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1 Introduction

The relation between the expected excess return on the aggregate stock market - the so called

"equity risk premium" - and its conditional variance has long been the subject of both theoretical

and empirical research in �nancial economics. The risk-return relation is an important ingredient in

optimal portfolio choice, and is central to the development of theoretical asset-pricing models aimed

at explaining a host of observed stock market patterns.

Asset pricing models generally predict a positive relationship between the risk premium on the

market portfolio and the variance of its return. Prominent examples include the external habit

model of Campbell and Cochrane (1999), and the Long Run Risks model of Bansal and Yaron

(2004). However, a negative risk-return relation is not inconsistent with equilibrium.1

Unfortunately, the empirical evidence on the risk-return relation is mixed and inconclusive. Ghy-

sels, Santa-Clara, and Valkanov (2005), Lundblad (2005), Pastor, Sinha, and Swaminathan (2008),

and Ludvigson and Ng (2007) �nd a positive risk-return relation, while Campbell (1987), Glosten,

Jagannathan, and Runkle (1993), Harvey (2001), and Lettau and Ludvigson (2003) �nd a negative

relation. Still others �nd mixed and inconclusive evidence like French, Schwert, and Stambaugh

(1987), Nelson (1991), Campbell and Hentschel (1992), Linton and Perron (2003), and Whitelaw

(1994). Scruggs (1998) and Guo and Whitelaw (2006) document a positive trade-o¤ within speci�-

cations that facilitate hedging demands. However, Scruggs and Glabadanidis (2003) �nd that this

partial relationship is not robust across alternative volatility speci�cations.

The main di¢ culty in estimating the risk-return relation is that neither the conditional expected

return nor the conditional variance of the market is directly observable. The con�icting �ndings of

the above studies are mostly the result of di¤erences in the approaches to modeling the conditional

mean and variance.

Some studies have relied on parametric and semi-parametric ARCH or stochastic volatility models

that impose a high degree of structure on the return generating process, about which there is little

direct empirical evidence.

Other studies have typically measured the conditional expectations underlying the conditional

mean and conditional variance as projections onto predetermined conditioning variables. Practical

constraints, such as choosing among a few conditioning variables, introduce an element of arbitrari-

ness into the econometric modeling of expectations and can lead to omitted information estimation

bias. Also, as pointed out by Hansen and Richard (1987), if investors have information not re�ected

in the chosen conditioning variables used to model market expectations, measures of the conditional

1see, Abel (1988), Backus and Gregory (1993), and Whitelaw (2000).
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mean and conditional variance will be misspeci�ed and possibly highly misleading.2

In addition, the latter studies typically estimate the risk-return relation using a least squares

regression of the estimate of the conditional mean on the estimate of the conditional variance. This

approach su¤ers from a couple of shortcomings. First, the conditional mean and the conditional

variance are simultaneously determined within the context of a general equilibrium asset pricing

model. Hence, the least squares regression su¤ers from an endogeneity problem. Second, most of the

literature ignores the measurement error that arises in this setting, as a result of using proxies for

the latent conditional moments in estimating the risk-return relation.

In this paper, we propose an approach to estimating the risk-return relation that overcomes some

of the limitations of existing empirical analyses. First, we focus on a nonparametric measure of the

expost return variability over a �nite time interval, namely integrated variance, that is unbiased for

the conditional variance and is void of any speci�c functional form assumptions about the stochastic

process generating returns.3 Hence, under the maintained hypothesis of a linear, time-invariant rela-

tion between the conditional mean and the conditional variance, the above property of the integrated

variance enables us to express the risk-return relation in terms of a conditional moment restriction

involving the realized excess returns and the integrated variance. Although the integrated variance

is latent, it may be consistently estimated using the realized variance that is computed as the sum

of squares of high-frequency intra-period returns. This gives feasible moment restrictions and we

then estimate the parameters of the risk-return relation using the Generalized Method of Moments

(GMM) approach. This approach, while being robust to potential misspeci�cation in the assumed

dynamics of the conditional moments, also overcomes the endogeneity problem inherent in a least

squares regression of an estimate of the conditional mean on the estimate of the conditional variance.

Second, we o¤er a solution to the measurement error problem that arises because of the use of

realized variance as a proxy for the latent integrated variance. Our asymptotic framework requires

N ! 1 and T ! 1, where N denotes the number of high-frequency intra-period returns used

to compute the realized variance in every period, and T denotes the number of low-frequency time-

periods used in the GMM estimation. We derive the limiting distribution of the estimated coe¢ cients

under this double asymptotic framework. We �nd that if N �=T !1, where � > 1:5, the estimates
are

p
T -consistent and have the standard distribution as when there is no measurement-error. How-

ever, if the above condition is not satis�ed, there is an asymptotic bias that would invalidate this

approximation. In that case we �nd that under the weaker condition N �=T ! 1, where � > 3,

2See also, Campbell (1987) and Harvey (2001).
3For an excellent survey of this extensive literature, see Andersen, Bollerslev, and Diebold (2002); see also Barndor¤-

Nielsen and Shephard (2002), and Andersen, Bollerslev, Diebold, and Labys (2003).
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a bias-corrected estimator has the standard limiting distribution. This improvement is particularly

relevant in the empirical case we examine where N is quite modest. Our work here is related to some

recent work of Corradi, Distaso, and Swanson (forthcoming), Corradi and Distaso (2006).

In the empirical analysis, we focus on the risk-return relation at the monthly, quarterly, semi-

annual, and annual frequencies. We use (N) daily returns, within the corresponding period, on the

CRSP value-weighted index to obtain monthly, quarterly, semiannual, and annual estimates of the

realized variance. We then estimate the parameters of the risk-return relation using the GMM ap-

proach with T (monthly, quarterly, semiannual, and annual, respectively) observations on the realized

excess market returns and realized variance. We �nd a statistically insigni�cant relation between

the mean and the variance at all the frequencies considered over the entire available sample period

1928-2005. This �nding is robust to the choice of instruments and across two subperiods of equal

size.

To interpret the results, we turn to a closely related literature on return predictability that has

reported evidence in favour of structural breaks in the OLS coe¢ cient in the forecasting regression of

returns on the lagged price-dividend ratio (e.g., Viceira (1996) and Paye and Timmermann (2006)).

This renders the forecasting relationship unstable if such shifts are not taken into account. Lettau

and Nieuwerburgh (2008) �nd evidence for two breaks in the mean of the log dividend-price ratio

around 1954 and 1994. They demonstrate that if these breaks are ignored, the estimated OLS

coe¢ cient appears statistically insigni�cant over the full sample. However, when the sample is split

into subsamples corresponding to the break dates, signi�cant coe¢ cient estimates are obtained in

each subsample. These results suggest that if the relationship between expected returns and the

conditional variance exhibits signi�cant time variation, this could potentially render the estimated

coe¢ cient statistically insigni�cant when estimated over the entire sample.

To explore this possibility, we split the sample into three subsamples based on the break dates

identi�ed in Lettau and Nieuwerburgh (2008). The results reveal signi�cant time-variation in the

relation. In particular, the relation appears quite unstable in the �rst subsample that includes periods

of great economic uncertainty like the Great Depression and World War I, signi�cantly positive in

the second subsample, and mostly signi�cantly negative in the third subsample for the horizons

considered.

Finally, the paper makes an important methodological contribution to the extant literature on

high-frequency volatility estimation. Most work has currently been about just estimating that quan-

tity itself and using it to compare discrete time models in settings where the noise is small. Our

approach is concerned with small sample issues when using estimated realized volatility as regressors

in the estimation of parameters associated with the unobserved quadratic variation. This involves a
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useful extension of the existing asymptotic results for realized volatility4 concerned with the unifor-

mity of the estimation error. We establish the properties of the parameter estimates and propose a

bias correction in the case where the estimation error is large.

The remainder of the paper is organized as follows. The theoretical underpinnings of the nonpara-

metric variance estimator are discussed in Section 2. Section 3 describes the estimation procedure,

while section 4 gives the asymptotic distribution of the estimated parameters. Section 5 provides the

empirical results. In Section 6, we perform Monte-Carlo simulations to examine the �nite-sample

performance of the estimators. In the concluding Section 7, we discuss extensions of the approach

and work in progress. The Appendix contains the proofs of our main results.

Notation. For matrix A; let jjAjjW = (tr(A>WA))1=2 for symmetric positive de�nite W: For a

function f : Rd ! R and vector v = (v1; : : : ; vd) denote Dvf(x) = @v1 � � � @vdf(x)=@xv11 � � � @x
vd
d :

2 Nonparametric Variance Estimator

In this section we describe the conceptual framework behind the estimation of ex-post volatility.

Under the assumptions that the return process does not allow for arbitrage and has a �nite instanta-

neous mean, the asset price process, as well as smooth transformations thereof, belong to the class of

special semi-martingales (see Back (1991)). If, in addition, it is assumed that the sample paths are

continuous, the Martingale Representation Theorem (see Judd (1998) and Protter (2004)), implies

the following representation for the return process over a �nite interval of length, h:

Proposition 1 For any square integrable; arbitrage free; logarithmic price process; p(t); with
continuous sample path; there exists a representation such that for all 0 � t � T; a:s:(P )

r(t; h) � p(t)� p(t� h) = �(t; h) +M(t; h) =
Z h

0

�(t� h+ s)ds+
Z h

0

�(t� h+ s)dW (s); (1)

where �(s) denotes an integrable; predictable and finite variation drift; �(s) is a strictly positive

caglad volatility process satisfying

Pr

�Z h

0

�2(t� h+ s)ds <1
�
= 1;

and W (s) is a standard Brownian motion.

