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1. PRELIMINARIES AND STATEMENT OF THE PROBLEM.

Consider observations {Yi, i = 1, .., n+l}, which are related to a
k-dimensional vector of design variables {xi, i = 1, .., n+tl} according to
the linear model Y, = x;B o + U, where B o 318 k-dimensional vector of unknown
parameters and the errors { U, i =1, .., n+l} are unobservable real random
variables. Under the maintained hypothesis of stationary { Ui, i1}, we are
interested in testing serial independence of the unobserved series { Ui, i2]}
consistently in the direction of general first order dependence alternatives.

Formally, the null and alternative hypotheses can be written as,

H: { U, i2]} are independently distributed;

HI: S(u) # 0, for some u € IR2,

where u = (ul.uz)’, S(u) = F(u) — Fl(ul)Fl(uz), F(.) is the-joint distribution
function of ( Ui'Ui+l ) and F l( .) is the marginal distrib(xtion function of Ui.

For observable { Ui, i2]}, Skaug and Tjgstheim (1993), Delgado (1996) and
Hong (1998), among others, have proposed test statistics based on functionals

of the Hoeffding-Blum-Kiefer-Rosenblatt (HBKR) empirical process
S(u) =F(u)~F (), (u)
where F (u) = n'IZLII(UiSul)I(UMSuz) estimates F(u), F (u) =

-l¢n . o olontl :
n ~Zi=11(UiSul) estimates F (u ), F, (u) = n Zi=21(UiSu2) estimates F (u)

and, hence, Sn(u) estimates S(u); I(.) denotes the indicator function.




Functionals of nmSn(u) form a basis for constructing test statistics of H0
(see, e.g., Delgado 1998). A popular one is the Cramér-von Mises statistic Cn
= n'S}_[n'"S (UU,_)J’. Hoeffding (1948) and Blum et al (1961) proposed
this type of statistic in the context of testing independence between two
samples, and tabulated its liﬁﬁﬁng distribution under the null hypothesis.
Skaug and Tjgstheim (1993) show that, if F(.) is continuous, then Cn has the
same limiting distribution as the statistic of Blum et al (1961). Other
functionals of nmSn(u) could be used, e.g., based on the Kolmogorov-Smirnov
norm.

We propose to test H0 using residuals ﬁni = Yi— x;ﬁn, where /B\n is some
reasonable estimate of BO (as usual, hereafter we suppress the subscript n and

denote simply l/} i and ﬁ). Thus, S(u) is estimated by the empirical process
A _ A A A
S(uw=Fw-F )k (1),

A A A
where Fn(u), Fm(ul) and an(uz) are defined as Fn‘(u), Fln(ul) and an(uz),
A
respectively, but replacing errors Ui by residuals Ui. Functionals of

A
n”zSn(u) can be used as test statistics, e.g., the Cramér-von Mises statistic

A - A A A
Cn =n IZI;:l[nlﬂSn(Ui'UiH)] g

In the next section we discuss the asymptotic behaviour of the empirical
process n'? §n(u), derive the limiting distribution of é\?n under the null
hypothesis and show that the test based on (’}n is consistent. Surprisingly,
n'? gﬂ(u) converges to the same limiting process as n'? Sn(u). This is not the
case with other empirical process which depend on parameter estimates, as

those used in goodness-of-fit tests (see, e.g., Durbin 1973). In Section 3 we

report the results of a small Monte Carlo experiment. Proofs are confined to




the Appendix.
2. ASYMPTOTIC PROPERTIES
The following assumptions will be used to derive asymptotic properties:
Y = x;BO + U, 2l (@)

where { Ui, i>1} is a strictly stationary sequence of real random variables;

Xn = [xl, xn]’ is a non-random full-rank matrix and
max x(X’X )'x. = o(l); )
1§ 0!

The distribution function of ( u.u., )" has a density function with marginal

density function hl( .) continuous and such that hl(x)>0, for all xer. (3)
2B R —
(XX )"*(B-B) = O,(1). @

Assumption (2) is typical when studying asymptotic properties of
statistics in this context. Observe that this assumption does not rule out
trending explanatory variables. Under assumption (3), which is necessary to
ensure that empirical processes based on residuals behave properly (see Koul
1992), the marginal distribution ‘function is strictly increasing. When (2)
holds, assumption (4) is satisfied by most estimates, e.g. ordinary least
squares and least absolute deviations.

