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ABSTRACT 
It has been shown that the selection of the most similar 
training patterns to generalize a new sample can improve 
the generalization capability of Radial Basis Neural 
Networks. In previous works, authors have proposed a 
learning method that automatically selects the most 
appropriate training patterns for the new sample to be 
predicted. However, the amount of selected patterns or 
the neighborhood choice around the new sample might 
influence in the generalization accuracy. In addition, that 
neighborhood must be established according to the 
dimensionality of the input patterns. This work handles 
these aspects and presents an extension of a previous 
work of the authors in order to take those subjects into 
account. A real time-series prediction problem has been 
chosen in order to validate the selective learning method 
for a n-dimensional problem. 

KEY WORDS: Radial Basis Neural Networks, 
Selective Learning. 

1 Introduction 

The interest of the scientific community to improve the 
generalization capabilities of neural networks has 
increased. Some authors have paid attention to the nature 
and size of the training set. There is no guarantee that the 
generalization performance is improved by increasing the 
training set size [1]. It has been shown that with careful 
dynamic selection of training patterns, better 
generalization performance maybe obtained [2,3]. 

In [4] a selective learning mechanism was present to 
improve the generalization capabilities of Radial Basis 
Neural Networks (RBNN). In that work, the idea of 
selecting the patterns to train the network from the 
available data about the domain was proposed. The 
selection of patterns used in the training phase is based 
on novel samples, instead of based on other training 

patterns, as in other works [2,3]. Thus, the network will 
use its current knowledge of the new sample to have some 
deterministic control about what patterns should be used 
for training. The learning method involves finding relevant 
data to answer a particular novel pattern and defer the 
decision of how to generalize beyond the training data 
until each new sample is encountered. It was inspired on 
lazy strategies [5,6]. Thus, the decision about how to 
generalize is carried out when a test pattern needs to be 
answered constructing local approximations. 

The method presented in [4] recognises from the whole 
training data set, the most similar patterns, in terms of the 
Euclidean distance, for each new pattern to be processed. 
This subset of useful patterns is used to train a RBNN and 
training is deferred until a test pattern is received. Taking 
advantage of the fast convergence of this kind of 
networks, a complete RBNN is trained for each test 
pattern, and the output is generated by propagating the 
pattern through its related RBNN. 

Following the main ideas of the former work [4], some 
contributions are made in this paper. A threshold distance 
or cut, which determines the extension of the 
neighborhood of the novel pattern, (i.e. the training 
patterns selected to generalize the new sample), becomes 
the key issue to achieve a good generalization capability 
of RBNN. On the other hand, the dimensionality of data is 
taken into account in order to establish the cut, since the 
volume surrounding the novel pattern grows 
exponentially with the dimension. 

The interest of this paper is, firstly, to introduce a 
relative threshold distance that is not dependent on the 
dimensionality of data. Secondly, to study the influence in 
the deferred learning method of the relative threshold 
distance. With these purposes, the learning method has 
been applied to two different problems, an artificial 
approximation problem and a real time-series prediction 
problem. 
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2 Automatic Selection of Training Data 

The learning algorithm proposed in [4] consists of the 
selection, from the whole training data, of an appropriate 
subset of patterns to improve the answer of the RBNN for 
a novel sample. The general idea for the selection of 
patterns is to include only and several times those 
patterns close -in terms of the Euclidean distance- to the 
novel sample. Thus, the network is trained with the most 
useful information, discarding those patterns that not only 
provide no knowledge to the network, but, besides, can 
confuse the learning process. 

In order to take into account the dimensionality of the 
data, the formulation of the method has been modified. 

The general idea presented in this work for the 
selection of patterns is to establish a relative n-
dimensional volume surrounding the test pattern, in order 
to include only and several times those patterns placed 
into this volume. This relative volume surrounding the test 
pattern is the fraction of the total volume into which the 
training patterns will be selected. This parameter allows 
that the dimensionality of data does not take part on the 
account of patterns selected. 