4See Barndor¤-Nielsen and Shephard (2002)
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Here, a:s:(P ) denotes almost surely, under the objective probability measure, P . The integral

representation (1) is equivalent to the stochastic di¤erential equation speci�cation for the logarithmic

price process

dp(t) = �(t)dt+ �(t)dW (t): (2)

Crucial to semimartingales, and to the economics of �nancial risk, is the quadratic variation (QV)

process associated with it, denoted [r; r]t:

Proposition 2 Let a sequence of possibly random partitions of [0; T ], (�m), be given such that (�m) �
f�m;jgj�0, m = 1; 2; : : : ; where �m;0 � �m;1 � �m;2 � : : : satisfy, with probability one, for m!1,

�m;0 ! 0; sup
j�1

�m;j ! T ; sup
j�0

(�m;j+1 � �m;j)! 0:

Then, for t�[0; T ],

lim
m!1

(X
j�1

[p(t ^ �m;j)� p(t ^ �m;j�1)]2
)
! [r; r]t; (3)

where t ^ � � min (t; �), and the convergence is uniform in probability.

A natural theoretical notion of expost return variability in this setting is notional volatility (see,

Andersen, Bollerslev, and Diebold (2002)). Under the maintained assumption of continuous sample

path, the notional volatility equals the so-called integrated volatility:

De�nition 1 The Notional Volatility over [t� h; t] is

�2(t; h) � [r; r]t � [r; r]t�h = [M;M ]t � [M;M ]t�h =
Z h

0

�2(t� h+ s)ds: (4)

It follows, from the properties of the quadratic variation process, that

Et�h[�
2(t; h)] = Et�h[M

2(t; h)]: (5)

Now, the conditional variance over [t� h; t], is de�ned by

vart�h (r(t; h)) � Et�h
�
fr(t; h)� Et�h (r(t; h))g2

�
;

= Et�h
�
fr(t; h)� Et�h (�(t; h))g2

�
;

= Et�h
�
f�(t; h)� Et�h (�(t; h)) +M(t; h)g2

�
;

= Et�h[M
2(t; h)] + Et�h

�
f�(t; h)� Et�h (�(t; h))g2

�
+2Et�h [f�(t; h)� Et�h (�(t; h))gM(t; h)] ;

= Op(h) +Op(h
2) +Op(h

3=2); (6)
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where the second equality follows as M is a local martingale, and the third equality follows from

(1). For a discussion of the orders of magnitude of the three terms as stated in the last equality, see

Andersen, Bollerslev, and Diebold (2002). Thus, for small h, the �rst term dominates the other two,

i.e., from equations (5) and (6), we have

vart�h (r(t; h)) � Et�h[M2(t; h)] = Et�h[�
2(t; h)]: (7)

In other words, the conditional variance is well approximated by expected notional (or integrated)

volatility. The above approximation is exact if the mean process, �(t) � 0, or if �(t; h) is measurable
with respect to It�h. However, the result remains approximately valid for a stochastically evolving

mean return process over relevant horizons, as long as the returns are sampled at su¢ ciently high

frequencies. We provide empirical evidence in Section 1:6:2 to justify this approximation for the

horizons, h, considered in this paper.

Now, notional (or integrated) volatility is latent. However, it can be estimated consistently using

the so-called realized variance:

De�nition 2 The Realized Variance over [t� h; t], for 0 < h � t � T , is de�ned by

b�2(t; h;N) � NX
i=1

r(t� h+ (i=N)h; h=N)2: (8)

Thus, the realized variance is simply the second (uncentered) sample moment of the return

process over a �xed interval of length h, scaled by the number of observations N (corresponding

to the sampling frequency h=N), so that it provides a variance measure calibrated to the h-period

measurement interval.

Protter (2004) shows that realized variance is (ex-ante) unbiased for the conditional variance:

Proposition 3 Realized V ariance as an unbiased variance estimator

vart�h (r(t; h)) � Et�h[�2(t; h)] = Et�h[b�2(t; h;N)]; (9)

for any N > 1 and h > 0, with strict equality if �(t) � 0.

The theory of quadratic variation implies the following result (see, e.g., Andersen, Bollerslev,

Diebold, and Labys (2003) and Barndor¤-Nielsen and Shephard (2002)).

Proposition 4 The Realized V ariance provides a consistent nonparametric measure of the Notional
V olatility

p lim
N!1

b�(t; h;N) = �2(t; h); 0 < h � t � T; (10)

where the convergence is uniform in probability.
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Jacod (1994)), Jacod and Protter (1998), and Barndor¤-Nielsen and Shephard (2002) develop

the following asymptotic distribution theory for realized variance as an estimator of the integrated

variance:

Proposition 5 Suppose that p � BSM is one�dimensional and that; for all t <1;
R t
0
�(s)ds <

1; then as N !1

N1=2

�b�2(t; h;N)� Z h

0

�2(t� h+ s)ds
�
!
p
2

�Z h

0

�2(t� h+ s)dB(t� h+ s)
�
; (11)

where B is a Brownian motion independent of W in (23) and the convergence is in law stable

as a process:

Here, BSM denotes Brownian Semi-Martingale, i.e., of the form (1). The above theorem implies

that

N1=2

�b�2(t; h;N)� Z h

0

�2(t� h+ s)ds
�
=)MN(0; 2

Z h

0

�4(t� h+ s)ds); (12)

where MN denotes a mixed Gaussian distribution.

Barndor¤-Nielsen and Shephard (2002) showed that the above result can be used in practice as

the integrated quarticity
R h
0
�4(t� h+ s)ds can be consistently estimated using (1=3)RQt where

RQt � N
nX
i=1

r(t� h+ (i=N)h; h=N)4: (13)

In particular,

N1=2
�b�2(t; h;N)� R h

0
�2(t� h+ s)ds

�
q

2
3
RQt

=) N(0; 1): (14)

This is a nonparametric result as it does not require us to specify the form of the drift, �(t), or the

di¤usion term, �(t), in (1) or (2). Without loss of generality, we set h = 1 in what follows.

Finally, there has been much recent work on estimating volatility in jump di¤usion processes.

There is much empirical evidence to support such speci�cations. In such cases, the realized volatility

is still a consistent estimate of some overall volatility measure that includes the contributions from

the jump part of the process (see Barndor¤-Nielsen and Shephard (2004)). It is also possible to

estimate separately the contributions to volatility from the jump part and from the continuous part.

This may be useful in some asset pricing contexts where these risk measures are priced di¤erently.
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3 Estimation

In this section we describe how we estimate the risk-return relationship. In our empirical work we

will focus on a linear relation between the expected excess returns and the conditional variance of

the aggregate stock market

Et�1 (rm;t � rf;t) = �+ �vart�1 (rm;t) ; (15)

where rm;t and rf;t are the continuously compounded returns on the stock market and the risk free

rate, respectively, over [t � 1; t]. Note that such a linear, time-invariant relation is implied by the
Intertemporal Capital Asset Pricing Model of Merton (1973) as well as the more recent Long Run

Risks model of Bansal and Yaron (2004) model and its extension in Constantinides and Ghosh (2008)

that allows for potential cointegration of the consumption and dividend levels.

Given the unbiasedness property of the integrated variance for the conditional variance in (9),

the above risk-return relation implies the following conditional moment restriction

Et�1 (rm;t � rf;t � �� ��t) = 0; (16)

where �t � �(t; 1) =
R 1
0
�2(t� 1 + s)ds. The conditioning set includes all variables observed at time

t� 1:
Equation (16) is an infeasible moment restriction as the integrated variance, �t, is not observable.

To obtain a proxy for it, we rely on the nonparametric variance estimator discussed in the previous

section. We consider a discretized version of the continuous-time di¤usion in (2). Let frtjgNtj=1 be
intra-period continuously compounded returns on the market portfolio for each period t = 1; : : : ; T .

In our empirical application, j = 1; 2; : : : ; Nt denotes days within time period t, while t = 1; 2; : : : ; T

denotes months, quarters, semiannual, or annual time periods. Suppose that

rtj = N
�1
t �tj +N

�1=2
t �tj�tj ; (17)

where �tj � i:i:d: N(0; 1) and �tj is independent of Ftj�1, where Ftj�1 contains all information upto
time tj�1. Also, suppose that f�tj ; �tjg is measurable with respect to time tj�1 information set. The
stochastic processes f�tj ; �tjg

Nt;T
j=1;t=1 are not assumed to be independent of the process f�tjg

Nt;T
j=1;t=1,

i.e., we allow for the well documented leverage and volatility feedback e¤ects. In particular, �tj can

a¤ect �sj+k for s = t, k > 1 and s > t, k > 0. The quantity �2tj is the integral of the volatility

function over a small interval, (see, e.g., Gonçalves and Meddahi (2009)). De�ne

�t � p lim
Nt!1

1

Nt

NtX
j=1

�2tj =

Z 1

0

�2(t� 1 + s)ds: (18)
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Thus, �t is the quadratic variation of the underlying di¤usion process (or the integrated variance).

In this setting, the integrated variance can be consistently estimated by the realized variance (see

equations (3) and (8)),

b�t = NtX
j=1

r2tj : (19)

Plugging the realized variance into the infeasible moment restriction (16), we obtain the feasible

moment restriction,

Et�1 (rm;t � rf;t � �� �b�t) = 0: (20)

Finally, with a set of chosen conditioning variables, zt�1 (that could include, for instance, lagged

variance), we have the unconditional moment restriction

E [G (rm;t � rf;t; b�t; zt�1; �)] = 0; (21)

where G (rm;t � rf;t; b�t; zt�1; �) = (rm;t � rf;t � �� �b�t)
 zt�1, and � = (�; �)|.
Given the above set of moment restrictions, the parameter vector � may be estimated using the

GMM approach. Speci�cally, we de�ne the estimator b� 2 � � Rp as the minimizer of
b� = argmin

�2�




 bGT (�)



W
; bGT (�) � 1

T

TX
t=1

G (rm;t � rf;t; b�t; zt�1; �) ;
where W is a symmetric positive de�nite weighting matrix. The computation of b� is straightforward
in our application as the moment conditions are linear in the parameters.