Hereafter, the interval [0,1] is denoted by I, the rectangle (0,1 ]2 is




denoted by P, n(P) denotes the set of all real functions on /> which are
"continuous from above with limits from below" as in Definition 1.1. of
Neuhaus (1971), and "=" denotes weak convergence of stochastic processes. As
usual, to derive asymptotic results it is convenient to express ./S'\n(u) as an
empirical process in D(%). -For t = (tl't2)' e PP, we denote §;(t) =
§n(F;‘(tl),F;‘(t2)) and S;(t) = Sn(F;I(tl),F;I(tz)), where F () denotes the
distribution function of Ui. The following theorem provides the first order

asymptotic equivalence between the empirical processes §;(t) and S;( t).

Theorem: Assume that (1), (2), (3) and (4) hold. Then:

Ax _ * _ -12
a) Under H, ::1;2 |Sn(t) Sn(t)| = o (n'").

b) Under H, if (U, i2I] is ergodic, then sup, 1S't)-S'(t)| = o(1). u
! tel” "

From this result it follows straightforwardly that, if (1)-(4) hold,
then, under Ho’ n'? §:(t) = Soo(t), where Soo(t) is a Gaussian process in lD(12)
with zero mean and covariance structure:  cov(S_(s).S_(t)) =
[min{sl,tl}—sltl][min{sz,tzl—-sztzl; and, under Hl, §:(t) converges in
probability to F(F;l(tl),F;l(tz)) aiRAx (see Proof of the Corollary in the
appendix below). This results are exploited in the following corollary, which

A
justifies asymptotic inferences based on C .

Corollary: Assume that (1), (2), (3) and (4) hold. Then:

a) Under Ho’ Q converges in distribution to C__ = I ) Soo(t)zdt.
I

A
b) Under Hl, if { Ui, i21} is ergodic then, for all c<eo, ;1.—1>§3 pr{Cn>c} =1l n




The Corollary guarantees the implementation of the test using én and
critical values from the distribution of the random variable C_., which has
been tabulated by Blum et al (1961). This result may seem surprising at first
sight because, when testing goodness of fit, the asymptotic distribution of
the test statistic computed with observations is not the same as the
asymptotic distribution of the test statistic computed with residuals (see,
for example, Koul 1992). When testing goodness of fit, replacing Bo by 6
introduces a random term in the empirical distribution function and this
affects the distribution of the test statistic. When testing independence,
replacing the true parameter value by an estimator introduces random terms in
the joint empirical distribution function and in the marginal empirical
distribution functions, but these random terms cancel out asymptotically when

we consider the HBKR empirical process.
3. SIMULATIONS

In orller to examine how the replacement of observations by residuals affects
the finite-sample behaviour of the test statistic, we have carried out some
Monte Carlo experiments, similar to those performed in Skaug and Tjgstheim
(1993). All programs have been written in GAUSS. To study the size of the
test, we have generated observations from a regression model satisfying (1.),
with x = (1,i), B = (1,1) and errors (U r}?: generated independently from a
standard normal distribution. We compare the behaviour Cn, statistic based on
errors, and én, statistic based on least squares residuals. In Table 1 we

report the percentage of rejections of the null hypothesis for different

theoretical significance levels o and sample sizes n. Reported values are




based on 5000 Monte Carlo replications. As critical values we used: 0.04694
for a=0.1, 0.05840 for a.=0.05 and 0.08685 for a.=0.01; these values have been
obtained from Table II in Blum et al. (1961).

TABLE 1 ABOUT HERE

In this table we observe that the results obtained when using residuals
are similar to those obtained with errors. Moreover, the real level of the
test is not far from the intended level, regardless of whether the statistic
is computed with errors or residuals. To study the power of the test, we have
performed Monte Carlo experiments with the same characteristics as those
described in Skaug and Tjgstheim (1993), Section 4.4. The results of these
experiments are not reported. When using errors, as expected, we obtain the
same results as those reported by Skaug and Tjgstheim (1993) in Figure 1. When

using residuals, all results are similar to those obtained with errors.
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APPENDIX: Proofs.
Hereafter, t = (tl,tz)’ is a generic element in I j=12 and i=I,...,n unless

otherwise stated; and C(Iz) is the set of all real continuous functions on I.

