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Abstract
The relationships between stochastic trending variables given by the concepts of cointegration and
error correction (EC) are well characterized in a linear context, but the extension to a nonlinear

context is still a challenge. Few extensions of the linear framework were developed in the context
of linear cointegration but nonlinear error correction (NEC) models, and even in this context,
there are still many open questions, The theoretical framework is not well developed at this
moment and only particular cases have been discussed empirically. In this paper we propose a
statistical framework that allow us to address those issues. First, we generalize the notion of
integration to the nonlinear case. As a result a generalization of cointegration is feasible, and also
a formal definition of NEC models. Within this framework we analyze the nonlinear least squares
(NLS) estimation of nonlinear cointegration relations and the extension of the two-step estimation
procedures od Engle and Granger (1987) for NEC models. Finally, we discuss a generalization
of Granger Representation Theorem to the nonlinear case and discuss the properties of the one-
step (NLS) procedure to estimate NEC models.
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1 Introduction

Granger (1981) introduced the concept of cointegration but it was not until Engle and
Granger (1987) and Johansen (1988) that this concept got an inmense popularity among
econometricians and applied economists. The great impact those papers had in the profession
was due to the fact that they showed, how to empirically work with economic variables
that have unit roots to avoid the problem of spurious regressions. Furthermore, most of
the modelling, estimation and inference procedures change dramatically from the classical
statistical frameworks when dealing with variables that have unit roots and are cointegrated,
see Phillips (1991). That forced a large part of the profession to work within this framework.

It is clear how to deal with integrated and cointegrated data within a linear context, but
almost no research has been dedicated to the simultaneous consideration of nonstationarity,
I(1), and nonlinearity, even though many macroeconomist agree with the fact that those
are realistic and dominant properties of economic data. How can it be possible that almost
no research have been dedicated to this topic 7 The answer is clear, it is difficult to work
with nonlinear time series models in a stationary and ergodic framework and even more
difficult in a nonstationary context. Nevertheless there are already empirical examples of
nonlinear error correction models with linear cointegration and with nonlinear cointegration.
See Hendry and Ericsson (1991) and Granger and Swanson (1995) for some examples.

An introduction to the state of the art in econometrics relating nonlinearity and nonsta-
tionarity can be found in a recent paper by Granger (1995). There he discusses the concepts
of long-range dependence and extended memory which generalize the linear concept of in-
tegration, I(1), to a nonlinear framework. The main disadvantages of those definitions are
that there are no Laws of Large Numbers, nor Central Limit Theorems associated to them
and therefore there are no easy ways to obtain estimation and inference results. This paper
starts filling this mayor gap.

The structure of the paper is the following. In section 2, we propose a definition of nonlin-
ear integration, NI(1), which also allows us to define the concept of nonlinear cointegration.
Section 3 deals with the estimation of cointegrating relationships, and presents some Monte
Carlo results. Section 4 studies the problem of the two-step estimation procedure in the
context of nonlinear error correction models and presents some Monte Carlo results. Section
5 analyzes an extension via the near epoch dependence (NED) concept. Finally, in section
6 we present the main conclusions.




2 Cointegration and Error Corretion: The Non Lin-
ear Case

As we have discussed previously if we do not assume that the series follow ARMA models,
then the classical definitions of stochastic trends and extended memory are not appropiate.
Granger and Terasvista (1993) and Granger (1995) propose a natural generalization of the
concepts to the nonlinear case as follows.

Let us take Fi(z) = P(zy4n < z|I;) which provides the conditional distribution of z:y
given the information set I; = {z;—; : j > 0}. It will be said that the series is "short memory
in distribution” (SMD) if

li]{th(CL‘) = F(z)

i.e. the conditional distribution does not depends on I;. Therefore,
|P(ze4h € Ci|zi—j € C2) — P(ziyn € C1)] = 0 as m — o0

for all subsets Cy, C; € I, such that P(z,_; € C3) # 0. We will consider that the concept of
mixing encapsulates the concept of SMD. Since ¢-mixing implies a-mixing we will consider
the concept of a-mixing,.

Definition 2.0 (a-Mixing) Let {v;} a sequence of random variables. Let F! = o(vs,...,v:)
and define the a-mixing coefficients as

an = sup sup [P(GNF)-P(G)P(F)| .
t Fert .GeFx®

t+m

It will be said that the sequence {v:} is a-mixing (or strong mixing) if and only if a,, — 0
as m — 00. The coefficient «,,, measures the dependence between events that depend on v;’s
separeted by at least m time periods. The a-mixing property allow simultaneously temporal
dependence and heterogeneity in the process. If a,, = O(m?*) for all A < —y, then it will
be said that «,, is of size —qy. Since the concept of a-mixing is based on the o-algebras
generated by the sequence of variables, then the concept is invariant under Borel measurable
transformations of a finite number of those variables. See, for instance, White (1984).

2.1 Non Linear Cointegration

Under general conditions there exists a LLN, as the following theorem states.

171 I



Theorem 2.1 (McLeish) Let {v;} a scalar a-mixing sequence with a,, of size r/(r — 1),
r > 1, and with finite means E(v;) = p;. If for some 6, 0 < § < r, we have

Z (E"Ut r+6/tr+6)1/r < oo
t=1
then T T (v, — ps) =3°0. O
Proof: See Theorem 3.47 of White (1984).

The condition of Theorem 2.1 is essentially a condition of existence of moments of order
(r+6). See White (1984). Also under general conditions there exists a FCLT which gives the
convergence of partial sums of the a-mixing sequences, as establishes the following theorem.

Theorem 2.2 (Herrndorf) Let {v,} be a sequence of random variables and define Sy =

ST v, and Vg(r) = zﬁ’ﬂ vy, where [T'r] is the greater integrer smaller than Tr. Then
under assumptions

(i) E(v;) = 0, for all ¢;

(ii) sup, E(Jv:]?) < oo, for some 8 > 2

(iii) 02 = limy_ E(T71(S7)?), verifies that 0 < o2 < o0; and
(

iv) {v:} is a-mixing with a-mixing coefficients oy, satisfaying

o0
D o < oo;

t=1

we have that T-1/2Vp(-) % oW(-), as T — oo, where W(-) is the SBM in [0,1]. O
Proof: See Herrndorf (1984).

Condition (ii) controls the existence of moments. Condition (iv) controls the temporal
dependence of the process. Since J is the same in (ii) and (iv) there exists a trade off
between both, see Phillips (1987). Condition (iii) avoids cases such as the following. Let v,
a Gaussian random walk such that Av; (Av, = (1 — L)v; = vy — v4-1) is a non-invertible
MA(1). In that case Av, and v; are a-mixing sequences, but v; does not satisfy (iii). The
following definition of strong nonlinear I(1) (SNI(1)) takes this case into account.

Definition 2.3 (SNI(0) y SNI(1)) A sequence {v;} is strongly nonlinear I(0), SNI(0), if it is
a-mixing but the sequence {y;} given by y; = °i_, v4, is not o-mixing. We will say that y,
is SNI(1).



Note that if y; is SNI(1) then Ay, is SNI(0). An important property of the above definition
is that the a-mixing condition can be tested. There exists some papers that deal with this

problem. Some of the more important are Lo (1991), Kwiatowski, Phillips, Schmidt and
Shin (1992) (KPSS), and Stock (1994).

In what follows we will consider only sequences without deterministic components, i.e.,
x4 = ¥y — py, where p, is the mean of #,, such that E(z;) = 0. Note that the above definition
of SNI(0) the size of the sequence is not specified. It will be understood that a vector
X; = [£14y .0y Tne]” (n x 1) is SNI(1) (SNI(0)) if each component z;; is SNI(1) (SNI(0)).

Definition 2.4 (Non-Linear Cointegration) Let {y;} and {z;} two SNI(1) sequences. We
will say that y, and z, are strongly nonlinear cointegrated (SNCI) with cointegration function

9(-5 1), if 9(ye, 2¢,77) is a-mixing and g(ys, 24, m) is not a-mixing for 1 # ;.

