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Abstract 

This paper presents model specification checking procedures for count data regression models 

which are consistent in the direction of nonparametric alternatives. The discussion is motivated 

in the context of a model of demand for health care in Spain. The parameters of the regression 

model are estimated by maximum likelihood based on Poisson and Negative Binomial 

specifications as well as by ordinary least squares and semiparametric generalized least squares. 

However, our interest is not only centered on the estimation ofthe regression parameters, but also 

the conditional probabilities of counts. Therefore, the specification of the conditional distribution 

function of counts is the main focus of attention. A useful preliminary diagnosis tool consists of 

comparing the conditional probabilities estimates by nonparametric regression and by maximum 

likelihood methods based on alternative models. We present formal specification procedures based 

on new developed testing methods for regression model checking. The test statistics are based on 

marked empirical processes which are not distribution free, but their critical values are well 

approximated by bootstrap. Such tests are valid for testing the functional form of the conditional 

mean and conditional probabilities resulting from alternative distributional specifications. In our 

health care demand model, the linear exponential regression model with a Negative Binomial 

seems to be appropiate for this data seto 
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1. INTRODUCTION 


This paper presents model checking techniques for count regression models. The 

performance of the different techniques is illustrated in the context of model specifi­

cation of demand for health care in Spain. 

The interest in count regression models is centered on the estimation of conditional 

probabilities rather than the mere estimation of parameters in the conditional mean 

of the model. In fact, once consistent, but inefficient, parameter estimates are ob­

tained by ordinary least squares, valid inferences are available when the estimators 

variances are robustly estimated. Moreover, efficient inferences can be performed 

using semiparametric generalized least squares as suggested by Delgado and Knies­

ner (1997). Unfortunately, it is not possible to estimate conditional probabilities of 

counts without specifying the underlying conditional distribution function or, when 

a parametric distribution model is not available, without resorting to nonparametric 

methods. Therefore, maximun likelihood methods are well motivated in practice. 

The Poisson regression model has been the most popular in applications. However, 

economic count data sets exhibit an excess of zero observations and long right tails, 

both relative to Poisson regression. This is why models allowing for overdispersion, 

like the Negative Binomial model, have been popular in recent applications (see e.g. 

Hausman, Hall and Griliches (1984) and Cameron and Trivedi (1986)). 

In the next section we propose a linear exponential regression model for the number 

of visits to a doctor and the number of visits to emergency rooms using data from 

the 1993 Spanish Health Survey. The parameters of the model are estimated by 

ordinary least squares and by maximun likelihood based on Poisson and Negative 

Binomial specifications. The coefficient estimates from alternative procedures are 

not very different and there is evidence in favour of overdispersed distributions, like 

the Negative Binomial specification, with respect to the Poisson based on a Wald test 

and based on auxiliary regressions as suggested by Cameron and Trivedi (1986). 

In Section 3, we study the goodness of fit of the alternative models comparing 
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the estimated conditional probabilities with respect to nonparametric regression es­

timates. The sample marginal frequencies of the dependent variable taking the value 

zero are fairIy well approximated by the different methods. The marginal frequencies 

for higher values of the dependent variable are better approximated by the Negative 

Binomial. 

In section 4, we discuss formal specification tests for regression based on ideas 

developed by Delgado (1992), Stute (1996) and Stute et al. (1996). These tests are 

consistent in the direction of nonparametric alternatives. They are based on marked 

empirical processes which are not distribution free. However, the critical values can 

be approximated by bootstrap. After applying the nonparametric tests, specifying 

the conditional expectation, we conclude that the linear exponential approximation 

is satisfactory for our data seto The Poisson specification seems unable to fit well the 

conditional probabilities for any given count value. However, the Negative Binomial 

specification cannot be rejected in order to model the conditional probabilities. The 

critical values are approximated by a 'wild bootstrap' when testing the functional form 

of the regression function, and by parametric bootstrap when testing the functional 

form of conditional probabilities of counts. We also apply the testing procedure to 

a test of the functional form of the distribution function, as suggested by Andrews 

(1996). The critical values are also approximated by a parametric bootstrap and the 

Negative Binomial model can neither be rejected. 

2. DATA AND MODEL 

Data is coming from the 1993 Spanish Health Survey (SHS)l which offers survey 

data on 21.061 people concernig health demand information, like number of doctor 

visits and emergency room visits, as well as demographic characteristics, like health 

habits (smoking and drinking), education, socieconomic position, geographical vari­

ables, etc .. There is not income information on this survey and family income values 

1The data has been collected in February 1993 by the Spanish Ministry of Health and Consumer 

Affairs. 
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have been predicted from income equations based on the socioeconomic characteristics 

of the individual in both the SHS and the 1990-91 Spanish Household Expenditure 

Survey (SFES) at 1993 prices. 