The proof of Theorem and Corollary will be derived from Propositions 1




and 2 below. In these propositions, notation and assumptions are as follows:

P P
{(Yli,x;i,YZi,x;i)'}'i‘=l are observations from an R X R 'X R X R > variable

such that the following linear regression models hold:

Vo= xBo+ Up (€1)

where {(U li,U 2i)’, i2]} is a strictly stationary sequence of R X R random
vectors, H(.) is the distribution function of (Uli,UZi)’ and Hl(.), H2(.) are

its marginal distribution functions. We will also assume that:

Xjn = [le, xjn]’ are non-random full-rank matrices and

max x (X' X )'x = o) (C2)
1€igp M v am I

H(.) has a density function A(.) whose marginal density

functions hl( D h2( .) are continuous and positive in R; (C3)
’ 17,4 _ -
(X X )\*(B-B,) = O, (C4)

A
where Bj is an estimator of Bjo' Other assumptions which will be required in

some results are the following:

{(U,U,), iz} is an ergodic sequence; (C5)
{(u li'U2i)" i2]} is an m-dependent sequence, for m € NU{0}; (C6)

the concept of m-dependent sequences can be found, e.g., in Billingsley
(1968), p. 167;
H(.) = H (.)H.). (&7))

With this notation we define P (t) = n'"{n"'X}_ I(H (U )<t )I(H (U )<t)) —
n*X" I(H (U )<t )30 I(H (U )<t)} and P (t) in the same way as P (t), but




. . A 7 A
replacing errors Uji by residuals Uji = in - xjiBj.

Proposition 1: Assume that (Cl), (C2), (C3) and (C4) hold and define G(t)
H(H;l(tl ),H;l(tz)), if t € (0,1)x(0,1) or t ¢, otherwise. Then:
a) If (C5) holds, then Pn(t), Fn(t) are processes in [D(12) such that:

i) sup,|P )P (t)| = on');
tel” " "

ii) n\2 Pn(t) converges in probability to L(t) = G(t) — te.
b) If (C6) and (C7) hold then Pn, Fn are processes in [D(12) with:
i) :;11)2|Pn(t)—Pn(t)| = o(1);
ii) Fn(t) = P(m)(t), where P(m)(t) is a Gaussian process in [D(12) centered
at zero and with the following covariance structure: if m>0,
@), pm) — [minfc ¢ l— i -
cov(P™(s),P7(t)) = [mln{sl,tl} sltl][mm{sz,tz} s2t2] +
m 2 <0 )— <t )—
Sy ENT (I(H(U )Ss)~s {I(H(U, _)St)~4]] +
m 2 _
Zk=1E[nj=l{1(Hj(Ujk+l)Ssj)—sj} {I(Hj(Uj'l)Stj) tj}],
. _ ©/c) pO _ . _ . _
and, if m=0, cov(P(s)P(t)) = [rmn{sl,tl} sltl][mm{sz,tzj s2t2].
Proof:
. . A -1/2¢n A A
a-i) Define W(t) = n Zi:l{1(Hl(Uli)Stl)I(H2(U2i)St2) - G(t)}, and
W (1) = n PS8 (1H(D )st)-t). With these definitions,
B)= Wy—W W_(t)-n""PW (¢ )W 2(Gt)- Al
(t) = W ()~ W (1)t W, (1)n SEIW, ()Gt ). (Al
In a similar way, when using errors instead of residuals
- _ _ - 12 -
Pn(t) = Wn(t) t2Wln(tl) th2n(t2) n Wln(tl)Wzn(t2)+n (G(t) tltz)’ (A2)
A A
where Wn(t) and an(tj) are defined in the same way as Wn(t) and an(tj),
P,
respectively, but replacing f]ji by Uji. Given v, € R’ define

gj(tj) = hj(HJfl(tj)) if tj € (0,1) or 0 otherwise;




