showed how Coase’s conjecture can arise as an equilibrium limiting
result in models where the time lag between the monopolist’s price offers shrinks to zero.5 In

2See (Kydland, 1975) for a description of discrete-time linear-quadratic dynamic games, and (Judd, 1996) for an
application to dynamic oligopoly models where firms set both prices and quantities. Also in a linear-quadratic setting,
(Kahn, 1986) analyzes the effects of increasing costs in an infinitely-durable goods monopoly.

3Adverse selection has been a concern in the literature on secondary markets since (Akerlof, 1970). See (Hendel
and Lizzeri, 1999) and (House and Leahy, 2000) for recent contributions to this literature, and (Bond, 1982) for related
empirical work.

4See (Waldman, 2003) for a recent survey.
5See also (Bulow, 1982) for a treatment of the durable-goods monopolist problem within a two-period model.
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the presence of Coasian commitment problems, (Liang, 1999) shows that a secondary market can
reduce the monopolist’s temptation to increase future output, because it reduces competition with
the secondary market by selling more slowly to consumers, thus nearing the commitment solution.

The implications of durability and secondary markets on the dynamics of car demand have not been
ignored in the literature. (Berkovec, 1985; Rust, 1985a; Stolyarov, 2002) focus on dynamic con-
sumer demand in a durable goods market with primary, secondary and scrappage market segments.
(Adda and Cooper, 2000) employ the optimal decision rules from a dynamic discrete-choice model
to explore the effects of scrappage subsidies on car demand, where cars are held until scrapped and,
hence, are not actively traded in the secondary market. Finally, (Eberly, 1994; Attanasio, 2000) con-
sider (s, S) models of automobile demand in which idiosyncratic shocks lead consumers to change
their stock of cars. In all these papers, the focus is on the timing of consumer purchases, so that
automobile prices are assumed to evolve exogenously, and firms’ automobile production decisions
are not explicitly modeled. In our paper, we model firms’ equilibrium production decisions in a
dynamic oligopoly model, but abstract away from consumer transactions costs in order to ensure
the tractability of the model.

Our emphasis on the equilibrium dynamics due to durability and secondary markets also distin-
guishes our work from existing market-level empirical studies of demand and supply in the automo-
bile market. (Bresnahan, 1981; Berry, Levinsohn, and Pakes, 1995; Goldberg, 1995; Petrin, 2002)
have employed static models to quantify the degree of market power and the welfare effects of new
product introductions in the car industry. These papers have focused on accommodating multiple
dimensions of consumer heterogeneity in modeling the demand for automobiles. While some of
these authors have allowed consumers to substitute between new and used cars in their models, they
have not accommodated the intertemporal link between primary and secondary markets (i.e., that
new cars today become used cars in the future), which is a crucial feature of our model. How-
ever, in order to maintain tractability in the dynamic oligopoly model, we restrict ourselves to a
single-dimensional model of consumer heterogeneity.

Several papers have considered the empirical implications of durability and monopoly power. (Sus-
low, 1986) estimated a structural model of Alcoa’s aluminum monopoly, taking into account the
competition from the recycled aluminium sector. (Iizuka, 2007; Chevalier and Goolsbee, 2005)
studied producer and consumer behavior in the academic textbook market. For the automobile in-
dustry, (Ramey, 1989) estimated a durable goods monopoly model to explain aggregate trends in
car prices, and (Porter and Sattler, 1999) tested empirical predictions on the volume of trade in sec-
ondary car markets using a durable-goods monopoly model with transactions costs. There have been
fewer papers on durable goods oligopoly. (Carlton and Gertner, 1989) analyzed the effects of merg-
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ers among oligopolistic durable goods producers, and (Esteban, 2002) characterizes the equilibrium
production dynamics in a durable-goods oligopoly with homogeneous products.

The paper proceeds as follows. In Section 2 we introduce the model and derive the Markov perfect
equilibrium of the dynamic game. Subsequently, we derive a linear-quadratic specification of this
model which is convenient for the empirical illustration. In Section 3 we describe the data and
discuss the empirical implementation of the model. In Section 4 we describe our estimation results
and conduct some counterfactual experiments. We conclude in Section 5.

2 A model of a durable goods oligopoly with secondary markets

We consider a dynamic quantity-setting game among oligopolistic producers of differentiated durable
goods (which, for convenience, we call “cars”). On the demand side, we assume that consumers
are forward looking, so that durability and secondary markets introduce investment considerations
into their car consumption decisions. On the supply side, we assume that new car producers are
quantity-setting oligopolists which recognize both the intertemporal effect of current production
on future profits due to the secondary market as well as the dependence of current profits on past,
present, and expected future production. Several institutional features support a quantity-setting as-
sumption. First, an implicit assumption of the Bertrand price-setting model is flexible capacity, and
capacity does not appear easily adjustable in car production (cf. (Bresnahan and Ramey, 1994)).
Second, in the car market prices seem to adjust to clear the market at given quantity levels, as in
the quantity-setting case. For example, rebates are a common way of adjusting new car prices to
clear the inventories at the end of the model year. Finally, dealer behavior limits the manufacturers’
ability to control prices.

Since the model we derive in this paper is linear-quadratic, we focus on a deterministic version
of the model, because the certainty equivalence property of linear-quadratic models ensures that
the same equilibrium decision rules would obtain in its stochastic counterpart. For simplicity and
tractability, we assume a stationary market environment, and do not consider the entry and exit of
car models from the market.

Following (Esteban, 1999), we assume that the available cars are vertically differentiated. We refer
to cars in their first period of life as new cars and, thereafter, as used cars. Throughout, we assume
that used cars are transacted in competitive and decentralized secondary markets, so that new car
producers can manipulate market outcomes in the secondary market only indirectly, through their
production of new cars.
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Each period, N firms produce new cars. We let N denote the set of firms, where N ≡ |N |. Each
firm j ∈ N produces Lj distinct models, where Lj ≡ |Lj | and Lj is the set of all models produced
by firm j. Then, L ≡ ∪jLj is the set of all models produced by all firms and L ≡ |L| is their total
number. We index models by i = 1, . . . , L.

New cars differ in quality and durability. For each model i ∈ L, we let qi,h denote its quality at
age h, where h = 1, . . . , Ti indexes its age and Ti < ∞ denotes the number of periods it lasts.
Then, each car (new or used) is completely described by the pair (i, h), and the set of all distinct
cars transacted is given by K ≡ {(i, h)|i ∈ L, h = 1, . . . , Ti} and K ≡ |K| is their total number.
Consumers have the opportunity to choose not only which model i ∈ L they drive, but also the
vintage h ∈ {1, . . . , Ti}. In the rest of this paper, we use the term “model-year” to denote the
elements of K, which are the set of choices available to consumers each period. As we remarked
before, we assume that the market is stationary, in the sense that the set of available models L and
model-years K do not change over time.

Next, we define a mapping ω : K 7→ {1, . . . ,K} which ranks cars from highest to lowest quality
as follows

∀(i, h) ∈ K, qi,h > qi′,h′ ⇒ ω(i, h) < ω(i′, h′).

Hence, a ranking of 1 denotes the highest-quality car, and a ranking of K the lowest quality. Given
this ranking, we define a quality ladder as follows.

Definition: A vector α = [α1, α2, . . . , αK , 0]′ is a quality ladder representing the quality struc-
ture of this problem if αk ≡ {qi,h|k = ω(i, h)}.

To facilitate the subsequent exposition, it is convenient to define a depreciation schedule for each
car model as follows. Given a quality ladder α, we define a second mapping υ : {1, . . . ,K} 7→

{1, . . . ,K} which tracks the position that a car currently in position k in the ladder occupies after
one period of depreciation. Then, υ(ω(i, 1)) = ω(i, 2) and, more generally,

υh−1(ω(i, 1)) ≡ υ(υ(. . . υ(
︸ ︷︷ ︸

h−1 times

ω(i, 1)))) = ω(i, h), for h = 2, . . . , Ti − 1.