Sample observations {(}Ji, Xi) ,i = 1, ... , n} are independent and identically distrib­

uted; }Ji are count data variables denoting the number of visits to a doctor or to 

the emergency rooms, and Xi = (Xil ,Xi2 , ..• , Xik )' is a k x 1 vector of explanatory 

variables. Using the Cameron et al. (1988) approach, we face the regression model 

E(}Ji IXi = x) = exp(x',Bo) a.s. (1) 

Tables 1, 2 and 3 about here. 

Table 1 presents the explanatory variables Xi used in the study and Tables 2 reports. 

summary statistics. 

Our empirical analysis includes two demand variables: the number of doctor con­

sultations during the two weeks before the interview and the number of emergency 

room visits during the year before the interview. Table 3 shows the sample frecuency 

distributions of both variables. It is important to remark that the survey does not 

make any difference between private medical visits and insurance covered visits. 

Following Cameron et al. (1988), we assume that demand for health care depends 

on health status and other demographic variables, such as age and sexo The model 

distinguishes two hea1th dimensions: CHRONIC ILLNESS, if the individual suffers 

from an illness which is perceived as a permanent problem, and ACUTE ILLNESS, if 

illness is perceived as transitory and having limiting effects on the individual activity. 

The variable ACCID indicates if the interviewed person has suffered from an accident 

during the previous year. 

There are other factors, besides the biological ones, that determine the demand for 

health care. Studies about this subject have mainly focused on income, prices and 

education. The Spanish N ational Health Service guarantees universal hea1th care 

provision. Under this system, spanish citizens do not need to make any out-of-pocket 

expense in order to receive medical careo However, this hardly means that services 
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are free. Health care users face an implicit price: the time opportunity costo The 

analysis of this aspect is necessarily vinculated to both employment status and time 

travel cost (see e.g. Wagstaff (1986)). Given that the SHS does not provide any 

information about the travel component, we focus only on the employment status. 

For this purpose, we c1assify individuals according to their potential cash earning 

looses when away from their usual activity. Thus, we consider SELF-EMPLOYED, 

WAGE-EARNING and NON-WORKING individuals, to control from higher to lower 

time opportunity costo We also inc1ude INCOME and SCHOOL variables to test for 

their relevance in this framework. 

Obviously, individual's health decisions are dependent on the degree in which they 

appreciate their own health. Unfortunately, we are not able to me asure this dimen­

sion of individual preferences. Nevertheless, we can consider individual's lifestyles as 

proxies of these preferences. We claim that, ceteris paribus, individuals with healthy 

habits use more medical care than others. To examine the relationship between 

lifestyles and health care use, we selected smoking habit -SMOKER, NON-SMOKER 

and EX- SMOKER- and usual alcohol consumption -ALCOHOL- as regressors in the 

model. 

Finally, we consider region -NORTH, CENTER and SOUTH- and population size 

-RURAL- in order to control for geographical differences. 

Given the regression specification in (1), we have alternative conditional probability 

specifications, 

Py{x) = Pr{Yi = y IXi = x) (2) 

The function Py(x) will also typically be a function of 130 and other 'nuisance' 

parameters. For instance, if Yi are conditionally Poisson we have 

Py(x) = exp{- exp(x'13)) exp(yx'13) (3)
yl 

If Yi are conditionally distributcd as a Negative Binomial thcn 

r(y + 8) ( 8 )6 ( exp(x'f3) )Y (4)
Py{x) = r(8)r(y + 1) exp(x'f3) +8 exp(x'f3) +8 

6 




where the parameter 8-1 is the precision parameter. Specifications (3) and (4) are 

compatible with the regression specification in (1). 

The coefficient estimates and standard errors are reported in Tables 4 and 5. Dif­

ferent estimation methods have been applied: nonlinear least squares (NLS), semi­

parametric generalized least squares (SGLS) -see Robinson (1987) and Delgado and 

Kniesner (1996)- and maximun likelihood based on (2) and (3). 

Tables 4 and 5 about here 

Focusing on the semiparametric estimations, we summarize the main results as 

follows. First, the aging process seems to be highly related to health care use but not 

always in the same direction. While old people use ordinary doctor consultations more 

often than young people, visits to emergency rooms decrease with age. Illness, in all 

its dimensions -chronic, acute and accidental-, is the main factor to explain different 

health care demand levels. Regarding sex, we find that there are less doctor visits 

for men but there are not significant differences between male and female emergency 

visits. 