G (1v) = H,(Hjl(t,)-i-x’,_(X’_ X )“”vj) if ¢ €(0,1) or t, otherwise;

= ’ 12,4
o =G, {t (XJnXJn) (B B))
_ -1 ’ ’ -12 -1 ’ ’ -12
Gni(t’vl'vz) - H(Hl (tl) +xli(xlnxln) Mt Hz (tz) +x2i(x2nx2n) v2)
ifte (0,1) x (0,1) or Lt otherwise;
A ’ 12,4 _ ’ 12,4
Fni - Gni(t’ (Xlnxln) (Bl B10)’ (X2nx2n) (Bz Bzo)) :
Note that, as Hj(.) is a one-to-one mapping, if tj € (0,1) then I(Hj(l/}j,)St,)
L
A A
= < -1 Y — = < .l
I(Uji_Hj (tj)-i-xji(Bj Bjo)) I(Hj(Uji)_.tjni), and these equalities also hold
if tj = 0 or 1. Hence,
A
an(tj) = Ejn(tj) + Zjn(tj) + Bjn(tj) + an(tj), (A3)
A
Wn(t) = En(t) + Zn(t) + tlen(tz) + tzBln(tl) + Wn(t), (Ad)
where we define,

E (1) = n'PSh (I(H(UJSE ) = 2 = NH(U)<) + 1];

Z(t)=n R {t tJ)—n‘” (Z]_ X (B B,

i= l ji
X,(B,8, )

n-”zzril:l{I(HI(UIi)Stlni)I(HZ(UZi)S/t\Zni) B /t\ni B
I(HI(UIi)Stl)I(Hz(UZi)Stz) + G(t)};
Z(Y = n-mzril:l{/t\ni -G} - B (1) - tlen(tz) ‘

| = 412 n
B, (1) = n"Pg (1)} x.

E (t)

Under (C1)-(C5), it holds that suplz (= oy1), sup In'PZ (t)|= o(1),

tel te I*
|n'PE_(1)]= [n""2E (t) | = B (1)]=
supln E (t) = oP(I), sup, In E(t) = o0 (1) sup B (t) = 0(l),
tel te I tel P
sup |n 1’2W ( t)| =0 ( 1). These results may be proved using similar arguments

tel
as in Koul (1992) and a generalization of Theorem 2.4.3 in Koul (1992) which

allows to use m-dependent sequences; detailed proofs of these results are

available from the authors on request. Using these results and (Al), (A2),




(A3), (Ad), it follows that sup, [P (t)-P (t)| = o ().
te I

aiit Note that n"P (t) — L(t) = n'S_{I(H (U )<t )IH(U )st) ~
Gt} ~ n'eW (1) + tW (t) + n'PW ()W, (t)}. Using that

sup|n” l’2W | = o) and the Glivenko-Cantelli Theorem in Stute and

tel '

Schumann (1980), it follows that sup, [n"V2p (t)—L(t)I =0 (1 ). Usmg Theorem
te I

4.1 in Billingsley (1968), it follows that n'm?‘n(t) converges in probability
to L(t). |

b-i: If (C1)-(C4), (C6) and (C7) hold, it is possible to prove that
suplz ()= o1), sup |Z(t)l= o1), supIE ()= oy1), sup |E(t)]=

tel te I’ tel te I’
o (1), sup|B (= oy1), suplw (1)|= 01). Using these results, (Al),
tel tel
(A2), (A3) and (Ad), it follows that sup, |B ()P t)l= o (1),
te I’

b-ii: Using Theorem 4.1 in Billingsley (1968), it suffices to prove that
P (t) = P™(t). If we denote V (t) = W (t) — ¢ W, (1) — t W, (t), from (A2)
it follows that P (t) = Vn(t) - n'? Wln(tl)WZn(tZ)’ because now G(t) = te,
As s;é11;|W (] = O,(1), it suffices to prove that V (t) = P™(t). The

convergence of finite-dimensional distributions follows using Cramer-Wold
device and Theorem 27.4 in Billingsley (1995); and using Theorem 4 in Csorgd

(1979), it follows that 1im [limsup prf sup |V (t) - V (s)[2e}) = 0. So,
&0 It-s<d " "

from the results in Neuhaus (1971) or Straf (1971), Vn(t) = P(m)(t). .