In order to determine the training patterns included in 
that relative volume, a relative threshold distance or cut rr 

(relative radius of the sphere) must be calculated before 
the application of the learning algorithm. Let's Vr a relative 
n-dimensional volume. That volume can be written as: 

where Vs is the volume of the selection-sphere centered 
at the test pattern and radius rs - this sphere contains the 
patterns that will be selected- and Vmax is the volume of 
the sphere centered at the test pattern and radius equals 
to the maximum distance, r ^ . Since V=kr" where r is the 
radius of the sphere, n is the dimension of the space and k 
is a constant, we can write: 

v r =i= r ; 
Hence: 

The relative threshold distance, rr, calculated as the n-
th root of the relative volume_will be used to select 
patterns in the fraction volume surrounding the test 
pattern. 

Given a test pattern q, described by a n-dimensional 
vector, q=(q,,..., q,), the steps to select the training set, 
named Xq, associated to the patterns, are the following: 

Step 1. A real value, db is associated to each training 
pattern (xb y*). That value is defined in terms of the 
standard Euclidean distance. 

d k =d(xk,q)= J ^ K - 9 i ) 2 

Step 2 A relative distance, cU is calculated for each 
training pattern. Let dniax be the maximum distance to the 
novel pattern, this is d,na , = Max (d,, d2, ...dN). Then, the 
relative distance is given by: 

drk = <Vdnla ( 

Step 3L A new real value, fk=l/drk, where k=l,...,N is 
associated to each training pattern (x^y^. These values fk 

are normalized in such a way that the sum of them equals 
the number of training patterns in X. The relative values, 
named as frit, are obtained by: 

/ 1 N 

fn,. = — where S = — } f, 

N 

Thus: Y^fnk =N 
k=\ 

Step 4. The relative distance, drk> calculated in step 2 is 
used to decide if the training pattern (Xk, y^ is selected to 
train the network. If drk < rr -where r. is the relative 
threshold distance previously calculated- then the pattern 
(Xfc, yO is included in the training subset. 

The value fnk calculated in step 4 is used to indicate 
how many times the training pattern (x^ y^ is repeated into 
the new training subset. Hence, they are transformed to 
natural numbers as: nk = \nt(fnk ) +1 

At this point, each training pattern in X that has been 
selected has an associated natural number, r^ which 
indicates how many times the pattern (Xfo y^ has been 
used to train the RBNN when the new instance q is 
reached. 

Step 5. A new training pattern subset associated to the 
test pattern q, Xq, is built up. Once the training patterns are 
selected, the RBNN is trained with the new subset of 
patterns, X,. Training a RBNN involves to determine the 
centers, the dilations or widths, and the weights. The 
centers are calculated in an unsupervised way using the 
K-means algorithm presented in [4]. After that, the 
dilations coefficients are calculated as the square root of 
the product of the distances from the respective center to 
its two nearest neighbors. Finally, the weights of the 
RBNN are estimated in a supervised way to minimize the 
mean square error measured in the training subset Xq. 
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3 Experimental Results 

The learning method presented in this work has been 
applied to two different problems: An artificial 
approximation problem, a piecewise-defined function 
whose dimension is 1, and a n-dimensional, with n>l, real 
problem, a time-series describing the behavior of the water 
level at Venice Lagoon. In order to validate the method, 
RJBNNs have also been trained as usual, this is, the 
network is trained using the whole training data set. 

3.1 An artificial problem: A piecewise-defined function 
approximation 

This function has been chosen because of the poor 
generalization performance that RBNN presents when 
approximating it. The function is given by the equation: 

fW = 

-2.186x-12.864 if - 1 0 < x < - 2 

4.246x if - 2 < x < 0 

10e(" 05x" 5>sin[(0.03x+0.7)x] if 0 < x < 1 0 

The original training set is composed by 120 input-
output points randomly generated by an uniform 
distribution in the interval [-10,10]. The test set is 
composed by 80 input-output points generated in the 
same way as the points in the training set. Both sets have 
been normalized in the interval [0,1]. 

