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Abstract 

The relationships between stochastic trending variables given by the concepts of cointegration and 

error correction (EC) are well characterized in a linear context, but the extension to a nonlinear 


context is still a challenge. Few extensions of the linear framework were developed in the context 


of linear cointegration but nonlinear error correction (NEC) models, and even in this context, 


there are still many open questions. The theoretical framework is not well developed at this 

moment and only particular cases have been discussed empirically. In this paper we propose a 


statistical framework that allow us to address those issues. First, we generalize the notion of 

integration to the nonlinear case. As a result a generalization of cointegration is feasible, and also 

a formal definition of NEC models. Within this framework we analyze the nonlinear least squares 

(NLS) estimation of nonlinear cointegration relations and the extension of the two-step estimation 

procedures od Engle and Granger (1987) for NEC models. Finally, we discuss a generalization 


of Granger Representation Theorem to the nonlinear case and discuss the properties of the one­


step (NLS) procedure to estimate NEC models. 
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". 1 Introduction 

Granger (1981) introduced the concept of cointegration but it was not until Engle and 
Granger (1987) and Johansen (1988) that this concept got an inmense popularity among 
econometricians and applied economists. The great impact those papers had in the profession 
was due to the fact that they showed, how to empirically work with economic variables 
that have unit roots to avoid the problem of spurious regressions. Furthermore, most of 
the modelling, estimation and inference procedures change dramatically from the classical 
statistical frameworks when dealing with variables that have unit roots and are cointegrated, 
see Phillips (1991). That forced a large part of the profession to work within this framework. 

It is clear how to deal with integrated and cointegrated data within a linear context, but 
almost no research has been dedicated to the simultaneous consideration of nonstationarity, 
1(1), and nonlinearity, even though many macroeconomist agree with the fact that those 
are realistic and dominant properties of economic data. How can it be possible that almost 
no research have been dedicated to this topic? The answer is clear, it is difficult to work 
with nonlinear time series models in a stationary and ergodic framework and even more 
difficult in a nonstationary contexto Nevertheless there are already empirical examples of 
non linear error correction models with linear cointegration and with nonlinear cointegration. 
See Hendry and Ericsson (1991) and Granger and Swanson (1995) for sorne examples. 

An introduction to the state of the art in econometrics relating nonlinearity and nonsta­
tionarity can be found in a recent papel' by Granger (1995). There he discusses the concepts 
of long-range dependence and extended memory which generalize the linear concept of in­
tegration, I( 1), to a nonlinear framework. The main disadvantages of those definitions are 
that there are no Laws of Large Numbers, nor Central Limit Theorems associated to them 
and therefore there are no easy ways to obtain estimation and inference results. This paper 
starts filling this mayor gap. 

The structure of the papel' is the following. In section 2, \Ve propose a definition of nonlin­
eal' integration, NI(l), which also allows us to define the concept of nonlinear cointegration. 
Section 3 deals with the estimation of cointegrating relationships, and presents sorne Monte 
Carlo results. Section 4 studies the problem of the two-step estimation procedure in the 
context of nonlinear error correction models and presents sorne Monte Carlo results. Section 
5 analyzes an extension via the near epoch dependence (NED) concepto Finally, in section 
6 we present the main conclusions. 
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2 Cointegration and Error Corretion: The Non Lin­
ear Case 

As we have discussed previously if we do not assume that the series follow ARMA models, 
then the classical definitions of stochastic trends and extended memory are not appropiate. 
Granger and Terasvista (1993) and Granger (1995) propose a natural generalization of the 
concepts to the nonlinear case as foHows. 

Let us take Fh(X) = P(Xt+h S xl1t) which provides the conditional distribution of Xt+h 
glven the information set lt = {Xt-j : j ~ O}. It will be said that the series is "short memory 
in distribution" (SMD) if 

limFh(x) = F(x)
h 

i.e. the conditional distribution does not depends on lt. Therefore, 

for aH subsets Gl! G2 E lt such that P(Xt-j E G2 ) =/:- O. Vle will consider that the concept of 
ll1ixing encapsulates the concept of S?\ID. Since ¡p-mixing implies o:-mixing we will cOl1sider 
the concept of o:-mixing. 

Definition 2.0 (o:-l\lixing) Let {vd a sequen ce of random variables. Let F! =0"(Vs , ••• , Vt) 

and define the o:-mixing coefficients as 

O:m == sup sup IP(G n F) - P(G)P(F)I . 
t FEF:'oo,GEFt+m 

It will be said that the sequence {Vt} is o:-mixing (or strol1g mixing) if and only if O'm -+ O 
as 17Z -+ oo. The coefficient O:m measures the dependence between events that depend on Vt 's 
separeted by at least m time periods. The o:-mixing property allo\v simultaneously temporal 
dependence and heterogeneity in the process. If O'm = O(m'\) for all A < -<Po, then it will 
be said that O:m is of size -'Po. Since the concept of o:-mixing is based on the O"-algebras 
generated by the sequence of variables, then the concept is invadant under Borel measurable 
transformations of a finite number of those variables. See, for instance, \Vhite (1984). 

2.1 Non Linear Cointegration 

U nder general conditions there exists a LLN, as the following theorem states. 
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Theorem 2.1 (McLeish) Let {vd a scalar a-mixing sequence with am of size r/(r - 1), 
r> 1, and with finite means E(vt) =¡tt. If for sorne 6, O< 6 :::; r, we have 

Proof: See Theorem 3.47 of White (1984). 

The condition of Theorem 2.1 is essentially a condition of existence of moments of order 
(r+6). See vVhite (1984). Also under general condítions there exists a FCLT which gives the 
convergence of partíal sums of the a-mixing sequences, as establishes the following theorem. 

Theorem 2.2 (Herrndorf) Let {v s } be a sequence of random variables and define ST = 
2:f=l Vt, and lIT(r) = 2:~~;1 Vt, \vhere [T1*1 is the greater integrer smaller than Tr. Then 
under assumptions 

(i) E(Vt) = O, for aH t; 

(ii) SUPt E(lvtl¡3) < 00, for sorne fJ > 2; 

(iii) u2 = limT--+oo E(T- 1(ST)2), verifies that O< u2< 00; and 

(iv) {Vt} is a-mixing with a-mixing coefficients a m satisfaying 

00 
l"" a m 

2/i3 < oo',L.J ­
t;:::l 

we have that T- 1/ 211TO ~ O"t,V(·), as T -¡. 00, where t'VO is the SBM in [0,1]. O 

Proof: See Herrndorf (1984). 

Condition (ii) controls the existence of moments. Condition (iv) controls the temporal 
dependen ce of the process. Since fJ is the same in (ii) and (iv) there exists a trade off 
between both, see Phillips (1987). Condition (iii) avoids cases such as the foHowing. Let Vt 

a Gaussian random walk such that ÓVt (ÓVt == (1 - L)Vt == Vt - Vt-d is a non-invertible 
:MA(l). In that case ÓVt and Vt are a-mixing sequences, but Vt does not satisfy (iii). The 
following definition of strong nonlinear I( 1) (SNI( 1)) takes this case into account. 

Defillitioll 2.3 (SNI(O) y SNI(I)) A sequen ce {Vt} is strongly non linear 1(0), SNI(O), if it is 
a-mixing hut the sequence {yd given by Yt = 2:!;:::1 Vt, is not a-mixing. \Ve will say that Yt 
is SNI(l). 
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Note that if Yt is SNI(1) then LlYt is SNI(O). An important property of the aboye definition 
is that the o:-mixing condition can be tested. There exists sorne papers that deal with this 
problem. Sorne of the more important are Lo (1991), Kwiatowski, Phillips, Schmidt and 
Shin (1992) (KPSS), and Stock (1994). 

In what follows we will consider only sequen ces without deterministic components, i.e., 
Xt =Xt - Jlh where Jlt is the mean of Xt, such that E(xt) = O. Note that the aboye definition 
of SNI(O) the size of the sequence is not specified. It will be understood that a vector 
Xt :=: [XIt, ... ,Xnt]' (n x 1) is SNI(l) (SNI(O)) if each component Xit is SNI(l) (SNI(O)). 

Definition 2.4 (Non-Linear Cointegration) Let {yt} and {xtl two SNI(l) sequences. \Ve 
will say that Yt and Xt are strongly non linear cointegrated (SNCI) with cointegration functíon 
g(',-,,;), if g(Yt,Xt"n is o:-mixing and g(Yt,Xt,,¡) is not o:-mixing for,1 -¡: ,;. 