Proposition 2;: Let D:R — R be a continuous function and Qn(t), Q(t) processes
in D(I?) such that pr{Q(t) € ¢(I*)} = I and Q (t)= O(t). If (C1), (C2), (C3),
(C4) and (C5) hold, then n'Z" D(Q (H (U )H(U )) converges in
distribution to ,[12 D(Q(t))dG(t), where G(.) is as'defined in Proposition 1.

10




Proof: Denote G (t) = 'S I(H (0 )<t )I(H (U )<t), and G (1) as & (1

but replacing residuals by errors. We must prove that
A
[, DQ®)EG (V) - [ , DIO)AGH) = o 1). (AS)
I I

F . A _ _ o inp Y
rom (A4) we obtain that Gn(t) Gn(t) =n [Wn(t) - Wn(t) =n [En(t) +

-12 _ -12 =
Z(t) + tB, (t) + tB (t)]. As :g;;zln Zn(t)|— o (1), :2;1)2|n En(t)|—

o (1), sup |B, (t) =0 (1), then sup lé‘; (t)-G (t)l = o_(1). Using the Glivenko-
P tel jn P te 12 n n P

Cantelli Theorem in Stute and Schumann (1980), it follows that é‘;n converges in
prob. to G(.). Hence (Qn,é\}n) converges in distribution (in ID(12) X [[)(12)) to
(Q,G) and, by Skorohod embedding theorem, we can find Q;, é‘;; Q', random
elements from a certain probability space to |D(12) X [[)(12), with the same
distribution as Qn, é‘;n, Q, and such that (Q;,e};) converges almost surely to

(Q",G). So (A5) will follow if we prove

o D(Q'(t))dG:(t) - [ 2 DIQ )G = o(1). (A6)

If D(.) is bounded and uniformly continuous then (A6) holds almost surely.

Using this result it follows easily that (A6) holds for any continuous D(.). m

Proof of Theorem:

a) Apply Proposition 1 with Ali = Ai, A = Ai+i for A=Y, x, U. Al

2
conditions in Proposition 1.b. hold with m=1/; and Pn(t), Pn(t), H(.), Hl(.),

H2(.) become, respectively, n”zg;(t), n”zS;(t), F(.), Fl(.), Fl(.); hence,
from Proposition 1.b.i, sup |./S\"(t)—S‘(t)| =0 (n'I/2 ). |

te 12 n n P
b) Apply Proposition 1 as before. All conditions in Proposition 1.a hold;

hénce, from Proposition 1.a.i, sup |§‘(t)—S‘(t)| =o0(l)u
tG 12 n n P

11




Proof of Corollary:

a) Applying Proposition 1.b as in ﬂle Theorem, if follows from
Proposition 1.b.ii that n'’/ 2@:(0 = §_[(t), because the limiting process has
the same covariance structure as S°°(t) (all additional terms turn out to be
zero). As én = n'1Z'i'=l[nmg':(Fl((/}i),Fl((/}iH))]z, this part of the corollary
follows applying now Proposition 2 with the same notation as in the previous
Theorem and D(x) = x% Q (t) = n'™S'(t), Q(t) = 5_(t).

b) Applying Proposition l.a as in the Theorem, if follows from
Proposition 1.a.ii that @‘(t) converges in probability to G(t) — te, where
now G(t) = F(F (t)F (t )). Applying Proposition 2 with D(x) = x Q (t) =
S (t) o) = G(t) - tt, it follows that n C converges in probability to
o (G042 )"dG() = [, (Flx,x)oF (x)F (x ) dF(x,x)

i

A. As Hl is

true and F(.) is continuous then A>0 (see Blum et al. 1961, p.490), and this

part of the Corollary follows from this. =

12
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TABLE 1. Empirical Size

n o=.10 o=.05 o=.01
A A A
C C C C C C
n n n n n n
50 1100 1090 0548 .0522 .0142 .0114
100 1060 .1054 0504 .0498 .0090 .0074
250 1046 .0972 0518 0516 .0106 .0098