Cars which die (i.e., all cars (i, h) where h > Ti) are given a ranking of K + 1 (since αK+1 = 0),
so that υTi(ω(i, 1)) = K + 1, for all i ∈ L, and υ(K + 1) = K + 1. The mapping υ(·) depends
only on a model-year’s rank, and only indirectly on the model i or vintage h.

Finally, we let η(i) ≡ ω(i, 1), for all i ∈ L, denote the position that a model i car takes in the quality
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ladder when new. Then, we represent the depreciation schedule of a model i car by the sequence

η(i), υ(η(i)), υ2(η(i)), . . . υTi(η(i)),

which indicates the positions in the ladder that a model i car occupies as it ages. We now turn to the
demand side of our model.

Demand in a vertically differentiated market

Our consumer population is a continuum of infinitely-lived agents in which heterogeneity in con-
sumers’ taste for quality generates demand for each type of car. In each period t, each consumer
determines her optimal consumption choice among the K available cars and the option of not con-
suming a car at all (which we index K + 1), to maximize her discounted utility function.

We assume that consumers face no transactions costs in any primary or secondary market, which
is a key assumption to obtain the linear-quadratic structure of the model.6 Without transaction
costs the secondary market is very active, which may overstate the substitutability between new
and used automobiles for consumers. In deriving consumers’ optimal car choice rules, we assume
that consumers have rational expectations about future production decisions for all firms in all car
markets.

Heterogeneity among consumers is parameterized by a scalar type θ ∈ [0, θ̄] (where θ̄ < ∞), and is
distributed in the population according to the cumulative distribution F (·). To obtain the tractable
linear-quadratic specification that we take to the data, we assume that θ is uniformly distributed
along its support, so that F (θ) = θ

θ̄
, for θ ∈ [0, θ̄].

The population has size M . A consumer of type θ chooses a sequence of car choices to maximize
her discounted lifetime utility

U θ ≡
∞∑

t=1

δt−1U θ
t . (1)

Her period t utility flow is assumed to be quasilinear in income and given by

U θ
t ≡ αkθ + mθ

t − pk
t , (2)

where δ denotes the discount factor common across all consumers and firms, θ measures this con-
sumer’s willingness-to-pay for quality, and mθ

t denotes consumer θ’s income at the beginning of
6Without this assumption, the individual-level dynamic demand functions would be involved as the decision for each

consumer would depend on her past and future purchases; see, for instance, (Eberly, 1994). See also footnote 8.
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period t, which can include the resale price for a used car if the consumer is endowed with one in
t.7

As is well known (eg., (Berkovec, 1985; Rust, 1985a)), the assumptions of quasilinearity and no
transaction costs imply that a consumer’s optimal consumption decision in any period does not
depend on her past and future choices, because her decisions are independent of income.8 Then, it
is easy to verify that consumer θ’s optimal car choice in period t is determined by simply comparing
the utility gains

UGk
t (θ) ≡ αkθ − pk

t + δp
υ(k)
t+1 (3)

across all choices k = 1, . . . ,K + 1. Each utility gain is just the difference of αkθ, the flow of
services consumer θ obtains from car k in period t, and ρk

t ≡ (pk
t − δp

υ(k)
t+1 ), the implicit rental

price paid for those services, where δp
υ(k)
t+1 is the discounted resale price in tomorrow’s secondary

market. In every period, therefore, the optimal decision rule dictates that consumer θ chooses the
car k = 1, . . . ,K + 1 which maximizes the utility gain given in Eq. (3).

Deriving the demand functions

The consumers’ preferences specified above imply that competing cars are vertically differentiated,
in the sense that if all cars were priced identically, all consumers would choose the highest qual-
ity car. Following the literature on oligopoly models of vertically-differentiated product markets
(eg. (Prescott and Visscher, 1977; Bresnahan, 1981; Berry, 1994)), we derive the period t demand
functions as follows.9

Given prices pk
t , p

υ(k)
t+1 for k = 1, . . . ,K and quality levels α1, . . . , αK , and given equilibrium

inequalities ensuring that each car model has positive demand (see the discussion at the end of this
section), we find K cutoff values, θ̃1

t , . . . , θ̃K
t , such that

θ̄ ≥ θ̃1
t ≥ θ̃2

t ≥ θ̃3
t ≥ . . . ≥ θ̃K

t ≥ 0, (4)

and all consumers with preference parameter θ ∈ [θ̃1
t , θ̄] consume car 1, all consumers with prefer-

ence parameter θ ∈ [θ̃2
t , θ̃

1
t ] consume car 2, etc. Finally, all consumers with preference parameter

7Because we normalize αK+1 to zero, pK+1
t = 0 ∀t.

8 Allowing for transaction costs would complicate the derivation of the dynamic demand functions, because in that
case consumers’ utility gains are state dependent, depending on what car was chosen in the previous period: see, for
example (Anderson and Ginsburgh, 1994; Porter and Sattler, 1999; Stolyarov, 2002).

9The recent empirical literature on the car industry ((Berry, Levinsohn, and Pakes, 1995), for example) has allowed for
multiple dimensions of consumer heterogeneity, but there are difficult conceptual and computational issues in extending
such models to a dynamic equilibrium framework (cf. (Berry and Pakes, 1999)).
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θ ∈ [0, θ̃K
t ] do not consume a car. These cutoff values solve the indifference conditions

αkθ̃
k
t − pk

t + δp
υ(k)
t+1 = αk+1θ̃

k
t − pk+1

t + δp
υ(k+1)
t+1 , for k = 1, . . . ,K − 1,

αkθ̃
k
t − pk

t = 0, for k = K.
(5)

Then, by letting xk
t denote the demand for car k in period t, we find that

x1
t = M(1 − F (θ̃1

t )) =
M

θ̄
(θ̄ − θ̃1

t ),

xk
t = M(F (θ̃k−1

t ) − F (θ̃k
t )) =

M

θ̄
(θ̃k−1

t θ̃k
t ), for k = 2, . . . ,K,

xK+1
t = M(F (θ̃K

t )) =
M

θ̄
(θ̃K

t ).

(6)

Substituting these demand functions recursively in Eq. (6), we can write the K cutoff values as

θ̃k
t = θ̄

(

1 −
1

M

k∑

r=1

xr
t

)

, for k = 1, . . . ,K. (7)

Substituting these expressions for the cutoff values into the indifference conditions given in Eq. (5)
and we obtain the inverse demand functions for each of the cars sold. In particular, a new car model
i ∈ L with depreciation schedule η(i), υ(η(i)), . . . , υTi(η(i)) has inverse demand function

p
η(i)
t = θ̄

(
αη(i) − αη(i)+1

)



1 −
1

M

η(i)
∑

r=1

xr
t



+ δp
υ(η(i))
t+1 + p

η(i)+1
t − δp

υ(η(i)+1)
t+1 , (8)

where the prices p
υ(η(i))
t+1 , p

η(i)+1
t and p

υ(η(i)+1)
t+1 have analogous expressions. In deriving the demand

equations, we assume that the primary and secondary markets are not in excess supply, so that the
non-negative price constraints never bind in any market. This assumption, made in order to maintain
tractability for our model, rules out the possibility that a firm could choose high production levels
to bring a primary or secondary market into excess supply, making the price of a car in this market
(and the prices of all cars ranked below it in the quality ladder) equal to zero.10

By substituting prices recursively into Eq. (8) we obtain the inverse demand function for new model
10(Esteban, 2002) showed that, for the durable goods monopoly case, the secondary market will not be in excess supply

in equilibrium. The result might not generalize for the more general model presented in this paper.
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i ∈ L as

p
η(i)
t =θ̄



αη(i)



1 −

η(i)
∑

r=1

1

M
xr

t



−
K∑

r=η(i)+1

αr
1

M
xr

t



+

θ̄

Ti−1∑

h=1

δh



αυh(η(i))



1 −

υh(η(i))
∑

r=1

1

M
xr

t+h



−
K∑

r=υh(η(i))+1

αr
1

M
xr

t+h



 ,

(9)

which is linear in current and future production levels.