Some comments are appropiate. First, note that we define g(y:, z¢,71) as "not a-mixing”
for 41 # 47, but we do not specify if g(y:,z¢,m) is SNI(1). That definition would be
inaccurate in the linear case because in that case g(y:,z¢,11) could be I(—1). In this case,
however, if g(y:,s,7) is not a-mixing, then the dependence has to be stronger, and not
weaker. Second, note that the restriction imposed by the a-mixing condition on the sequence
{9¢} = {9(yt, zt,77)} implies the existence of restrictions on the mean of {g;}, but also on
every other moment of the sequence. Third, note that the cointegration function is not
unique since any measurable function of an a-mixing sequence is a-mixing. Therefore we will
consider the functions f : £2 — R divided into equivalence classes such that two functions f;
y fa are in the same class if there exists a function g : ® — R such that fi = go f,. The study
will be restricted to one function of each class. Fourth, note that with this definition new
linear cointegration relations appear that were not allowed within the classical cointegration
definition, because the dynamics of the variables are not necessarily represented as ARMA
models. Finally, we suppose that the cointegration functions are measurable functions with
respect to the appropiate o-field.

Some extra conditions are implicitly impossed on the cointegration relation in order to
avoid non-sense cointegration. The following examples specify the relations that are not
considered as cointegration relations. (1) g(y:, z¢,m) = h(ys, M), i-€., in fact it is a function
of only one variable; (2) ¢ is such that for any two variables y;, z; of some family of SNI(1)
variables, ¢(ys, T¢,77) it is always a-mixing, i.e. g gives always cointegration.

The second example tries to avoid "too restrictive” functions. Granger and Hallman
(1991) give the following case. If z; is a Gaussian random walk, then sin(z;) has proper-
ties of "short memory”. Functions such as g(y;, z;,m1) = cos(y; + M), or g(ys, e, M) =
sin(7;(y:z¢)), are therefore "too restrictive” if they always produce cointegration. Con-
sider the following example. Let z, and y, be scalar variables such that z, = ¥!_, ¢, and




Y: = Y.¢_; 7s, where ¢, and 7, are a-mixing variables which verify a LLN, and converge in
probability to non null values e, and e, respectively. If we take the ratio

¢ t

fi = (xt/yt) = (Z 53)/(2 7s) [2.1]

s=1 s=1

then f; converges to e;/e,. The sequence f, converges in probabilidad to some constant then,
under certain conditions, it is a-mixing. Notice that even if the limit of the sequence is a
constant it does not imply that the sequence is a-mixing as the following example illustrates.
Let {r:} be a sequence given by r; ~ U(-1,1) and r; ~ U(—r,_;1,0) if r,_; is positive and
ry ~U(0,—ry_y) if 7y is negative. The sequence systematically changes the sign. Take the
outcomes H = {ry > 0} and G = {ry4m) < 0} then P(H) = ; = P(G) and P(HNG) = 0.
Therefore for every t

sup  |P(GNH) = P(G)P(H)| =

{HeF' .GeFg .}

N

and then, although the sequence {r;} converges in probability to 0 it is not a-mixing. Note
that hardly a ratio as [2.1] presents a behaviour as systematic as that in r, specially if &,
and 7; are "good enough”.

It is of interest to consider the ”stability” of the definition SNI(0) for instantaneous
transformations. This is due to the fact that the a-mixing property is preserved for such
transfomations. The following Lemma formalizes the result.

Lemma 2.6 Let us suppose four SNI(1) series given by {y.}, {#:}, {z:}, and {Z,}, which are
related §; = f,(y:), and &, = f.(x,) for invertible transformations f,(-) and f.(:). If there
exists a cointegrating function gg(,-) for the z; and y, series then exists a cointegrating
function gr(-,-) for the f.(z:) and f,(y;) series. Conversely, if there exists a cointegrating
function gr(-,-) for the transformed series 7; and &, then there exists a cointegrating function
gr(+,-) for the series y; and z;. O

Proof: See Appendix A.

The invertibility condition of f, and f, is not necessary if we impose other restrictions.
For instance if we know that z; > 0 then we may consider that z? = Z, is invertible. Finally,
we present some possible generalizations of the definitions given above.

An extension of the idea of nonlinear integration can include the notion of the nonlinear
trend. For example we can say that the z, series has a Non-linear Trend (NT) if z;, = Fz(r)
for some 7, series which is SNI(1) and F,(-) is in some subset of the set of functions F' : £ — R
(which we will not specify). Therefore, we will say that two NT series z; and y; have a non-
linear co-trend (NCT) if there exists a funtion Cyy(+,+,7) such that Czy(z¢, y1,7) is a-mixing
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for 4 = 4* and it is not for 7 # 4*. Consider the following example. Let w; be an SNI(1)
series and let us take

ye = exp(—yjw; + u;)
Ty = wet v

where €, is an a-mixing sequence. Then F(z¢,y;) = y: exp(y7z¢) is a NCT relation. Different
appoximations to these issues can be found in Escribano (1986 and 1987) and Granger (1988).

2.2 Non Linear Error Correction Mechanism

A non linear error correction (NEC) mechanism for the (n x 1) X, vector is an autoregressive
lineal model for the differences AX; plus a nonlinear term for the lag of the levels X,_;. If
we take the case n = 2 and X, = [z4,y]’, the NEC with only one lag is AX, = U*AX,_, +
F(X;-1,T") + &4, whose first equation can be written in the form

Aze = ATy + PAY- + f(Ti-1,¥i-1,77) + €
= VLA +YLAYy + f(9(Te-1,Ye-1,71),73) F € [2.2]

. . . ' ’
where Ay, and Az, are a-mixing, and the parameter v* may be split into v* = [7},v5 |-
The subvector 75 is the cointegration vector and the subvector v; is the vector of parameters
of the error corretion mechanism.

Note the distinction made in [2.2] between the cointegration function ¢(y:, zt,7;) and the
error correction function f(-,75). The function g(-,-,~;) = 0 gives the lung run equilibrium
relationship and the deviations from this equilibrium ¢(y;—1, z¢-1,7;) are the errors corrected
by the model.

A nonlinear error correction mechanism with only one lag is given by
AXy = U AX 1 + H(X-1) + &

where H(X,.1) = H(X;_1,T) for some vector of parameters I'. The following definition
allow us to give a necessary condition on the NEC formulation.

Definition 2.7 Given a funtion F : ® — R such that F(X) =Y for vectors X = [z1, ..., 2]
and Y = [y1,..., ], we will say that F' is partially invertible if there exists at least one
i € {1,...,p} and one g; : ¢ — R such that z; = g;(Y).
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The function H(-) is not necessarily a transformation of a finite number of other cointe-
grating relations, i.e. not necessarily H(X;—;) = J(P(X;-;)) for other cointegration function
P(-). See Mira (1996) for a longer discussion. As a consequence we do not have a generaliza-
tion of the Granger Representation Theorem given in Engle and Granger (1987) (in the sense
that the existence of cointegration implies an error correction representation where the error
correction is a function of the base of the space of cointegration relations) nor the converse
formulation given in Johansen (1991). Nevertheless we can give a necessary condition for
the NEC representation which will be extended in the last section to a partial generalization
of the Granger Representation Theorem to the nonlinear case.

Proposition 2.8 Let us suppose a model of nonlinear time series for the sequence of random
vectors (n x 1) {X;} given by

Xi = F(Xt-1, Xi—2) + &1,
where we have taken only two lags for simplicity. We have the following assumptions
(1) AX, and e, are SNI(0);
(2) the function F(X,-;,X;_2) is non linear only in the first lag, i.e.
F(Xio1, Xio2) = G(Xio1) + 2 Xi5;  and

(3) the function H(X,_;) given by H(X,y) = —(J — ®3) X, + G(X,-;) is not partially

invertible.
Then:
(i) under assumptions (1) and (2) we have the following representation
AXy = U AX + H(X21) + & [2.3]

where ¥U; = —®, and H(X;) : R — R™ is given by H(X;—1) = —(I — &)X, +
G(X¢-1); and

(i1) the representation given in [2.3] is a NEC if and only if assumption (3) holds.
0

Proof: See Appendix A.

