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Abstract

Kim and Pollard (Annals of Statistics, 18 (1990) 191–219) showed that a general class of M-estimators
1 / 3 1 / 2converge at rate n rather than at the standard rate n . Many times, this situation arises when the objective

function is non-smooth. The limiting distribution is the (almost surely unique) random vector that maximizes a
certain Gaussian process and is difficult to analyze analytically. In this paper, we propose the use of the
subsampling method for inferential purposes. The general method is then applied to Manski’s maximum score
estimator and its small sample performance is highlighted via a simulation study.  2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Kim and Pollard (1990) studied a class of M-estimators defined by maximization of processes Pn
ng 5 1/n o g (X ), where hX j is an independent and identically distributed (i.i.d.) sequence withu i51 u i i

ddistribution P, hg :u [ Qj is a class of functions indexed by a subset Q of IR , and P is the empiricalu n
ˆmeasure. When g is sufficiently smooth, the resulting estimator u will typically converge at theu n

1 / 2standard rate n to a limiting Gaussian distribution with mean zero; a basic example is the sample
2mean with g (X ) 5 2 (X 2u ) . However, for non-smooth g these standard asymptotics tend tou i i u

1 / 3break down and the rate of convergence often slows to n ; this is sometimes called the sharp-edge
ˆeffect. A simple example dating back to Chernoff (1964) is the univariate modal interval estimator un
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g ( )

that maximizes P [u 2 a,u 1 a], the empirical measure of an interval of fixed width. In this instance,n

g (X ) 5 1hu 2 a # X #u 1 ajwith 1h ? j being the indicator function. Another example, and the oneu i i

that motivated this paper, is the maximum score estimator proposed by Manski (1975, 1985); see
Section 3 for details.

Considering the case of non-smooth g , Kim and Pollard (1990) derived a general theorem for au
ˆsequence of estimators hu j under the following conditionsn

22 / 3• P g $ sup P g 2 o (n );n u u [Q n u Pnˆ• u converges in probability to the unique u(P) that maximizes Pg ;n u

• u(P) is an interior point of Q ;
• Pg is twice differentiable with second derivative matrix 2V at u(P);u

d• H(s, t) 5 lim bPg g exists for each s, t in IR ;hu (P )1s /b j hu (P )1t /b j
b →`

• a set of further regularity conditions.

Now, let Z(t) be a Gaussian process with continuous sample paths, expected value 2 0.5t9Vt, and
covariance kernel H. Theorem 1.1 of Kim and Pollard (1990) states that if V is positive definite and if

1 / 3 ˆZ has non-degenerate increments, then n (u 2u(P)) converges in distribution to the (almost surelyn

unique) random vector that maximizes Z. Denote this vector by M.
It is typically impossible to analyze the distribution of M analytically in order to base inferences for

Table 1
Estimated levels of nominal 5 and 10% subsampling hypothesis tests based on 1000 replications; columns 2 to 4 list the
results for fixed block sizes while column 5 lists the results for the automatic choice of block size

Error distribution 5 L, n 5 100
˜Target b 5 10 b 5 20 b 5 30 b

0.05 0.04 0.05 0.08 0.04
0.10 0.05 0.07 0.14 0.10
Error distribution 5 T3, n 5 100

˜Target b 5 10 b 5 20 b 5 30 b
0.05 0.03 0.05 0.08 0.03
0.10 0.04 0.07 0.13 0.06
Error distribution 5 H, n 5 100

˜Target b 5 20 b 5 30 b 5 40 b
0.05 0.03 0.04 0.09 0.06
0.10 0.04 0.07 0.13 0.10
Error distribution 5 L, n 5 200

˜Target b 5 30 b 5 45 b 5 60 b
0.05 0.03 0.05 0.11 0.06
0.10 0.06 0.09 0.16 0.10
Error distribution 5 T3, n 5 200

˜Target b 5 30 b 5 45 b 5 60 b
0.05 0.02 0.05 0.10 0.05
0.10 0.05 0.09 0.15 0.09
Error distribution 5 H, n 5 200

˜Target b 5 50 b 5 65 b 5 80 b
0.05 0.03 0.05 0.09 0.04
0.10 0.04 0.08 0.13 0.09
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u(P) on it. Also, given the non-standard asymptotics, it is doubtful that the conventional bootstrap
would work. In this paper, we will show how the subsampling method can be used to obtain
asymptotically valid hypothesis tests.

The remainder of the paper is organized as follows. Section 2 describes the general method. As an
example, we consider inference based on Manski’s maximum score estimator in Section 3. Finally,
Section 4 concludes. The appendix contains some details concerning the computations as well as the
simulation results.