RBNNs with different number of neurons have been 
trained, using the whole training data until the 
convergence of the network has been reached, that is, 
either when 200 cycles are performed or when the 
derivative of the train error equals zero. In figure 1, the 
mean errors obtained for different architectures are shown. 
The best results have been achieved using a RBNN with 
20 neurons, although no significant differences have been 
found for networks between 10 and 60 neurons. The 
selective learning method has also been used to train 
RBNNs with different architectures and different relative 
volumes (Vr) during 200 learning cycles, and their 
generalization capability has been tested. Mean errors on 
the test set achieved by these networks are shown in 
figure 2. In this case, 11 neurons are necessary to obtain 
the best results using a selection relative volume of 0.06. 
As dimension n= 1, then rr = Vr 
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Fig. 1. Mean error on the test set for the Piecewise 
function achieved by different architectures trained with 

the whole training data set 
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Fig. 2. Mean error on the test set for the Piecewise 
function achieved by different architectures trained with a 

selection of patterns using different selection volumes 
(Vr)  

As it can be seen, the performance of the network is 
influenced by the value of the relative volume and by the 
network architecture. 
In figure 2 it is observed the mean error does not depends 
significatively on Vr, provided Vr is bigger than a certain 
value. 

As it is possible to observe in table l, the mean error 
over the test set is significantly reduced when an 
appropriate selection of patterns is made. 

Table 1. Performance of different training methods for the 
piecewise function 

Training with 
the whole data 
set 

Training with a 
selection of data 
and Vr = rr= 0 06 

Mean error 

0 0396 

0 002085 

Number of 
Neurons 

20 

11 
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The computational cost is higher when the deferred 
training method is used, although, on the other hand, the 
number of neurons is smaller, and the RBNN is trained in a 
shorter time. In that case, the RBNN has been trained until 
it reaches the convergence. Thus, the generalization 
capability of the network using the whole training data can 
not be improved if it is trained for more learning cycles. 

It has been observed how the network trained with the 
whole training data has some difficulties to approximate 
the points. This can be described as a deficiency in the 
generalization capabilities of the network. However, the 
generalization is improved when an appropriate selection 
of patterns is made. Figure 3 shows the errors committed 
by the different learning strategies for each test pattern. 
Most of test patterns are better approximated when the 
specific learning method is used to train RBNN. 

Fig. 3. Piecewise-defined function: Errors for each set 
patterns. 

3.2 A Real Problem: Prediction of water level at Venice 
Lagoon 
Unusually high tides, result from a combination of chaotic 
climatic elements in conjunction with the more normal, 
periodic, tidal systems associated with a particular area. 
The prediction of such events have always been subjects 
of high interest. The water level of Venice Lagoon is a 
clear example of these events. That phenomenon is known 
as "high water". 

Different approaches have been developed for the 
purpose of predicting the behavior of sea level at Venice 
Lagoon [7,8,9,10]. In this work RBNNs have been used for 
predicting the sea level. 

There is a great amount of data representing the 
behavior of the Venice Lagoon time series. However, the 
part of data associated to the stable behavior of the water 
is very abundant as opposed to the part associated to 
high water phenomena. This situation leads to the 
following: RBNN trained with a complete data set is not 
very accurate in predictions of high water phenomena. It 

seems natural that if the network is trained with selected 
patterns, the predictions will improve. 

In this work, a training data set of 3000 points, 
corresponding to the level of water measured each hour 
has been extracted from available data in such a way that 
both stable situations and high water situations appear 
represented in the set. The test set has also been 
extracted from the available data and it is formed by 50 
samples including the high water phenomenon. Both sets 
of data have been normalized in the interval [0,1]. 

Since the goal in this work is to predict only the next 
sampling time, a nonlinear model using the six previous 
sampling times seems appropriate. 