Some remarks deserve to be mentioned. First, note that condition (2) is intuitively
clear, because we do not expect that any nonlinear function of the lags can be transformed
into an error correction model, even if there exists a cointegrating function. Second, note
that the condition of not partially invertible discardes the case of an SNI(0) variable which

7




enters into the cointegration relation. Third, note that in the linear case the proof of the
representation theorem relies in the fact that A(1) is of rank r (the cointegration rank) and
then it is not invertible; if that not were the case X;_; can be inverted and we obtain X, as an
ARMA model, which would be a contradiction. See Mira (1996) for a detailled discussion.
Fourth, note that the cointegration function depends on the AR representation for X, as
can logically be expected. As a consequence not any cointegration function can appear in
the error correction representation, only those related with the AR representation for the
levels of X,. Finally, note that we cannot fully characterize the function H(-) to obtain a
Representation Theorem. This question will be solved in Section 5.

If the error correction function depends on say two lags X;_; and X,_,, an extension of
Proposition 2.8 can be given. Let us write

Xt = G(Xe=1, Xim2) + 02 X0 + &y
AX, = G(Xpo1, Xima) = X1 + 02X, 0 + ¢
= (=®2)(Xpm1 = Xem2) = (I = @2) Xy + G(Xio1, Xi2) + &
= UAX; .+ H(Xi_q1, Xiop) +e¢ [2.5]

where ¥y = —®, and H(X; 1, X;-2) = —(I — $2) X,y + G(Xi-1, Xi—2). In this case the
condition of not partially invertible has to be impossed on the function H : 2" — R™. An
example of this type of models is the Smooth Transition Regression function (STR) given
in Granger y Terasvirta (1993), where the transition depends on some equilibrium errors of
the long range relationship specified by the cointegration relation. If we have X, = [y, z]’,
then the first equation of [2.5] may be written as

Ayy = Pulyior + P2z
+(611AY =1 + 612A21)(1 + exp(—=71(¥e=1 — Y27t-1)) + €14

In this case the dynamics of Ay, is given as an autoregressive model with exogenous
variables, whose parameters change depending on some equilibrium errors of the long range
relationship.

2.3 Linear Cointegration and Non Linear Error Correction

It is of special interest the case where the error correction is nonlinear but the cointegration
is linear. The model is

AXt = \Ij]_AXt_l + H(Xg__l) + &
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where H(X,;-;) = J(KX;_,) for some matrix K (n x 1) and some function J : ®* — R".
In this case K may be of full rank if J(-) is not partially invertible. Conversely, if J(-) is
invertible then K cannot be of full rank and then is a linear combination of the space of
cointegrating relations. Therefore, we partially recover Granger Representation Theorem
because we have

.[(Xt = J_I(AXt - lI}lAXt—l - Et).

and K is a linear combination of the base of cointegrating relations. The following example
clarify the issue. Let X; = [y;, z¢, 7", and suppose that K is given by linear combinations
of two cointegrating relations, i.e.

K! ,7/
1 ' M1 M2
K= K Y } 12T a1 12 Q13
v\ = L | =70 =] T2 v = Y1 Y22
K! / Q, Q) Qg2 Q23
i3 Y3 Y31 Y32

The rank of K is 2, and then J(-) may be invertible. Also it is clear that a function of
(K{Xe-1, K3 X1, K3X 1) can be written as a function of [o] Xi—1, 05 Xi—1]' = [21,¢-1, 2241] -
The error correction mechanism with only one lag is given by

Ay, = BilAyir + BoAzioy + B3Arioy + Ji(21,0-1, 220-1) + €1

Az, 81AYi—1 + 62Az41 + 83AT_ + Jo(21,0-1, 22,0-1) + €2t
Ary PAY_1 + p2Azy_y + p3Arioy + J3(210-1, 224-1) + €3¢

and the error correction is a function of the base of cointegrating relations.

3 Non-Linear Cointegration

In this section we study the problem of estimation of the cointegrating parameters when the
cointegration relation is nonlinear.

3.1 Some Tools

We will introduce some tools from functional analysis. Let (Fy,]| - 1) and (F2,| - |2) be
normed spaces, and let ¥ : F; — F, be a functional. We will say that U is differentiable
at the point F € F; with respect to a collection of subsets S of F; if there exists a linear
continuous map DU(F;-): F; — F, (which we will call the differential of ¥ at F') such that
for G in some neighbourhood of zero,

U(F + G) = U(F) + DU(F;G) + Ry(F; G)
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where the remainder Ry satisfies

lim Ry (F; tQ)

t—0 t

=0

uniformly in G € S for every S € S. Special choices for S give the most interesting differen-
tials. If S is the family of all singletons of F; then DU(F; @) is the Gateaux differential. If
S is the family of all compact subsets of F; then DU(F’;-) is the Hadamard differential. If S
is the family of all bounded subsets of F; then DU(F;-) is the Fréchet differential. Clearly
Fréchet differentiability implies Hadamard differentiability, which in turn implies Gateaux
differentiability. In relation with the former definition we have the following theorem, which
is a functional version of the well known delta-method theorem.

Theorem 3.1 Suppose ¥ : F; — F, is Hadamard differentiable at F' € F; with differential
DY (F;-) and that {X7}%., is a sequence of random elements in F; that satisfies:

() T-Y2X7 4 X in Fi as T — oo; and
(ii) the sequence {T~Y/2X7}5., is tight in F;
then T2 (Xr) 4 DU(0; X)in Foas T — 0. O

Proof: The proof is essentially the same as in Heesterman and Gill (1992) with only few
changes.

In our case the spaces (Fy, | - [1) and (F2,| - |2) are (D[0,1]%,] - |}), for D[0,1] the space
of right continuous with left limits functions (cadlag functions), and | - |5 the norm defined
by the Skorohod distance modified as in Billingsley (1984), Section 14, and D[0,1]* and
| - |3 are the double products. Each element X7, is a function Xr(-) : [0,1] — R, with

Xr(r) equal to the partial sumation EEZTII €, with {£}%2, an a-mixing sequence. Therefore,

the operator ¥(:) is given by ¥(X7) = \IJ(ZEZTI] ¢;). The element X is WW(-), the Standard
Brownian Motion.

From Theorem 2.2 we have that T-1/2X7(-) % oW(-), and {T~/2Xr(-)} is tight in
DI0, 1] (see for instance Herrndorf (1984)), then we have also that

T~129(X1(-)) S DU(0;aW ()

where DU(0; 0¥ (-)) is the Haddamar differential of ¥(-) at zero in the direction of cW(-).

For instance, if the functional U(F) is exp(F') to find its Fréchet differential it is enough
to find its Gateaux differential and prove that it is a continuous function. See Kolmogorov

10
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and Fomin (1978). On the other hand the Géateaux differential Dg¥(F'; G) can be written
as limy_g “ﬂp"'—tciﬂ(ﬂﬂg In our case U(F 4 tG) — W(F) = exp(F + tG) — exp(F) =
exp(F)(exp(tG) — 1) and then we have

g SHEONEBCED ) o (52C) =)

t—0 t
= exp(F(r))G(r)

Since this convergence is pointwise it also holds for the Skorohod topology, and the Gateaux
derivative is Dg¥(F(r); G(r)) = exp(F(r))G(r), which is lineal in G and continuous in F
and then it is the Fréchet derivative. In general for functionals ¥(F) which are analogous to
functions ¥ (f) the Fréchet differential DV is analoguos to the usual diferential D1 of the
function 2.