Although we focus on linear models, our estimation methodology is de�ned for general nonlinear

moment conditions and we present our theoretical results for this case. This estimator can be viewed

as a semiparametric estimator with preliminarily estimated nuisance function fb�tg; see Newey and
McFadden (1994), except that in our case the estimated nuisance function is square root (intraperiod)

sample size consistent and asymptotically mixed normal with zero bias. The other complication is

that the true value of the nuisance function f�tg is a stochastic process.

4 Asymptotic Properties

In this section we derive an asymptotic approximation to the properties of our estimators of �:

Our asymptotic framework has T ! 1 and Nt ! 1 for each t = 1; 2; : : : ; T . The number of

high-frequency, intra-period returns Nt !1 is required for realized variance to accurately estimate
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the integrated variance, while we need the number of low-frequency time periods T ! 1 for the

asymptotics of the GMM estimator. Empirically, Nt is really only moderate size and so the quality

of the asymptotic approximation is likely to be an issue. We address this issue by providing a bias

correction method that improves the approximation error.

We �rst present a lemma that involves a useful extension of the existing asymptotic results ob-

tained for realized volatility in Barndor¤-Nielsen and Shephard (2002). This lemma is concerned

with the uniformity of the estimation error. The existing �nancial econometrics literature on non-

parametric volatility estimation has focused on estimating �nancial market volatility over a �nite

time horizon, typically daily or monthly. In these applications, it su¢ ces to establish consistency

of the estimator over the �nite time interval. In our present application, however, the number of

�nite-length time periods tends to in�nity, thereby requiring a stronger consistency result. Such

consistency results are common in the semiparametric literature, Newey and McFadden (1994).

Our �rst result establishes the consistency of b�t for �t, uniformly in t. We need some regularity
conditions.

Assumptions

(A1) There exists a small � > 0 such that with probability one for large enough T and someM <1
such that

max
1�t�T

1

Nt

NtX
j=1

�4tj �MT
�

(A2) N = min1�t�T Nt = T

 for some 
 > 0

(A3) For some � > 0; max
1�t�T

��� 1Nt PNt
j=1 �

2
tj
� p limNt!1

1
Nt

PNt
j=1 �

2
tj

��� = Op(N��)

(A4) The stochastic process f�2tj(�
2
tj
� 1)gNt;Tj=1;t=1 is a strictly stationary with �nite k

th moment,

for some k > 3, and exponentially decaying ��mixing coe¢ cient, �(k) = expf�ckg for some
c > 0.

Remarks. (i) Condition (A1) controls the behaviour of the volatility process over long time

spans. One possibility is to require that the process �2tj is uniformly bounded over all t and all

j and all sample paths; but this is a little strong. Instead we shall control the rate of growth of

the maximum value this process can achieve over many periods. Let mt =
PNt

j=1 �
4
tj
=Nt denote the

intraperiod second moment of volatilities. Suppose, for example, that the stochastic process mt was

stationary and Gaussian, then max1�t�T mt would grow to in�nity at a logarithmic rate. We shall
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allow instead this process to grow at an algebraic rate that is much faster than logarithmic. Over

the sample period 1928 � 2005, daily excess market returns are highly leptokurtic with the degree
of excess kurtosis being 22:88. The evidence of very fat tails in the distribution of returns highlights

the importance of this assumption.

(ii) Condition (A3) implies that the process for �2tj is continuous, but is less strong than it being

di¤erentiable, i.e. it can be only Hölder Continuous of order less than 1=2.

(iii) Condition (A4) ensures that the random variables f�2tj(�
2
tj
� 1)g, although not necessarily

bounded, satisfy Cramer�s conditions. This enables use of the exponential inequality for strongly-

mixing time series processes (Theorem 1.4 of Bosq (1998)) to obtain the result.

Lemma 1. Suppose that Assumptions A1-A4 hold. Then for some � > 0,

T� max
16t6T

jb�t � �tj = op(1): (22)

We now turn to the main result of this section, the asymptotic distribution of the parameter es-

timator b�:We de�ne GT (�) � T�1PT
t=1G (rm;t � rf;t; �t; zt�1; �) and the infeasible GMM estimator e�

that minimizes jjGT (�)jjW : For the asymptotic distributional results, letG(�) = E[G (rm;t � rf;t; �t; zt�1; �)]
and de�ne

� � @

@�
G(�0)


 � var
hp
TGT (�0)

i
:

We now let �0 be the true value to distinguish from a generic value �. Then, under suitable conditions,

the infeasible GMM estimator, e�, satis�es
p
T (e� � �0) = �(�>W�)�1�>WpTGT (�0) + op(1) =) N(0;�); (23)

where � = (�>W�)�1�>W
W�(�>W�)�1; (see Pakes and Pollard (1989)). This theory does not

require G (rm;t � rf;t; �t; zt�1; �) to be smooth in � or (rm;t�rf;t; �t; zt�1) but does require G(�) to be
smooth. However, for the purposes of our current application, it is natural to assume the function G

to be smooth. Furthermore, it is natural to suppose that the process frm;t�rf;t; vt; zt�1g is stationary
and weakly dependent, e.g., strong mixing, which would support the central limit theorem in (23).

We make some additional assumptions. Our theory parallels the work of Pakes and Pollard (1989)

so we adopt their regularity conditions.

Assumptions B

(B1) kGT (
b�T )kW= inf�2� kGT (�)kW+op(1=

p
T );
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(B2) For all � > 0; there exists �(�) such that

inf
k���0k>�

kG(�)k � �(�) > 0:

The matrix

�(�) =
@

@�
G(�)

is continuous in � and is of full (column) rank at � = �0:

(B3) The infeasible sample moment satis�es

sup
�2�

kGT (�)�G(�)kW = op(1);

For all sequences of positive numbers �T such that �T ! 0,

sup
k���0k��T

kGT (�)�G(�)kW = Op(1=
p
T );

sup
k���0k��T

k
p
T [GT (�)�G(�)]�

p
T [GT (�0)�G(�0)]kW = op(1);

(B4)
p
TGT (�0) =) N(0;
)

(B5) �0 is in the interior of �:

(B6) sup
T�1

1
T

PT
t=1E kG(rm;t � rf;t; vt; zt�1; �0)k

2+� <1 for some � > 0.

(B7) The �rst three partial derivatives of G with respect to � and �t exist and satisfy dominance

conditions, namely for all vectors � (pertaining to (�t; �t�1; �)) with j�j � 3; and for some

sequence �T ! 0;

sup
jxj;jx0j��T

sup
�2�

kD�G(rm;t � rf;t; �t + x; �t�1 + x0; �)k � Ut;

where EUt �M for some M <1:

Remarks. (i) The �rst condition is quite general and allows the estimator to be only an approx-

imate minimizer of the criterion function. Condition B2 is important for identi�cation and holds in

our case provided the integrated variance process,
R t
t�1 �

2(s)ds, is not independent of the instruments

used in the estimation. For instance, when lagged integrated variance is used as an instrument, this

condition requires that the integrated variance process is not independent across non-overlapping

12



time periods. Condition 3 is a technical condition that is satis�ed in our case because of the linearity

of the moment condition and the assumptions we made on the data in A. The central limit theorem

in B4 is satis�ed because G(rm;t� rf;t; vt; zt�1; �) is a martingale di¤erence sequence and Assumption
B6 (See Hansen and Hodrick (1980)). Condition 7 is a smoothness condition on G(:). Note that

the asymptotic derivations in Pakes and Pollard (1989) do not require G (rm;t � rf;t; �t; zt�1; �) to be
smooth in � or (rm;t � rf;t; �t; zt�1) but does require G(�) to be smooth. However, for the purposes
of our current application, it is natural to assume the function G to be smooth.

The following theorem provides an asymptotic expansion for the estimator b�. We de�ne
bT (�) =

1

T

TX
t=1

1

N
E
�
Gvtvt (rm;t � rf;t; �t; zt�1; �) IQt

�
+
1

T

TX
t=1

1

N
E
�
Gvt�1vt�1 (rm;t � rf;t; �t; zt�1; �) IQt�1

�
;

where Gvtvt denotes the second partial derivative of G with respect to vt; and IQ
t is the integrated

quarticity

IQt = p lim
Nt!1

1

Nt

NtX
j=1

�4tj :

Theorem 1. Suppose that conditions A and B are satis�ed. Then,b� � �0 = �(�>W�)�1�>WGT (�0)� (�>W�)�1�>WbT (�0) + op(T�1=2); (24)

Corollary 1. When bT (�0) = o(T�1=2), which requires that N1:5=T !1,
p
T (b� � �0) =) N(0;�): (25)

When (25) holds, standard inference can be applied. Speci�cally, since G(rm;t� rf;t; vt; zt�1; �) is
a martingale di¤erence sequence, b� = (b�>Wb�)�1b�>W b
Wb�(b�>Wb�)�1 is a consistent estimator of
�, where

b� =
1

T

TX
t=1

@

@�
G(rm;t � rf;t; bvt; zt�1;b�)

b
 =
1

T

TX
t=1

G(rm;t � rf;t; bvt; zt�1;b�)G(rm;t � rf;t; bvt; zt�1;b�)>:
The condition bT (�0) = o(T�1=2) requires that N1:5=T ! 1: When this condition is not satis�ed,
(25) does not hold. In this case, de�ne the bias corrected estimatorb�bc = b� + (�>W�)�1�>WbbT (b�);
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where

bbT (�) =
1

T

TX
t=1

1

N
Gvtvt(rm;t � rf;t; bvt; zt�1; �)cIQt (26)

+
1

T

TX
t=1

1

N
Gvt�1vt�1(rm;t � rf;t; bvt; zt�1; �)cIQt�1;

where cIQt = Nt
3

PNt
j=1 r

4
tj
is a consistent estimator of the integrated quarticity.