Sorne comments are appropiate. First, note that we define g(yt, Xt"d as "not o:-mixing" 
for '1 -¡: ,;, but \Ve do not specify if g(Yt, Xt"r) is SNI(l). That definition would be 
inaccurate in the linear case because in that case g(Yt, Xt,,1) could be 1(-1). In this case, 
however, if g(yt, Xtl,d is not o:-mixing, then the dependence has to be stronger, and not 
weaker. Second, note that the restriction imposed by the o:-mixing condition on the sequence 
{gt} = {g(Yt, Zt, ,i)} implies the existence of restrictions on the mean of {gt}, but also on 
every other moment of the sequence. Third, note that the cointegration functíon is not 
unique since any measurable function of an O:-l11ixing sequence is o:-mixing. Therefore we will 
consider the functions f : ~2 -t ~ divided into equivalence classes such that two functions ft 
y 12 are in the same class if there exists a functíon 9 : ~ -t ~ such that f¡ = 9 012. The study 
will be restricted to one function of each class. Fourth, note that with this definition new 
linear cointegration re1ations appear that were not allo\\'ed within the classÍcal cointegration 
definition, because the dynamics of the variables are not necessarily represented as ARIVlA 
models. Finally, we suppose that the cointegration functions are measurable functions wíth 
respect to the appropíate O"-field. 

Sorne extra conditions are implicitly impossed on the cointegration relation in order to 
avoid non-sense cointegration. The following examples specify the relations that are not 
considered as cointegration relations. (1) g(Yt,Xt"d = h(Yt,,¡), Le., in fact it is a function 
of only one variable; (2) 9 is such that for any two variables Yt, Xt of sorne fal11ily of SNI(l) 
variables, g(Yh xt"n it is always o:-mixing, Le. 9 gives always cointegration. 

The second example tries to avoid "too restrictive" functions. Granger and Ha1ll11an 
(1991) give the following case. If Xt is a Gaussian random walk, then sin(xt) has proper­
ties of "short memory". Functions such as g(Yt, xt"d = cos(Yt + '1 Xt), or g(Yt, Xtl,d = 
sin('1 (YtXt)), are therefore "too restrictive" if they always produce cointegration. Con­
sider the following example. Let Xt and Yt be scalar variables such that Xt :=: ¿:~=l es and 

4 



-"1 
I 

I 

Yt = E!=I1]s, where é s and 1]11 are a-mixing variables which verify a LLN, and converge in 
probability to non null values ex and ey respectively. If \Ve take the ratio 

t t 

ft = (xt/Yt) = (2: é s)/(2: 1]s) [2.1] 
s=l 8=1 

then Jt converges to ex/evo The sequence ft converges in probabilidad to some constant then, 
under certain conditions, it is a-mixing. Notice that even if the limit of the sequence is a 
constant it does not imply that the sequence is a-mixing as the following example illustrates. 
Let {rt} be a sequence given by rl rv U(-l, 1) and rt rv U(-rt_l,O) if rt-l is positive and 
rt rv U(O, -rt_¡) if rt-l is negative. The sequen ce systematically changes the signo Take the 
outcomes H = {r2 > O} and G = {r2(t+m) < a} then P(H) = ~ = P(G) and P(H n G) = O. 
Therefore for every t 

and then, although the sequence {r¡} converges in probability to O it is not a-mixing. Note 
that hardly a ratio as [2.1] presents a behaviour as systematic as that in rt, specially if ét 

and 1]t are " good enough". 

It ís of interest to consider the "stability" of the definition SNI(O) fol' instantaneous 
transformations. This is due to the fact that the a-mixing property is preserved for such 
transfomations. The following Lernrna forrnalizes the resulto 

Lemma 2.6 Let llS suppose four SNI(l) series given by {vd, ül't}, {:r¡}, and {xd, which are 
related Yt = fy(Vt), and Xt = fAXt) for invertible transformations fy(') and Jx(')' If there 
exists a cointegrating fUl1ction 9R(',') for the Xt and Vt series then exists a cointegrating 
fundíon 9T(-,') for the fx(xt) and fy(Yt) series. Com'ersely, if there exists a cointegrating 
fundíon 9T (., ' ) fol' the transforrned series Yt and xt, then there exists a cointegrating fundíon 
9Rh·) for the series Yt and Xt. O 

Proof: See Appendix A. 

The invertibility condition of fx and fy is not necessary if we impose other restridions. 
For instance if we kno\V that Xt > athen we rnay consider that x; = Xt is invertible. FinalIy, 
we present so me possible generalizations of the definitions given aboye. 

An extension of the idea of nonlinear integration can include the notion of the nonlinear 
trend. For exarnple \Ve can say that the Xt series has a Non-linear Trend (NT) if Xt = Fx(Tt) 

for some Tt series which is SNI(1) and Fx(') is in sorne subset of the set of functions F : ~ -+ ~ 

(which \':¡e will not specify). Therefore, \Ve will say that two NT series Xt and Yt have a non­
linear co-trend (NCT) if there exists a funtion Cxy (-, ',1) such that Cxy(Xt'Yhl) is a-mixing 

5 



for 1 = 1* and it is not for 1 =/: 1*' Consider the following example. Let Wt be an SNI(l) 
series and let us take 

Yt - exp( -1;Wt +'Ut) 
Xt = Wt +Vt 

where et is an a-mixing sequence. Then F(Xt, Yt) = Yt exp(liXt) is a NCT relation. Different 
appoximations to these issues can be found in Escribano (1986 and 1987) and Gl'anger (1988). 

2.2 N on Linear Error Correction Mechanism 

A non linear error col'l'ection (NEC) mechanism fol' the (n x 1) X t vector is an autoregressive 
lineal model for the differences .ó.Xt plus a nonlinear term fol' the lag of the levels Xt-l' If 
we take the case n = 2 and X t = [Xt, yd', the NEC with only one lag is .ó.Xt = \jj* .ó.Xt_l + 
F(Xt- b r*) + ét, whose first equation can be wrÍtten in the form 

.ó.Xt 	 7/';l.ó.Xt-l + 7/'~2.ó.Yt-l + f( Xt-l 1 Yt-l, 1*) +élt 

~~l.ó.Xt-l +7/';2.ó.Yt-l + f(g(Xt-hYt-lll;),I;) +élt [2.2] 

where .ó.Yt and .ó.Xt are a-mixing, and the pal'ametel' 1* may be split into 1* = bi', 12']" 
The subvector li is the cointegl'ation vector and the subvector 12 is the vector of parameters 
of the error corretion mechanism. 

Note the distinction made in [2.2] between the cointegration functíon g(Yt, .L¡, Ii) and the 
error correction functíon f(', 12)' The functíon g(',., li) = O gives the lung run equilibrium 
relationship and the devíations from thís equilibrium g(Yt-h Xt-I, 1;) are the errol's corrected 
hy the l110del. 

A nonlineal' error correction mechanism \vith only one lag is given by 

where H(Xt-d = H(Xt - 1 , r) fol' sorne vector of parameters r. The following definition 
allO\.... us to give a necessary condition on the NEC formulation. 

Definition 2.7 Given a funtion F : 3tP -t 3tq such that F(X) = y for vectol's X = [Xl, ..., Xp] 

and Y = [YI, ... , Yq], \Ve will say that F is pal'tially invertible if there exists at least one 
i E {l, ... ,p} and one gi : 3{q -t 3{ such that Xi = gi(Y)' 
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The function H(.) is not necessarily a transformation of a finite number of other cointe­
grating relations, i.e. not necessarily H(Xt - 1 ) = J(P(Xt - 1 )) for other cointegration function 
P(·). See Mira (1996) for a longer discussion. As a consequence we do not have a generaliza­
tion of the Granger Representatíon Theorem given in Engle and Granger (1987) (in the sense 
that the existente of cointegration implies an error correction representation where the error 
correction is a function of the base of the space of cointegration relations) nor the converse 
formulation given in Johansen (1991). Nevertheless we can give a necessary condition for 
the NEC representation which will be extended in the last section to a partíal generalization 
of the Granger Representation Theorem to the nonlinear case. 

Proposition 2.8 Let us suppose a model of nonlinear time series for the sequence of random 
vectors (n x 1) {Xt} given by 

where we have taken on1y two lags for símplicity. We have the following assumptions 

(1) ~Xt and ét are SNI(O); 

(2) the function F( X t - 1 , X t - 2 ) is non linear on1y in the first lag, i.e. 

(3) 	the function H(Xt-d given by H(Xt-d = -(1 - <1>2)Xt - 1 + G(Xt-d is not partíally 
inverti ble. 