In equilibrium, prices will satisfy the inequalities

ρk−1
t − ρk

t

αk−1 − αk

≥
ρk

t − ρk+1
t

αk − αk+1
≥

ρk+1
t − ρk+2

t

αk+1 − αk+2
≥0, k = 2, . . . ,K, ∀t, (10)

which imply that the demand for each car is positive given the assumption that the markets are not in
excess supply. For the empirical work, given actual prices, these inequalities function as restrictions
on the feasible values that the α parameters can take. Because these restrictions are nonlinear in
prices, it is difficult to impose them in estimating the parameters. We do not impose these restric-
tions in estimation, but rather examine ex-post how many of these inequalities are satisfied for the
parameter estimates we obtain.

The producers’ dynamic problem

Having derived the inverse-demand functions for each car transacted, we now turn to the supply
side and analyze the dynamic optimization problem faced by producers. The assumption that no
market will be in excess supply (i.e., that the price given in Eq. (8) is strictly positive) implies that
the quantity demanded will equal the quantity supplied in all markets. Consequently, for each car
model i ∈ L, volumes in the secondary market evolve according to

x
υh−1(η(i))
t+h−1 ≡ x

η(i)
t , for h = 2, . . . , Ti. (11)

That is, the current production of model i, x
η(i)
t , becomes the supply in secondary market υ(η(i))

during period t + 1, and becomes the supply in secondary market υ2(η(i)) during period t + 2, and
so on.11

11Our model can accommodate exogenous depletion of the stocks by setting x
υh(η(i))
t+h−1 ≡ δi,hx

η(i)
t , where δi,h ∈ [0, 1]

is the exogenous probability that car i be scrapped at age h. This is done in our empirical work below.



11

Let yt denote the vector of all cars-in-use (both new and used) in period t, defined as12

yt ≡ [1, x1
t , . . . , xK

t ]′. (12)

Let dt denote the L-dimensional vector of all new cars (L × 1) produced in period t as

dt ≡
[

x
η(1)
t , x

η(2)
t , . . . , x

η(L)
t

]′

.

Then, given these definitions, the law of motion of the cars-in-use vector y t is

yt = Ayt−1 +Bdt, (13)

where B and A are matrices which, respectively, place new car models in the quality ladder and
shift cars within the quality ladder as they age. Specifically, B is a (K +1)×L matrix with entries

B(k + 1, i) ≡

{

1, if η(i) = k

0, otherwise
, for i = 1, . . . , L, k = 1, . . . ,K, (14)

and A is a (K + 1) × (K + 1) matrix with entries13

A(k′ + 1, k + 1) ≡







1, if k′ = k = 0

1, if υ(k) = k′

0, otherwise
, for k, k′ = 1, . . . ,K. (15)

Next, we let Cj(x
η(i)
t ;∀i ∈ Lj) denote the total cost function for firm j. We assume the total costs

of production are quadratic in output and independent across car models, so that

Cj(x
η(i)
t ;∀i ∈ Lj) =

∑

i∈Lj

[

β0i + β1ix
η(i)
t + β2i

(

x
η(i)
t

)2
]

. (16)

Given the linear inverse demand functions, and quadratic cost function, the period t profit function
for firm j will be a quadratic function in current and future production:

π
j
t =

∑

i∈Lj

p
η(i)
t · x

η(i)
t − Cj(x

η(i)
t ;∀i ∈ Lj)

=
∑

i∈Lj

[
Ti∑

h=1

δh−1y′t+h−1Rω(i,h)yt

]

− y′tCjyt

≡
∑

i∈Lj

Πi
(
yt+τ ; τ = 0, . . . , Ti − 1

)
,

(17)

12As is standard in the matrix formulation of linear-quadratic problems, we set the first entry of yt equal to 1 identically
across all t.

13The first entry in A is a one, to be consistent with the first entry in the yt vector.
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where (i) Cj is the (K + 1) × (K + 1) matrix of cost function coefficients for firm j; and (ii)
the matrices R1, . . . ,RK contain the linear coefficients from the inverse demand functions for
cars k = 1, . . . ,K , respectively, in Eq. (9). Specifically, for each car model i ∈ L, Rω(i,h),
for h = 1, . . . , Ti, are (K + 1) × (K + 1) matrices with zeros everywhere except for the η(i)-th
column (the column that corresponds to the quality ranking of a new model i). This column is set to

[αω(i,h)θ̄,−αω(i,h)
θ̄

M
, . . . ,−αω(i,h)

θ̄

M
︸ ︷︷ ︸

entries 2, . . . , ω(i, h)

,−αω(i,h)
θ̄

M
,−αω(i,h)+1

θ̄

M
, . . . ,−αK

θ̄

M
︸ ︷︷ ︸

entries ω(i, h) + 1, . . . ,K + 1

]′.

From the expression for π
j
t in Eq. (17), we see that firm j’s profits in period t depend not only on its

own current, past, and future production, but also on the current, past, and future production of all
its rivals. The latter dependence arises only in a durable-goods oligopoly. In this dynamic setting,
therefore, firms’ production strategies at a given period t can become unwieldy because they can
depend on the entire production history of all firms prior to period t. An appealing and natural
assumption here is to allow firms’ production choices today to depend only on cars produced in the
past which still actively trade in secondary markets today.

This corresponds to a standard Markov assumption that firms’ strategies only depend on past vari-
ables which affect current (period t) profits.14 In our dynamic setting, these “payoff-relevant” vari-
ables are Ayt−1, the vector of the stock of cars produced prior to period t which are still actively
traded in secondary markets.15 Hence, we focus on production strategies of the form

x
η(i)
t = gi(Ayt−1),∀i ∈ Lj, ∀j ∈ N . (18)

In order to obtain the linear-quadratic specification, we assume that production rules are linear in
the state vector, so that

x
η(i)
t = gi ·Ayt−1,

where gi is a K + 1-vector of linear coefficients.

We can then write each firm’s maximization problem as a dynamic programming problem with state
variable Ayt−1. The Bellman equation for this problem is:

Vj(Ayt−1) = max
x

η(i)
t ,∀i∈Lj

∑

i∈Lj

Πi(yt,yt+1, . . . ,yt+Ti−1) + δVj(Ayt). (19)

14See (Fudenberg and Tirole, 1991) for a discussion.
15Note that the state vector cannot be yt−1, because this vector contains x

υTi−1(η(i))
t−1 , the cars which have died between

periods t − 1 and period t, which cannot affect period t profits directly.
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Given our assumptions so far, the value function Vj(·) will be a quadratic function of the state vector.
Subsequently, each firm’s dynamic programming problem in Eq. (19) is a linear-quadratic problem
in the state vector Ayt−1:16

y′t−1A
′SjAyt−1 = max

x
η(i)
t ,∀i∈Lj







∑

i∈Lj

[
Ti∑

h=1

δh−1y′t+h−1Rω(i,h)yt

]





− y′tCjyt + δy′tA

′SjAyt,

(20)

where, for h = 1, . . . , Ti − 1,

yt+h = Ayt+h−1 +Bdt+h, (21)

and

dt+h = GAyt+h−1. (22)

In these equations, (i) Sj is the (K +1)× (K +1) matrix of coefficients in firm j’s value function,
which is quadratic in Ayt; and (ii) G = [g1, . . . , gL]′ is a matrix containing the coefficients of
the linear equilibrium production rules. Hence, for our linear-quadratic dynamic durable-goods
oligopoly game, a Markov perfect equilibrium specifies linear decision rules, summarized by the
coefficient matrix G, and value functions Vj(·), as summarized by the matrix Sj , for j ∈ N , such
that these solve the dynamic programming problems given by Eqs. (20)-(22).