Lifestyle coefficient estimates confirm a positive relationship between unhealthy 

habits and low health care use. An interesting result with respect to smoking habits 

is that ex-smokers show higher demand for health care than non-smokers. This rela­

tionship could be explained by means of their higher concern about health, directly 

related to the decision of quitting smoking and maintaining it. 

The coefficient estimates of employment status are consistent with our initial as­

sumptions. This result highlights the importance of including time opportunity cost 

variables into health care demand models. On the contrary, family income does 

not appear to be significant in any case. Furthermore, education has a significant 

negative effect on emergency visits. Despite the fact that education implies a higher 

health conciousness, we could relate this result with a more rational use of this special 

service. 

Finally, geographical variables appear to have significant effects. On the one hand, 
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as we move South in the country, health care demand increases. Geographical demand 

differences could be caused by tastes, cultural patterns and even services availability. 

In order to create NORTH and SOUTH variables, we have aggregated several ad­

ministrative regions with heterogeneous health service endowments. Then, it is not 

plausible to explain our results by means of specific interregional endowment differ­

ences; it would be interesting to further investigate this empirical evidence. On the 

other hand, we find that people in rural areas use less emergency services. This ca­

efficient estímate can be missinterpreted. The SHS asks for specific emergency room 

visits, so it is not accounting for the fact that most emergency consultations in rural 

areas happen at home. 

The coefficient estimates obtained by the different methods are quite similar. So, it 

seems hard to choose between the different methods based on a mere comparison be­

tween the alternative coefficient estimates. However, there is sorne evidence in favour 

of the Negative Binomial model with respect to the Poisson alternative. On one hand 

the robust and non robust standard errors are quite similar for the Negative Binomial 

specification, but they are very different for the Poisson specification. On the other 

hand, the Wald or likelihood ratio test provide evidence in favour of the Negative 

Binomial. We also offer corrected R2' s for all models as suggested by Cameron and 

Windmeijer (1996)2. The Binomial Negative offers the higher R2• 

We also implemented the regression based test suggested by Cameron and Trivedi 

(1990). The test consists of the t-ratio on 

[Yi - exp(X:¡3)]2 - Yi = &exp(X:t.1) + residual. 

Such a test provides evidence of overdispersion with a t-ratio equal to 5.287 for the 

doctor visits model and a t-ratio equal to 9.665 for the emergency room visits model. 

The aboye model checking procedures are not formal specification tests and do not 

provide evidence on neither, the specification correctness of the regression model or 

2For the Poisson and Negbin models, we calculated R2 measures based on deviance residuals. In 

the case of the SGLS estimates we calculated a R2 based residuals weighted by nonparametrically 

estimated variances. 
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the condítional probabilities of counts. These problems will be addressed in the next 

sections. 

3. CONSISTENT SPECIFICATION TESTING OF REGRESSION 

MODELS. 

In thís section wepresent a formal test for the hyphothesis 

and the alternative ís the negation of Ho, where m(., .) ís a known function and (3o E B 

is an unkown parameter, where B e lRk is the parameter space. In our application 

m(x, (3) = exp(x'{3). 

Formal specification procedures based on the difference between nonparametric and 

parametric estimates are available in generous supply (see e.g Hardle and Mammen 

(1993), Eubank and Spiegelman (1990), Stute and Manteiga (1995) and Fan and Li 

(1996), to mentíon only a few). 

The fact that for two Borel functions m(.) and g(.) 

¡Xl ¡X2 ¡Xk
Pr{m(Xl) = g(X1)} = 1 <=> J-ooJ-oo .... J-oo (m(x) - g(x))dFx(x) = O, (5) 

where Fx(') is the distribution function of Xi, implies that 

k 

Ho holds <=> E{(Y1 - exp(X~{3o)) rr 1(X1j :::; Xj)} 0, Vx E lRk 
. (6) 

j=1 

Then (6) suggest the statistic 

(7) 

where (J ís any Jñ - consistent estímator under Ho, e.g. the ordinary least squares 

estímator. Stute (1996) has obtaíned the limit process of Tn(x) for general nonlinear 

regression models under very weak regularity conditions. This statistic resembles 
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in spirit to statistics proposed by Bierens (1982), Bierens(1990) and Bierens and 

Ploberger (1997). Our model holds the conditions required in Stute (1996). Then, 

under Ho, 

Tn(x) ----t T(x) in distribution on D(lRk), 	 (8) 

where T(x) is a Gaussian process centered at zero and with covariance structure 

K'(s, t) Cov(T(t), T(s)) = 	 K(s, t) + G(s, (30)'L({3o)G(t, (30) 