Then: 

(i) undel' assumptions (1) and (2) we have the follo\Ying l'epresentation 

~Xt = WI 6.Xt- 1 +H(Xt-d + ét [2.3] 

where W1 -<1>2 and H(Xt) : ~n ---+ ~n is given by H(Xt-d = -(1 - IP2)Xt-1 + 
G(Xt-d; and 

(ii) the repl'esentation given in [2.3] is a NEC if and only if assumption (3) holds. 

O 

Proof: See Appendix A. 

Sorne remarks deserve to be mentioned. First, note that condition (2) is intuitively 
clear, because we do not expect that any nonlinear function of the lags can be transformed 
into an error correction model, even if there exists a cointegrating function. Second, note 
that the condition of not partially invertible discardes the case of an SNI(O) variable which 
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enters into the cointegration relation. Third, note that in the linear case the proof of the 
representation theorern relies in the fact that A(l) is of rank r (the cointegration rank) and 
then it is not invertible; if that not were the case Xt- 1 can be inverted and we obtain X t as an 
ARMA model, which would be a contradiction. See Mira (1996) for a detailled discussion. 
Fourth, note that the cointegration function depends on the AR representation for X t as 
can logically be expected. As a consequence not any cointegration function can appear in 
the error correction representation, only those related with the AR representation for the 
levels of Xt. Finally, note that we cannot fuUy characterize the fundíon H(·) to obtain a 
Representation Theorern. This question will be solved in Section 5. 

If the error correction function depends on say two lags Xt- 1 and Xt- 2 , an extension of 
Proposition 2.8 can be given. Let us write 

X t - G(Xt- 1,Xt- 2 ) + <P2 X t-2 +ét 

D..Xt = 	G(Xt-l, X t- 2 ) - Xt- 1 + <P 2 Xt- 2 +ét 

= (-<P2)(Xt - 1 - Xt- 2 ) - (1 - <P 2)Xt- 1+G(Xt- h Xt- 2 ) +ét 

1l1 1D..Xt- 1 +H(Xt- h Xt- 2) +ét [2.5] 

where 111 1 = -<P 2 and H(Xt- b X t- 2 ) = -(1 - <P 2 )Xt- 1 + G(Xt-l, X t- 2 ). In this case the 
condition of not partíaUy invertible has to be impossed on the fundion H : ~2n _ ~n. An 
example of this type of rnodels is the Smooth Transition Regression function (STR) given 
in Granger y Terasvirta (1993), where the transition depends on sorne equilibriurn errors of 
the long range relationship specified by the cointegration relation. If we have X t = [Yt, ztJ', 
then the first equation of [2.5J may be written as 

D..Yt = 	 {3l1'~·Yt-l + {312L:::..Zt-l 
+(ÓnD..Yt-l +Ó12 D..zt_1 )(1 +exp( -ll(Yt-1 12 Z t-l)) + Elt 

In this case the dynamics of D..Yt is given as an autoregressive model with exogenous 
variables, whose parameters change depending on some equilibriurn errors of the long range 
relationshi p. 

2.3 Linear Cointegration and Non Linear Error Correction 

It is of special interest the case where the error correction is non linear but the cointegration 
is linear. The rnodel is 
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where H(Xt- 1 ) = J(J(Xt-d for sorne rnatrix J( (n X 1) and sorne function J : tRn -+ tRn . 

In this case J( rnay be of full rank if J(.) is not partially invertible. Conversely, if J(.) is 
invertible then J( cannot be of full rank and then is a linear cornbination of the space of 
cointegrating relations. Therefore, we partially recover Granger Representation Theorern 
because ,ve have 

and !( is a linear cornbination of the base of cointegrating relations. The following exarnple 
clarify the issue. Let X t = [Ytl Xt, rt]', and suppose that J( is given by linear cornbinations 
of two cointegl'ating relations, Le. 

13
J( (~~i) = ,e/ = ( ~i ) ( a} ) = (~:~ ~~:) (all a12 a ) 

T,'I I a 2 a21 a22 .a23 
1\ 3 13 131 132 

The rank of J( is 2, and then J (.) rnay be invertible. AIso it is clear that a function of 
(I(~Xt-l,I(~Xt-b J(~Xt-¡) can be written as a function of [a~Xt-l, a~Xt-d' = [Zl,t-l, Z2,t-l]" 
The error correction rnechanisrn with only one lag is given by 

!::::..Yt !31!::::..Yt-l + !32!::::..Xt-l + !33!::::..rt-l + JI (Zl,t-h Z2,t-¡) +Clt 

!::::..Xt 81!::::..Yt-l +82!::::..Xt-l +83!::::..rt-l + J2(Zl,t-ll Z2,t-¡) +C2t 

!::::..rt - Pl!::::..Yt-l +P2!::::..Xt-l +P3!::::..rt-l + J3(Zl,t-I, Z2,t-d +C3t 

and the error correction is a function of the base of cointegrating relations. 

3 Non-Linear Cointegration 

In this section "'e study the problern of estirnation of the cointegrating pararneters when the 
cointegration relation is nonlinear. 

3.1 Sorne Tools 

\Ve will introduce sorne tools frorn functional analysis. Let (F1 , 11 . lit) and (F21 11 . 112) be 
norrned spaces, and let \lJ : F1 -+ F2 be a functional. \Ve will say that \lJ is differentiable 
at the point F E F1 with respect to a collection of subsets S of F1 if there exists a linear 
continuous rnap D\lJ (Fj .) : F1 -+ F2 (which \Ve will caH the differential of \lJ at F) such that 
fol' G in sorne neighboul'hood of zero, 

\lJ(F +G) = \lJ(F) +D\lJ(F; G) +RiJ!(F; G) 
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where the remainder R'll satisfies 

uniformly in G E S for every S E S. Special choices for S give the most interesting differen­
tials. If S is the family of aH singletons of ;::1 then D\JI{F; G) is the Gateaux differential. If 
S is the family of aH compact su bsets of ;::1 then D'IJ (Fi .) is the Hadamard differential. If S 
is the family of aH bounded subsets of ;::1 then D\JI(Fi .) is the Fréchet differential. ClearIy 
Fréchet differentiability implies Hadamard differentiability, which in turn implies Gateaux 
differentiability. In relation with the former definition we have the following theorem, which 
is a functional version of the well known delta-method theorem. 

Theorem 3.1 Suppose \JI : ;::1 -+ ;::2 is Hadamard differentiable at F E ;::1 \vith differential 
D\JI(Fi') and that {XT}T=1 is a sequen ce of random elements in ;::1 that satisfies: 

(i) T- 1/ 2XT ~ X in ;::1 as T -+ 00; and 

(ii) the sequence {T-1/ 2Xrlr=1 is tight in ;::1; 

then T- 1
/ 

2'IJ(XT) D'IJ(Oj X) in ;::2 as T -+ oo. O 

Proof: The proof is essentially the same as in Heesterman and Gill (1992) with only few 
changes. 

In our case the spaces (:Ft, 11·lld and (:F2 , 11·112) are (D[O, 1]2,11,111), for D[O, 1] the space 
of right continuous with left limits functions (cadlag functions), ancl 11 . IIB the norm defined 
by the Skorohod distance l110dified as in Billingsley (1984), Section 14, and D[O, 1]2 and 
11 . 111 are the double products. Each element XT, is a function XT(-) : [0,1] -+ ~, \vith 

XT(l') equal to the partial sumation L~~~J el, with {O~l an a-mixing sequence. Therefore, 

the operator \JI(.) is given by \JI(XT) = \JI(L~~~let). The element X is lV(·), the Standard 
Bro",nian l\'lotion. 

From Theorem 2.2 we have that T- 1/ 2XT (·) alV(·), and {T- 1/ 2XT O} is tight in 
D[O, 1] (see for instance Herrndorf (1984)), then we have also that 

",here D'IJ(Oi a Hl(.)) is the Haddamar differential of 'IJ(.) at zero in the direction of aW(·). 

For instance, if the functional 'IJ( F) is exp(F) to find its Fréchet differential it is enough 
to find its Gateaux differential and prove that it is a continuous function. See Kolmogorov 
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and Fomin (1978). On the other hand the Gateaux differential DG'iI!(F; G) can be written 
as limt....o 11 q,(F+t~)-q,(F) 112' In our case 'iI!(F + tG) - 'iI!(F) = exp(F + tG) - exp(F) = 
exp(F)(exp(tG) - 1) and then we have 

lim exp(F(r))(exp(tG(r)) - 1) = ' (exp(tG(r)) -1)
exp(F(r ))11m 

t .... O t t .... o t 
- exp(F(r))G(r) 

Since this convergen ce is pointwise it also h01ds for the Skorohod topology, and the Gateaux 
derivative is DG'iI!(F(r); G(r)) = exp(F(r))G(r), which is lineal in G and continuous in F 
and then it is the Fréchet derivative. In general for functionals 'iI!(F) which are analogous to 
functions 'I/J(f) the Fréchet differential DF'iI! is analoguos to the usual diferential D'I/J of the 
function 'I/J. 