We note that the production strategies that solve the dynamic programming problem in Eq. (19)
are time consistent, in the sense that firms correctly anticipate their own future optimal behavior.
Time-consistency is equivalent to the principle of optimality for dynamic programming problems.
With our payoff function, firms can obtain a higher discounted profit stream by committing (at time
t) to future production paths

{

x
η(i)
t+τ , ∀i ∈ Lj

}∞

τ=0
that solve

max
n

x
η(i)
t , i∈Lj

o

∞

t=0

∞∑

τ=0

∑

i∈Lj

δtπ
j
t+τ (23)

subject to the law-of-motion in Eq. (21). The solution to this problem, however, would be time-
inconsistent since, once period t passes, the firm no longer internalizes the effect of period t + 1

production on her period t profits and will choose to revise its production plan.

In the appendix, we complete the derivation of the linear-quadratic Markov perfect equilibrium
for our problem, and also describe how we compute it using a value function iteration procedure.

16(Judd, 1996) uses a similar approach to derive a linear-quadratic dynamic oligopoly model.
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For our empirical work below, we extend the linear-quadratic model to accommodate imported
automobiles, which are assumed to be exogenously produced from the Big 3 manufacturers’ point
of view. Details of this extension are given in the appendix.

Illustrative simulations from simplified linear-quadratic model

In our empirical work below, we will use time series on automobiles prices (both new and used)
and quantities over a twenty-year period to estimate the model parameters, using the linear inverse
demand and supply relations (Eqs. (9) and (A1)) as estimating equations. In order to gain some
intuition for the variation in the data identifying the model parameters, we consider a simple version
of the model, in which a monopolist produces new cars which last for two periods. We normalize
the quality of a new car to 1, and let α (< 1) denote the quality of a used automobile, where α

also measures the substitutability between a new and a used car. We assume the marginal cost of
production is constant. (For more detail on the workings of this model and proofs for these results,
see (Esteban, 2002).)

For this more tractable set-up, the inverse demand function given in Eq. (9), which relates the price
of a new car with current, lagged, and future production, is given by

pN
t = (1 − α)(1 − xt) + α(1 − xt − xt−1) + δα (1 − (a0 + a1xt) − xt) ,

and the supply equilibrium decision in Eq. (A1) is

xt+1 = a0 + a1xt,

where the slope coefficient a1 captures the degree of serial dependence in the production process.
The coefficients in these equations (and thus the size and magnitude of the co-movements among
prices and current and lagged output) depend on the values of α, c, and δ.

We first consider the effects of different values of α. As the top left graph in Figure 1 shows, larger
values of α, which imply more substitutability between primary and secondary markets, increase
both new and used prices, and decrease new car production. Furthermore, the top right graph in
Figure 1 shows that increases in α raise the magnitude of a1 (which is negative in value), so that
current production becomes more sensitive to previous production. The bottom graph shows that
increases in α decrease the coefficients for current and lagged production (making them larger
in magnitude since these coefficients are negative) in the inverse demand equation. Hence, as α

increases, the (negative) association between past production and current price becomes relatively
stronger.
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Next, we look at the effects of different values of the marginal cost parameter c. Not surprisingly,
larger values of c lower new car production, and increase primary and secondary market prices.
However, Figure 2 shows that changes to c leave the a1 coefficient unchanged, which implies that
these changes do not affect the serial dependence of new car production across time, and thus
do not affect the co-movements of prices. These results suggest that levels of prices and output
identify the cost parameters, while across-time dependence in these variables and their levels help
identify the α parameters. Along the dynamic equilibrium path of the deterministic model which
we have described up to now, prices and output only vary across time during the convergence to
the steady-state; once the steady-state is reached, prices and output remain constant thereafter. For
the purposes of our empirical work, we allow for exogenous shocks to firms’ marginal costs which
drive movements in prices and output over time.

3 Empirical illustration: the automobile market 1971–1990

In this section, we describe our empirical implementation of the model presented above, using
annual data for the automobile industry from 1971 to 1990, inclusive. For new cars, we use data on
list prices and quantities collected from past issues of Ward’s Automotive Yearbook.17 We manually
compiled time series on secondary market retail prices at the model-vintage level from back issues
of the Kelley Blue Book (western US edition).18

We aggregate each domestic (US) manufacturer’s car production up to the segment level, and as-
sume that each manufacturer produces three “composite” goods each period. By modeling compe-
tition between cars at the (manufacturer-segment) level, we are able to abstract away from issues
regarding the entry and exit of individual car models, which our model does not address; further-
more, it reduces the dimensionality of the state space of the dynamic programming problem, which
is convenient for computational reasons. Specifically, consumers choose from the following ten
composite cars each period:

Chrysler: Subcompact (SC), Compact (C), Mid/Full-size (MF)
Ford: SC, C, MF
GM: SC, C, MF
Import19

17This is the same dataset employed in (Berry, Levinsohn, and Pakes, 1999).
18We thank Bruce Hamilton for providing these old issues.
19We do not break down imports into additional categories, because during the sample period, most of the imported

automobiles were in the subcompact segment.
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The Kelly Blue Book contains used car prices up to seven-year old vintages. For this reason, we
assume that cars are available in seven vintages (new, one-year old, two-year old, . . . , six-year old).
Furthermore, we assume that owners of six-year old cars scrap their cars at the end of the period
and obtain a “scrappage value” equal to the price of a seven-year old model car.

Since the stock of used automobiles decreases significantly over a seven-year life span, we assume
that a certain proportion of cars “die” exogenously over time, due to accidents, mechanical failures,
etc. Let ζi denote the proportion of vintage i cars which die (i.e., 1 − ζi denotes the survival rate of
vintage i cars). In our work, we take ζ1 = ζ2 = 0, ζ3 = 0.025, ζ4 = 0.042, ζ5 = 0.065, ζ6 =

0.101. For data availability reasons, we assume that these survival rates are identical across all car
models.20

In the interests of space, summary statistics for the prices and output of the model-years are not
included here, but we summarize some salient characteristics.21 Across years and models, prices
for older vintages are monotonically lower, as we would expect. Some car models – especially
the Chrysler models – experienced declining new production: the amount of new production fell
sharply between the mid-1960s (the years for which we initialized the used car stocks for 1970,
our initial sample year) and 1990 (the end of our sample period). Hence, for these car models,
the stocks of used vintages can exceed new production in most years of the sample, resulting in
higher (across-year) average stocks for used vintages than for new production. In addition, there are
missing values for some prices, even during years where the quantity of the model-year is not equal
to zero. This appears to be due mainly to irregularities in how the Kelly Blue Book reported used
car prices: in some years, certain models or vintages were simply not included in the book. Below,
we describe how we accommodate these missing prices econometrically. Additional details on the
construction of the data variables are given in the appendix.

In each year, then, there are 70 (=10 composites*7 vintages) model-years in consumers’ choice sets
(in addition to the outside good of no-purchase). Given this large number, we parameterize the α’s
as log-linear functions of model year characteristics (similar to (Bresnahan, 1981)). The empirical
results below employ the following parameterization:

αk = exp
(
z
′Γ
)

20These values were derived using data from the Polk Corporation. We thank Darrel Cohen for providing this data; see
(Cohen and Greenspan, 1996) for more details on these data.