Corollary 2. Suppose that conditions A and B are satis�ed and that N �=T ! 1, � > 3.

Then, p
T (b�bc � �0) =) N(0;�):

This result is the basis of the application we conduct in the next section. In particular, it provides

the basis for con�dence intervals and test statistics regarding �; and provides the methodology to

take into account the potential consequences of small intraperiod samples. We have de�ned the

methodology for general moment conditions but we next apply it to the case discussed in (20).

5 Empirical Results

5.1 Data

In our empirical analysis, we focus on the risk-return relation at the monthly, quarterly, semiannual,

and annual frequencies. The data is from the Centre for Research in Security Prices (CRSP) daily

returns data �le. Our market proxy is the CRSP value-weighted index (all stocks on the NYSE,

AMEX, and NASDAQ). The proxy for the risk free rate is the one-month Treasury Bill rate (from

Ibbotson Associates). The sample extends from January 1928 - December 2005. The monthly market

return is obtained as the sum of daily continuously compounded market returns and the realized

monthly market variance as the sum of squares of the daily continuously compounded market returns,

and the quarterly, semi-annual and annual returns and realized market variances are computed

analogously. The monthly excess market return is the di¤erence between the monthly market return

and the monthly risk free rate, and so on.

To set the stage, Table 1 reports summary statistics for the excess returns and the corresponding

realized variances for the di¤erent horizons. The table reports results for the full sample and for

two subsamples of equal length. The monthly excess market return has a mean of 0:5% and a

variance of 0:3% in the full sample. Returns are slightly negatively skewed and leptokurtic with

the coe¢ cients of skewness and kurtosis being �0:477 and 9:819, respectively, over the full sample.
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The �rst order autocorrelation coe¢ cient of monthly returns is 0:102. The average market return

during 1928 : 01 � 1966 : 12 is higher than that observed during 1967 : 01 � 2005 : 12 (0:6% vs.

0:4%). The variance of monthly returns is also higher in the �rst subsample (0:4% vs. 0:2%). Both

subsamples exhibit negative skewness and high kurtosis. The realized variance has a mean of 0:2%

in the overall sample, which closely matches the variance of monthly returns over the same period.

The mean of the variance in the �rst subsample is higher than in the second (0:3% vs. 0:2%), mostly

because of the period of the Great Depression. The realized variance process displays considerable

persistence, with an autocorrelation coe¢ cient of 0:563 in the entire sample and has a much smaller

variance compared to monthly excess returns (2:2� 10-5 vs. 0:003). The �rst subsample shows more
persistence in the variance process (0:657 vs. 0:226). As expected, realized variance is highly skewed

and leptokurtic. Most of these characteristics of returns and realized variance persist at all the other

horizons considered. The coe¢ cient of kurtosis in excess returns and realized variances declines with

the horizon (9:819 in monthly data vs. 5:618 in semi-annual data vs. 3:597 in annual data for returns

and 58:47 vs. 14:36 vs. 13:78 for realized variances). The degree of skewness in the realized variance

also declines with the horizon (6:317 in monthly data vs. 3:281 in semi-annual data vs. 3:102 in

annual data) whereas no such trend is noticed in the coe¢ cient of skewness for returns.

5.2 Empirical Evidence on the Risk-Return Tradeo¤

We �rst provide support for some of the assumptions underlying the theoretical framework in Sections

2�4. Over the sample period, the daily excess market returns are highly leptokurtic with the degree
of excess kurtosis being 22:88. The evidence of very fat tails in the distribution of market returns

highlights the importance of Assumption (a) in Lemma 1, which allows the volatility process to grow

over time rather than restricting it to be uniformly bounded over all t and j.

Also, note that the conditional moment restriction in (16) is obtained by arguing that the inte-

grated variance is approximately unbiased for the conditional variance. As pointed out in (6), the

approximations are exact with assumed constant mean returns or with mean returns measurable

with respect to the previous time period. While both these assumptions are fairly strong, we show

that the approximation is good at the monthly and quarterly horizons even in the absence of these

assumptions. In particular, equation (6) implies that the conditional variance of the market portfolio

is the sum of three terms. The �rst term is the conditional mean of the integrated variance. The

integrated variance may be consistently estimated using the realized variance and the latter has a

monthly (quarterly) mean of 0:0017 (0:0112) in our sample period. The second term is the conditional

variance of the mean process. The squared mean of market excess returns is 1:4 � 10�5 (0:0001) in
monthly (quarterly) data. Finally, the third term is the conditional covariance between the innova-
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tion in the mean process and the integrated variance. The covariance between the monthly excess

market returns and the realized market variance at the monthly (quarterly) frequency is �4:5�10�5

(0:0071). Thus, the latter two terms in equation (6) are of smaller order than the �rst term lending

support to the approximate unbiasedness of the integrated variance for the conditional variance in

equation (16).

Next, we turn to our main empirical results. The analysis in Section 3 shows that the estimation of

the risk-return trade-o¤ parameters can be posed as a GMM estimation problem, with the following

moment speci�cation,

E [G (rm;t � rf;t; b�t; zt�1; �)] = 0; (27)

where G (rm;t � rf;t; b�t; zt�1; �) = (rm;t � rf;t � �+ �b�t) 
 zt�1, � = (�; �)>, and zt�1 is a vector

of instruments. Table 2 reports results for the exactly identi�ed case using the lagged notional (or

integrated) volatility as an instrument and Table 3 reports results for an overidenti�ed case where the

�rst three lags of the notional volatility are used as instruments. Note that for these speci�cations

of the moment restrictions and choice of instruments, the bias-correction is identically zero (see

Theorem 6). Once again, results are reported for the full sample and two subsamples of equal length.

Table 2 reveals a weak and statistically insigni�cant relation between the risk and the return. For

monthly data, the slope coe¢ cient is negative in the full sample as well as the subsamples but not

statistically signi�cant. This is consistent with the �ndings of French, Schwert, and Stambaugh

(1987) and Whitelaw (1994). For lower frequency horizons, the estimated coe¢ cients are mostly

positive but not statistically signi�cant. Table 3 con�rms the �ndings in Table 2.

The rationale for using lagged integrated variance as an instrument in Tables 2 and 3 is that it is

a highly persistent process. The �rst order autocorrelation coe¢ cient of the realized variance process

is 0:563, 0:554, 0:675, and 0:675, respectively, in monthly, quarterly, semiannual, and annual data

for the full sample. Hence, the lagged variance is useful in predicting the contemporaneous variance

which enters the moment speci�cation (16). This makes it a good choice of instrument improving

the e¢ ciency of the estimation procedure.5

For additional robustness, we repeat the estimation using lagged (instead of contemporaneous)

integrated variance in the moment restriction (16). This is justi�ed under a martingale assumption

on the conditional variance process and has been frequently employed in the literature. Table 4

5For robustness, we repeated the estimation for choice of instruments other than the lagged variance. In particular,

we consider �nancial variables that are known to predict the mean returns. Examples include the dividend yield, the

default spread and the interest rate. The results reveal a statistically insigni�cant relation, over the full sample as well

as the subsamples, that is robust to the choice of instruments.
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reports results for the exactly identi�ed case using the lagged integrated variance as an instrument

and Table 5 reports results for an overidenti�ed case where the �rst three lags of the integrated

variance are used as instruments. These tables con�rm the �ndings in Tables 2 and 3. The estimated

slope coe¢ cient is negative at the monthly frequency and mostly positive in the lower frequency

horizons and never statistically signi�cant.

5.3 Time-Variation in the Risk-Return Tradeo¤

To interpret the results, we turn to a closely related literature on return predictability that has

reported evidence in favour of structural breaks in the OLS coe¢ cient in the forecasting regression of

returns on the lagged price-dividend ratio (e.g., Viceira (1996) and Paye and Timmermann (2006)).

This renders the forecasting relationship unstable if such shifts are not taken into account. In

particular, Lettau and Nieuwerburgh (2008) �nd evidence for two breaks in the mean of the log

dividend-price ratio around 1954 and 1994. They demonstrate that if these breaks are ignored, the

estimated OLS coe¢ cient appears statistically insigni�cant over the full sample. However, when the

sample is split into subsamples corresponding to the break dates, signi�cant coe¢ cient estimates are

obtained in each subsample. These results suggest that if the relationship between expected returns

and the conditional variance exhibits signi�cant time variation, this could potentially render the

estimated coe¢ cient statistically insigni�cant when estimated over the entire sample.

Motivated by the above consideration, we split the sample into three subsamples based on the

break dates in the mean of the log dividend-price ratio identi�ed in Lettau and Nieuwerburgh (2008).

Table 6 reports summary statistics for the excess returns and the corresponding realized variances for

the di¤erent horizons for the three subsamples. Excess returns and realized variances have a lower

mean and substantially lower realized variances in the second subsample covering January 1955 to

December 1994 compared to the other subsamples (mean return of 0:4% in the second subsample vs.

0:6% in the �rst and last subsamples in monthly data, and mean realized variance of 0:1% vs. 0:4%

and 0:2%). The mean and the variance are highest in the �rst subsample that mainly re�ects the

Great Depression. The realized variance is considerably less persistent over the second subsample

(0:154 vs. 0:639 and 0:589, in monthly data).

Tables 7 and 8 report estimation results for the same speci�cation of the moment conditions as

Tables 2 and 3 but with di¤erent choice of subsamples. As in Tables 2 and 3, the estimated slope

coe¢ cient is mostly negative and statistically insigni�cantly di¤erent from zero in monthly data.