RBNNs with different number of neurons have been 
trained, using the whole training data until the 
convergence of the network has been reached, that is, 
either when 300 cycles are performed or when the 
derivative of the train error equals zero. In figure 4, mean 
errors obtained for different architectures are shown. The 
best results have been achieved using a RBNN with 30 
neurons, although no significant differences have been 
found for networks between 15 and 150 neurons. It is 
observed that the test mean error can not be improved 
even if more learning cycles are performed using the whole 
training data set. 

The selective learning method described in section 2 
has also been used to train RBNNs with different 
architectures and different relative volumes (Vr) during 300 
learning cycles, and their generalization capability has 
been measured. Mean errors on the test set achieved by 
these networks are shown in figure 5. As in the previous 
example, the performance of the network is influenced by 
the value of the relative volume and the architecture of the 
network. It is possible to observe that, as in the previous 
case, as the relative volume increases, the mean error does 
not change significatively. In this case, a network with 15 
neurons obtains the best results using a selection volume 
of 0.000003. 

0 15 

! • • • 
ra 0.05 . 

0 . 

) 

error - Traditional learning 

1> 

20 40 60 80 

Number of neurones 
u 0 

4



Fig. 4. Mean error on the test set for the Venice Lagoon 
time series achieved by different architectures trained with 

the whole training data set 

Fig. 5. Mean error on the test set for the Venice Lagoon 
time series achieved by different architectures trained with 

a selection of patterns using different selection volumes 
(Vr). 

As in the previous example, in order to compare the 
selective learning method with the traditional one, mean 
errors over the test set obtained by both methods are 
shown in table 2 for the best architectures. As it can be 
observed in table 2, the mean error over the test set is 
reduced when the network is trained with a selection of 
patterns. 

Table 2. Performance of different training methods for the 
piecewise function 

Training with 
the whole data 
set 

Training with a 
selection of data 

and 
Vr= 0 000003 

Mean error 

0 055 

0 019 

Number of 
Neurons 

30 

15 

- Selective learning 
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Oi NII HUM 
T - w o > c o i * - ' « - w a > c o i * - ' « - w o i 

T -T-cNCNCNinn-s t -s t -s t 
Patterns 

Fig. 6. The Venice Lagoon time series: Errors for each set 
patterns. 

4 Conclusions 

The results presented in the previous section show that if 
RJBNNs are trained with a selection of training patterns, 
the generalization performance of the network is improved. 

The specific learning method proposed in this work 
involve storing the training data in memory, and finding 
relevant data to answer a particular test pattern. Thus, the 
decision about how to generalize is carried out when a test 
pattern needs to be answered constructing local 
approximations. That implies a large computational cost 
because the network has to be trained when a new sample 
test is presented. However, that is not a disadvantage of 
the method because in many cases that computational 
effort can be broached and to achieve lower approximation 
errors is an important advantage. Moreover, the number of 
neurons of the network trained with the selective method 
is much lower, thus, the computational effort is not as high 
as it appears to be. 

The selection of the most relevant training patterns, 
the neighbours of the novel pattern, helps to obtain 
RJBNN's able to better approximate complex functions. On 
the order hand, since the volume grows exponentially with 
the dimension, a threshold distance or cut must be 
calculated using the relative volume. 

As it is shown in figure 6, where the errors committed 
by the different learning strategies for each test pattern are 
shown, most of the test patterns are better approximated 
when the selective strategy is used. In this figure, errors 
corresponding to pattern 17 which represents the high 
water phenomenon in the test set, have been marked. The 
error when the network is trained in the traditional way is 
significantly higher than the corresponding to the 
selective learning method, when an appropriate selection 
of patterns is made. 

The experimental results show that the performance of 
the RBNN does not depend significatively on the relative 
volume obtaining similar mean errors by different 
architectures and different relative volumes. However, this 
behaviour does not occur when the relative volume is 
smaller than a certain value because a miaimumamount of 
data is necessary to train the network appropriately. 
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