3.2 Estimation of the Cointegration Relationship

The cointegration function states that g; = ¢,(v*) = g(yt, z,7") is a-mixing and that g, =
9¢:(7) = g(yt, z¢,7) is not a-mixing for v # ~v*. Note that, as in the linear case, under some
conditions on g; we have

1 5. 1 2y P

(7 206 - 3 X B 5 0

T t=1 T t=1

Therefore to ensure that a nonlinear least squares estimate provides a consistent estimation
of = we have to ensure that %ZtT___l(gt)z — oo for gt # gr. Recall that y; = Y, 75,
and z; = Y'_, ¢, then the following assumption states a relation between the function
gt s, 2k, €5,7) and some function ®(TE_, ¢, 3¢, 6s) of some a-mixing sequences
{¢s} and {&,}. Clearly, in general, these sequences will be some elemental transformation of
the sequences y; = Y, 75, and 2, = 3! _, €.

Assumption 3.2 (a) There exist a transformation ®(-), which is Haddamar differentiable
such that the strongly nonlinear cointegration relation g(y;, z;,v) can be writen as (3¢, ¢, 30, 65)
for some strong mixing sequences {¢,} and {é,}; and

(b) TV i E(g7)? = pas T — oo.

Lemma 3.3 Under Assumption 3.2, the NLS estimator 47 which minimizes Y1, g(y1, 2, ¥)?
provides a consistent estimator of the parameter 4*. O

Proof: See Appendix B.
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In the context of linear cointegrating relationships we know that if the (n x 1) variable
X; is SNI(1) and the linear combination 4'X; is SNI(0), then the OLS estimator 4 of ¥ is
obtained by

T
y € argmi X
g gggpt:};’r :

where the restriction I' is a normalization of the cointegrating vector, such that the linear
space generated by the restricted vector 4 € T has to be the same as the space generated
by the true 4. The restriction given by I' = {v : v = [1,%,...,9.]'} verifies the required
condition and allows us to obtain the estimation by OLS. In the case of r linear cointegrating
relationships many possible restrictions are allowed.

In the nonlinear case if the cointegration is given by f(Xi,5) where f(-,4) : R* — R
then the estimation is given by

T
¥ € argmin }_(f(Xe,7))".
t=1

In this case if f(X;,7) is a-mixing then also h(f(X;,7)) is a-mixing for Borel measurable
h(-) functions. New problems arise related to, but different from, those obtained in the
linear case. First, the function A(f(X¢,v))? may be a function with a maximum around +*
and then when we find min, Y7_, h(f(X,,7))? the objective function may be flat around
the true value 4* and then the algorithm provides an estimated value quite different from
the true value. With an infinite sample the problem vanishes but not with finite samples.
With finite samples the normalization proposed is the minimization of A{ f(X},~))? for some
h(-) which may depend on f(-). Mira (1996) provides an example. Second, as in the linear
case the function i(-) may depend on a set of parameters 4, such that h(-,4;) = 0 and
then we have an identification problem. For instance, in the linear case the problem is
ming g S, (a(y; + Bz,))?, whose minimum is at a = 0.

3.3 Asymptotic Distribution of the Estimator

For the nonlinear case the estimator 47 of the parameter 4 is given by the NLS algorithm.
In this case the objective function is

T
ming o) = min3G(YG() = minQ()

where the vector G(v) is given by G(v) = [¢1(7), ..., g7(7)])'- The following assumption will
help us to deal with the nonlinear function G(7).

a6

Assumption 3.4 The functions =

are Lipschitz.
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If we assume that %(7*) = 0, for the true value 4*, then applying a first order Taylor
expansion around v° we get,

dQ

dQ
- (v) =

_ o €4Q 4
0= d7(7)+(7 —7)77—(7) [3.1]

therefore

(7Y = (%) - (flg( %) (dvcg,(vc’))_l

and the iteration of the Newton-Raphson algorithm is given by

FHIN gV dQ 2Q A
(7Y =) = (gl ))(M,(v))

If we approximate (—Q—( %)) by (‘—fg('yo)'d—c(vo)) and impose that this matrix is invertible

dvyd~y’ dy
in v~ and 47 for all T, then we obtain the relation

(P =) = ("—Q(v°))(‘ZQ<v Y42 o)

dy dy
dG dG, 4\\-1
(e ( NGO F0)
Since ~7 is consistent for 4%, the approximation in [3.1] becomes a equality in the limit,

and the asymptotic distribution is given by

: T _ .\ — | -1 ,dG 4G 7,dG, 7\
Jim T =) = Jim (TGO 0N) (T 6T 0N)

,dG )(T_ZG a6, )

= Jlim (T7G(y )d7 () U m 3:2]

= lim (T'V'X)(T72X'X)"!

T—oo

for V.= G(v*) and X = %(7*). The second equality is ensured by Assumption 3.4 and
the continuous mapping theorem. The following theorem introduces the convergence to the
Standard Brownian Motion in the vectorial case.

Theorem 3.5 (Phillips and Durlauf) Let {«,} be a sequence of (k x 1) vectors and let
Xr(r) = X ., and define S7 = XL, 2, = X7(1), then if

(1) E(z;) = 0 for all ¢;

13



(ii) E(T'SrS7) — X, a positive definite matrix, as T — oo and E(TY(Sx17—Sk)(Sk41—
Sk)) — ¥ as min{K,T} — oo.

(iii) {z%} is uniformly integrable for all : = 1,..., k;
(iv) sup, E(|z#|%) < oo for some 2 < B < oo and all i = 1,..., k;
(v) B> 2 and a, is of size —3/(8 — 2);

then for W(r) the k-dimensional Standard Brownian Motion, and for the decomposition

T
Lo = Jim T‘lgE(mtx;)

T t-1
Y, = JILI&T—IZ;;E(:BJ’U;)

L = lim E(T7'SrS7) = o+ 51 + X4

we have the following results as T — oo,

() T=V/2X7(r) 5 T2 (r) = B(r);

(b) T2, S(r)Su(r) = f3 B(r)B(r)dr;

(¢) TV 2L, Seaal 5 [ B(r)dB(r) + Ti;

(d) T-325°L 8, 4 [2 B(r)dr.
for 1W(-) the SBM k-dimensional. O

Proof: See Lemma 3.1 in Phillips and Durlauf (1986).

Note that in this case X7 € D[0,1]*, the product metric space of all cadlag real valued
functions on [0,1]. In this case the definition of a-mixing has to be extended appropiately
to the n-dimensional space. The results (a)-(d) hold for the scalar case under assumptions
of Theorem 2.2. Write the matrix X as

X = :

]

1 2 k
dT dT o dT XT

where d] = -gﬁ%, then, the (k x k) matrix (X’X) can be writen as YL, x/x,, for a (1 x k)

vector X;. Analogously the (1 x k) vector (V'X) can be written as i, giX:. Let us suppose
the following assumption

14
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Assumption 3.6 The derivative x, can be written as x, = ¥_\_; 1, for {1,} a a-mixing vector
sequence, with 1, = [, ..., ls]"-

Therefore for each j = 1,...,k we have g%‘_— = ! 1 ;. Consider the example of the

cointegrating function g; = (y: — 71)(2: — 72) in this case 531% = —2z;+ 7, and g—% = -y +m.

Now we have the following theorem.

Theorem 3.7 Under Assumptions 3.4 and 3.6 and if the vector [g;_;,1}]’ verify the assump-
tions of Theorem 3.5, then the asymptotic distribution of the estimator 47 is given by

lim T(/7 = 77) = lim (T7'V/X)(T72X'X)™

T—0
T T
= Jim (77 Y g (i)
e t=1 t=1

4 /0 "By(r)dBy(r) + Sua) ( / Bo(r)B(r)dr)

Proof: See Appendix B.

Note that the former theorem ensures the superconsistency of the estimator.

3.4 Bias in the Estimation of the Cointegrating Parameters

Let us consider two a-mixing series {1} and {¢,} and two series {y;} and {z;} given by y, =
Yioims and &, = Y4, &, such that there exists a function ¢(-,,~v*) such that g(y;, z,,7")
is a-mixing. As a by-product, when the function g(-,:,7*) is linear this approach allows
linear cointegration relations that were not allowed in the classical cointegration approach.
Whithin the usual framework, a cointegration relation given by x; 4+ ay, implies that both z,
and y, follow ARMA models. With the approach proposed here, those variables may follow
any linear or nonlinear model. This section studies the biases that appear in the estimation
of linear and nonlinear relationships.