However, the results change dramatically for the longer horizons. A close inspection of the tables

reveals substantial time-variation in the risk-return tradeo¤. In particular, the relationship appears

quite unstable over the �rst subsample. The estimate changes sign from negative to positive and
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then becomes negative again as we move from quarterly to annual horizon in Table 7. However,

the estimated coe¢ cient is signi�cantly positive in the second subsample covering 1954 � 1994 in
quarterly and semi-annual data. It is also positive at the annual horizon but falls short of being

signi�cantly so. This is primarily a re�ection of the small number of observations, (namely, 40), used

in the estimation. Finally, the estimates for the third subsample are always negative in quarterly,

semi-annual, and annual data. They are statistically signi�cant at the semi-annual horizon in Table

8 and at the annual horizon in Tables 7 and 8.

Finally, Tables 9 and 10 report estimation results for the same speci�cation of the moment

conditions as Tables 4 and 5, i.e. using lagged (instead of contemporaneous) integrated variance, but

with the intra-break subperiods. The results are largely similar to those obtained in Tables 7 and 8.

6 Simulation Results

In this section, we performMonte Carlo simulations in order to examine the �nite-sample performance

of the estimators. We assume that the continuously compounded returns on the market are generated

by a di¤usion process of the form (2)

dp(t) = �(t)dt+ �(t)dW1(t): (28)

Note that our nonparametric estimation approach, in Sections 3 and 4, does not require us to

specify the form of the drift, �(t), or di¤usion terms, �(t), in (28), i.e., the approach remains valid

for any speci�c functional form speci�cation for these stochastic processes.

We consider two di¤erent models for �(t) that have been employed extensively in the literature

and shown to provide a good �t to the dynamic properties of returns. The �rst is the lognormal

di¤usion (see, Andersen, Benzoni, and Lund (2002))

d log �2(t) = �0:0136
�
a2 + log �

2(t)
�
dt+ 0:1148dW2(t): (29)

The second model is the GARCH(1; 1) di¤usion (see, Andersen and Bollerslev (1998))

d�2(t) = 0:035
�
a3 � �2(t)

�
dt+ 0:144�2(t)dW3(t): (30)

The Brownian motions W2 and W3 are assumed to be independent of W1, i.e. there are no leverage

and volatility feedback e¤ects.

Our model for �(t) is motivated by the time-invariant, linear relation between the conditional

expected excess return of the market portfolio and its conditional variance considered in this paper.
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Hence, we consider the following model for �(t)

�(t) = �+ ��2(t): (31)

Note that time-aggregating (31) over the interval [t � 1; t] and taking conditional expectations
of both sides with respect to time t� 1 information set delivers the conditional moment restriction
(16). In the simulations, we set � = 0 and try a few di¤erent values for �, namely, � = 2, 5, �2, and
�5, in order to examine the size and power of the estimation approach.
Finally, as in the empirical application in Section 5, we assume that the above speci�cations of

the di¤usion process generates high frequency (daily) returns on the market. The parameters a2 and

a3 in (29) and (30) are calibrated to match the second moment of high-frequency (daily) squared

returns within the low-frequency (monthly, quarterly, semi-annual, and annual) horizons considered.

This yields a2 = 6:03, 4:95, 4:50, and 3:50, when the normalized unit time interval corresponds to

a month, quarter, semi-annual, and annual time horizon, respectively. The corresponding values for

a3 are 0:002, 0:007, 0:014, and 0:028. The monthly market return is computed as the sum of daily

continuously compounded market returns and the realized monthly market variance as the sum of

squares of the daily continuously compounded market returns, and the quarterly, semi-annual and

annual returns and realized market variances are calculated analogously. These are then used in the

GMM estimation problem (27), with the lagged realized variance being used as an instrument, to

estimate the parameter vector, � = (�; �)>. This procedure is repeated 500 times.

Table 11 reports the simulation results for the lognormal model for the di¤usion term, �(t). Panel

A of Table 11 reports results for � = 0 and � = 5 while Panel B does the same for � = 0 and � = 2.

The �rst row of Panel A corresponds to N = 22 high frequency data within each of T = 936 time

periods. This choice corresponds to the historically available daily data within monthly time periods

that we use in our estimation in Section 5. The second and third columns of the table report the

mean of the estimates of the intercept, �, and slope coe¢ cient, �, respectively, the standard errors

of the estimates in parentheses, and the 90% con�dence intervals in square brackets, across the 500

simulations. The �rst row of Panel A reveals that the mean � across simulations is 0:000 with a

standard error of 0:004. The mean � across simulations is 4:957 with a standard error of 1:576. The

90% con�dence interval for � lies entirely in the positive axis. Note that the point estimate of �

obtained in the historical sample at the monthly horizon is �0:493 in Table 1:2. The last column of
Table 11 reports the probability of observing an estimate of � at least as small as the one obtained

in the historical sample if the true data generating process is described by equations (28), (29), and

(31). In other words, this gives the probability of observing a negative relation between the equity

premium and the conditional variance of the market return of the magnitude found in the data if
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the market returns were generated by a di¤usion process with a positive relation (� = 5) between its

conditional mean and variance. The �rst row suggests that this probability is miniscule at 0:0%:

The values for N in the second, third, and fourth rows are chosen to correspond to available daily

data within quarterly, semi-annual, and annual time periods, respectively, and T to correspond to

available quarterly, semi-annual, and annual time periods, respectively. These rows reveal that the

mean of � is �0:001, 0:001, and 0:002, and that of � is 5:11, 4:92, and 4:95, respectively, for these
choices of N and T . The standard errors increase with decrease in T . The standard error of �

increases from 0:004 for T = 936 to 0:014 for T = 312 to 0:034 for T = 156 to 0:103 for T = 78,

while that for � increases from 1:576 for T = 936 to 1:873 for T = 312 to 2:286 for T = 156 to 3:541

for T = 78. However, the mean estimate of � is statistically signi�cantly positive in all four rows

on Panel A. Moreover, even for T = 312 and 156, the 90% con�dence intervals for � lies entirely

in the positive axis. These results suggest that if there were indeed a positive relation between the

conditional mean and variance, our estimation results would capture it.

Table 11, Panel B reports the same results as Panel A but for � = 0 and � = 2. The �rst

row of this panel reveals that the mean � for N = 22 and T = 936 is 2:032 with standard error of

1:631. While the 90% con�dence interval for � includes points in the negative axis, the probability

of observing a point estimate at least as small as the value observed in the data is only 6:2%. The

simulation results in this Panel get weaker with decrease in T . Rows 2, 3, and 4 in this Panel show

that lowering T from 312 to 156 to 78 raises the standard errors of the � and � estimates and

the probability of observing an estimate of � as small as or smaller than the value obtained in the

historical sample rises to 16:8%, 20:4%, and 18:2%, respectively.

Table 12 reports the simulation results for the GARCH(1; 1) model for the di¤usion term, �(t).

Panel A reports results for � = 0 and � = 5 while Panel B does the same for � = 0 and � = 2. The

results are largely similar to those in Table 11. Panel A shows that lowering T from 936 to 312 to

156 to 78 raises the standard errors of the � and � estimators. However, the 90% con�dence intervals

reveal that the lower limits of these intervals are bigger than the point estimates of � obtained in the

historical sample for all four horizons considered (see Table 2). Moreover, the last column suggests

that the probability of observing a point estimate of � at least as small as the value observed in

the historical sample at the corresponding horizons are very small at 0:4%, 2:4%, 2:2%, and 4:2%,

respectively. The simulation results are weaker in Panel B that corresponds to � = 0 and � = 2. The

lower limits of the 90% con�dence intervals are smaller than the point estimates of � obtained in the

historical sample for all four horizons considered (see Table 2). The last column suggests that the

probability of observing a point estimate of � at least as small as the value observed in the historical

sample at the corresponding horizons are bigger at 13:6%, 22:4%, 25:8%, and 22:0%, respectively.
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7 Conclusion and Extensions

This paper proposes an approach to estimating the risk-return tradeo¤ in the stock market that al-

lows us to escape some of the limitations of existing empirical analyses. First, it does not require any

speci�c functional form assumptions, either about the conditional mean or the conditional variance.

We focus on a nonparametric measure of expost return variability, namely integrated variance, that

is approximately unbiased for the conditional variance. This latent variance measure may be consis-

tently and accurately estimated using the so-called realized variance, which is easily computed from

high frequency intra-period returns. Second, we estimate the risk-return trade-o¤ parameters using

the Generalized Method of Moments (GMM) approach. The unbiasedness property of the integrated

variance provides a moment restriction under the null hypothesis of a linear relation between the

conditional expected excess returns of the stock market and its conditional variance. This approach

overcomes the endogeneity problem inherent in a least squares regression of an estimate of the con-

ditional mean on the estimate of the conditional variance as both these quantities are simultaneously

determined. Third, we o¤er a solution to the measurement error problem that arises because of the

use of a proxy for the variance (realized variance in place of integrated variance), an issue that has

thus far been ignored in the literature.

The results indicate a weak, statistically insigni�cant relation between the conditional mean and

the conditional variance of the stock market return. This �nding is robust across di¤erent return

horizons (monthly, quarterly, semiannual, and annual) and choice of instruments. However, when the

sample is split into three subsamples based on the break dates in the mean of the log price-dividend

ratio of the market, as identi�ed in Lettau and Nieuwerburgh (2008), signi�cant coe¢ cient estimates,

albeit opposite in sign, are obtained in the latter two subsamples. The relation appears quite �at

and unstable in the �rst subsample that covers the period of the Great Depression and World War

II. These results are suggestive of signi�cant time-variation in the risk-return relation.

Finally, the econometric framework developed in this paper is quite general with several other

potential applications in asset pricing. For instance, there is much empirical evidence to support

the presence of jump components in the di¤usion process for asset prices. In such speci�cations,

the realized variance is still a consistent estimate of some overall variance measure that includes the

contributions from the jump part of the process (see Barndor¤-Nielsen and Shephard (2004)). It is

also possible to estimate separately the contributions to variance from the jump part and from the

continuous part. This may be useful in some asset pricing contexts where these risk measures are

priced di¤erently.