2. Subsampling hypothesis tests

The subsampling method is designed to provide valid inferences under very weak assumptions. The
original paper by Politis and Romano (1994) describes the construction of confidence regions for
general parameters, while the methodology of subsampling hypothesis tests was introduced in Politis
et al. (1999); Section 2.6.

We wish to test the null hypothesis H : f(u(P)) 5 0 against the alternative hypothesis H :0 1
d kf(u(P)) ± 0. Here, f( ? ) is a smooth function from IR to IR and it is assumed that the Jacobian matrix

of f( ? ) evaluated at u(P) is of full rank. The basis for our test will be a statistic t 5 t (X , . . . ,X ) thatn n 1 n

converges to zero in probability under the null and that converges to a positive constant in probability
kˆunder the alternative. An obvious choice is t 5 uu f(u )uu, where uu ? uu is any norm on IR . The final testn n

1 / 3statistic then becomes T 5 n t . Definen n

Q (x, P) 5 Prob hT # xj.n P n

nTo describe the test construction, let Y , . . . ,Y be equal to the N 5 ( ) subsets of hX , . . . ,X j ofb1 N n 1 nn

size b , n ordered in any fashion. Let t be equal to the statistic t evaluated at the data set Y . Then,b,i b i

sampling distribution of T is then approximated by the subsampling distributionn

Nn

21 1 / 3Q̂ (x) 5 N O 1hb t # xj.n,b n n,b,i
i51

Using this estimated sampling distribution, the critical value for the test is obtained as the 1 2 a
ˆquantile of Q ; specifically, definen,b

ˆq̂ (1 2 a) 5 infhx: Q (x) $ aj.n,b n,b

ˆFinally, the nominal level a test rejects H if and only if T . q (1 2 a).0 n n,b

The following theorem gives the consistency of this procedure both under the null and under the
alternative hypothesis.

ˆTheorem 2.1. Assume hu j is a sequence of estimators satisfying the conditions of Theorem 1.1 ofn

Kim and Pollard (1990). Consider the Gaussian process with Z(t) with continuous sample paths,
expected value 2 0.5t9Vt, and covariance kernel H. Assume that V is positive definite and that Z has
non-degenerate increments. Finally, assume b /n → 0 and b → ` as n → `. Then,

ˆ[(i)] If f(u(P)) 5 0, Prob hT . q (1 2 a)j → a as n → `.P n n,b
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ˆ[(ii)] If f(u(P)) ± 0, Prob hT . q (1 2 a)j → 1 as n → `.P n n,b

Proof. Theorem 1.1 of Kim and Pollard (1990) implies that under the null hypothesis t converges ton

zero in probability while under the alternative hypothesis it converges to a positive constant in
probability. The proof now follows from Theorem 2.6.1 of Politis et al. (1999) if we can show that Tn

has a non-degenerate, continuous limiting distribution under the null. To see why this is true, denote
by M the (almost surely unique) random vector that maximizes Z. Also, let J be the d 3 k Jacobian
matrix of f( ? ) evaluated at u(P), assumed to be of full rank. By the delta method, G (P) thenn

converges in distribution to uuJ9Muu. h

Remark 2.1. For all but very small sample sizes, the number N of subsets of size b will be too largen
ˆin order to calculate the exact subsampling distribution G ( ? ). In that case one can select a randomn,b

subset, with or without replacement, hI , . . . ,I j of h1, . . . ,N j and base the subsampling distribution1 B n

on the statistics t , . . . ,t only by consideringn,b,I n,b,I1 B

B
21 1 / 3G̃ (x) 5 B O 1hb t # xj.n,b n,b,Ii

i51

As long as B → ` as n → `, the asymptotic validity of the subsampling hypothesis test is not affected;
this can be seen by arguments very similar to that of Corollary 2.4.1 of Politis et al. (1999).

2.1. Choice of b

The main practical problem in applying the subsampling method is the choice of the subsample (or
block) size b; the problem is analogous to the choice of the bandwidth in smoothing problems.
Unfortunately, the asymptotic requirements b → ` and b /n → ` as n → ` give little guidance when
faced with a finite sample. Instead, we propose a calibration algorithm to estimate a ‘good’ block size
in practice.