21Interested readers can find a table of summary statistics online, at www.econ.jhu.edu/people/shum/res.html.
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where

z
′Γ =γ1 ∗ CHRk + γ2 ∗ FORDk + γ3 ∗ GMk + γ4 ∗ IMPk

+ (γ5 ∗ Ck + γ6 ∗ MFk + γ7 ∗ SCk) ∗ (1 − IMPk)

+ (γ8 ∗ CHRk + γ9 ∗ FORDk + γ10 ∗ GMk + γ11 ∗ IMPk) ∗ AGEk

+ (γ12 ∗ Ck + γ13 ∗ MFk + γ14 ∗ SCk) ∗ (1 − IMPk) ∗ AGEk

+ γ15 ∗ 1 (1979 ≤ yr ≤ 1982) ∗ IMPk + γ16 ∗ 1 (1983 ≤ yr ≤ 1986) ∗ IMPk

+ γ17 ∗ 1 (1987 ≤ yr ≤ 1990) ∗ IMPk.

In the above, CHR, FORD, GM and IMP are dummy variables for whether model-year k is
a Chrysler, Ford, GM, or imported car, and SC , C , and MF are dummy variables for whether it
is a subcompact, compact, or mid/full-size car. Note that we do not distinguish between different
sizes of imported cars, because most imports during the sample period were subcompacts. AGEk

denotes the age of model-year k, with AGEk = 0 for new cars. Finally, we also allow the quality
of imported cars to change over time, to accommodate the possibility that foreign producers have
improved the quality of their offerings over time, as captured by the coefficients γ15 − γ17. We
allowed the α’s for the imports to vary for each four-year block in our sample period (but we
assumed that the import α’s were constant from 1971–78, because there were relatively low import
volumes during these years).22

Empirical model

Although the important demand and supply relations in this market are given by linear equations
(Eqs. (8) and (A1)), least-squares estimation of the reduced-form equations will not allow us to
recover easily the structural parameters, which are implicit functions of the reduced-form regression
coefficients. For this reason, we undertake direct structural estimation of the model parameters via
a nested Generalized Method of Moments (GMM) procedure where a value iteration procedure
to compute the equilibrium production rules is nested inside an outer loop which searches over
parameter values matching the predicted population moments of the data-generating process (which
are functions of the parameters) to their sample counterparts. In the rest of this section, we discuss
the derivation of these moment conditions.

Up to this point, we have not introduced structural errors — factors observed by the agents in the
model but unobserved by the econometrician — into the model. An important property of linear-

22We also attempted to allow the effects of size to vary across years by estimating separate coefficients for Ck, SCk

and MFk for the years 1981-1990. However, in our estimation, these parameters did not move at all from their starting
values, indicating that they were not well-identified.
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quadratic problems is the certainty equivalence property (cf. (Sargent, 1987)), which implies that the
equilibrium decision rules derived above are unchanged if we introduce additive shocks to demand
or/and production costs. Therefore, we introduce shocks to firms’ cost of production, so that the
total variable cost of producing x

η(i)
t is x

η(i)
t

(

β1i + β2ix
η(i)
t + εit

)

. If we assume that the vector
of cost shocks εt ≡ [ε1t, . . . , εLt]

′ is a zero-mean vector which is i.i.d. across all periods t, then
the certainty-equivalence property of linear-quadratic games implies that the stochastic vector of
optimal production rules in the presence of cost shocks is

dt =GAyt−1 +wt (24)

where wt is a vector of linear functions of the cost shocks ε1t, . . . , εLt with zero mean and G is
the equilibrium decision rule coefficients derived in Eq. (A2)23 Therefore, the decision rules with
cost shocks (24) are equal to the decision rules without cost shocks (in Eq. (22)) plus an additive
component which is stochastic from the econometrician’s point of view, but with mean zero (and,
furthermore, uncorrelated with yt−1) and independent over time.

In the presence of cost shocks, the linear inverse demand functions in period t becomes

p
η(i)
t =

(
αη(i) − αη(i)+1

)



1 −
1

M

η(i)
∑

r=1

xr
t



+ δE
[

p
υ(η(i))
t+1 |Ωt

]

+ p
η(i)+1
t − δE

[

p
υ(η(i)+1)
t+1 |Ωt

]

,

(25)

where Ωt denotes consumers’ information sets as of period t. This is the stochastic analogue of Eq.
(8) above. Given the linearity of this equation, and our stochastic assumptions regarding the cost
shocks, we derive that

E



p
η(i)
t −

(
αη(i) − αη(i)+1

)
F−1



1 −
1

M

η(i)
∑

r=1

xr
t



+ δp
υ(η(i))
t+1 + p

η(i)+1
t − δp

υ(η(i)+1)
t+1

∣
∣
∣
∣
Ωt



 = 0.

(26)

Thus, Eqs. (24) and (26) are the main estimating equations for our model.24

Details The structural parameters of the model are (i) α1, . . . , αK , the qualities of the competing
cars; and (ii) β1i, β2i, i = 1, . . . , L, the marginal cost parameters for the new cars. As is usual in

23The certainty equivalence property also implies that stochastic production rules (24) will still hold if we also allowed
for additive i.i.d. demand shocks in the inverse demand functions (Eqs. (6)). However, we do not do this because allowing
demand shocks would rule out the use of current market shares and prices as instruments (see below).

24In the presence of cost shocks, the inequalities in Eqs. (10) hold for the expected rental prices pk
t − Etδp

v(k)
t+1 .
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empirical dynamic models, the discount factor δ is not estimated, but rather fixed (at 0.95, in our
case). Furthermore, the upper bound of the consumer heterogeneity distribution, θ̄, cannot be iden-
tified separately from the scale of the α’s, and is fixed equal at 3 in the econometric implementation.

For the supply side, the estimating equations are the equilibrium production rules linking current
production of new cars to stock of used cars in the market (Eqs. (24)). The sample moment condi-
tions are

1

T

∑

t

[
dt − (GA)yt−1

]
∗ yt−1, (27)

where past production yt−1 is an appropriate instrument orthogonal to the error termwt in Eq. (24).

The population moment restrictions for the demand side are given in Eq. (26). Let z t denotes a
vector of instruments, which are elements of Ωt, the information set of consumers for period t. In
our specifications, zt consists of the constant 1, current and lagged market shares, and current and
lagged prices as instruments. Therefore, the sample analog of the demand-side moment restrictions
for production of car η(i) take the form

1

T

T∑

t=1



p
η(i)
t −

(
αη(i) − αη(i)+1

)



1 −
1

M

η(i)
∑

r=1

xr
t



+ δp
υ(η(i))
t+1 + p

η(i)+1
t − δp

υ(η(i)+1)
t+1



 ∗ zt,

(28)

where the sample moment conditions are evaluated, for each period t, at the realized prices in
periods t and t + 1. We obtain estimates of the structural parameters ψ via GMM, by minimizing a
quadratic form in the sample moment conditions given in Eqs. (28) and (27).25

We accommodate the missing prices in a straghtforward manner. The missing prices do not affect
the supply-side estimating equations (27), but we amend the demand side estimating equation (28)
as

1

T

T∑

t=1



p
η(i)
t −

(
αη(i) − αη(i)+1

)



1 −
1

M

η(i)
∑

r=1

xr
t



+ δp
υ(η(i))
t+1 + p

η(i)+1
t − δp

υ(η(i)+1)
t+1



 ∗ zt ∗ mkt,

(29)

where mit be an indicator variable which equals one if none of the prices p
η(i)
t , p

υ(η(i))
t+1 , p

η(i)+1
t , and

p
υ(η(i)+1)
t+1 are missing. We assume that prices are missing at random, in the sense that this amended

sample analog converges to zero (at the true parameter values), similarly to the unamended sample
analog in Eq. (28).