Also, a multivariate extension of the framework may be used to estimate conditional linear factor
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pricing models like the conditional CAPM, the conditional Fama-French three factor model, and the

conditional Carhart four factor model. The approach does not require any speci�c functional form

assumptions either about the factor betas or the factor risk premia.
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A Appendix

In what follows, we de�ne �2t � �t.

A.1 Proof of Lemma 1

We have
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Consider the �rst term in equation (32):
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Thus, the second term in equation (32) is of smaller order than the �rst provided � > 1
2
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), and

we have,
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Now, by the Bonferroni inequality
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Consider the �rst term. On the set �T = fmax 16t6T

16j6Nt
�2tj < Ntg, we can apply the exponential

inequality for strongly-mixing time series processes (Theorem 1.4 of Bosq (1998)). Therefore,
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for each Nt > 2, each integer q 2
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, each � > 0, and each k > 3. c > 0 depends on the

distribution of the time series.
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Consider now the second term,
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A.2 Proof of Theorem 1

A.2.1 Consistency of b�
We just verify the ULLN condition. By the triangle inequality
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By the Mean Value Theorem,
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Consistency then follows from the identi�cation condition and the ULLN condition on the infea-

sible moment conditions sup�2� kGT (�)�G(�)kW = op(1):

A.2.2 Asymptotic Normality
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For the asymptotic expansion our proof parallels the work of Pakes and Pollard (1989). We

expand the estimated moment condition out to third order

bGT (�0)�GT (�0) =
1

T

TX
t=1

G�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t ) [3] (33)

+
1

2T

TX
t=1

G�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )2 [3]

+
1

2T

TX
t=1

G�t�t�1(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )(b�2t�1 � �2t�1) [6]

+
1

6T

TX
t=1

G�t�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )3 [3]

+
1

6T

TX
t=1

G�t�t�t�1(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )2 (b�2t�1 � �2t�1); [24]

29



where �2t is intermediate between b�2t and �2t and so on. The symbol [3] indicates the sum of the term
given plus 3 similar terms obtained via partial di¤erentiation with respect to the other arguments.
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Next, consider the second term in (33),
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Next, consider the third term in (33),
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2
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2
t�1; �

2
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2
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2
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N
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�2tj(�
2
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� 1) 1
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NX
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�2t�1j(�
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NX
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NX
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G�t�t�1(Xt; �
2
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2
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2
t�2; �0)�

2
tj
(�2tj � 1)�

2
t�1i(�

2
t�1i � 1):

Hence,

E
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2T

TX
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G�t�t�1(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )(b�2t�1 � �2t�1)

#
= 0

and
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T 2N2
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�
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�
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 > �.

Consider next the fourth term in (33),

1

6T

TX
t=1

G�t�t�t(Xt; �
2
t ; �

2
t�1; �

2
t�2; �0)(b�2t � �2t )3
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�
max
1�t�T

��b�2t � �2t ���3 16T
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sup
jxj;jx0j;jx00j��T

jG���(Xt; �
2
t + x; �

2
t�1 + x; �

2
t�2 + x; �0)j

= Op(T
�3�):

For this term to be op(T�1=2), we require � > 1=6. This requires 
 > 1
3
(1 + 6�).

Finally, the �nal term in (33) is also op(T�1=2) under the same conditions as the fourth term.

Hence,

bGT (�0) ' GT (�0) +
1

T
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t=1

1

N
E
�
G�t�t(Xt; �

2
t ; �

2
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2
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�
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�
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+
1
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N
E
�
G�t�1�t�1(Xt; �

2
t ; �

2
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2
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�
E
�
IQt�1

�
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1

T

TX
t=1

1

N
E
�
G�t�2�t�2(Xt; �

2
t ; �

2
t�1; �

2
t�2; �0)

�
E
�
IQt�2

�
= GT (�0) + bT (�0):

Therefore, we haveb� � �0 = �(�>W�)�1�>WGT (�0)� (�>W�)�1�>WbT (�0) + op(T�1=2):
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Case 1:
p
TbT (�0) = op(1)

bT (�0) =
1

T

TX
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T �
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�
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�
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�
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provided 
 > �+ 1=2: This requires N�

T
!1 where � > 1:5. In this case,

p
T
�b� � �0� = �(�>W�)�1�>WpTGT (�0) + op(1):

Hence,

p
T
�b� � �0� d! N(0;�); where � = (�>W�)�1�>W
W�(�>W�)�1:

Case 2: When the above condition is not satis�ed, we may not have T 1=2 consistency because
of the asymptotic bias. However, we show that a bias corrected estimator b�+ (�>W�)�1�>WbT (�0)
would be T 1=2 consistent. We propose to make a bias correction, which requires that we estimate

bT (�0): Provided the estimation error is small enough we will achieve the limiting distribution in (46).
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De�ne the estimated bias function

bbT (�) =
1

T

TX
t=1

1

N
G�t�t(Xt; b�2t ; b�2t�1; b�2t�2; �0)cIQt

+
1

T

TX
t=1

1

N
G�t�1�t�1(Xt; b�2t ; b�2t�1; b�2t�2; �0)cIQt�1

+
1

T

TX
t=1

1

N
G�t�2�t�2(Xt; b�2t ; b�2t�1; b�2t�2; �0)cIQt�2;

where cIQt =
Nt
3

NtX
j=1

r4tj

is an estimator of the integrated quarticity. Then de�ne the bias corrected estimator

b�bc = b� + (b�>Wb�)�1b�>WbbT (b�):
Then, p

T (b�bc � �0) =) N(0;�);

provided that

p
TbbT (b�)�pTbT (�0) = op(1):
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B Tables

Table 1: Descriptive Statistics
mean variance skewness kurtosis AR(1) AR(1-12) T

1928:01-2005:12 0.005 0.003 -0.477 9.819 0.102 0.209 936

(rmt � rft)mon 1928:01-1966:12 0.006 0.004 -0.369 9.873 0.123 0.296 468

1967:01-2005:12 0.004 0.002 -0.755 5.734 0.062 0.061 468

1928:01-2005:12 0.002 2.2�10-5 6.317 58.47 0.563 4.449 936

(bvt)mon 1928:01-1966:12 0.003 3.3�10-5 4.399 29.02 0.657 5.261 468

1967:01-2005:12 0.002 1.0�10-5 13.04 218.5 0.226 1.263 468

1928:1-2005:4 0.014 0.012 0.175 9.802 -0.051 -0.145 312

(rmt � rft)quar 1928:1-1966:4 0.017 0.016 0.451 9.823 -0.086 -0.082 156

1967:1-2005:4 0.011 0.008 -0.755 4.102 0.013 -0.296 156

1928:1-2005:4 0.007 0.0001 4.248 25.08 0.554 4.342 312

(bvt)quar 1928:1-1966:4 0.009 0.0002 3.254 15.35 0.601 4.849 156

1967:1-2005:4 0.005 4.6�10-5 6.080 54.14 0.264 1.162 156

1928:1-2005:2 0.028 0.022 -0.671 5.618 0.114 -0.381 156

(rmt � rft)sm 1928:1-1966:2 0.035 0.030 -0.811 5.420 0.175 -0.402 78

1967:1-2005:2 0.022 0.014 -0.256 3.005 -0.014 -0.404 78

1928:1-2005:2 0.014 0.0004 3.281 14.36 0.675 4.104 156

(bvt)sm 1928:1-1966:2 0.018 0.0007 2.475 8.439 0.724 5.085 78

1967:1-2005:2 0.011 0.0001 3.281 16.95 0.307 0.030 78

1928-2005 0.057 0.040 -0.742 3.597 0.078 0.095 78

(rmt � rft)year 1928-1966 0.069 0.052 -0.763 3.462 0.124 0.184 39

1967-2005 0.045 0.028 -0.754 2.706 0.022 -0.256 39

Table 1. Summary statistics of logarithmic excess returns and realized variance. The table reports

summary statistics of the continuously compounded excess returns on the stock market and the associated

realized variance. Our market proxy is the CRSP value-weighted index (all stocks on the NYSE, AMEX, and

NASDAQ). The proxy for the risk free rate is the one-month Treasury Bill rate (from Ibbotson Associates).

Estimates are reported for the monthly, quarterly, semiannual, and annual frequencies. Monthly returns

are calculated by compounding daily returns within calendar months. Monthly realized volatilities are

constructed by cumulating squares of daily returns within each month, and so on. The table shows the

mean, variance, skewness, kurtosis, �rst-order autocorrelation, and the sum of the �rst 12 autocorrelations,
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AC(1-12), for each of the variables. The statistics are shown for the full sample and for two subsamples of

equal length.
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Table 2: Results Using Contemporaneous Variance
� �

1928:01-2005:12 0.006 -0.493

(1.896) (-0.340)

monthly 1928:01-1966:12 0.007 -0.305

(1.702) (-0.197)

1967:01-2005:12 0.009 -3.071

(1.195) (-0.711)

1928:01-2005:12 0.011 0.472

(0.926) (0.248)

quarterly 1928:1-1966:4 0.018 -0.073

(1.245) (-0.036)

1967:1-2005:4 -0.019 5.785

(-1.060) (1.786)

1928:1-2005:4 0.021 0.473

(0.984) (0.276)

semi� annually 1928:1-1966:2 0.032 0.135

(1.107) (0.072)

1967:1-2005:2 -0.025 4.447

(-0.564) (1.041)

1928:1-2005:2 0.054 0.005

(1.470) (0.004)

annually 1928-1966 0.068 -0.129

(1.326) (-0.094)

1967-2005 0.029 0.755

(0.312) (0.170)