3.2 Estimation of the Cointegration Relationship 

The cointegration function states that g; = gt(¡*) g(Yh Zt, ,*) is a-mixing and that gt = 
gt(¡) g(Yt,zt,,) is not a:-mixing for, =J. ,*. Note that, as in the linear case, under some 
conditions on g; we have 

Therefore to ensure that a nonlinear least squares estimate provides a consistent estimation 
of ~( we have to ensure that t 'L.T=l (g¡)2 -t 00 for gt =J. g;. Recall that Yt = 'L.~=l 1]:;, 

and Zt = 'L.~=l é s , then the following assumption states a relation between the function 
g('L.!=l 71a, 'L.;=l é s ,,) and some function <1>('L.!=1 99' 'L.~=l 8s) of some a:-mixing sequen ces 
{9s} and {8s}' Clearly, in general, these sequences will be some elemental transformation of 
the sequences Yt = 'L.~=l 1]s, and Zt = 'L.!=l éso 

Assumption 3.2 (a) There exist a transformation <1>(.), which is Haddamar differentiable 
such that the strong1y nonlinear cointegration relation g(Yt, Zt, "1') can be writen as <1>('L.!:1 <Ps, 'L.!:l 65 ) 

for some strong mixing sequences {<Ps} and {8s}; and 
(b) T-l 'L.T=l E(gn 2 ~ J1 as T -t OO. 

Lemma 3.3 Under Assumption 3.2, the NLS estimator,T which minimizes 'L.T=l g(yt, Zt, ¡)2 
provides a consistent estimator of the parameter ¡*. O 

Proof: See Appendix B. 
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In the context of linear cointegrating relationships we know that if the (n x 1) variable 
X t is SNI(l) and the linear combination I'Xt is SNI(O), then the OLS estimator l' of 1 is 
obtained by 

T 

l' E argmin L I'Xt 
-yEr t=¡ 

where the restriction r is a normalization of the cointegrating vector, such that the linear 
space generated by the restricted vector 1 E r has to be the same as the space generated 
by the true l' The restriction given by r = {I : 1 = [1,12, ...,1n]/} verifies the required 
condition and allows us to obtain the estimation by OLS. In the case of r linear cointegrating 
relationships many possible restrictions are allowed. 

In the nonlinear case if the cointegration is given by f(Xt,I) where f(',I) : ~n ~ ~ 
then the estimation is given by 

In this case if f(Xhl) is a-mixing then also h(J(Xhl)) is o:-mixing for Borel measurable 
h(.) functions. New problems arise related to, but different from, those obtained in the 
linear case. First, the function h(J(Xt'I))2 may be a function with a maximum around 1* 
and then when \Ve find min-y2:;=¡h(J(Xt,I))2 the objective function may be flat arouncl 
the true value 1" and then the algorithm provides an estimated value quite different from 
the true value. \Vith an infinite sample the problem vanishes but not with finite samples. 
\Vith finite samples the normalization proposed is the minimization of h(J(Xh 1 ))2 for sorne 
h(·) which may depend on fU. Mira (1996) provicles an example. Second, as in the linear 
case the function h(·) may depend on a set of parameters 12 such that h(·, 12) = O and 
then \Ve have an identification problem. For instance, in the linear case the problem is 
mina ,{3 2:;=1 (a(Yt + f3.1:t))2, whose minimum is at o: = O. 

3.3 Asymptotic Distribution of the Estimator 

For the nonlinear case the estimator I T of the parameter 1 is given by the NLS algorithm. 
In this case the objective functíon is 

1 1 
mín -2 "tgt(¡? = min -2 G(¡)'G(¡) =minQ(I) 

-y t=1 -y -y 

where the vector G(¡) ís given by G(¡) = [g1(¡), ... ,gT(¡)]" The following assumption will 
hel p us to deal \Vi th the nonlinear function G(¡). 

Assumption 3.4 The functions ~~ are Lipschitz. 
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If we assume that ~(¡'") = O, for the true value ,'", then applying a first order Taylor 
expansion around ,0 we get, 

therefore 

and the iteration of the Newton-Raphson algorithm is given by 

If \re approximate (d~d~1 (,0)) by (~~ (,o)'~~ (,0)) and impose that this matrix is invel'tible 
in '"'( and ,,? fol' all T, then ",e obtain the relation 

.)'"1 

Since '"'? is consistent for ,",¡*, the approximation in [3.1J becomes a equality in the limit, 
and the asymptotic distribution is given by 

lim T(¡T -,*)' = 
T .....oo 

for F = G(¡'") and X = ~~ (¡'"). The second equality is ensured by Assumption 3.4 and 
the continuous mapping theorem. The following theorem introduces the convergence to the 
Standard Brownian Motion in the vectorial case. 

Theorem 3.5 (Phillips and Durlauf) Let {xs } be a sequence of (k x 1) vectors and let 

XT(r) = 2:~~;1 Xt, and define ST = 2:f=1 Xt = XT(l), then if 

(i) E(xt) = Ofol' all ti 
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(ii) E(T-lSTSf¡.) --+ E, a positive definite matrix, as T --+ 00 and E(T-1(SK+T-SK )(SK+T-
SId') --+ E as min{I<, T} --+ oo. 

(iii) {xft} is uniformly integrable for all i = 1, ... , k; 

(iv) SUPt E(lxitl.B) < 00 for some 2 :::; (3 < 00 and all i = 1, ... , k; 

(v) (3 > 2 and a m is of size -(3/«(3 - 2); 

then for vV(r) the k-dimensional Standard Brownian Motion, and for the decomposition 

T 

lim T-1 L E(xtX~) 
T-+oo t=1 

T t-1 

lim T- l L L E(xjx~) 
T-+oo t=lj=1 

lim E(T-1STS~) = Ea +El + E~ 
T-+oo 

we have the following results as T --+ 00, 

(a) T-I/2XT(1') ..:; E-1/ 21V(1') B(r); 

(b) T-2 r:;=1 St(r)St(1')' ..:; Iei B(r)B(r),dr; 

(c) T-1 r:F:=1 St-IX~ Iei B(r)dB(1')' + El; 

(d) T-3
/ 

2 r:F=1 St":; Id B(r)dr. 

for lV(·) the 5B11 k-dimensional. O 

Proof: See Lemma 3.1 in Phillips and Durlauf (1986). 

Note that in this case XT E D[O, 1]1., the product metric space of all cadlag real valued 
functions on [0,1]. In this case the definition of a-mixing has to be extended appropiately 
to the n-dimensional space. The results (a)-(d) hold for the scalar case under assumptions 
of Theorem 2.2. '\frite the matrix X as 

dl l . . . 1 Xl 
I d2 dI.) [ 1X - . '. . - . 

- ( d} d} .:~ d} = ~T 

where d: = ~, then, the (k x k) matrix (X'X) can be \'Hiten as r:;=l X~Xt, for a (1 x k) 
vector Xt. Analogously the (1 x k) vector (V'X) can be written as r:;=1 g;Xt. Let us suppose 
the follo\\'ing assumption 
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Assumption 3.6 The derivative X t can be written as Xt = 2:;=11" for {ls} a a~mixing vector 
sequence, with ls = [lIs, ... , lks]" 

Therefore for each j = 1, ... , k we have ~ = 2:~=1 Ajs. Consider the example of the 

cointegrating function gt = (Yt -¡¡)(Zt -¡2) in this case ~ = -Zt +¡2 and ~ = -Yt +¡l. 
Now \Ve have the following theorem. 

Theorem 3.7 Under Assumptions 3.4 and 3.6 and if the vector [g7-1' l~]' verify the assump­
tions of Theorem 3.5, then the asymptotic distribution of the estimator ¡T is given by 

lim T(¡T -¡*)' = lim (T- 1V'X)(T- 2X'Xt 1 

T-oo T-oo 

T T 


lim (T-1 Lg;xd(~=x~Xttl
T-oo t=1 t=1 

~ (10
1 

B2(r)dB1(r) +E12) (10
1 

B2(r)B2(r)'dr)-l 

o 

Proof: See Appendix B. 

Note that the former theorem ensures the superconsistency of the estimator. 