25For the results reported in this paper, we employ a diagonal weighting matrix, in which each moment condition is
weighted by the inverse of its marginal sample variance.
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Empirical results

Before discussing the results, we reiterate that our model is stylized, and simplifies many aspects of
the automobile market. Indeed, at the reported parameter values, only half (50.8%) of the equilib-
rium inequalities (in Eq. (10)) are satisfied, which captures the difficulty of the theoretical model in
generating price patterns similar to those observed in the data.26 Thus, we feel that a primary value
of this empirical exercise is to demonstrate the feasibility of estimating a dynamic durable goods
model for this industry.

The quality ladder parameters (the α’s) are reasonably precisely estimated. For convenience, rather
than reporting the individual estimates of each α,27 we have graphed these α estimates for the nine
car models produced by the Big 3 companies, as well as the imports, in Figure 3. We see that,
generally, car size is positively related to quality, with mid-size cars offering the highest quality,
followed by compact and subcompact cars. Brand effects are prominent, with Ford and GM cars
offering higher quality than Chrysler cars. The extent of depreciation also differs across brands,
with Ford cars depreciating relatively slowly, and Chrysler cars depreciating relatively quickly.

As illustrated in the bottom graph of Figure 3, our results also suggest that the quality of imports
improved over time. This supports anecdotal evidence that importers (notably Japanese manufac-
turers) improved the quality of their cars in response to the import quotas that the US levied against
them. However, this improvement was not monotonic; the import α’s for the years 1983-1986 lie
below those for 1979-1982.

To gauge how well our model fits the data, we simulated the model using our parameter estimates,
and present the steady-state output and price levels for each of the nine domestic composites in
Table 2. A comparison of the actual to simulated values shows that the simulated production levels
correspond reasonably closely to the actual production levels. However, the simulated prices fit
poorly, and are generally higher than the averages prices in the data: for example, the actual average
price of a Ford MF model is $9,958, but the analogous value is $14,609 in the simulated steady state
of the dynamic model.

Furthermore, we also simulated the equilibrium profits for each car model on a year-by-year basis, to
see how they change over time. These results (not reported for brevity’s sake) indicate that the profits
for all nine domestic car models fell over the twenty year period, which is perhaps not surprising
given that the Big 3 new sales share fell over this time period, relative to imports. However, these
simulations also show that the profits of the Chrysler models fell most sharply (by 8.4%, 11.3%, and

26In calculating the inequalities, we assumed that Etδp
v(k)
t+1 = p

v(k)
t , which holds in steady-state.

27These estimates and standard errors are available on the web at www.econ.jhu.edu/people/shum/res.html.
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10.8%, respectively, for subcompact, compact, and midsize/full cars), followed by Ford and then
GM. While this could be consistent with the historical fact that Chrysler was a failing company for
much of the 1970s, it also reflects the decreasing trend in the market share of Chrysler cars during
the sample period.

The cost function parameters (reported in Table 1) are not estimated precisely. One reason for this
may be the relatively short (T = 20) time series for production quantities in the dataset. In the third
column of Table 3, we report the markups corresponding to our marginal cost parameter estimates.
The markups are noticeably small, with all of them lying below 6%. This is perhaps the most
puzzling of the results that we obtained, because these markup estimates are much lower than the
markup estimates derived in previous empirical work.

One possible factor in the low markups is that we assume that consumers face no transactions
costs, which increases transactions in all markets. While it is beyond the scope of this paper to
consider a model in which consumers face transactions costs in buying used cars, we performed
some simulations to gauge its potential effects by reducing the population scaling parameter M

which, as is seen from Eq. (6), shifts down the demand functions faced by the firm, which might
approximate (imperfectly) some of the implications of accommodating transaction costs, which is
to reduce the size of the consumer population actively trading in car markets.

We simulated the model, using the estimation results discussed above, for counterfactual population
values equal to 75%, 50%, and 25% of the actual average in-sample population value (of 73 million
households). The counterfactual simulated markups are reported in Table 3. The results indicate that
markups would increase: for example, for GM, markups would increase to 9.0%, 8.7% and 8.2%
for the subcompact, compact, and midsize/full models, respectively, if the population were halved.
While this increase in markup appears uniform across all car models, it is smallest in magnitude for
the Chrysler car models. These simulations suggest that the predicted markups may appear more
reasonable if the effective population were reduced, which can imply that by not accommodating
transactions costs, we are overstating the effective consumer population in our econometric model.

Counterfactual experiments Since an important difference between this paper and previous em-
pirical work on the automobile industry is the explicit modeling of the intertemporal links between
the primary and secondary markets, we conclude the paper with counterfactual simulations which
quantify the effects of the secondary market on new car production. In these counterfactuals, we
simulated the effects of a temporary elimination of the secondary market by computing the change
in production (relative to the steady-state production levels given in Table 2 above) if producers
faced empty secondary markets for one period. This elimination of the secondary market lasts only
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one period because, in subsequent periods, the secondary markets will once again be active as new
cars produced today age. The extent to which output adjusts in the period in which the stock is
eliminated provides a measure of how much the secondary market affects the primary market after
accounting for the intertemporal link between primary and secondary markets, which stems directly
from the dynamic model derived in this paper since it is measured by the constant coefficient in Eq.
(A2).

In Table 4, we report the simulation results broken down by manufacturer, market segment and
total primary market. As we would expect, we find that the elimination of the secondary market
would lead firms to increase output, although market shares for each firm and segment show only
small changes. The disaggregated results show that the temporary disappearance of the secondary
market would increase Chrysler’s total production by 20.11%, which is twice the corresponding
increases for Ford (10.13%) and GM (10.47%). One possible reason for this is that we estimate
Chrysler’s cars to have the lowest quality when new (cf. the top graph in Figure 3), so that these
cars would substitute most readily with used cars, and thereby benefit the most from the elimination
of the secondary market. (Ford and GM experience smaller changes in output.) A similar effect
appears when percentage changes are aggregated by market segment, where we find that the output
of cars in the highest-ranked segment (MF) increases more modestly than the outputs of lower-
ranked segments (C, SC). Overall, we find that aggregate new car production would increase by
12.08% for the 1987 – 1990 time frame were the secondary market to disappear temporarily.

4 Conclusions

In this paper we develop a model of dynamic oligopoly to understand the intertemporal links which
arise from durability of the product and its trade in secondary markets. We use a tractable linear-
quadratic specification of the model to obtain estimates of the structural parameters and calculate
each producer’s equilibrium decision rule. While the empirical model is stylized, it represents (as
far as we are aware) a first attempt at structural estimation of a dynamic durable goods oligopoly
model for the automobile industry.

While the linear-quadratic structure has facilitated the modeling of the effects of durability and sec-
ondary markets in the automobile industry, we plan to explore alternative models which may allow
us to incorporate additional features which have been shown in the existing literature to be impor-
tant in the automobile industry, such as transaction costs, asymmetric information, and additional
consumer heterogeneity. This may also resolve some of the problems in the current estimates. In-
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corporating these features in the context of a dynamic oligopoly model with secondary markets may
involve substantial modeling and computational difficulties, which we plan to tackle in future work.
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Appendix

The appendix consists of three sections. In the first section, we provide details on the derivation
of the Markov perfect equilibrium of the linear-quadratic game. In the second section, we describe
how the model could be extended to accommodate imports, and in the third section, we give details
on the construction of the data variables used in estimation.

Detailed derivation of the linear-quadratic Markov perfect equilibrium

In this section, we complete the derivation of the linear-quadratic Markov-Perfect equilibrium of
this problem and derive G, the matrix of coefficients for the equilibrium decision rule, as a function
of the underlying model parameters. By substituting in Eq. (22) into Eq. (21), we obtain that

yt+h = (I +BG)Ayt+h−1.