Let us assume that the null hypothesis is true. In finite samples, a subsampling hypothesis test will

Table 2
Estimated levels of nominal 5 and 10% bootstrap hypothesis tests based on 1000 replications

Error distribution 5 L
Target n 5 100 n 5 200 n 5 500
0.05 0.03 0.01 0.00
0.10 0.04 0.01 0.00

Error distribution 5 T3
Target n 5 100 n 5 200 n 5 500
0.05 0.01 0.00 0.00
0.10 0.02 0.00 0.00

Error distribution 5 H
Target n 5 100 n 5 200 n 5 500
0.05 0.03 0.01 0.00
0.10 0.04 0.01 0.00
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typically not exhibit level exactly equal to a ; moreover, the actual rejection probability generally
depends on the block size b. Indeed, one can think of the actual level l of a subsampling test as a
function of the block size b, conditional on the underlying probability mechanism P and the nominal
level a. The idea is now to adjust the ‘input’ b in order to obtain the actual level close to the nominal
one. Hence, one can consider the block size calibration function h:b → l. If h( ? ) were known, one

˜ ˜could construct an ‘optimal’ test by finding b that minimizes uh(b) 2 a u and use b as the block size;
note that uh(b) 2 a u 5 0 may not always have a solution.

In principle, we could simulate h( ? ) if P were known by generating data of size n according to P
and constructing subsampling hypothesis tests for u(P) for a number of different block sizes b. This
process is then repeated many times and for a given b one estimates h(b) as the fraction of tests that

ˆreject the null. The method we propose is identical except that P is replaced by an estimate P that isn
ˆconsistent for P at least under the null. The choice of P should be made on a case-by-case analysis.n

ˆTo reflect the null hypothesis as much as possible, it should ideally satisfy f(u(P )) 5 0 but this willn

not always be possible (for example, see Subsection 3.1). However, a sensible choice that is always
available is the empirical distribution of the observed data hX , . . . ,X j; in this instance one can take1 n

ˆ ˆ ˆu(P ) 5 u and for large n it will be assured that f(u(P )) ¯ 0 in case the null hypothesis is true.n n n

Algorithm 2.1. [Choice of the block size]

1. Fix a selection of reasonable block sizes b between limits b and b .low up
ˆ* *2. Generate K pseudo sequences X , . . . ,X , k 5 1, . . . ,K i.i.d. according to P . For each sequence,k,1 k,n n

k 5 1, . . . ,K, and for each b, construct a subsampling hypothesis test HT for H : f(u(P)) 5k,b 0
ˆf(u(P )). Let HT 5 1 if H is rejected and 0 otherwise.n k,b 0

21 Kˆ3. Compute h(b) 5 K o HT .k51 k,b
˜ ˆ4. Find the value b that minimizes uh(b) 2 a u.

Remark 2.2. Algorithm 2.1 is by an order of magnitude more expensive than the computation of the
final subsampling hypothesis test once the block size has been determined. While it is advisable to
choose the selection of candidate block sizes in Step 2 as fine as possible (ideally, include every
integer between b and b ), this may computationally not be feasible, especially in simulationlow up

studies. In those instances, a coarser grid should be employed.

Remark 2.3. The idea of Algorithm 2.1 is to find a good block size in case the null hypothesis is true,
that is, to bring the actual level close to the nominal level. No attempt is made to maximize power,
since this would require to act as if the alternative hypothesis were true. Since we do not know in
practice which hypothesis is true, we stick to the common principle of ‘honoring the null’.

3. The maximum score estimator

There are quite a few examples of M-estimators displaying cube root examples, e.g. the modal
interval, the shorth estimator (Kim and Pollard, 1990), monotone densities, and current status (van der
Vaart and Wellner, 1996; Subsection 3.2.3). The example that motivated this paper is Manski’s
maximum score estimator in binary response models.
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3.1. Background and general discussion

Consider the binary response model of the form

1 if z9b(P) 1 u $ 0,
y 5H 0 otherwise,

where y is a scalar dependent variable, z is a d-dimensional vector of explanatory variables, u is an
unobserved error variable, and b(P) is a vector of regression parameters. In addition, introduce the
notation F(tuz) 5 P(u # tuz 5 z) to denote the conditional distribution of u given z.