Table 2. This table shows the GMM estimates for the model

E[G(:)] = 0 where

G =

 
rm;t+1 � rf;t+1 � �� �vt+1

(rm;t+1 � rf;t+1 � �� �vt+1) vt

!
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Table 3: Results For Over-identi�ed System

� �

1928:01-2005:12 0.005 -0.135

(1.780) (-0.099)

monthly 1928:01-1966:12 0.007 -0.420

(2.011) (-0.288)

1967:01-2005:12 0.0001 1.920

(0.026) (0.598)

1928:1-2005:4 0.013 0.102

(1.054) (0.049)

quarterly 1928:1-1966:4 0.018 -0.110

(1.151) (-0.049)

1967:1-2005:4 -0.004 2.806

(-0.214) (0.839)

1928:1-2005:4 0.024 0.206

(1.156) (0.130)

semi� annually 1928:1-1966:2 0.030 0.085

(1.104) (0.050)

1967:1-2005:2 0.005 1.611

(0.130) (0.425)

1928:1-2005:2 0.049 0.509

(1.469) (0.422)

annually 1928-1966 0.070 0.369

(1.593) (0.305)

1967-2005 0.028 0.804

(0.255) (0.155)

Table 3. This table shows the estimates for the model

E[G(:)] = 0 where

G =

0BBB@
rm;t+1 � rf;t+1 � �� �vt

(rm;t+1 � rf;t+1 � �� �vt) vt�1
(rm;t+1 � rf;t+1 � �� �vt) vt�2
(rm;t+1 � rf;t+1 � �� �vt) vt�3

1CCCA
The table reports the coe¢ cient estimates along with the associated t-stats in parentheses.
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Table 4: Results Using Lagged Variance
est. Bias Corrected est.

� � � �

1928:01-2005:12 0.005 -0.277 0.005 -0.324

(2.715) (-0.344) (2.767) (-0.402)

monthly 1928:01-1966:12 0.006 -0.189 0.006 -0.217

(2.138) (-0.186) (2.166) (-0.213)

1967:01-2005:12 0.005 -0.712 0.005 -0.889

(2.233) (-1.068) (2.373) (-1.333)

1928:1-2005:4 0.012 0.262 0.012 0.275

(1.851) (0.250) (1.836) (0.263)

quarterly 1928:1-1966:4 0.017 -0.044 0.017 -0.047

(1.945) (-0.036) (1.948) (-0.038)

1967:1-2005:4 0.003 1.526 0.003 1.542

(0.406) (1.881) (0.395) (1.900)

1928:1-2005:2 0.024 0.319 0.024 0.330

(1.541) (0.275) (1.531) (0.284)

semiannually 1928:1-1966:2 0.032 0.098 0.032 0.101

(1.487) (0.072) (1.484) (0.075)

1967:1-2005:2 0.008 1.350 0.007 1.400

(0.524) (1.273) (0.489) (1.320)

1928-2005 0.054 0.003 0.054 0.003

(1.924) (0.004) (1.924) (0.004)

annually 1928-1966 0.067 -0.090 0.067 -0.091

(1.598) (-0.094) (1.598) (-0.095)

1967-2005 0.039 0.274 0.038 0.304

(1.039) (0.178) (1.022) (0.197)

Table 7. This table shows the estimates for the model

E[G(rm;t+1 � rf;t; vt; vt�1; vt�2; �0)] = 0 where

G =

 
rm;t+1 � rf;t+1 � �� �vt�1

(rm;t+1 � rf;t+1 � �� �vt�1) vt�1

!
The table reports the coe¢ cient estimates along with the associated t-stats in parentheses.
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Table 5: Results For Over-Identi�ed System
est. Bias Corrected est.

� � � �

1928:01-2005:12 0.005 -0.117 0.005 -0.130

(2.529) (-0.135) (2.546) (-0.151)

monthly 1928:01-1966:12 0.007 -0.271 0.007 -0.295

(2.423) (-0.265) (2.449) (-0.289)

1967:01-2005:12 0.004 -0.246 0.004 -0.303

(1.630) (-0.261) (1.671) (-0.321)

1928:1-2005:4 0.013 0.134 0.013 0.140

(1.548) (0.095) (1.542) (0.099)

quarterly 1928:1-1966:4 0.017 -0.054 0.017 -0.057

(1.569) (-0.033) (1.571) (-0.035)

1967:1-2005:4 0.004 1.343 0.003 1.545

(0.543) (1.523) (0.398) (1.752)

1928:1-2005:2 0.024 0.172 0.024 0.177

(1.553) (0.148) (1.548) (0.153)

semiannually 1928:1-1966:2 0.030 0.072 0.030 0.074

(1.381) (0.057) (1.380) (0.058)

1967:1-2005:2 0.012 0.967 0.011 1.081

(0.741) (0.831) (0.667) (0.930)

1928-2005 0.054 0.331 0.054 0.337

(2.015) (0.397) (2.010) (0.403)

annually 1928-1966 0.075 0.230 0.075 0.233

(1.975) (0.263) (1.972) (0.266)

1967-2005 0.041 0.167 0.041 0.182

(0.955) (0.092) (0.947) (0.100)

Table 8. This table shows the estimates for the model

E[G(rm;t+1 � rf;t; vt; vt�1; vt�2; �0)] = 0 where

G =

0BBB@
rm;t+1 � rf;t+1 � �� �vt�1

(rm;t+1 � rf;t+1 � �� �vt�1) vt�1
(rm;t+1 � rf;t+1 � �� �vt�1) vt�2
(rm;t+1 � rf;t+1 � �� �vt�1) vt�3

1CCCA
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The table reports the coe¢ cient estimates along with the associated t-stats in parentheses and the J-stat

for overidentifying restrictions.
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Table 6: Statistics for Intra-Break Periods
mean variance skewness kurtosis AR(1) AR(1-12) T

1928:01-1954:12 0.006 0.005 -0.322 8.136 0.122 0.303 324

(rmt � rft)mon 1955:01-1994:12 0.004 0.002 -0.708 6.372 0.082 -0.058 480

1995:01-2005:12 0.006 0.002 -0.945 4.244 0.043 0.353 132

1928:01-1954:12 0.004 4.5�10-5 3.687 21.12 0.639 4.927 324

(bvt)mon 1955:01-1994:12 0.001 8.6�10-6 16.45 322.0 0.154 0.609 480

1995:01-200512 0.002 6.1�10-6 1.991 6.893 0.589 3.596 132

1928:1-1954:4 0.017 0.021 0.500 8.043 -0.107 -0.106 108

(rmt � rft)quar 1955:1-1994:4 0.011 0.007 -0.970 4.978 0.070 -0.365 160

1995:1-2005:4 0.018 0.008 -0.561 2.871 -0.080 0.125 44

1928:1-1954:4 0.012 0.0003 2.645 10.87 0.573 4.331 108

(bvt)quar 1955:1-1994:4 0.004 3.6�10-5 8.643 93.58 0.151 0.266 160

1995:1-2005:4 0.007 3.9�10-5 1.365 4.264 0.524 3.189 44

1928:1-1954:2 0.034 0.038 -0.714 4.550 0.199 -0.610 54

(rmt � rft)sm 1955:1-1994:2 0.023 0.015 -0.371 3.202 -0.139 -0.368 80

1995:1-2005:2 0.036 0.009 -0.636 1.979 0.599 -0.379 22

1928:1-1954:2 0.023 0.0009 1.912 5.619 0.700 4.558 54

(bvt)sm 1955:1-1994:2 0.008 7.9�10-5 5.288 37.91 0.207 0.392 80

1995:1-2005:2 0.015 0.0001 1.021 3.060 0.409 0.053 22

1928-1954 0.068 0.066 -0.768 3.016 0.164 -0.153 27

(rmt � rft)year 1955-1994 0.045 0.025 -0.634 3.045 -0.184 -0.350 40

1995-2005 0.072 0.034 -0.601 1.647 0.276 - 11

1928-1954 0.047 0.003 1.712 5.088 0.666 4.983 27

(bvt)year 1955-1994 0.016 0.0002 3.186 15.62 0.157 -0.189 40

1995-2005 0.030 0.0004 0.373 1.530 0.597 - 11

Table 9. Summary statistics of excess returns and realized variance. The table reports summary statistics

of excess returns on the stock market and the associated realized variance. The estimates are obtained

in four ways, using monthly, quarterly, semi-annual, and yearly returns. Monthly returns are calculated

by compounding daily returns within calendar months. Monthly realized volatilities are constructed by

cumulating squares of daily returns within each month, and so on. Our market proxy is the CRSP value-
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weighted index. The proxy for the risk free rate is the one-month Treasury Bill rate. The table shows the

mean, variance, skewness, kurtosis, �rst-order serial correlation, and the sum of the �rst 12 autocorrelations,

for each of the variables. The statistics are shown for three subsamples that are chosen to correspond to

the structural break dates in the mean of the log dividend-price ratio as identi�ed in Lettau and Van

Nieuwerburgh (2007).
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Table 7: Results Using Contemporaneous Variance
� �

1928:01-1954:12 0.007 -0.252

(1.167) (-0.153)

monthly 1955:01-1994:12 0.013 -6.852

(1.739) (-1.207)

1995:01-2005:12 0.006 -0.092

(0.868) (-0.030)

1928:1-1954:4 0.018 -0.147

(0.914) (-0.066)

quarterly 1955:1-1994:4 -0.043 13.79

(-2.067) (3.340)

1995:1-2005:4 0.024 -0.851

(0.881) (-0.208)

1928:1-1954:2 0.032 0.070

(0.761) (0.034)

semi� annually 1955:1-1994:2 -0.100 15.62

(-1.881) (2.252)

1995:1-2005:2 0.125 -5.969

(2.267) (-1.480)

1928-1954 0.067 -0.163

(0.849) (-0.103)

annually 1955-1994 -0.178 14.20

(-0.978) (1.245)