3.4.1 Model 1

This case studies the bias that appear when cointegration is linear and the series are nonlinear
transformations of i.i.d. A(0,1) series. Let us define s = v, + ¢*vs_1 + (ms — m,—1) and
€s = vs—1 + (ns — ns_1), where m,, n, and a; are i.i.d. A(0,1) and v, is defined below. In
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this case the cointegration parameter is v* = ¢* + 1 since

t

t
Ye— 7T = Z(vs + QS*vs—l) - 5" Z Vs—-1
s=1 s=1
t

= Z(”s + (@™ ~ 1" )vs-1)

s=1
t

= Z(Us - vs—l) = V¢ + Vp.
s=1
where v, = sign(—a,)(82 — exp(sign(—a,)f1a,), for model 1.1, and v, is a3/(a? + 1) for model
1.2, The values are ¢} =1, f; = 0.8 and f; = 0.5.

To analyze the behaviour of the estimators we generate N=1000 samples of sizes T=100,
T=200 y T=1000, (with 100 extra data discarded) and we estimate the values 4T. The
following table presents the bias (estimated as the mean §7 = £ YN (77 ~ 4*)) and the

standard deviation (given by \/ﬁ N F = 77)2).

Comparing model 1.1 and model 1.2 we see that the nonlinearity affects the OLS estima-
tion. In model 1.1 when T is smaller or equal to 500 the bias is a large part of the value of
the parameter. For T=1000 the bias if about 10% of the value of the parameter. However,
the bias in model 1.2 is smaller for size T=100 and even smaller for larger sizes.

Table 1 | T=100 T=500 T=1000
Model 1.1 | 1.1339  0.4936  0.2865
(0.3599) (0.2607) (0.1870)
Model 1.2 | 0.3768  0.0932  0.0500
(0.2400) (0.0708) (0.0388) |

3.4.2 Model 2

In this case we study the bias that appears when the cointegration relation is linear but the
series are nonlinear transformations of ARMA series. Consider {v:} and {a;} as series i.i.d.
N(0,1) and define wy = dwi—y + vy, pr = log(l + (0.1)w;) and ¢; = a; — as—1. Now define ¢,
and 7; as 7, = 7p; and €; = p; + A¢;. Then y; and z, are generated as the acumulation of 7,
and ¢, respectively. If we take y; — y*z; then

M.*

Yt —7T¢ = (775 - ’755)

@
l
-

Il
Mn

(7ps =105 — 1785)

@
1l
-
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which is a-mixing for vy = w. The values of 7 = 0.8, and § = 0.5 are maintained in both
models. Model 2.1 will have A = 0.4 and Model 2.2 will have A = 0.16. The following table
presents the bias of 47 in the same way as we did in table 1.

With this simulation we see that when A is large (i.e., ¢, has more importance in the
errors) the bias is larger. In both cases for size T=500 or greater the biases are smaller than
10% of the value of the parameter.

Table 2 | T=100 T=500 T=1000
Model 2.1 | 0.2133  0.0521 _ 0.0245
(0.1205)  (0.0404) (0.0228)
Model 2.2 | 0.0506  0.0091  0.0041
(0.0440)  (0.0086) (0.0044)

3.4.3 Model 3

Consider a fully nonlinear model. We take series n; and a; generated by an ARMA(1,1)
given by ng = 0.6n,_, + 0.8e;_; + €; with e; i.i.d. N(0,1) and we define z, = "%, a, and
w; = Y12(ve — 11 2¢), with v 1.d.d. A(0,1). Now define

Ty = exp('yg'yl(zt + 100)/100) + /\1
yr = exp((w; +ny+100)/100) + A,.

Then the relation g, given by g; = (2 — A1 )(y: — A2) is a nonlinear cointegration relation
since ¢; = exp((y211 + 1) + (72v: + n)/100). Note that if the values A; and A, were known
in advance the relation log(z; — A1) + log(y: — A2) could have been estimated, but in general
they are not known. The parameters A; and A, are estimated by v; and v, given by

t
Lam ;((% = 1)y — m) — 7).
In this case the comment about the normalization in the nonlinear case is applied. Instead
of estimating (¢ — 71 )(y — 72) it is better to estimate the modification previously proposed.

The procedure used to minimize is the function ms(-) of S-plus. In this procedure the
initial values given for iterations has been: the mean of z for A;, the mean of y for A,, and
the mean of ¢ X y for A3. The values of the parameters are 4; = 0.8, v = 0.7, Ay = A, = 1.
The following table presents the results in the same way that tables 1 and 2. It can be seen
in the table that for T = 100 the bias are quite large and they decrease slowly. For T' = 1000
the bias is still around a 25% of the value of the parameter.
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Table 3| T=100 T=500 T=1000
A 1.4758  0.5345  0.2207
(0.5500) (0.4644) (0.2689)
X; | 2.3163 0.7929  0.3272
(0.8506) (0.6713) (0.3969)

4 Two-Step Estimation Procedure for NEC

In the former section we show that the NLS estimator of the nonlinear cointegration rela-
tionship is superconsistent under certain conditions. In this section, we study the question of
generalizing the two-step estimation procedure of Engle and Granger (1987) to the nonlinear
case. The nonlinear error correction model that we want to estimate is a single equation
model with a nonlinear error correction which depends on a single cointegrating relationship,
given by

Ay, = B"Ay1 +6"Aryy + f(g(yt—l, xt—la’YI)a’Y;) + vy

which can be written as
ry = 18*7‘15__1 + 5*QUt__1 + f(Z:_l,"/;) + V¢ [41]

for zf_, = 9(y1-1,T-1,77), Dye = 1y, and Az, = wy. If we stack all the observations in vector
form we get

R-KB —F(y) = V [42]
G(07) = V  [43]

where R = [ry,...,rr)y, R = [ro, ey 7]y W = [wg, ..., wr_1]'y K = [R,W], B* = [8~, 6],
F*(v3) = [f(z5:713); "'1f(z§"—1175)]’1 and 0" = [B*,6%,7;]".

We define also zF, = g(yi_1,2:-1,77) for 47 the NLS estimation of the cointegration
parameter v}, and FT7(v3) = [f(2Z,73), ..., f(ZE_1s )"

The two-step estimation procedure proposed by Engle and Granger (1987) consists in
estimating the cointegration parameter in a first step, say 47, generate the residuals, and
then use those residuals in a second step for estimating the remaining parameters of the
nonlinear error correction model [5.1] but substituting z;_, by 27 ;. For instance in a linear
case we would substitute 27 = y, — 4Tz, for z; = y, — 4;z;. In order to obtain a similar
result for the nonlinear case we consider the following assumption.

18



Assumption 4.2 Define the function
GT(0") = (F (%) - FT(3%)) +V
and assume that the following conditions hold,

Jim (TG (0°)GF(0%) = Jim (TG (0" G3(6")) = O,(1) [44

lim (T72V'GI(67) = Jim (T/V'G;(0%)) = 0,(1), and [45]
Jim (TP (3) = FT(35)YGE(0%) = o,(1). [4.6]

These assumptions have clear implications in the linear case, see Mira (1996). With the
above assumption we can prove the following theorem.

Theorem 4.2 Let us suppose that model [4.1] can be estimated consistently by NLS. Under
Assumption 4.1, the estimation of model [4.1] with the cointegration parameter estimated
by NLS 47, instead of the true parameter 4;, provides the same asymptotic distribution for
the NLS estimations 87 of the rest of parameters 6*, than those obtained with the true value

Y-

Proof: See Appendix C.

4.1 Bias in the Estimation of NEC Models with Linear Cointe-
gration

In this section we present an example of a non linear error correction model with linear
cointegration, and analyze the bias that appears in the two step estimation.