-G(s,Po)'E [.,-2(x¡)m(x" Po) gl(X¡; 


-G(t, Po)'E [.,-2(x¡)m(x¡ ,Po) g1(X¡i 

where t = (t l ,t2, ... ,tk)', S = (SbS2, ... ,Sk)', (T2(x) = Var[YI IXI = x], rh(x,{3) = 

8m(x, (3)/8(3, G(t, (3) = E[rh(Xb f3) n;=l 1(X1j ::; tj)], L ((3) = E [rh(XI? (3)rh(X¡, /1)'(T2 (X¡)] 

and 

An asymptotic test is based on the Cramer-von Mises statistic 

(10) 

By the continuous mapping theorem 

(11) 

The statistic is not distribution free. Stute et al. (1996) suggested to apply 'Wild 

Bootstrap' in order to approximate the standard errors. We need to generate U.d. 

Vi, i = 1, ... , n independent of Xi, such that E(Vi) = 0, E(V?) = E(v?) 1. Then, 

we construct 
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where €; = €iVi, and €i = Yi - exp(XI~). With the new bootstrap sample (Yi*,Xi), 

= 1, ... ,11" one computes 
n 

arg min ~ (Yi* - exp(XU,))2,
{3EB L.,¡

i=l 

and then, the bootstrap process 

1 n k 

T;(x) Jñ ~(Yi* - exp(X:~*)) D1(Xij ::; Xj). (12) 

The bootstrap statistic is 

T; = .!. tT;(Xi ? (13) 
11, i=l 

Stute et al. (1996) showed that this bootstrap test is valid in the sense that with 

probability one C~ -+d C*, where C* is distributed as C. 

In order to implement the bootstrap test, we generate bootstrap samples {(Yi*(j) ,Xi)' i = 

1, ... ,n}, j = 1, ... , B, and the critical values, at the a level of significance, of Tn are 

approximated by T:Q defined as 
B 

~~ 1(T*(j) > T*B) = a (14)B L.,¡ nno.· 
j=l 

When B is large, T:~ is a good approximation to T:Q defiend as Pr [T: > T:Ql = a. 

If the observed Tn is greater than T:Q , we reject Ho. To implement this test we 

restrict ourselves to the subsampIe of 764 smoker men without illnesses in the reference 

period, from the Center and South of Spain, between 23 and 64 years oId and wage­

earning. In this subsample, the p-value of the test for testing the null hypothesis 

Ho : E(Yi I Xi = x) exp(x',8o) a.s. in the model of the demand for doctor visits is 

0.599. So, we are unable to reject Ho. 

4. SPECIFICATION TESTING OF CONDITIONAL PROBABILITIES 


OF COUNTS. 


In this section, we present model checking procedures for the conditionaI probability 

model Py(x,~,8), where ~ and ti are the maximun likelihood estimates of ,80 and 80 

respectively, fits the conditional probability Py(x). 
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A preliminary specification tool eonsists of eomparing the estimates of the marginal 

probabilities, Py = Pr(Y; = y), by the alternative proeedures: Poisson and Negative 

Binomial maximun likelihood. That is P y is estimated by 

(15) 

These estimates will be eompared with the sample frequencies 

~ 1 n 

P y = - L 1(Y; = y), (16) 
n. 

t=l 

whieh always estimate eonsistently P y and also with estimates based on nonparamet­

rie regression 

(17) 

where 

p (x) = I:~=11(Y; = y)K(Kp) (18) 
y "'~ K(Xi- X ) , 

L....t=l h 

K(u) = TI~1 k(Uk), u = (UI' ... ,UK)', k(.) is a kernel funetion and h is the bandwidth 

number 3. Notiee that Py(x) is estimating the regression function 

Py(x) = E[Yi = Y IXl = xl· (19) 

We limit this eomparisons to the same subsample used in the aboye seetion. Tables 

6 reports Poisson and Negative Binomial estimates for this restrieted data seto 

Tables 6 and 7 about here 

The different P y estimates are reported in Table 7. The Py based on the N egative 

Binomial model is always closer to Jiy and Py than the Py based on the Poisson 

model. The Negative Binomial Py for y = 0,1 are quite close to P y and Py, but P y 

is no so closed to Jiy as Py is. 

3We have used a Gaussian kernel in the application. An optimal bandwidth, h = en-l / , has 

been calculated following a !!plug-in" method in wich h was selected to minimize the mean integrated 

squared error. 
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Notice that Py can be accurately estimated even when Py(x) is incorrectly specified. 