3.4 Bias in the Estimation of the Cointegrating Parameters 

Let us consider two a~mixing series {17s} and {és} and two series {vd and {Xt} given by Yt = 
2:~=111s and Xt = 2:~:=1 és, such that there exists a function g(., .,¡"') such that g(Yt,Xh¡*) 
is a-mixing. As a by-product, when the functíon g("', ¡") is linear this approach allows 
linear cointegration relations that were not allowed in the classical cointegration approach. 
\Vhithin the usual frame",ork, a cointegration relation given by Xt +aYt implies that both Xt 

and Yt follow ARrvIA models. \Vith the approach proposed here, those variables may follow 
any linear 01' nonlinear model. This section studies the biases that appear in the estimation 
of linear and nonlinear relationships. 

3.4.1 Model 1 

This case studies the bias that appear when cointegration is linear and the series are nonlinear 
transformations of i.i.d. N(O, 1) series. Let us define Tls = Vs + <j;*Vs-l + (ms - ms-d and 
é 8 = Va-l + (n 8 - ns-d, where m", n8 and as are i.i.d. N(O,I) and Vs is defined below. In 
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this case the cointegration parameter is ¡* = 4>" +1 since 

t t 

Yt - ¡"Xt = I)VS + 4>*vs-d - ¡" ¿ Vs-l 
a=1 8=1 

t 

¿(Vs + (4)* - ¡")Vs-d 
s=1 

t 

- ¿(Vs - Vs-d = Vt +VD. 
s=1 

where Va = sign(-aa)(P2 - exp(sign( -as)/has), for model1.1, and Va is a;f(a; +1) fol' model 
1.2, The values are 4>;' = 1, PI = 0.8 and P2 = 0.5. 

To analyze the behaviour of the estimators we generate N=1000 samples of sizes 1'=100, 
T=200 y T=1000, (with 100 extra data discarded) and we estimate the values ¡T. The 
following table presents the bias (estimated as the mean ¡,¡T = ~ -¿f:l(¡r - ¡*)) and the 

standard deviation (given by Jf¡ -¿f:l(¡r _'fT)2). 

Comparing modell.1 and model1.2 we see that the nonlinearity affects the OLS estima­
tion. In model 1.1 when T is smaller 01' equal to 500 the bias is a large part of the value of 
the parameter. For T=1000 the bias if about 10% of the value of the parameter. However, 
the bias in mode! 1.2 is smaller fol' size 1'=100 and even smaller for largel' sizes. 

Table 1 1'=100 1'=500 T=1000 
lVlodel 1.1 1.1339 0.4936 0.2865 

(0.3599) (0.2607) (0.1870) 
r,'Iodel 1.2 0.3768 0.0932 0.0500 

(0.2400) (0.0708) (0.0388) • 

3.4.2 Model 2 

In this case we study the bias that appears when the cointegration relation is linear but the 
series are nonlinear transformations of ARMA series. Consider {Vt} and {at} as series i.i.d. 
N(O, 1) and define tut = ÓWt-l +Vt, Pt = 10g(1 + (O.l)Wt) and 4>t = at - at-l' Now define ét 

and 1}t as 1}t = r.Pt and ét = Pt + A4>t. Then Yt and Xt are generated as the acumulation of 1}t 
and ét respectívely. If we take Yt - ¡"Xt then 

t 

Yt - ¡Xt = ¿ (1}s - ¡és) 
s=1 

t 

- ¿ (r.Pa - ¡Pa - ¡A4>s) 
a=1 

16 



¡ 
I 
i • ~ 

which is o:-mixing for 1 = 7r. The values of 7r = 0.8, and 6 = 0.5 are maintained in both 
models. Model 2.1 will have A = 0.4 and Model 2.2 will have A = 0.16. The following table 
presents the bias of , T in the same way as we did in table 1. 

\Vith this simulation we see that when A is large (Le., ePt has more importance in the 
errors) the bias is larger. In both cases for size T=500 or greater the biases are smaller than 
10% of the value of the parameter. 

Table 2 T=100 T=500 T=1000 
Mode12.1 0.2133 0.0521 0.0245 

(0.1205) (0.0404) (0.0228) 
Mode12.2 0.0506 0.0091 0.0041 

(0.0440) (0.0086) (0.0044) . 

3.4.3 Model 3 

Consider a fully nOlllinear model. \Ve take series ns and as generated by an ARMA(1,l) 
given by ns 0.6ns-1 +0.8et-1 + et \vith et Li.d. JV(O, 1) and \Ve define Zt = ¿~=l as and 
Wt = 12(Vt -/IZt), with Vs i.i.d. JV(O, 1). Now define 

Xt exp(¡211(Zt +100)/100) +Al 

Yt exp((Wt +nt +100)/100) + A2' 

Then the relation gt given by gt = (:rt - ,\¡)(Yt - A2) is a nonlinear eointegration relation 
sinee gt = exp((¡2/1 + 1) + (¡2Vt +nt)/100). Note that if the values Al and A2 were known 
in advance the relation log(xt - A¡) +10g(Yt - A2) eould have been estimated, but in general 
they are not knO\vn. The parameters Al and A2 are estimated by /1 and 12 given by 

In this case the comment about the normalization in the nonlinear case is applied. Instead 
of estimating (x -/¡)(y -/2 ) it is better to estímate the modification previously proposed. 

The procedure used to minimize is the function ms(·) of S-plus. In this procedure the 
initial values given for iterations has been: the mean of x for A¡, the mean of y for A2' and 
the mean of x x y for A3' The values of the parameters are /1 = 0.8, 12 = 0.7, Al = A2 = 1. 
The following table presents the results in the same way that tables 1 and 2. It can be seen 
in the table that for T 100 the bias are quite large and they deerease slowly. For T = 1000 
the bias is still around a 25% of the value of the parameter. 
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Table 3 T=100 T=500 T=1000 
..\1 1.4758 0.5345 0.2207 

(0.5500) (0.4644) (0.2689) 
..\2 2.3163 0.7929 0.3272 

(0.8506) (0.6713) (0.3969) 

Two-Step Estimation Procedure for NEC 

In the former section we show that the NLS estimator of the nonlinear cointegration rela­
tionship is superconsistent under certain conditions. In this section, we study the question of 
generalizing the two-step estimation procedure of Engle and Granger (1987) to the nonlinear 
case. The nonlinear error correction model that we want to estimate is a single equation 
model with a nonlinear error correction which depends on a single cointegrating relationship, 
given by 

which can be written as 

for ::;_1 == g(Yt-1, Xt-1, In, fj.Yt == 1'il and fj.Xt == Wt· If we stack all the observations in vector 
form \\'e get 

R - J{ B* - F*(¡;) v [4.2] 

G*(0*) V [4.3] 

where R = h, ... ,1'T]', R = [1'0, ... , 1'T-1]', IV = [wo, ... ,wT-d', f{ = [R, IV], B* = [;3*, <5*]', 
F*(¡;) = [J(z~, ,;), ... , f(zT-1' ,;)]', and 0* = [;3*, <5*, ,;]'. 

\Ve define also Z[_l = g(Yt-1, Xt-1, ,n for ,r the NLS estimation of the cointegration 
parameter ,~, and F T (¡;) = [J(za, ,;), ... , f(z~_l' ,;)]'. 

The two-step estimation procedure proposed by Engle and Granger (1987) consists in 
estimating the cointegration parameter in a first step, say ,r, generate the residuals, and 
then use those residuals in a second step for estimating the remaining parameters of the 
nonlinear error correction model [5.1] but substituting z;_l by Z[_l' For instance in a linear 
case \\'e \\'ould substitute z[ = Yt - ,rXt for z; = Yt - 'iXt. In order to obtain a similar 
result for the nonlinear case we consider the following assumption. 
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Assumption 4.2 Define the function 

and assume that the following conditions hold, 

;~~(T-IGr(fr)'Gr(o*)) = ;~~(T-IG;(O*)'G;(O*)) - Op(l) [4.4} 

lim (T- 1
/ 
2V'Gr(O*)) = lim (T- 1

/ 
2V'G;(O*)) Op(l), and [4.5}T-oo T-oo 

;~(T-l/2(p*(¡;) - pT(¡;))'GI(o")) - op(l ). [4.6} 

These assumptions have clear implications in the linear case, see Mira (1996). vVith the 
abo,-e assumption we can prove the following theorem. 

Theorem 4.2 Let us suppose that model [4.1] can be estimated consistently by NLS. Under 
Assumption 4.1, the estimation of model [4.1} with the cointegration parameter estimated 
by NLS ,r, instead of the true parameter ,;, provides the same asymptotic distribution for 
the NLS estimations OT of the rest of parameters 0*, than those obtained with the true value 
,;. 

Proof: See Appendix C. 