The data generating process is the following. Let {a,} and {v;} be two independent
a-mixing sequences and define

T = T+ a [4.7]
z; = zj_;+6far+ f(zi_1,75) v [4.8]
Yo = neetz [4.9]

where the parametric function f(z;_,,7;) is the function that we want as nonlinear error
correction. If z, defined in [4.8] is a-mixing then we have that z; is SNI(1), y; is SNI(1) and
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they are cointegrated with linear cointegration function y; — vyz;. Now taking the difference
operator in [4.9] we obtain

Ay, = (’)’f + 67)Az + f(zt*—n’)’;) + v [4-10]

which is a nonlinear error correction mechanism (NEC) with linear cointegration given by
2y =y — 112.. We will impose the common factor restriction to simplify the model, such
that 67 = 0 and obtain the model

Ay, = MAze+ f(zi_,7) +ve [4.11]

The errors in the linear error correction mechanisms are given by z}_; = yi—y — i1,
and the estimated OLS residuals are given by 27 | = y;_; — { z:-1, where 47 is the value 8
estimated in the regression y; = o + Bz + €, since y; = vz + (z? + ), where z; = 22 +
and 2{ has zero mean.

If we take the derivative in [4.7] with respect to z}_, we obtain
* d * *
=14 ——f(zr,m) [412]

dzy_,

such that impossing the boundness condition —1 < d : z; < 1 we have a suflicient condition
-1

%

that ensure that the series zy is near epoch dependence (NED). See Mira and Escribano
(1995) for a discussion of this condition. Several models verify this condition, here a brief
analysis of one of them is exposed. See Mira (1996) for a detailled analysis of those models.

Consider the following parametric nonlinear function
f(8, 61, B2,72) = =72 arctan(Bys + B2)

for 45 > 0. The derivative is

) By
T (Brs + Bo)?

and the derivative is in the region of interest for the appropiate values of the parameters.
For instance for values of (8, B2, 72) equal to (1,0,1) the derivativeis 1 — 1_:32
is always between 0 and 1. The set of values that we are going to consider is (3, 82, 72)
equal to (2,0,0.7).

Now we present the estimation results of model [1.5] for the nonlinear case. The esti-
mation procedure is the function ms(:) of S-plus. The sizes of the samples are 100, 500 and
1000 where 100 previous observations have been disregarded. The value of v; has been set
to 0.7 and it initial value to 1. The set of initial values for (81, B2, 72) are (1,1,1).
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Table 4 " 07 B B2
T=100 | -0.004934 0.1782 -133.386 6.77

(0.10478) (0.70808) (2890.57) (318.079)
T=500 | 0.00199  0.0150 _ -0.10739  -0.00534
(0.04448) (0.1144)  (0.585)  (0.159)
T=1000 | -0.00184  0.00631  -0.04648  0.00221
(0.0307)  0.0786  0.38279  (0.10068)

From table 4 we conclude that a sample size of 100 is too small to get a satisfactory
(small bias) estimation. The biases are greater for the parameters of the nonlinear terms
than for the linear ones.

5 The NED Extension

The definition of NI(0) introduced in section 2 is based in the concept of a-mixing. This
concept imposses restrictions on the whole set of outcomes of the o-algebras, which may be
a too strong assumption. There are several ways of relaxing this concept whithout loosing
the useful structure that it contains; see for instance Bierens (1983), Gallant and White
(1988) and Potscher y Prucha (1991) for a detailed discussion. One of the more interesting
alternatives is the concept of near epoch dependence (NED).

Definition 5.0 (NED) Let {z; : @ — R} be a sequence (F, B)-medible with E(z?) < oo
for all . Then it will be said that {z,} is near epoch dependent (NED) on the underlying
sequence vy iff {¢n,} is of size —a, for ¢,, given by

b = 50D [ = BT ()1

and where E;T7(2;) = E(z|vi—m, -, viam) and || - |2 is the norm L, of a random variable,

defined as E/?|. |2,

We will assume that the future values of v; will not improve the conditional expectation
of 2, in the sense of Sims (1972), such that the forward values vy, (r = 1,...,m) are useless,
but harmless. From the definition we can say that ¢, is the worst mean square forecast
error when z, is predicted by E{f7(z,). When ¢,, goes to zero at an appropiate rate, then
z; depends essentially on the recient epoch of v;. If z; depends on a finite number of lags of
vy then it is NED of any size.

The property of NED is maintained under sums and products (see Gallant and White
(1988)) and verifies a LLN and a CLT (see Wooldridge and White (1988)). Under the concept
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of NED we can rewrite almost exactly the same results given in the previous sections writing
NED where it was written a-mixing (with appropiate assumptions). This motivates the
following definition.

Definition 5.1 A sequence {¢;} is weakly nonlinear I(0) (WNI(0)) if it is NED on an
underlying a-mixing sequence {v,} but the sequence {z,} given by z, = ¥-!_, €, is not NED.
We will say that z; is WNI(1).

Definition 5.2 Two sequences {y;} and {z;} which are WNI(1) are weakly nonlinear cointe-
grated (WNCI) with cointegration function g(-, -, 7), if g(ys, ¢,7*) is NED on some a-mixing
sequence but the sequence g(y, zs,7), it is not NED for 7 # ~*.

Notice that if z, is WNI(1) then Az, is WNI(0). With these alternative definitions
we can give a representation theorem, providing sufficient conditions for a model to be a
NEC. Furthermore, we can also give sufficient conditions to ensure that the one-step (NLS)
estimation of single equation NEC is consistent.

Let us suppose the following model
Ziy =0\ Wiy + F(Zier,y) + U [5.1]

where Z;, and U; are (r x 1), W, is (n x 1) ®; is (r x n), and F,, : R” — R" as a function of
Z. The assumption and theorem that follows will be useful later.

Assumption 5.3

(a) The sequence {U;} is a-mixing of size —v/(v — 2) for v > 2, and the sequence {I¥;}
given in [5.1] is NED on an underlying a-mixing sequence {A;}, of size —v/(v —2) for
v > 2, in the sense that for ¢,, given as

Ym = sup B|W, — E(Wi4,, s Aeem)3

it holds that %,, — 0 as m — oo, where the norm | - |s is introduced in Mira and
Escribano (1995). See Appendix D.

(b) For the norm | - |s we have
IV2F(Z,7)ls = 8z < 1.
(¢) The following moment conditions hold for i = 2
(i) EIWs < AW,
(i) EJUS < A7,
(i) EJUISIWels < Afjy.
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(d) F(-,7) is continuously differentiable in each argument.

Assumption 5.3 (b) says that the spectral radious of the matrix of first partial derivatives
is smaller than 1.

Theorem 5.4 Under Assumption 5.3 the sequence {Z,} given in [5.1] is NED on the under-
lying sequence {(U;, A;)} of any size. O

Proof: See Appendix D.

The core of the proof is that if Z; is NED on W, and W; is NED on A; then Z; is
NED on A;. Now we have the tools to give a representation theorem for a nonlinear error
correction with linear cointegration, in the sense that we give sufficient conditions that ensure
a balanced specification of the NEC.

Theorem 5.5 (Representation Theorem) Consider a nonlinear time series model for the
sequence of (n x 1) vectors {X;}, given by

Xt = F(Xio1, Xi—2) + &0 [5.2]
where for simplicity only two lags are supposed. Let us suppose the following assumptions
(1) & and AX, are WNI(0);
(2) the function F(X;_;, X;-2) is nonlinear only in the first lag, i.e.