In fact 

Py = E[l(YI = y)] = E[E[l(YI = y) IXl]] = E[Py(X¡)]. (20) 

In our example, the Poisson specification can approximate reasonably well the mar­

ginal frequencies, though it is proven to be a poor approximation for the underlying 

conditional distribution of counts. It may be due to the fact that a high proportion 

of ceros are observed in this sample. 

If the functional form is correctly specified, always Py = E[Py (Xl, ¡Jo, ó'o)]. Dn­

der misspecification, it is also possible to find cases where Py = E[Py(X1,¡Jo,ó'0)]. 

That is, different fuctional forms Py (x, ¡Jo, ó'o) can produce the same P y' Therefore, 

comparing different P y estimates is not always a good method for model checking. 

In order to avoid this problem we can compare the nonparametric estimates of 

Py(x), ?y(x), with parametric estimates based on alternative likelihood functions 

Py(x, b)). 

In Figure 1 and 2 we report nonparametric and maximun likelihood estimates of 

the conditional probabilities. In Figure 1, the variable ALCOHOL is fixed at its mean 

value, while in Figure 2 the variable AGE is fixed at its mean value. The Negative 

Binomial estimates are closer to the nonparametric estimates and they are always 

inside the nonparametric confidence bands. The Poisson estimates seem much more 

biased and, sometimes, it is out of the nonparametric confidence bands. 

Figures 1 and 2 about here. 

The mere graphical inspection is not a formal specification tool. This procedure 

suffers from several problems. Firstly, in multidimensions, graphical devices are dif­

ficult to implemento Secondly, we are not taking into account the variability of the 

nonparametric estimators, which can vary a lot for different bandwidth choices. 

Formally, we are interested in testing 
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A test can be developed in the sarue way as in Section 3 by noting that Py(x) is, in 

fact, a regression model since Py(x) = E[l(Yl = y) IXI = xl. Hence, we can employ 

the sarue statistic as (7) where now 

i=l j=l 

Under Ho, jJ and 8are.¡ii- consistent and Tn(x) has a limiting Gaussian process, T(x), 

centered at zero and with covariance structure K'(t, s), where now, Yi is substituted 

by l(Yi = y) and m(Xi , jJ) by Py(Xí , jJ, 8). 

As in Section 3, the test statistic is 

1 ~ )2 dCn = - L..t Tn (Xi ----+ C. (23) 
n. 

t=l 

The asymptotic null distribution is useless for performing inferences since the test 

statistic is not distribution free. Therefore, we have to resort to bootstrap approxi­

mations of the critical values of the test. 

The bootstrap in this case is different because now the estimates jJ and 8 are 

not obtained by regression methods but by maximun likelihood. Since under Ho, the 

conditional distribution of Yi I Xi is perfectly known, we can apply a parametric boot­

strap. That is, for each Xi, Yiol< is generated according to the distribution Py(x, jJ, 8). 
For instance, if we are testing the Poisson hypothesis, Yiol< is generated according to a 

Poisson with pararueter exp( X:13). From the generated sample (YiOo, Xi), i = 1, ... , n, 
'" * "'!le: we obtain bootstrap estimates of 130 and 80, 13 and 8 respectively. The bootstrap 

statistic is 

TOo = .!. ~TOo(Xi (24)n nL..t n t , 

i=l 

where 
n k 

T;(x) = 1 I:(l(YiOo = y) - Py(Xi,i/, r)) rr 1(Xij ::; Xj)' (25) 
i=l j:=l 

P-values for different values of y are reported in Table 8. The Poisson model 

is rejected for all count values. However, the Negative Binomial model cannot be 

rejected in any case. This is in agreement with the nonparametric estimates reported 
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in figures 1 and 2. The Negative Binomial parametric estimates are doser to the 

nonparametric estimates and they are always inside the confidence bands. Note that 

the kernel estimates are very unstable for observations in the frontiers of the data seto 

Table 8 about here 

The testing procedure can also be applied to a test for the specification of the 

distribution function. The null hypothesis to be tested is 

(26) 

where P(y,x,{3,8) _ Py (x,{3,8). Andrews (1996) considers the statistic 

(27) 

where 
1 n ~ ~ k 

Tn(y,x) = ..jñ t1{l(Yi = y) - P(y,Xi ,{3,8)} Jl1(Xij ~ Xj). (28) 

Andrews (1996) finds the asymptotic process ofTn(y, x), proposing a parametric boot­

strap in order to approximate the critical values of the statistic en. The parametric 

bootstrap is, as before, based on the statistic 

C* = ! ~T*(Y* X·)2 (29)n L.-;nt,$, 
n i=l 

where 

(30) 

In Table 9, we apply this test to our data set, and we find that the Poisson specification 

is rejected and the Negative Binomial specification cannot be rejected. 