4.1 	 Bias in the Estimation of NEC Models with Linear Cointe­
gration 

In this section \Ve present an example of a non linear error correction model with linear 
cointegration, and analyze the bias that appears in the two step estimation. 

The data generating process is the following. Let {at} and {Vt} be two independent 
a-mixing sequences and define 

Xt Xt-1 +at [4.7] 

z; - z;_l +8;at + f(z;_ll';) +Vt [4.8] 

Yt = ,;Xt + z; [4.9] 


where the parametric function f( Z;-1"2) is the function that \Ve want as nonlinear error 
correction. If Zt defined in [4.8] is a-mixing then we have that Xt is SNI(l), Yt is SNI(1) and 
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they are cointegrated with linear cointegration function Yt -¡iXt. Now taking the difference 
operator in [4.9] we obtain 

l:::.Yt = bi +ó;)l:::.Xt + f(z;_l'¡;) +Vt [4.10] 

which is a nonlinear error correction mechanism (NEO) with linear cointegration given by 
z; = Yt - ¡iXt. vVe will impose the common factor restriction to simplify the model, such 
that ói = Oand obtain the model 

l:::.Yt = ¡il:::.Xt+f(z;_l,¡;)+Vt [4.11] 

The errors in the linear error correction mechanisms are given by Zt-l = Yt-l -¡iXt-l, 
and the estimated OLS residuals are given by Z[l = Yt-l -IrXt-1, where ¡r is the value !3 
estimated in the regression Yt = a: + !3Xt +ét, since Yt = ¡iXt + (z? + It), where Zt = z? +p 
and z~ has zero mean. 

If ,ve take the derivative in [4.7] with respect to Zt_1 we obtain 

such that impossing the boundness condition -1 < dzL z; < 1 we have a sufficient condition 

that ensure that the series z; is near epoch dependence (NED). See Mira and Escribano 
(1995) for a discussion of this condition. Several models verify this condition, here a brief 
analysis of one of them is exposed. See fvIira (1996) fol' a detailled analysis of those models. 

Consider the following parametric nonlinear function 

f(S,!31,!321"/2) -"(2 arctan(!31s +(32) 

fol' "'1'2 > O. The derivative is 

and the derivative is in the region of intel'est for the appropiate values of the parameters. 
For instance for values of (!311 !32, ¡2) equal to (1, 0,1) the derivative is 1- 1;82which clearly 
is always between O and L The set of values that we are going to consider is (!311 !32' ¡2) 
equal to (2, O, 0.7). 

No\\' we present the estimation results of model [1.5] for the nonlinear case. The esti­
mation pl'ocedure is the function ms(·) of S-plus. The sizes of the samples are 100, 500 and 
1000 where 100 previous observations have been disregarded. The value of ¡1 has been set 
to 0.7 and it initial value to L The set ofinitial values for (!3b!32,¡2) are (1,1,1). 

20 


http:�;)l:::.Xt


5 

,-----------------------------


Table 4 11 12 {31 {32 
T=100 -0.004934 0.1782 -133.386 6.77 

(0.10478) (0.70808) (2890.57) (318.079) 
T=500 0.00199 0.0150 -0.10739 -0.00534 

(0.04448) (0.1144) (0.585) (0.159) 
T=1000 -0.00184 0.00631 -0.04648 0.00221 

(0.0307) 0.0786 0.38279 (0.10068) 

From table 4 \Ve condude that a sample size of 100 is too small to get a satisfactory 
(small bias) estimation. The biases are greater for the parameters of the nonlinear terms 
than for the linear ones. 

The NED Extension 

The definition of NI(O) introduced in section 2 is based in the concept oí a-mixing. This 
concept imposses restrictions on the whole set of outcomes of the O'-algebras, which may be 
a too strong assumption. There are several ways of relaxing this concept whithout loosing 
the useful structure that it containsj see for instance Bierens (1983), Gallant and \Vhite 
(1988) and Potscher y Prucha (1991) for a detailed discussion. One of the more interesting 
alternatives is the concept of near epoch dependence (NED). 

Definition 5.0 (NED) Let {Zt : n -t ~} be a sequence (F, B)-medible with E(zn < 00 

fol' all t. Then it will be said that {Zt} is near epoch dependent (NED) on the underlying 
sequence t't iff {cPm} is of size -a, for <Pm giyen by 

and where E:~:::(Zt) = E(ZtIVt-m,"" vt+m) and 11·IIL2 is the norm L 2 of a random variable, 
defined as E1/21·12. 

\Ve will assume that the future values of Vt will not improve the conditional expectation 
of Zt, in the sense of Sims (1972), such that the forward values Vt+r (r = 1, ... , m) are useless, 
but harmless. From the definition we can say that cPm is the worst mean square forecast 
error when Zt is predicted by E:~;:;(zd. \Vhen cPm goes to zero at an appl'opiate l'ate, then 
Zt depends essentially on the recÍent epoch of Vt. If Zt depends on a finite number of lags of 
Vt then it is NED of any size. 

The property of NED is maintained under sums and products (see Gallant and \Vhite 
(1988)) and verifies a LLN and a CLT (see \Vooldridge and White (1988)). Under the concept 
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of NED we can rewrite alrnost exactly the sarne results given in the previous sections writing 
NED where it was written a-rnixing (with appropiate assurnptions). This rnotivates the 
following definition. 

Definition 5.1 A sequence {ét} is weakly nonlinear 1(0) (WNI(O)) if it is NED on an 
underlying a-rnixing sequence {vd but the sequence {xd given by Xt = L~=l ét is not NED. 
We will say that Xt is VvNI(1). . 

Definition 5.2 Two sequences {Yt} and {xtl which are vVNI(l) are weakly nonlinear cointe­
grated (vVNCI) \vith cointegration function g(',', 1), if g(Yil xt, 1"') is NED on sorne a-rnixing 
sequence but the sequence g(Yt,Xt'/)' it is not NED for 1 =/:.1"" 

Notice that if Xt is WNI(l) then ~Xt is \VNI(O). \Vith these alternative definitions 
\Ve can give a representation theol'ern, providing sufficient conditions for a rnodel to be a 
NEC. Furthel'rnore, we can also give sufficient conditions to ensure that the one-step (NLS) 
estirnation of single equation NEC is consistent. 

Let us suppose the following rnodel 

Zt = <PI H1t_l +F(Zt-t,/) +Ut [5.1] 

where Zt and Ut are (r xl), H1t is (n x 1) <PI is (r x n), and F'Y : ?J(r -+ ?J(r as a fundion of 
Z. The assumption and theorem that follows will be useful later. 

Assumption 5.3 

(a) 	The sequence {Ud is o:-rnixing of size -vj(v - 2) fol' v > 2, and the sequence {lVd 
giyen in [5.1] is NED 011 a11 underlying a-rnixing sequence {At}, of size -v j (v - 2) fol' 
t' > 2, in the sense that for V;m gi ven as 

it holds that 'l/'m -+ O as m -+ 00, where the nol'rn 11 . lis is introduced in Mira and 
Escribano (1995). See Appendix D. 

(h) For the no1'rn 11-lls \Ve have 

11\7zF(Z, 1)lls ;:;:: Dz < 1. 

(e) The following rnornent conditions hold for i = 2 

(i) EIIHTtll~ ~ ~W , 

(ji) EIIUtll~ < ~g) , 

(iii) 	EiIUtll~IJl,Vtll~:S ~Wu-
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(d) F(·, 1) is continuously differentiable in each argumento 

Assumption 5.3 (b) says that the spectral radious of the matrix of first partíal derivatives 
is smaller than 1. 

Theorem 5.4 Under Assumption 5.3 the sequence {Zt} given in [5.1] is NED on the under­
lying sequen ce {(Utl At)} of any size. O 

Proof: See Appendix D. 

The core of the proof is that if Zt is NED on H't and M't is NED on At then Zt is 
NED on At. Now we have the tools to give a representation theorem for a nonlinear error 
correction with linear cointegration, in the sense that we give sufficient conditions that ensure 
a balanced specification of the NEC. 

Theorem 5.5 (Representation Theorem) Consider a nonlinear time series model for the 
sequen ce of (n x 1) yectors {Xt }, given by 

where for sil11plicity only t\\"o lags are supposed. Let us suppose the following assumptions 

(1) et and ~Xt are \VNI(O); 

(2) the function F(Xt- l , Xt - 2 ) is nonlinear only in the first lag, i.e. 

(3) 	the function H(Xt-d giyen by H(Xt-d = -(I - <P2)Xt- l +G(Xt - 1 ) is not partially 
inyertible; and 

(4) H(Xt-d = J(o:'Xt-d. 