If F( ? uz) is known to belong to a parametric family, b(P) can be estimated by maximum likelihood,
among other techniques; for example, see McFadden (1974) or Amemiya (1985), Chapter 9. One
disadvantage of this method, in contrast to ordinary linear least squares regression, is that if F( ? uz) is
misspecified, the estimation of b(P) will be inconsistent. Another disadvantage is that the estimation
is not robust against heteroskedasticity. These facts have lead to a search for estimation methods that
do not require specifying F( ? uz); see Cosslett (1983, 1987); Han (1987); Ichimura (1993); Klein and
Spady (1993); Powell et al. (1986), and Stoker (1986), among others. However, all of those
estimators are somewhat restrictive in that they require that z and u be independent, or that u be
limited to heteroskedasticity of certain limited form, or that the distribution of z be known up to a
finite-dimensional parameter; see the discussion in Horowitz (1992). The most general estimator by
far is the maximum score estimator of Manski (1975, 1985). Its main assumption is that the median of
F( ? uz) is equal to zero; and it allows the dispersion of u to depend on z in a much more general way
than can be accommodated by any of the previously mentioned papers.

ˆAmong many equivalent definitions, the maximum score estimator can be defined as the value bn

that maximizes the ‘score’ function

n1
] 9 9P g 5 O [1hy 5 1, z b $ 0j 1 1hy 5 0, z b , 0j].n b i i i in i51

9Obviously, this fits in the general framework of Section 1 letting X 5 (z , y )9 and u 5 b ; as always, iti i i
ˆis maintained that the hX j are i.i.d. according to some unknown distribution P. Because b is onlyi n

determined up to scalar multiples, it is usually assumed that it is standardized to have unit length;
however, other standardizations are also possible; e.g. see Horowitz (1992). Similarly, the regression
equation can be rescaled to ensure that b(P) is of unit length as well. The parameter space thus can be

didentified with the unit sphere in IR .
Despite the attractive properties of the maximum score estimator, to the best of our knowledge, has,

to date, not been used for inferential purposes. For many years, its distributional properties remained
unknown; for example, see the discussion in Amemiya (1985), pp. 345–346. This gap was filled by
Kim and Pollard (1990) but the limiting distribution turned out to be untractable and unamiable to the
bootstrap.

One solution to this problem was proposed in Horowitz (1992). In this paper, he modified Manski’s
maximum score estimator by smoothing the score function so that it becomes continuous and
differentiable. This smoothed estimator is consistent and, after centering and suitable normalization, is
asymptotically normally distributed. In addition, the standard asymptotics of this estimator permit an
application of the bootstrap which significantly improves finite sample performance; see Horowitz
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(1996). The problem with Horowitz’s estimator is that smoothness of the score function induces a bias
which needs to be eliminated by imposing further smoothness restrictions on F( ? uz) and hence it
needs somewhat stronger conditions than Manski’s original estimator; for example, see Pollard
(1993). Furthermore, the simulation studies in Horowitz (1992) indicate that even for samples of size
n 5 1000 the normal approximation is rather inaccurate (although the bootstrap greatly improves finite
sample performance). The application of the subsampling method as outlined in Section 2 allows for
the construction of hypothesis tests for b(P) or smooth functions of b(P) based on the Manski’s
original maximum score estimator. For the exact regularity conditions ensuring cube root asymptotics
of the estimator, the reader is referred to Example 6.4 of Kim and Pollard (1990).

3.2. Simulation study

The goal of this subsection is to shed some light on the small sample performance of the
subsampling hypothesis test applied to the maximum score estimator. The simulation design is very
similar to that of Horowitz (1992) but we use the more common standardization of b having unit
length. The dimension of the predictor variable is d 5 2 and the regression parameter is b(P) 5
] ]Œ Œ( 1 /2, 1 /2)9. The predictor variables z and z have a joint standard normal distribution and we1 2

consider three different distributions for the error u:
]ŒDistribution L: 2 u | logistic with median 0 and variance 1;
]ŒDistribution T3: 2 u | Student’s t distribution with 3 degrees of freedom, normalized to have

variance 1;
] 2 4ŒDistribution H: 2 u 5 0.25(1 1 2w 1 w )v, where w 5 z 1 z and v | logistic with median1 2

0 and variance 1.
]ŒThe factor 2 is due to the rescaling of the Horowitz (1992) design so that the usual unit-length

standardization for b is achieved.
]ŒThe null hypothesis is H : b (P) 5 1/ 2; we consider the two nominal levels a 5 0.05 and0 2

a 5 0.1; the sample sizes included are n 5 100 and n 5 200; all simulations are based on 1000
replications per scenario; for further details concerning the computations, see Appendix A.