Table 9 about here 
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TABLA 1: DEFINITION OF VARIABLES 


NAME 
DOCTOR VISITS 
EMERGENCY ROOM VISITS 
MALE 

AGE 
CHRONIC ILLNESS{*) 

ACUTE ILLNESS 

ACCIDENT 

SMOKER 

EX-SMOKER 

NON-SMOKER 

ALCOHOL(**) 
WAGE-EARNING 

NON-WORKING 

SELF -EMPLOYED 

SCHOOL 
INCOME 
NORTH 

SOUTH 

CENTER 

RURAL 

DEFINITION 

Number of doctor visits in the last 2 weeks 

Number of emergency room visits in the last year 

Dichotomous variable for sex 

(=1 if male, =0 iffemale) 

Age of the individual 

Dichotomous variable for chronic health condition 

(=1 if yes, =Ootherwise) 

Dichotomous variable for acute health condition 

in the reference period (=1 if yes, =0 otherwise) 

Dichotomous variable for suffering an acddent 

in the last year (=1 if yes, =0 otherwise ) 

Dichotomous variable for current smoker 

(=1 if yes, =0 otherwise) 

Dichotomous variable for ex-smoker 

( = 1 if yes, =0 otherwise) 

Dichotomous variable for non-smoker 


if yes, =0 otherwise) 

Daily alcohol consumption (cubic centimeters) 

Dichotomous variable for wage-earning 

(=1 if yes, =0 otherwise) 

Dichotomous variable for non-working: student, 

unemployed, inactive (=1 ir yes, =0 otherwise) 

DichotOlllOUS variable for self-employed 

(=1 ir yes, =0 otherwise) 

Years of schooling completed 

Estimated household income 

DichotOlllOUS variable for region 

(=1 if living in Asturias, Navarra 

Cantabria, País Vasco, Lugo, Lérida, 

or Castilla-León, =0 otherwise) 

Dichotomous variable for region 

(=1 if living in Andalucía, Murcia or 

Extremadura, =0 otherwise) 

Dichotomous variable for region 


! (=1 if not living in none of above regions, =0 otherwise) 
I Dichotomous variable for residing in a rural area 

of population < 10.000 (=1 if yes, =0 otherwise) 

(*) Illnesses in question are: heart disease, chronic bronchitis, asthma, diabetes, hypertension, 

allergy, high levels of cholesterol and estomach ulcer. 

(**) To create this variable, we have transformed quantites of consumed alcoholic drinks and its 

alcoholic graduations in alcoholic cubic centimeters. For this purpose, we have used the conversion 

table reported by the Spanish Ministry of Health and Consumer Affairs. 
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TABLE 2: DESCRIPTIVE STATISTICS 


MEAN STD.DEV MIN MAX 
MALE 0.28 0.67 O 1 
AGE 49.44 16.41 16 95 
CHRONIC ILLNESS 0.33 0.47 O 1 
ACUTE ILLNESS (2 weeks) 0.093 0.29 O 1 
ACUTE ILLNESS (1 year) 0.184 0.387 O 1 
ACCIDENT 0.071 0.257 O 1 
SMOKER 0.40 0.49 O 1 
EX-SMOKER 0.20 0.40 O 1 
NON-SMOKER 0.36 0.48 O 1 
ALCOHOL 14.56 21.72 O 125 
WAGE EARNING 0.60 0.49 O 1 
NON-WORKING 0.17 0.37 O 1 
SELF-EMPLOYED 0.22 0.42 O 1 
SCHOOL 9.05 4.33 2.5 18 
INCOME x10-6 3.298822 1.38 0.863778 11.985321 
NORTH 0.27 0.44 O 1 
SOUTH 0.17 0.38 O 1 
CENTER 0.55 0.49 O 1 
RURAL 0.30 0.46 O 1 

TABLE 3: FREQUENCIES OF COUNTS 

SITS EMERGENCY ROOM VISITS 
O 6167 6841 
1 1264 807 
2 297 108 
3 54 31 
4 19 10 
5 3 7 
6 O 1 
7 2 4 
8+ 11 8 
Total 7817 7817 



TABLE 4: ESTIMATES FOR THE NUMBER OF DOCTOR VISITS 

POISSON NEGBIN 

INTERCEPT I -3.4339 -3.4800 
I (0.3457) (0.3799) 

[0.4106] [0.4156] 
log(AGE) 0.4855 0.5038 

(0.0800) (0.0880) 
[0.0954] [0.0968] 