By iterating on this, we can write the law of motion as

yt+h = [(I +BG)A]h yt, for h = 1, . . . , Ti − 1.

Then, substituting the above into Eq. (20), we rewrite firm j’s dynamic programming problem as
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The second equality in the second line of the above display is a symmetrization of the quadratic
form which leaves the value of the objective function unchanged. Let bi denote the i-th column of
matrix B. Then, the first-order condition for firm j’s new production of model i ∈ Lj is

b′i
(
Qj +Q′

j

) (
Ayt−1 +Bdt

)
= 0.

Therefore, by stacking the first-order conditions for all of the models i ∈ Lj produced by firm j, we
obtain
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Bdt = 0,
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where the matrix Bj denotes the (K + 1) × Lj matrix formed by extracting the columns of B
corresponding to all the models i ∈ Lj .

Define the matrixW j ≡ B
′
j

(
Qj +Q′

j

)
for each firm j, andW ≡ [W 1, . . . ,WN ]′. We stack the

systems of first-order conditions for all N firms as

WAyt−1 +WBdt = 0,

and write the industry-wide system of equilibrium decision rules as

dt = −(WB)−1 (WA)yt−1, (A1)

which take the form of the equilibrium decision rule given by Eq. (22), with

G ≡ −(WB)−1W . (A2)

In the present problem, we solve for the Markov-Perfect equilibrium production strategies using a
value iteration procedure. We consider a long but finite-horizon version of the game and, starting
from the terminal period, solve recursively for each firm’s optimal production strategies via back-
ward induction. Specifically, for all firms j ∈ N , we begin with initial guesses for S 0

j ≡ [0], j ∈ N

and G0 ≡ [0] for their respective matrices of value function and decision rule coefficients. Using
these matrices, we calculate recursively, for τ = 1, 2, 3, . . . ,

Qτ
j ≡ A′Sτ

jA, j ∈ N ,

W τ
j ≡ B′

j

(
Qτ

j +Qτ
j
′
)
,

W τ ≡ [W τ
1 , . . . ,W τ

N ]′ ,

Gτ+1 ≡ (W τB)−1
W τ .

In each iteration, we update the coefficient matrix for the value functions via

Sτ+1
j =










∑

i∈Lj

Ti∑

h=1

(A′)h−1[(I +BGτ+1)′]h−1δh−1Rω(i,h)



−Cj + δ
[
A′Sτ

jA
]






, for each j ∈ N .

We iterate this procedure until the sequence of matrices S τ
j andGτ converges. The converged values

of these matrices are the coefficients of the equilibrium value functions and production rules, respec-
tively. Under certain conditions, there is a unique feedback equilibrium, a sequence of production
decision rules and value function coefficients, which converges to a Markov perfect equilibrium of
the infinite-horizon game.28

28See (Başar and Olsder, 1982; Kydland, 1975) for more details on these conditions for linear-quadratic games.
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Accommodating imports

In this section, we describe how the linear-quadratic framework presented in the main text can
be extended to accommodate imported automobiles. Since the focus of the present paper is on
competition amongst the Big 3 American producers from 1971-1990, we assume that the production
of imports is an exogenous process.29 In each period t, all domestic firms observe the quantity of
new imported cars supplied to the primary market and choose their optimal level of output. We let
mt denote the vector of imports and assume that mt = mt−1 + εt, where εt is i.i.d. across periods
with zero mean and variance σ2. Therefore, from the firms’ perspective, the import production
process is a random walk, with Et(mt+h) = mt for all t and h > 0.

We define zt ≡ Ayt−1 + Dmt to be the state vector in t, and z̃t ≡ Etzt+1 = Ayt + Dmt to be
the expected state vector for t + 1 at t. (Thus, the matrix D ranks the vector of imports within the
quality ladder, and mt can be recovered from yt by mt = D′yt.)

We conjecture that the equilibrium decision rule and value function take the form:

xt = Gzt (B1)

and

EtV (zt+1) = z̃′tWz̃t. (B2)

The law-of-motion for used cars is given by

yt = Ayt−1 + Bxt + Dmt = zt + Bxt,

or
yt = zt + BGzt = (I + BG)zt

after substituting in Eq. (B1).

We define Γ ≡ (I + BG)A. Then, extending the above equation for future periods and taking the
expectation at time t, we find that

Etyt+k = Γk+1yt−1 +

k∑

i=0

Γi(I + BG)Dmt.

29However, as noted in the main text, we do allow the quality of the imported automobiles to change over the sample
period.
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By inspection, the definition of theA andDmatrices implies that AD = [0], so that (I+BG)AD =

[0]. Similarly, BGD = [0]. Then, we can write the above equation as

Etyt+k = Γk+1yt−1 + Dmt.

Next, we consider the per-period profit function for a product. From Eq. (20),

πi =

Ti∑

h=1

y′t+h−1Rω(i,h)yt,

where y for future periods must be written in expectations, Etyt+k = Γkyt + Dmt. Then, the
revenue for product i is

πi = yt

Ti∑

h=1

Γh−1′δh−1Rω(i,h)yt + m′
tD

′

(
Ti∑

h=2

δh−1Rω(i,h)

)

yt

= yt

Ti∑

h=1

(

Γh−1δh−1′Rω(i,h) + DD′

(
Ti∑

h=2

δh−1Rω(i,h)

))

︸ ︷︷ ︸

≡Υi

yt

using mt = D′yt. To write the profit function, firm j produces car models i ∈ Lj . Thus,

πj = y′t




∑

i∈Lj

Υi − Cj





︸ ︷︷ ︸

≡Υ

y′t. (B3)

Then, by substituting yt for the law of motion above, we find that

πj = (Ayt−1 + Bxt + Dmt)
′(Υ − Cj)(Ayt−1 + Bxt + Dmt)

= (Ayt−1 + Dmt)
′(I + BG)′Υ(I + BG)(Ayt−1 + Dmt).

Taking expectations at t − 1,

Et−1πj = (Ayt−1 + Dmt−1)
′(I + BG)′Υ(I + BG)(Ayt−1 + Dmt−1) + bσ2,

where b is a constant and σ2 is the variance of the import innovation.

We now verify our conjecture for the value function and decision rule. The total discounted profit
at t is

z′t(I + BG)′Υj(I + BG)zt + δz̃′tWj z̃t =

= z′t(I + BG)′Υj(I + BG)zt + δz′t(I + BG)′
(
A + DD′

)′
Wj

(
A + DD′

)
(I + BG)zt.
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Taking expectations at t − 1,

z̃′t−1

(

(I + BG)′Υj(I + BG) + δ(I + BG)′
(
A + DD′

)′
Wj

(
A + DD′

)
(I + BG)

)

z̃t−1 = z̃′t−1Wj z̃t−1,

which yields our conjecture in Eq. (B2).

The equilibrium decision rule is verified as follows. From Eq. (B3) and our conjectured decision
rule (Eq. (B1)), the firm solves

max y′tΥjyt + z̃′tWj z̃t,

where z̃t = Ayt +Dmt. Recall that mt = D′yt, which implies z̃t = Ayt +DD′yt = (A+DD′)yt,
and allows us to write the problem for the firm as

max y′tΥjyt + y′t(A + DD′)′Wj(A + DD′)yt = max y′tQjyt.

Then, we follow the same steps as in Appendix 4 to obtain

G = −(WB)−1W,

where W = [W1, . . . ,WN ]′ and Wj = B′
j(Qj + Q′

j).

Data appendix

Here we list additional assumptions made in constructing the dataset used in estimating the model.