F(Xi21, Xeo2) = G(Xi21) + P2 Xo-p;

(3) the function H(X;_1) given by H(X,-1) = —(I — ®3) X1 + G(X;-1) is not partially

invertible; and
(4) H(Xi=) = J(/ Xi-4).
Then
(i) under Assumption (2) we have the following representation
AXy=UAX, 1+ HXi1) +e [5.3]

where ¥; = —®, and H(X;) : R — R" is given by H(X,—1) = —(I — ®5) X,y +
G(Xi-1);

(ii) Assumption (3) is a necessary condition to ensure that [5.3] is a NEC;
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(iil) Under Assumption (4), if we multiply [5.3] by o' we obtain
Zy =0 Wi+ F(Zi21) + Uy [5.4]
where Z; = o/ Xy, W, = AX,, &, = o'Vy, and F(Zio1) = &/ J (! X)) + o' Xy
(iv) under Assumptions (1)-(4) plus Assumption 5.3 for model [5.4] we have that Z, is NED.
O
Proof: See Appendix D.

Note that (1) implies on [5.3] that (1 — ;L) cannot have a unit root. The result (iv) of
the former theorem ensures that under Assumptions (1) to (4) plus 5.3 we have that [5.4]
is a correctly specified NED. Consider the example. If model [2.7] with linear cointegration
and nonlinear error correction which coincides with [5.3], then the expression [5.4] is given

Zie = OnwWig—1 + G12Wop1 + G13Ws o1 + 2141
+anJi(z1,6-1, 22,-1) + c12d2(z1,0-1, 22,0-1) + a13J3(21,4-1, 22,0-1) + U
Ty = O Wig-1 + P2Wa i1 + G23Ws oy + 22,41

+021J1(21,t—1, Zz,t-l) + 022J2(21,t-1,22,t—1) + C¥2>3--73(21,t—1, Zz,t—1) + Uy

The condition given by Assumption 5.3 (b) says that RSpec(VzF(Z)) < 1 where the function
RSpec(A]) is the spectral radious of the matrix M. In this example we have

aJ 2% aJ aJ
1+ an5t + g2 + o3 an g + 129;%‘*‘01 9

VzF(Z)= aJ 8J 8J bJ J baa |-
(2) anga tangt+tamngr 1+oangl +ang?+asss

For instance if we have only one equation and only one cointegration relation then J; = J; =
0 y 29, = 0 (since &' is (1 x 2)) and the matrix VzF(Z) is

VzF(Z) = (1-*-011321 )

Therefore condition RSpec(VzF(Z)) < 1 reduces to |1+ 11§24 < 1. See Mira (1996) for
some comments about the case of nonlinear cointegration and nonlinear error correction.

Theorem 5.5 can be as well stated replacing Assumtion (1) by Assumption (1’) given by
(17) e, is WNI(0);
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and in this case we obtain Theorem 5.6. This theorem provides sufficient conditions to jointly
ensure that AX; and o/ X, are NED, based again in Mira and Escribano (1995).

Theorem 5.6 Let us suppose (1’) plus (2) to (4) of Theorem 5.5, then Assumptions CT,
CN, and LR from Mira and Escribano (1985) applied to model

e = E1&t-1 + Egbt-a + F(&-1) + 0 [5.5]
where &, = [Z;, A Xy, ensure jointly that AX; and o/ X, are NED.

Proof: For the specification of the variables and parameters as well as a sketch of the
proof see Appendix D.

Lastly, once model [5.3] is ensured to be a correctly specified NEC, it is of interest to
give sufficient conditions that ensure its one step consistent estimation, in the sense of Stock
(1994). The following theorem is about this issue.

Theorem 5.7 Suppose the Assumptions of Theorem 5.5 are satisfied for [5.3] and [5.4].
Now, Assumptions of Mira and Escribano (1995) on each equation of [5.3] allow its consistent
estimation.

Proof: See Appendix D.

6 Conclusions

We have shown how, by working with the concept of a-mixing, we can estimate several types
of interesting nonlinear time series models in a nonstationary framework. By doing that,
we extended the concept of I(1) to strongly nonlinear 1(1), SNI(1), and of cointegration to
strongly nonlinear cointegration. Using results from functional analysis, we give sufficient
conditions to obtain a super-consistent estimator of a nonlinear cointegration relationship
estimated by nonlinear least squares (NLS). This framework allowed us to extend the two-
step estimator of Engle and Granger(1987) to nonlinear error correction models (NEC). In
these class of models the cointegrating relationship can be linear or nonlinear. There are
available some statistics that can be used to test the hypothesis of a-mixing. A weaker
concept of nonlinear I(1) is introduced based on the concept of near epoch dependence
(NED). With this concept of weakly nonlinear I(1), WNI(1), we can give a representation
theorem for NEC models with linear cointegration and we can justify a one-step (NLS)
estimation of NEC models. Finally, the small sample biases are studied by running Monte
Carlo simulations. It is found that for samples of size 100, the biases in the estimation of
the parameters of the model can be large, but that those biases are substantially reduced
when the sample size increases to 500 observations or higher.
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A Appendix to Section 2

A.1 Proof of Lemma 2.6

For the first part define w; = fo(z) y re = fy(y:). Now, define gr(w;, ) = gr(f7 (wy), £, (re)).
Clearly gr(f;(ws), f;(re)) = gr(z+,y¢) and then it is a-mixing.

The second part is more straightforward. Define gr(z:,:) = gr(fz(z:), fy(y:)) and the
result follows.

Q.E.D.

A.2 Proof of Proposition 2.8

Let us write

Ay = F(Xt—laXt—z) +é&
= G(Xio1) + 02 X2 + &
AXy = G(Xioq) = X + 02 X0 + &

= (=®2)(Xim1 — Xi2) = (I = @2) Xy + G(Xio1) + &
= \I’IAAX—t_l + H(Xt—l) + &

where ¥y = —®,, and H(X;) = —(I — ®2)X;—1 + G(Xi—1). Now, since ¢; and AX, are
SNI(0) then H(X,;_,) is also SNI(0), eventhough X; is not. If that not were the case then
H(-) would be invertible and then X, would be a function of a-mixing variables and therefore
it were not SNI(1). Then given (1) and (2), (3) is a necessary condition.

Q.E.D.

B Appendix to Section 3

B.1 Proof of Lemma 3.3

We will prove that T =7, g(ys-1, 2:-1,7)2 — 0o. To do that we will use Theorem 3.1. We
will write g2, instead of the expression g(yi-1,z:-1,7)* Then from the assumptions we can
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write
T T t 1 t-1
I g = Z 85,2 6,))' T
=1 =1 s=1 s=1
where Mr(r) is given by
( 0 fOI‘ 0 S r< ..%.
(¢(¢1361))2 for 17 S r< _%
Mr(r) = l: .

(B(T3 ber Tymi b ))2 for Tl <r<l
(é( Z:l ¢sa§:§=1 6 ))2 for r=1

Now we have the following convergences

(T7]

T-1/2 Z s N oy Wi(r)
s=1
[Tr] 4
T—1/2 253 — O'g“’vg(’l‘)
s=1
[Tr]) [Tr] 4
T7120(5" ¢,,5.6,) 5 DO(0;0,Wi(r), o Wy(r))
s=1 s=1
[Tr] [Tr] J —
T~ 'Mp(r Z b5, Z 6))° S (D®(0;0,Wi(r), 0, Wo(r)))? = W(r)?

)
/ T Mp(r)dr / iV (r)2dr
0 0

Since T-2%T, g2, % JEW(r)2dr, then T-' T g2 — o0, and the NLS estimator 47

given by min, Qr(7) where Q7(y) = T~ TX, ¢.(7)? provides a consistent estimation of y*.
Q.E.D.

B.2 Proof of Lemma 3.7

Let us define the ((k 4+ 1) x 1) vectors

(g ) _ | hue i:l goa \ _ | Fue
ht—( L )—[h%} and k; = Zhs—( X, )—-[th].
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If we apply Theorem 3.5 we obtain the following convergences to the ((k + 1) x (k + 1))
matrices

T 4 1
T2y kk, 2 / B(r)B(r)dr

t=1 0

1

T
T-13 kb, 5 / B(r)dB(r)' + %,
0

t=1

where the ((k + 1) x 1) vector B(r) is given by B(r) = [By(r), B2(r)'}’ and
o1 X
¥ =
' ( Yi2 Yoo
and an analogous decomposition can be made for ¥. Now we have the following convergences

T T 1
T2X'X =T xixe = T2 ) Kok 5 / By (r)'By(r)dr
t=1 t=1

T T 1
TWX =TS gix, =TS hygyrka N /0 By(r)dB,(r) + Z;
t=1

t=1

and the result follows. Note that T=1 "7 Ay ko = T7U 5T Aok oy + 0,(1).
Q.E.D.