A few words concerning the automatic choice of the block size are in order. As stated earlier, in our
ˆAlgorithm 2.1 one would ideally want to sample from a distribution P that imposes the nulln

hypothesis. In our application, this would require a consistent estimator of the distribution of the error
u. Unfortunately, in binary response regressions, in contrast to ordinary least square regressions, such

ˆan estimator is not available. We therefore take P to be the empirical distribution of the observed datan
ˆ ˆhX , . . . ,X j and b (P ) 5 b .1 n 2 n 2,n

The simulation results are presented in Table 1 in Appendix A. As expected, the optimal fixed
block size generally depends on the error distribution. The automatic choice of block size is seen to
work quite well in general. When comparing our results with those for the smooth maximum score
estimator reported in Horowitz (1992), it turns out that they are much better when the inference for
the smoothed estimator is based on the normal approximation and comparable when it is based on the
bootstrap.

Remark 3.1. A formal proof that the (conventional) bootstrap does not work for Manski’s maximum
score estimator is beyond the scope of this paper. However, we provide some simulation results

]Œconcerning the performance of a bootstrap test for the null hypothesis H : b (P) 5 1/ 2; we consider0 2
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the two nominal levels a 5 0.05 and a 5 0.1; the sample sizes included are n 5 100, n 5 200, and
n 5 500; all simulations are based on 1000 replications per scenario and the number of bootstrap
samples is 500. The results are presented in Table 2. It is apparent that the level of the bootstrap test
tends to zero as the sample size increases.

4. Conclusions

In this paper, we discussed inference for a class of estimators that converge at the non-standard rate
1 / 3of n . Such a general class was considered by Kim and Pollard (1990) where the estimators

maximize a non-smooth objective function given i.i.d. data and a set of regularity conditions. The
limiting distribution is the (almost surely unique) random vector that maximizes a certain Gaussian
process and cannot be analyzed analytically. Instead, we showed how to construct hypothesis tests
based on the subsampling method that have asymptotically correct significance level. The main
drawback of our method is its computational burden due to the expensive algorithm to determine the
block size to be used in practice; hence, it is a drawback that will diminish over time taking into
account the development of fast computers.

As an application, we considered Manski’s (1975, 1985) maximum score estimator in binary
response regression models. It is the most general estimator available for such models but has so far
not been used for inferential purposes because of its difficult limiting distribution. However, our
general subsampling hypothesis tests were seen to apply and some simulation studies showed good
finite sample performance.
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Appendix A. Details concerning the computations

A problem with our simulation study is the great computational expense. To start with, the score
function P g is non-trivial to maximize because it is non-differentiable and has many local maxima.n b

At least for higher-dimensional b it would seem that the only way to go is a global optimization
routine; but being in a low-dimensional problem (d 5 2), it turned out to be more efficient to employ a
grid search. To explain how, first introduce the alternative notation S (b ) 5 P g and then define then n b

univariate score function
]] ]]2 2S (b ) 5 maxhS (( 1 2 b , b )9), S ((2 1 2 b , b )9)j.œ œn,uni 2 n 2 2 n 2 2

ˆWe computed S (b ) over the grid h0, 0.01, 0.02, . . . , 0.99, 1j to find the maximizing b ; noten,uni 2 2,n
ˆthat b can be found easily from there but we did not need it.1,n
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The next problem lies in the fact that subsampling in conjunction with the block size Algorithm 2.1
is comparable to a double bootstrap and thus very expensive. To keep the computational burden
manageable, we did several things. First, for the subsamples we only used the ‘continuous’ blocks of
size b, that is, Y 5 hX , . . . ,X j to Y 5 hX , . . . ,X j. This actually corresponds to subsam-1 1 b n2b11 n2b11 n

pling for time series (Politis et al., 1999, Chapter 3) but it also works for independent data. The
advantage is that only a total of n 2 b 1 1 subsamples are used as opposed to B (typically taken to be
equal to 1000) subsamples for the stochastic approximation mentioned in Remark 2. To make sure
that the simulations were not affected by this shortcut, we compared the two alternatives – time series
way vs. stochastic approximation for i.i.d. data – in several scenarios with fixed block sizes and the
results were identical up to simulation error.

Second, the number of ‘reasonable’ block sizes included in Algorithm 2.1 was limited to three and
they were selected according to some prior simulations. Obviously, this cannot be done with a real
data set and one has to use a finer grid; however, it becomes feasible then because only a single
hypothesis test needs to be constructed instead of 1000 tests for the simulation study.

Third, the number of bootstrap samples in Algorithm 2.1 was taken to be K 5 200, while for a real
application we would recommend K 5 1000.

Still, reducing the computational burden in these ways, the simulations for the sample size n 5 200
ran nearly a week for each scenario, using stand-alone C11 code on a supercomputer HP-Convex
Exemplar SPP S2000. This explains why we did not include sample sizes of the order n 5 500 or
n 5 1000 in the study.
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