The market size M is set equal to the total number of households in the United States. In the
empirical work, in order to control for population growth over time, we normalize the market size
M to be constant over time, and equal to its value in the first sample year 1971 (in which the number
of households was 72.96 million). We correspondingly adjust the quantities in each year to reflect
this market size normalization, via the formula q̃i

t = 72.96 ∗ si
t, where q̃i

t denotes the adjusted
quantity, and si

t the observed market share, for a model i car in year t.

Prices were deflated using a 1983 dollar as the base. The prices for each of the ten composite goods
were computed as quantity-weighted indices of the prices of several representative car models in
each composite (size classifications of the included car models were taken from Ward’s Automo-

tive Yearbook). For each firm and size segment, we chose the representative car models by, first,
including the top-selling car in each sample year for this firm and segment. Second, we included
additional car models which were among the top ten selling car models during any sample year.
Finally, for each car model included by the first two criteria, we also included any car models which
were stylistic antecedents or successors to this model (for example, the Ford Taurus was a top seller
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in the latter 1980s; thus we included not only the Ford Taurus, but also the Ford LTD, which it
replaced). In using these criteria, our aim was not only to have at least one representative car model
for each firm and segment during each sample year, but also to include top sellers for each year.
Finally, by the third criterion we tried to ensure uniformity in cars over time, so that we would not
be comparing the prices of very different cars across years.

Following these criteria, the representative car models included in each composite (and the model
years for which we had data) are given here:

Chrysler Subcompact: Colt (71-90).

Chrysler Compact: Dart (64-76), Volare (76-80), Aries (81-89), Reliant (81-89).

Chrysler Mid/Full-size: New Yorker (71-73, 78-79, 81-90).

Ford Subcompact: Pinto (71-80), Escort (81-90).

Ford Compact: Maverick (70-77), Fairmont (78-83), Tempo (84-90).

Ford Mid/Full-size: Fairlane (64-70), LTD (69-86), Torino (70-76), Granada (75-80, 82), Taurus
(86-90).

GM Subcompact: Vega (71-77), Chevette (76-87), Cavalier (82-90).

GM Compact: Skylark (64-90), Malibu (77-83), Citation (80-85), Corsica (87-90), Nova (64-79,
85-88).

GM Mid/Full-size: Cutlass (65-90), Delta (69-88), Grand Prix (69-90), Monte Carlo (70-88), Cen-
tury (73-90), Impala (75-85), Regal (79-90), Celebrity (82-90).

Imports: Honda Accord (76-90), Datsun 210 (77-79, 81-82), Nissan Sentra (84-90), Hyundai Excel
(86-90), Honda Civic (74-90), Camry (83-90).
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Table 1: Estimation results: Non- quality ladder parameters
Marginal Costs ($’000): specification is MC(x) = β0 + 2β1x

Manufacturer Segment Parameter Estimate Std. Error
Chrysler SC β1 1.956 16.198
Chrysler SC β2 13.206 56.502
Chrysler C β1 3.315 8.359
Chrysler C β2 4.192 11.234
Chrysler MF β1 4.522 13.948
Chrysler MF β2 12.286 44.353
Ford SC β1 2.780 14.028
Ford SC β2 9.468 21.007
Ford C β1 3.293 22.293
Ford C β2 11.588 32.309
Ford MF β1 5.849 37.141
Ford MF β2 6.470 30.667
GM SC β1 .924 7.990
GM SC β2 8.799 14.891
GM C β1 1.505 12.695
GM C β2 7.440 13.240
GM MF β1 4.444 18.312
GM MF β2 2.760 7.785

# moment restrictions 395a

aWe used 5 demand instruments for each of the demand residuals corresponding to 70 model-years, and 5 supply
instruments for each of the supply function residuals corresponding to the 9 composite new car models.
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Table 2: Simulated steady-state in the dynamic model
Actual values Simulated values

Manufacturer Segment Quantitya Price Quantity Price Marginal Cost
(millions) (’000s) (’000s) (’000s) (’000s)

Chrysler SC .176 5.344 .158 6.254 6.137
Chrysler C .379 7.923 .400 6.798 6.667
Chrysler MF .170 11.822 .170 8.837 8.692
Ford SC .322 6.098 .326 9.258 8.956
Ford C .267 7.457 .298 10.547 10.197
Ford MF .628 9.958 .637 14.609 14.093
GM SC .427 6.725 .376 7.956 7.535
GM C .526 8.530 .475 9.051 8.572
GM MF 1.430 10.253 1.263 12.054 11.416

aEquilibrium values of endogenous variables evaluated at the steady-state of the dynamic model, using the parameter
values illustrated in Figure 3. In the calculations, we used the α’s for the import cars set at their 1987-1990 values.
Market shares are computed for the primary market and exclude imports, which are exogenous. We fixed the production
of imports at 1.10 million cars, reflecting the average import volume during the sample period.



Esteban and Shum
Table 3 of 4

Table 3: Simulated markups when consumer population size is reduced
Manufacturer Segment Baselinea 75% pop’n 50% pop’n 25% pop’n
Chrysler SC 1.860 2.270 2.952 4.2634
Chrysler C 1.926 2.312 2.931 3.9894
Chrysler MF 1.641 1.830 2.020 1.6065
Ford SC 3.263 3.935 5.032 7.1601
Ford C 3.314 3.905 4.801 6.1524
Ford MF 3.533 4.029 4.697 5.2537
GM SC 5.301 6.639 8.977 14.291
GM C 5.294 6.558 8.709 13.281
GM MF 5.296 6.410 8.188 11.313

aComputed using the marginal costs reported in Table 2. Baseline population value is 72.95 million households. We
fixed the production of imports at 1.10 million cars, reflecting the average import volume during the sample period.
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Table 4: Changes in output with the temporary elimination of the secondary market

Manufacturer Segment Output, Big 3 mkt share, Output, with Big 3 mkt share, with % ∆ outputa

baseline baseline zero used stock zero used stock
(millions) (%) (millions) (%)

Chrysler SC .158 3.86 .186 4.04 17.3
Chrysler C .400 9.74 .488 10.62 22.10
Chrysler MF .170 4.14 .200 4.36 18.05
Ford SC .326 7.95 .366 7.95 12.13
Ford C .298 7.26 .330 7.18 10.80
Ford MF .637 15.53 .693 15.08 8.80
GM SC .376 9.16 .417 9.07 10.98
GM C .475 11.58 .524 11.40 10.37
GM MF 1.263 30.79 1.394 30.31 10.35

Total by manufacturer
Chrysler .728 17.74 .874 19.01 20.11
Ford 1.261 30.74 1.389 30.21 10.13
GM 2.113 51.52 2.335 50.78 10.47

Total by segment
SC .860 20.97 .968 21.06 12.58

C 1.173 28.58 1.342 29.20 14.48
MF 2.070 50.45 2.287 49.74 10.51

Total primary market
4.102 4.598 12.08

aChanges in output are computed for the period when the stock of used cars in the entire secondary market is eliminated relative to the baseline steady state
output (as reported in column 3) and using the α for the import cars set at its 1987–1990 level. Baseline population value is 72.95 million households. We fixed
the production of imports at 1.10 million cars, reflecting the average import volume during the sample period. The market share is computed within the Big 3,
which excludes imports. Output when the stock of used cars equals zero is equal to the constant coefficient in the equilibrium decision rule in Eq. (A2).
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Figure 1: Simulations of durable goods monopoly model: changes in α

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α

 

 
new car production
used car price
new car price

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

α

 

 
a

0
 coefficient

a
1
 coefficient

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

α

 

 
coefficient on x

t
 in inv. dmd. fxn.

coefficient on x
t−1

 in inv. dmd. fxn.



Esteban and Shum
Figure 2 of 3

Figure 2: Simulations of durable goods monopoly model: changes in marginal cost
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Figure 3: Graphs of the estimated car quality α parameters
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