Then 

(i) under Assumption (2) \Ve have the following representation 

where \li l = -<P2 and H(Xt ) : 3ln -+ 3ln is given by H(Xt-d = -(I - <P2)Xt- 1 + 
G(Xt- 1 ); 

(ii) 	Assumption (3) is a necessary condition to ensure that [5.3] is a NECj 
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(iii) Under Assumption (4), if we multiply [5.3] by e/ we obtain 

where Zt = a'Xt , Wt = D..Xt1 (PI = a'\}II, and F(Zt-d = a'J(a'Xt _ I ) +a'Xt - 1; 

(iv) under Assumptions (1)-(4) plus Assumption 5.3 for model [5.4] we have that Zt is NED. 

O 

Proof: See Appendix D. 

Note that (1) implies on [5.3] that (1 - \}IIL) cannot have a unit root. The result (iv) of 
the former theorem ensures that under Assumptions (1) to (4) plus 5.3 we have that [5.4] 
is a correctly specified NED. Consider the example. If model [2.7] wi th linear cointegration 
and nonlinear error correction which coincides with [5.3], then the expression [5.4] is given 
by 

ZIt <Pll'WI,t-I + 4>liW2,t-l + ~13'W3,t-l + Zl,t-l 

+O'UJ1(Zl,t-ll Z2,t-d + O'I2J 2(Zl.t-ll z2.t-d + 0'13J 3(ZI,t-ll Z2,t-l) + Ult 

Z2t 4>21'WI,t-I + <P22 W2,t-I + ~23W3,t-l + Z2,t-1 

+0'21 JI (Zl,t-ll Z2.t-d + 0'22J2(Zl,t-h Z2,t-l) + O'23h(Zl,t-lJ Z2,t-¡) + U2t· 

The condition given by Assumption 5.3 (b) says that RSpec(\1zF(Z)) < 1 where the function 
RSpec(l1[) is the spectral radious of the matrix 11[. In this example \Ve have 

For instance if \ve have only one equation and only one cointegration relation then J2 J3 = 
O Y Z2t = O(since 0" is (1 x 2)) and the matrix \1zF(Z) is 

\1zF(Z) = ( 1 +0'1l~ ). 

Therefore condition RSpec(\1 zF( Z)) < 1 reduces to 11 + 0'11 ~1< 1. See Mira (1996) for 
sorne comments about the case of nonlinear cointegration and nonlinear error correction. 

Theorem 5.5 can be as well stated replacing Assumtion (1) by Assumption (1') given by 

(1') Ct is \VNI(O); 

24 



"!r",---------------- ­

1: 

! 

I 


I 


I 


..------------------ ­

and in this case we obtain Theorem 5.6. This theorem provides sufficient conditions to jointIy 
ensure that f>.Xt and a'Xt are NED, based again in Mira and Escribano (1995). 

Theorem 5.6 Let us suppose (1') plus (2) to (4) of Theorem 5.5, then Assumptions CT, 
CN, and LR from Mira and Escribano (1985) applied to model 

et = 3 1et-l +32et-2 + F(et-d + r¡t [5.5] 

where e~ == [Z:, f>.X2t], ensure jointIy that f>.Xt and a' Xt are NED. 

Proof: For the specification of the variables and parameters as well as a sketch of the 
proof see Appendix D. 

LastIy, once model [5.3] is ensured to be a correctIy specified NEC, it is of interest to 
give sufficient conditions that ensure its one step consistent estimation, in the sense of Stock 
(1994). The following theorem is about this issue. 

Theorem 5.7 Suppose the Assumptions of Theorem 5.5 are satisfied for [5.3] and [5.4]. 
Now, Assumptions of l\Iira and Escribano (1995) on each equation of [5.3] allow its consistent 
estimation. 

Proof: See Appendix D. 

6 Conclusions 

\Ve have sho",n how, by working with the concept of a:-mixing, \Ve can estimate several types 
of interesting nonlinear time series models in a nonstationary framework. By doing that, 
",e extended the concept of 1(1) to strongly nonlinear 1(1), SNI(l), and of cointegration to 
strongly nonlinear cointegration. Using results from functional analysis, we give sufficient 
conditions to obtain a super-consistent estímator of a non linear coíntegration relationship 
estimated by nonlinear least squares (NLS). This framework allowed us to extend the two­
step estímator of Engle and Granger(1987) to nonlinear error correction models (NEC). In 
these class of models the cointegrating relationship can be linear or nonlinear. There are 
available sorne statistics that can be used to test the hypothesis of a-mixing. A weaker 
concept of nonlinear l( 1) is introduced based on the concept of near epoch dependen ce 
(NED). \Vith this concept of weakly nonlinear 1(1), \VNI(l), we can give a representation 
theorem for NEC models with linear cointegration and we can justify a one-step (NLS) 
estimation of NEC models. Finally, the small sample biases are studied by running Monte 
Carlo simulations. It is found that for samples of size 100, the biases in the estimation of 
the parameters of the model can be large, but that those biases are substantially reduced 
when the sample size increases to 500 observations or higher. 

25 




A Appendix to Section 2 

A.l Proof of Lemma 2.6 

For the first part define Wt = fx{Xt) y Tt = fy{Yt). Now, define 9T(Wtl Tt) =9R(J;1 (Wt), f;;1 (Tt)). 
Clearly 9R(J;I(Wt),f;;I(Td) = 9R(X¡,Yt) and then it is a-mixing. 

The second part is more straightforward. Define 9R{Xt, Yt) 9T(Jx(Xt), fy(Yt)) and the 
result fo11ows. 

Q.E.D. 

A.2 Proof of Proposition 2.8 

Let us write 

)(t F(Xt_1, X t- 2 ) +et 

- G(Xt-d + CP2 X t-2 +et 
.6.Xt = G(Xt-d - Xt- 1 + CP2 X t-2 +et 

(-CP2)(Xt- 1 Xt- 2) - (I - CP2)Xt- 1 +G(Xt-d +et 

W1.6.Xt - 1 +H(Xt-d +et 

\yhere Wl = -CP2, and H(Xt-d = (1- CP2)Xt- 1 + G(Xt-d. Now, since et and .6.Xt are 
SNI(O) then H(Xt-d is also SNI(O), eventhough Xt is noto If that not were the case then 
H(·) wouId be invertible and then X t ",ould be a function of o:-mixing variables and therefore 
it were not SNI(l). Then given (1) and (2), (3) is a necessary condition. 

Q.E.D. 

B Appendix to Section 3 

B.l Proof of Lemma 3.3 

\Ve will prove that T-l 2::=1 9{Yt-l, Zt-b ')')2 -t OO. To do that we will use Theorem 3.1. Vve 
will ",rite 9;-1 instead of the expression 9(Yt-l, Zt-b ')')2. Then from the assumptions we can 
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write 
T T t-l t-l 

T-2~ 2 T-1 ¿(<p(¿ <PSl ¿ ó8)?T-1
L.,¡ 9t-l 
t=l t=1 s=1 8=1 

1 

T-1 1- .MT(r)dr 

where AfT(r) js given by 

for O::; r < f 
for 1. < r < 1­T- T 

AIT{r) -

Now \Ve have the follo",ing convergen ces 

[Tr] 

T- 1/2 ¿ <Ps O"dV1(r) 
s:::: 1 

[TrI 
T- 1!2 ¿ Ó ~ 0"2 lF2 (r)s 

s=1 

[TrJ [Tr] 


T- 1!2<p(¿ <Ps, ¿ Ós) 

s=} s=l 

[TrI [TrI 

T-
1
J1fr(r) == T- 1(<P(¿<Ps,¿Ós))2 ~ (D<p(O;0"1IF}(r)'0"21'V2(r))? == lV(r? 

s=l s=l 

l
Since T-2 E;=1 9r-l ~ JO H/(r)2dr, then T- 1 E;::::l 9; -+ 00, and the NLS estimator "'? 

given by min-y QT(¡) where QT(¡) = T- 1 E;=l 9t(¡)2, provides a consistent estimation of "Y",
Q.E.D. 