MALE -0.2236 -0.2486 
(0.0558) (0.0625) 
[0.0670] [0.0669J 

CHRONIC 0.4419 0.4718 
ILLNESS (0.0467) (0.0518) 

! [0.0556] [0.0557] 
ACUTE 1.3061 1.3622 
ILLNESS (0.0472) i (0.0564) 

[0.0575] [0.0560J 
log(ALCOHOL) -0.0738 -0.0737 

(0.0148) (0.0164) 
[0.0166] [0.0168] 

SMOKER 0.0160 0.0121 
(0.0587) (0.0646) 
[0.0682] [0.0681J 

EX-SMOKER 0.1918 0.1954 
(0.0593) (0.0667) 

i [0.0703] [0.0699] 
NON-WORKING 0.2309 0.2502 

(0.0518) (0.0595) 
[0.0606J [0.0623] 

SELF-EMPLOYED -0.3067 -0.3134 
(0.0665) (0.0718) 
[0.0772] [0.0772] 

SCHOOL -0.0041 -0.0054 
(0.0065) (0.0074) 
[0.0078] [0.0080] 

INCOME x 10 '0 0.0319 0.0268 
(0.0210) (0.0234) 
[0.0260] [0.0258J 

RURAL 0.0220 0.0072 
(0.0499) (0.0559) 
[0.0599] [0.0607] 

NORTH -0.1409 -0.1495 
(0.0532) (0.0591) 
[0.0633] [0.0647] 

SOUTH 0.1547 0.1480 
(0.0552) (0.0634) 
[0.0637] [0.0655] 

8 I 1.7393 
(0.2004) 
[0.3064] 

log-lik -4836.68 -4761.51 
R2 0.18 0.19 

oStandard errors. [] Eicker-White robust standard errors. 

NLS 
-2.9164 
(0.3368) 
[0.5247] 
0.3517 

(0.0777) 
[O. 1194J 
-0.1539 
(0.0490) 
[0.0796] 
0.3026 

(0.0426) 
[0.0673] 
1.2403 

(0.0401) 
[0.0586] 
-0.0676 
(0.0141) 
[0.0206] 
0.0541 

(0.0552) 
[0.0828] 
0.1579 

(0.0524) 
[0.0895] 
0.1170 

(0.0450) 
[0.0715] 
-0.2523 
(0.0667) 
[0.0842) 
-0.0020 
(0.0057) 
[0.0099] 
0.0494 

(0.0183) 
[0.0340] 
0.0930 

(0.0440) 
[0.0724] 
-0.1210 
(0.0502) 
[0.0715] 
0.1782 

(0.0455) 
[0.0746] 

I 

0.14 


SGLS 
-4.2689 
(0.4143) 
[0.4273] 
0.6494 

(0.0967) 
[0.0990] 
-0.2657 
(0.0653) 
[0.0729] 
0.4398 

(0.0551) 
[0.0601] 
1.2770 

(0.0551) 
[0.0610] 
-0.0694 
(0.0172) 
[0.0176] 
-0.0165 
(0.0691) 
[0.0737J 
0.2488 

(0.0672) 
[0.0764] 
0.2866 

(0.0586) 
[0.0624J 
-0.3323 
(0.0766) 
[0.0765] 
0.0046 

(0.0073) 
[0.0081] 
0.0233 

(0.0234) 
[0.0267] 
0.0264 

(0.0570) 
[0.0611] 
-0.1924 
(0.0632) 
[0.0628] 
0.1895 

(0.0595) 
[0.0662] 
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TABLE 5: ESTIMATES FOR THE NUMBER. OF EMERGENCY ROOM VISITS 

POISSON NEGBIN NLS SGLS 

INTERCEPT -0.4566 -0.3420 -0.6262 -0.6229 
(0.4046) (0.4818) (0.3656) (0.4577) 
[0.5728] [0.6174J [0.6317] [0.5106] 

log(AGE) -0.5013 -0.5507 -0.3750 -0.5183 
(0.0946) (0.1132) (0.0840) (0.1081) 
[0.1329] [0.1437] [0.1430J [0.1190] 

MALE 0.0384 0.0300 0.0431 -0.0623 
(0.0749) (0.0892) (0.0668) (0.0884) 
[0.0981J [0.0988J [0.1161] [0.1046] 

CHRONIC 0.4089 0.4910 0.1684 0.3124 
ILLNESS (0.0620) (0.0736) (0.0549) (0.0764) 