C Appendix to Section 4

C.1 Proof of Theorem 4.2

Let us write model [4.2] and [4.3] as
R-K'B —FT(y;) = (F(%)-F'(%))+V [44]
GT(e) = (Fr(5)=FT() +V [45]
For model [4.5] we have

lim 77207~ 0 = lim (TV2GT (@Y GE(0) (16T (07YCE (07)

T—oo
= Jim (T73(F"(35) - FT(33)) G (07) (T GT(07) 67 (67))

-1

+ Jim (T-112v'GE(6%) (T GT (0 G (67))
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and since we want that

Jim TVAOT -0 = Jim (T7/2G"(0°)G3(6%))(T Gy (6°) G3(67))

T—co

then Assumption 4.1 is enough.

Q.E.D.

D Appendix to Section 5

D.1 The |- |s Norm

The matrix norm | - |s is defined as follows
|Als = [(MDs)™' A(MDs)lfoo

for M and Djs being matrices that depend on the matrix A. Analoguosly the asociated
vectorial norm is

[Yls = [(MDs)Y oo
In Mira and Escribano (1995) it is proved that for any matrix A it holds that
|Als < p(A) +6

for p(A) being the spectral radious of A.
D.2 Proof of Theorem 5.4
Let us define
= { F(Z._,) for t>0
0

for t<0

and

N

mo_ [ OWii+F(Zr )+ U for s+1<m
te Z, for s+1>m
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where W, = E(W,|A,, ..., Ai_m), and therefore E|W, ~ A < tm such that ¢,, — 0 when
m — oo. Then it is clear that Z7% is o(U;, Wiy, ..., Ui_mt1, Wi_y,)-medible, and then it is
O'(Ut, At—l) eeny Ut—m+la At—m, ceey At_Zm)—medible,

The difference between Z; and its predictor Z, is bounded for ¢ > 0, because

1Z:—Zis = 1®Wiy + F(Z,2y) + U, — F(Z21)|s
< | ®Wicq + Uels + ”F(Zt—l) — F(_Z_t—l)HS

and by the Mean Value Theorem

Fl(Zt) — Fl(it)
F(Z) - F(2Y)
%(Zt)(zlt —Zu) + o+ %{}(Zt)(zrt = Zrt)
‘Zi'(Zt)(zlt —Z1) + - + gf: (Z)(zrt — Zry)
%(Zt) é)a‘i}(zt) 1t — Z1t
?‘:)f: (Zt) e ?}f: (Zt) Zrt — Ert

= VZF(Zt)(Zt - —Z—t)

Now, since | - |s is a subordinate matrix norm we have that

12— Zils < 1®|siWierls + |Uils + IV2F(Zo)s(Ze-r = Ziza)ls
< bwup+ 6z|(Zi-1 — Zt—l)"S

for some Nyyyy and since Zy = Zo = 0, then by iteration we obtain

t-1 _
|Z: = Zi|s < ZNWU,t—J"SJZ
J=0
. t-1 S e S L
12— Z:% < Z NI2VU,t—j‘SZJ + Z Z NWU,t-iNWUrt-J'5lZ+J
7=0 7=0t#]

= 2
E|Z - Zl% < ADy
for some bound A(Z2_)_7, because, for instance, E(Nwy,:) = l|<I>I|5A(p},) + A}}). Now,

1Z~ Z7)s = |®Wio1 + F(Zi-1) + Uy — Wy — F(Z7 1) = Uil's
< NO(Wiey — Weoy)|s + | F(Zizr) — F(ZT 1 0)s
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and again by the Mean Value Theorem we obtain
|F(Zi1) = F(Z2 s S IV2F(2)| 5121 = 27244,
and since |VzF(Z)|s < éz we have

12: = Zls < N@IsIWims = Waeals + 62121 = 2744

and by iteration

12 = Z75)s <52 651®0s|Wimr—i = Wicazils + 631 Zicm — Ziomls

1=0
and taking expectations

E|Z, - Z7)% < EC 85100s|Wiciei = Wisi—il)? + 65" E| Ziom ~ Ztm |
1=0 ’

‘*'QE((Z 62”(1)”5”111/}—1—:' - ﬁ}t—l—i"S) X 6?"Zt—m - 7t—m"S)-

1=0

If we use for the third term in the summation the Holder inequality with p = % = ¢, i.e.,
E|Y X| < EM?|Y|? + EY? X|?, only remains to work out the following term

E(Z 1Weei—i — Wt—l—i“5)2
=0
= EY | Wioioi = Wi}
=0
+EZZ |Wioy-i — Wt—l—i”S"I’Vt—l—j - W’—l‘i s

i=0 j#i

S EIWiey i — Wiyl
2

IA

+ 3N BV Ws o — Wy i 2EY?

i=0 j#i

W1 — Wioa; |2

and since E|W,_;_; — Wi_1_;|% = ¥ then E||Z, — Z,"}) |% is bounded by a sumation of terms
with ¢, or terms with 6z and since ¥, goes to zero and 0 < §z < 1 we obtain

lim E|Z - Z75ls =0
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Now, given Ei_on(Z:) = E(Z1|U1,At_1, eery Ut—am+1, At—2m), we can obtain a bound for
1Z: — Ei—2m(Z:)|Ls. Since Z[y is 0-(Uty .o, Utmms1, At—m, ..-At—2m)-medible then it is o-
(Uty ooy Ut—2mt1, At—2m)-medible so that

N2 = Eeem(Z)l2 < k120 — Z73)1s
SkEV?|Z, - Z7%

and since E|| Zt—ZZ})H% — 0 at exponential rate then {Z;} is NED on the underlying sequence

{(Us, W)} of any size. Note that the first inequality is a generalization of the well known
fact E|Z, — E(Z,|I)|* < E|Z; — g(I,)|* for any function g(-) of the information set I, and 6z
is some constant that depends on the norm |- |s.

Q.E.D.

D.3 Proof of Theorem 5.5

Apply Proposition 2.8 for parts (i) and (ii). Part (iii) is immediate. For part (iv) apply
Teorem 5.4. Q.E.D.

D.4 Sketch of the Proof of Theorem 5.6

Let us normalize the (r x n) matrix, base of the space of cointegration relations, in the
following way o' = [I,—0'] such that o’ X; = Z;, and let us define the (n x n) matrix M as

(1 -F
M_<O J )

Then MX, = [Z],X},]' for some partition of the vector X, as X| = [X{,, X},], with X7, of
dimension (r x 1) and X2, of dimension ((n — r) x 1). Given the NEC representation

AXt = \IJAXt—I + J(a’Xt_l) + &4
if we multiply by M we obtain the following system

o/AXt = a'\IlAXt_l + a’J(a’Xt_l) + a'et
AXy = VU AX;q + Jo(o' Xioq) + €2
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for some partition of ¢;, ¥, and J(a'X;-;). Let us represent the vector [Z;_,, X}, ,]'as L,_1,
then the system can be rewritten as

Zt = Zt-—l + Q’I\I}M_IALt_l + Q’IJ(C!”Xt_l) + Q”et
AXy = U MAL .+ Jo (&' Xi—1) + €2

or

Zy = Zyy+ PALiy+ K(Zi1) + e
AXy = VAL +J(Ziq) + me

that is strightforward to rewrite as in [5.5].

Q.E.D.

D.5 Proof of Theorem 5.7

Apply the proof of Theorem 3.5 of Mira and Escribano (1993), with the caveat that Lemma
3.4 (i) should be modified as in Theorem 3.4.

Q.E.D.
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