B.2 Proof of Lemma 3.7 

Let liS define the (( k + 1) xl) vectors 

h. = ( gk1 
) = [;::: 1 and 
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If we apply Theorem 3.5 we obtain the following convergences to the ((k + 1) x (k + 1)) 
matrices 

T-2t ktk~ .:;. 101 B(r)B(r)'dr 
t=l 

T-1 t kt-1h~ .:;. 101 B(r)dB(r)' +El 
t=l 

where the ((k+ 1) x 1) vector B(r) is given by B(r) = [B¡(r),B 2 (r)'1' and 

El = (0"1 E~2)
E12 En 

and an analogolis decomposition can be made fol' E. Now we have the following convergences 

T T 1 

T-2X' X = T-2L X~Xt = T-2L k~tk2t .:;. 10 B 2(r )'B2 (r )dr 
t=l t=l 

T T 1 

T-1\1'X = T- 1Lg;Xt = T-1Lh1,t+1 k2t 10 B 2(r)dB1(r) +E12 
t=l t=l 

and the result follows. Note that T-1 'L,;=1 h1,t+1k2t = T-1 'L,;=1 hltk2,t-1 +op(l). 
Q.E.D. 

e Appendix to Section 4 

C.l Proof of Theorem 4.2 

Let liS \\Tite model [4.2] and [4.3] as 

R - l('B* - F T (¡;) (F*(¡;) - FT(¡;)) +V [4.4] 

CT (0*) (F*(¡;) FT(¡;)) +V [4.5] 

For model [4.5] we have 

t~~T- 1
/ 
2(OT - 0*)' = 	t~~ (T-1/2CT(O*)'CnO*)) (T- 1Cn O*)'CnO*))-1 

t~~ (T- 1
/ 
2(F*(¡;) - FT(¡;))'CnO*)) (T-1Cf(0*)'Cf (0*))-1 

+t~ (T-1/2V'Cf(O*)) (T-1Cf(O*),Cf(O*))-1 
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and since we want that 

then Assumption 4.1 is enough. 
Q.E.D. 

D Appendix to Section 5 

D.1 The 11-lls Norm 

The matrix norm 11 . lis is defined as follows 

for .i1I and Dó being matrices that depend 011 the matrix A. Analoguosly the asociated 
vectorial norm is 

In 1\Iira and Escribano (1995) it is proved that for any matrix A it holds that 

IIAlls:::; p(A) +ó 

for p(A) being the spectral radiolis of A. 

D.2 Proof of Theorem 5.4 

Let liS define 

for t > O 
for t:::; O 

and 

for s +1 .::; m 
for s +1 > m 
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where Wt ::::: E(WtIAt, ... , At- m), and therefore EllWt - wtll~ .s; 'l/Jm such that 'l/Jm -+ owhen 
m -+ oo. Then it is clear that Zra is a(Ut1 11lt-h ... , Ut - m +ll 11lt _ m )-rnedible, and then it is 
a( Uh At-h ... , Ut- m+b At-m, ... , At _ 2m )-rnedible, 

The difference between Zt and its predictor Zt is bounded for t > O, because 


IIZt - Ztlls - II<pVl!t-l +F(Zt-d +Ut - F(Zt-l)lls 

.s; II<pWt- 1 +Utll s + IIF(Zt-d - F(Zt-l)lls 


No,,", since 11·lls is a subordinate rnatrix norrn \Ve have that 

IIZt - Ztlls .s; 11<PllslllYt-ds + IlUtlls + II\7 zF(Zt)llsll(Zt-l - Zt-l)lls 
.s; 8wu,t +8zll(Zt-l - Zt-l)lls 

for sorne Nwu,t and since Zo ::::: Zo 0, then by iteration we obtain 

t-l 
IIZt-Ztlls < LNwu,t-j8~ 

j=O 

t-1 t-1 t-1 
IIZt - Ztll~ < L NrI1u,t_ j8Y +L L NWU.t-iNU'u,t-j8~+j 

j=O j=Oi~j 

EllZt - Ztll~ < ~~~z 

for sorne bound ~~~z' because, for instance, E(Nwu,t) = 11<Plls~W + ~V)· Now, 

IIZt - Z~lIs II<plllt - 1 + F(Zt-d +Ut - <PWt- 1 - F(Z~1,1) - Utlls 

.s; 1I<P(l,Vt - 1 - H't-dlls +IIF(Zt-l) - F(Ztr::1,1) lis 
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and again by the Mean Value Theorem we obtain 

IIF(Zt-1) - F(Z:::l,l)lls::; II\7 zF(Z)llsIIZt_1 - Z:::l,llls, 

and since 11\7zF(Z) lis =:; bz we have 

'" IIZt - Z~lls ::; 11<PllsIIH't-1 - lVt-dls +bz llZt- 1- Zt~l,ll1s 

and by iteration 

m 

jlZt - Z~lls ::; L b~II<PllsIIWt-1-i - vVt-1-dls +bzllZt- m- Zt-m lis 
i=O 

and taking expectations 

m 

EIIZt - Zt~ll~ ::; E(L b~II<PlIsIIHlt_l_i - H1t_l_ills)2 +b~mEIIZt-m - Zt-mll~ 
i=O . 

m 

+2E((Lb~II<PlIsIIHlt_1_i - Hlt-1-iIIS) X bzllZt-m - Zt-mlls). 
i=O 

If we use for the third ter m in the summation the Holder inequality with p = ! = q, Le., 
Ej}'·Xj =:; El/211?12 + El/2IXI2, only remains to work out the following term 

m 

E(L IIHlt - 1_ i - Hlt_l_ills? 

i=O 

m 

- "" Wt-1-iIIs­E L-II H1t-1-i - 2 

m m 

+E L L IlíVt - 1- i - Hlt-l_dlsIIHlt_l_i - IVt- 1- i lis 
i=O Ni 

m 

< L EIIIVt - 1- i - lVt-l-dl~ 
i=O 

m m 

+ L L El/2I1Wt_l_i - Wt-l_d~El/211IVt_l_i - Wt-l-jll~ 
i=O Ni 

and since EIIHlt_1_ i - H!t-l-iII~ = ?jJm then EIIZt - Z;tU is bounded by a sumation of terms 
with t{.'m or terms with bz and since ?jJm goes to zero 'and O< Óz < 1 we obtain 

lim EllZt - Z;tlls = O 
m....-+oo ' 
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Now, given Et- 2m(Zt) == E(ZtIUt, At-1, ... , Ut- 2m+b At- 2m ), we can obtain a bound for 
I¡Zt - Et- 2m(Zt)llLS. Since in, is O"-(Ut, ... ,Ut- m+1, At- m, ...At_2m)-rnedible then it is 0"­

(Ut , ••• , Ut - 2m+b At_2m)-rnedible so that 

IIZt - Et-m(Zt)IIL2 :5 <5/{IIZt - i~IIL2 
1/2 - 2<5/{E IIZt - Z~lls 

and since Ell Zt - i::hll~ -+ Oat exponential rate then {Zt} Ís NED on the underiying sequence 

{(Ut, lVt )} of any size. Note that the first inequality is a generalization of the well known 
fact EIZt - E(ZtI1tW :5 EIZt - g(It)12 for any functíon g(.) of the inforrnation set 1t and <5z 
is sorne constant that depends on the norrn 11· lis. 

Q.E.D. 

D.3 Proof of Theorem 5.5 

Apply Proposition 2.8 fOl' parts (i) and (ii). Part (iii) is imrnediate. For part (iv) apply 
Teorern 5.4. Q.E.D. 

D.4 Sketch of the Proof of Theorem 5.6 

Let us normalize the (r x n) matrix, base of the space of cointegration relations, in the 
following way ex' = [1, _p'] such that ex'Xt = Zt, andlet us define the (n x n) rnatrix Al as 

1 _pI)
Al= ( 01 . 

Then JUXt = [Z:, X~t]' for sorne partition of the vector Xt as X: = [X~t, X~t], with X lt of 
dirnension (r x 1) and X 2t of dirnension «n - r) X 1). Given the NEC representation 

l:::..Xt \]:Il:::..Xt- 1 +J(a'Xt_¡) +ét 

if 've rnultiply by Al we obtain the following systern 

= 	 a' \]:1 l:::..Xt - 1 +a' J( a' X t - 1 ) +a'ét 

\]:I2l:::..Xt-l +J2(a'Xt-d +é2t 
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for sorne partition of Ct, W, and J(o:'Xt_¡). Let us represent the vector [Z;-l,X~t_l]' as Lt-l' 
then the systern can be rewritten as . 

Zt - Zt-l +o:'WM-1tlLt_1 +o:'J(o:'Xt_1 ) + o:'ét 
tlX2t = W2.M-1tlLt_1 + J2(o:'Xt_1 ) +C2t 

or 

Zt - Zt-l +PtlLt- 1 + K(Zt-d + T/lt 
tlX2t W2tlL t - 1 + J2(Zt-d +T/u 

that is strightfol'\\'ard to re\\'rite as in [5.5). 
Q.E.D. 

D.5 Proof of Theorem 5.7 

Apply the proof of Theorem 3.5 of }'Iira and Escribano (1995), with the caveat that Lemma 
3.4 (i) should he modifiecl as in Theorem 3.4. 

Q.E.D. 
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