1995-2005 0.244 -5.799

(2.567) (-1.663)

Table 10. This table shows the estimates for the model

E[G(rm;t+1 � rf;t; vt; vt�1; vt�2; �0)] = 0 where

G =

 
rm;t+1 � rf;t+1 � �� �vt

(rm;t+1 � rf;t+1 � �� �vt) vt�1

!
The table reports the coe¢ cient estimates along with the associated t-stats in parentheses.
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Table 8: Results For Over-Identi�ed System
� �

1928:01-1954:12 0.007 -0.448

(1.456) (-0.290)

monthly 1955:01-1994:12 0.0004 2.547

(0.065) (0.484)

1995:01-2005:12 0.007 -0.310

(0.877) (-0.094)

1928:1-1954:4 0.018 -0.206

(0.843) (-0.085)

quarterly 1955:1-1994:4 -0.042 13.53

(-1.977) (2.750)

1995:1-2005:4 0.045 -3.875

(1.931) (-1.015)

1928:1-1954:2 0.026 0.099

(0.653) (0.053)

semi� annually 1955:1-1994:2 -0.089 14.24

(-1.664) (2.017)

1995:1-2005:2 0.150 -7.654

(4.057) (-2.793)

1928-1954 0.077 0.239

(1.151) (0.182)

annually 1955-1994 0.012 2.117

(0.095) (0.252)

1995-2005 0.292 -7.398

(3.115) (-2.362)

Table 11. This table shows the estimates for the model

E[G(rm;t+1 � rf;t; vt; vt�1; vt�2; �0)] = 0 where

G =

0BBB@
rm;t+1 � rf;t+1 � �� �vt

(rm;t+1 � rf;t+1 � �� �vt) vt�1
(rm;t+1 � rf;t+1 � �� �vt) vt�2
(rm;t+1 � rf;t+1 � �� �vt) vt�3

1CCCA
The table reports the coe¢ cient estimates along with the associated t-stats in parentheses.
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Table 9: Results Using Lagged Variance
est. Bias Corrected est.

� � � �

1928:01-1954:12 0.006 -0.161 0.006 -0.186

(1.520) (-0.153) (1.543) (-0.177)

monthly 1955:01-1994:12 0.005 -1.502 0.006 -1.327

(2.686) (-2.111) (2.873) (-2.661)

1995:01-2005:12 0.006 -0.054 0.006 -0.065

(1.283) (-0.030) (1.289) (-0.036)

1928:1-1954:4 0.018 -0.084 0.018 -0.090

(1.441) (-0.066) (1.447) (-0.071)

quarterly 1955:1-1994:4 0.003 2.072 0.002 2.466

(0.435) (1.907) (0.225) (2.270)

1995:1-2005:4 0.021 -0.446 0.022 -0.490

(1.311) (-0.205) (1.331) (-0.225)

1928:1-1954:2 0.032 0.049 0.032 0.051

(1.050) (0.034) (1.048) (0.036)

semiannually 1955:1-1994:2 -0.002 3.174 -0.007 3.723

(-0.138) (1.886) (-0.400) (2.212)

1995:1-2005:2 0.072 -2.428 0.074 -2.571

(2.708) (-1.128) (2.788) (-1.195)

1928-1954 0.064 -0.108 0.065 -0.111

(1.049) (-0.104) (1.052) (-0.107)

annually 1955-1994 0.014 2.027 0.009 2.325

(0.439) (1.473) (0.289) (1.689)

1995-2005 0.173 -3.429 0.177 -3.576

(2.608) (-1.146) (2.673) (-1.196)
Table 12. This table shows the estimates for the model

E[G(rm;t+1 � rf;t; vt; vt�1; vt�2; �0)] = 0 where

G =

 
rm;t+1 � rf;t+1 � �� �vt�1

(rm;t+1 � rf;t+1 � �� �vt�1) vt�1

!
The table reports the coe¢ cient estimates along with the associated t-stats in parentheses.
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Table 10: Results For Over-Identi�ed System
est. Bias Corrected est.

� � � �

1928:01-1954:12 0.005 -0.117 0.005 -0.130

(2.529) (-0.135) (2.546) (-0.151)

monthly 1955:01-1994:12 0.007 -0.271 0.007 -0.295

(2.423) (-0.265) (2.449) (-0.289)

1995:01-2005:12 0.004 -0.246 0.004 -0.303

(1.630) (-0.261) (1.671) (-0.321)

1928:1-1954:4 0.017 -0.108 0.017 -0.113

(1.163) (-0.064) (1.167) (-0.067)

quarterly 1955:1-1994:4 0.003 2.220 0.001 2.629

(0.352) (1.861) (0.136) (2.204)

1995:1-2005:4 0.034 -2.130 0.035 -2.278

(2.176) (-0.888) (2.247) (-0.949)

1928:1-1954:2 0.027 0.084 0.027 0.086

(0.851) (0.062) (0.849) (0.063)

semiannually 1955:1-1994:2 -0.001 3.061 -0.005 3.568

(-0.085) (1.871) (-0.330) (2.181)

1995:1-2005:2 0.092 -3.795 0.095 -3.967

(3.837) (-1.711) (3.943) (-1.788)

1928-1954 0.082 0.125 0.082 0.126

(1.475) (0.135) (1.473) (0.137)

annually 1955-1994 0.005 2.567 -0.0005 2.931

(0.154) (1.621) (-0.010) (1.851)

1995-2005 0.202 -4.405 0.205 -4.519

(2.595) (-1.239) (2.638) (-1.271)

Table 13. This table shows the estimates for the model

E[G(rm;t+1 � rf;t; vt; vt�1; vt�2; �0)] = 0 where

G =

0BBB@
rm;t+1 � rf;t+1 � �� �vt�1

(rm;t+1 � rf;t+1 � �� �vt�1) vt�1
(rm;t+1 � rf;t+1 � �� �vt�1) vt�2
(rm;t+1 � rf;t+1 � �� �vt�1) vt�3

1CCCA
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The table reports the coe¢ cient estimates along with the associated t-stats in parentheses and the J-stat

for overidentifying restrictions.
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Table 11: lognormal di¤usion
Panel A: � = 0; � = 5

� � Prob(� 6 b�)
N = 22; T = 936 0:000

(0:004)

[�0:007; 0:007]

4:957
(1:576)

[2:427; 7:586]

0:000

N = 66; T = 312 �0:001
(0:014)

[�0:024; 0:021]

5:112
(1:873)

[2:093; 8:425]

0:008

N = 132; T = 156 0:001
(0:034)

[�0:051; 0:056]

4:916
(2:286)

[1:241; 8:733]

0:030

N = 264; T = 78 0:002
(0:103)

[�0:157; 0:164]

4:945
(3:541)

[�0:478; 10:02]

0:048

Panel B: � = 0; � = 2

� � Prob(� 6 b�)
N = 22; T = 936 �0:000

(0:004)

[�0:007; 0:008]

2:032
(1:631)

[�0:641; 4:770]

0:062

N = 66; T = 312 �0:001
(0:014)

[�0:028; 0:021]

2:048
(1:891)

[�1:110; 5:132]

0:168

N = 132; T = 156 0:001
(0:035)

[�0:059; 0:057]

1:934
(2:387)

[�1:721; 5:977]

0:204

N = 264; T = 78 0:001
(0:096)

[�0:148; 0:174]

2:023
(3:238)

[�3:012; 7:166]

0:182

The table reports simulation results for the lognormal di¤usion. Panel A reports results for � = 0; � = 5,

while Panel B reports the same for � = 0; � = 2. The �rst column reports the choice of the number of high

and low-frequency observations. The choice corresponds to the corresponding numbers in the historical

sample. The second and third columns report the mean across 500 simulations along with the standard

deviation across the simulations in parentheses and the simulated 90% con�dence interval in square brackets

of the � and � estimates, respectively. The fourth column reports the probability of obtaining an estimate
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of � smaller than or equal to the value obtained in the historical sample.
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Table 12: GARCH(1,1) di¤usion
Panel A : � = 0; � = 5

� � Prob(� 6 b�)
N = 22; T = 936 0:000

(0:005)

[�0:007; 0:0078]

4:839
(2:064)

[1:436; 8:203]

0:004

N = 66; T = 312 �0:000
(0:014)

[�0:022; 0:023]

5:013
(2:182)

[1:493; 8:333]

0:024

N = 132; T = 156 �0:002
(0:032)

[�0:054; 0:046]

5:168
(2:576)

[1:402; 9:447]

0:022

N = 264; T = 78 �0:000
(0:074)

[�0:120; 0:112]

5:006
(2:973)

[0:362; 9:610]

0:042

Panel B : � = 0; � = 2

� � Prob(� 6 b�)
N = 22; T = 936 0:000

(0:005)

[�0:008; 0:008]

1:853
(2:214)

[�1:828; 5:822]

0:136

N = 66; T = 312 �0:000
(0:014)

[�0:023; 0:024]

2:095
(2:229)

[�1:428; 5:419]

0:224

N = 132; T = 156 0:000
(0:032)

[�0:048; 0:050]

1:965
(2:554)

[�2:092; 6:209]

0:258

N = 264; T = 78 �0:003
(0:075)

[�0:126; 0:105]

2:134
(2:930)

[�2:284; 7:090]

0:220

The table reports simulation results for the GARCH(1,1) di¤usion. Panel A reports results for � = 0; � = 5,

while Panel B reports the same for � = 0; � = 2. The �rst column reports the choice of the number of high

and low-frequency observations. The choice corresponds to the corresponding numbers in the historical

sample. The second and third columns report the mean across 500 simulations along with the standard de-

viation across the simulations in parentheses and the simulated 90% con�dence interval in square brackets

of the � and � estimates, respectively. The fourth column reports the probability of obtaining an estimate
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of � smaller than or equal to the value obtained in the historical sample.
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