[0.0866] [0.0893] [0.0955] [0.0874] 
ACUTE 1.3371 1.3876 1.2603 1.5546 
ILLNESS (0.0596) (0.0699) (0.0802) (0.0761) 

[0.0770] [0.0756] [0.0586] [0.0872] 
ACCIDENT 1.1950 1.4238 0.8575 1.0297 

(0.0669) (0.0903) (0.0528) (0.0806) 
[0.0793] [0.0746] [0.0914] [0.0966] 

log(ALCOHOL) -0.0731 -0.0924 -0.0109 -0.0592 
(0.0188) (0.0224) (0.0163) (0.0223) 
[0.024OJ [0.0241] [0.0322J [0.0239] 

SMOKER 0.0041 0.0340 -0.1162 -0.0308 
(0.0722) (0.0860) (0.0640) (0.0837) 
[0.0935] [0.0928] [0.1311] [0.0951] 

EX-SMOKER 0.1330 0.1663 0.0459 0.1850 
(0.0782) (0.0936) (0.0678) (0.0936) 
[0.1032] [0.1040] [0.1232] [0.1055] 

NON-WORKING 0.1699 0.1859 0.1106 0.1265 
(0.0686) (0.0837) (0.0588) (0.0916) 
[0.0962] [0.0964] [0.1136] [0.1006] 

SELF-EMPLOYED -0.1897 -0.2316 -0.0188 -0.2752 
(0.0816) (0.0945) (0.0729) (0.0968) 
[0.0992] [0.0961] [0.1530J [0.1171] 

SCHOOL -0.0265 -0.0282 -0.0215 -0.0163 
(0.0088) (0.0104) (0.0080) (0.0103) 
[0.0106] [0.0108] [0.0124] [0.0113] 

INCOME x 10 -o 0.0625 0.0268 0.0190 0.0277 
(0.0267) (0.0313) (0.0245) (0.0307) 
[0.0374] [0.0513] [0.0356] 

RURAL -0.2767 -0.3042 -0.2186 -0.2795 
(0.0681) (0.0799) (0.0614) (0.0882) 
[0.0868] [0.0857] [0.1135] [0.0917] 

NORTH -0.1554 -0.1630 -0.1765 -0.2406 
(0.0700) (0.0819) (0.0673) (0.0899) 
[0.0856J [0.08681 [0.0956J [0.0873] 

SOUTH 0.0395 0.0450 0.0030 0.1012 
(0.0740) (0.0892) (0.0633) (0.0857) 
[0.0973] [0.0967j [O. 1169j [0.0988] 

Ó 0.7821 
(0.0803) 
[0.1127] 

log-lik -4836.68 -4761.51 
R2 0.20 0.22 0.10 0.07 

oStandard errors. [] Eicker-White robust standard errors. 



TABLA 6: ML estimates for the number of doctor visits. Subsample consists of 

smoker male individuals that are head of household, wage-earning, without chronic 

and acute illnesses, from the Center and the South of Spain and between 23 and 64 

years old (N=764). 

INTERCEPT 

AGE2 x 10-4 

Log(ALCOHOL) 

6 

Log-lik 

POISSON NEGBIN 

-2.662 -2.645 

(0.301) (0.360) 

[0.405] [0.395] 

0.275 0.271 

(0.125) (0.156) 

[0.153] [0.154] 

-0.043 -0.047 

(0.067) (0.083) 

[0.084] [0.084] 

0.212 

(0.071) 

[0.081] 

-265.954 -248.777 
oStandard errors. IJ Elcker-Whlte robust standard errors. 

TABLE 7: ESTIMATED MARGINAL PROBABILITIES 

SAMPLE 

POISSON 

NEGBIN 

NONPARAMETRIC 

P(Y = O) P(Y = 1) P(Y = 2) P(Y 2:: 3) 

0.9210 0.0640 0.0090 0.0060 

0.9047 0.0903 0.0024 0.0026 

0.9219 0.0617 0.0122 0.0042 

0.9221 0.0633 0.0095 0.0053 

TABLE 8: P-VALUES FOR STUTE TEST 

N-Bootstrap = 1000 

POISSON BINEG 

P(Y = O 1 X) 0.009 0.610 

P(Y = 11 X) 0.008 0.408 

P(Y 2:: 21 X) 0.004 0.505 

TABLE 9: P-VALUES FOR ANDREWS TEST 

N-Bootstrap = 1000 


POISSON BINEG 


0.000 0.558 



--------------------

------------------------

FIGURE l:Estimated conditional probabilities (ALCOHOL is fixed at its mean value) 
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FIGURE 2:Estimated conditional probabilities (AGE is fixed at its mean value) 
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