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Abstract 

The estímate ofthe effort in the development of software projects has already been studied in the 
field of software engineering. For this purpose dijferent ways of measurement such as Unes of 
code andfunction points, generally addressed to relate software size with project cost (effort) 
have been used. In this work we are presenting a research project that deals with this field, us'mg 
machine learning techniques to predict the software project cost. Several public set of data are 
used. The analysed sets of data only relate the effort invested in the development of software 
projects and the size ofthe resultant code. For this reason, we can say that the data used are poor. 
Despite that, the results obtained are good, because they improve the ones obtained in previous 
analyses. In order to get results closer to reality we shouldfind data sets of a bigger size that take 
into account more variables, thus offering more possibilities to obtain solutions in a more ejficient 
way. 

1 . I n t r o d u c t i o n 

The effort invested in a software project is probably one of the most important and most analysed 
variables in recent years in the process of project management. The determination of the valué of 
this variable when initiating software projects allows us to plan adequately any forthcoraing 
activities. As far as estimation and prediction is concerned there is still a number of unsolved 
problems and errors. To obtain good results it is essential to take into consideration any previous 
projects. Estimating the effort with a high grade of reliability is a problem which has not yet been 
solved and even the project manager has to deal with it since the beginning. 

Several methods have been used to analyse data, but the reference technique has always been the 
classic regression method. Therefore, it becomes necessary to use some other techniques that 
search in the space of non linear relationships. This work presents a study of machine learning 
techniques in the task of predicting project cost from Unes of code and function points, using a set 
of examples. 

These examples are real data measured in projects. The projects are of different types and cannot 
be mixed. There are general rules in order to estímate the effort, but they cannot be used in a 
general way, because each software development company, even of the same business field, has 
its own particular casuistry. 

To solve this problem, it is interesting to use machine learning methods with inductive learning. 
This way it is possible to build up a prediction system to fit each company characteristics, taking 
into account real examples of projects developed by the firm. These prediction systems will adapt 
automatically to the company's idiosyncrasy. 
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This theme has been considered in the past, by means of neural networks (NN), fuzzy logic, case-
based reasoning (CBR) and genetic programming (GP) [8], [12], [16], [19], but the results 
obtained are not quite convincing. For this reason, in this work, we developed a careful study of 
different techniques in order to analyse if it is possible to solve the problem in a more efficient 
way. 

-

2. Framework 

Some of the previous works in the field have built up models (through equations) according to the 
size, which is the factor that affects the cost (effort) of the project the most [8], [14]. The equation 
that relates size and effort can be adjusted due to different environmental factors such as 
productivity, tools, complexity of the product and other ones. The equations are usually adjusted 
by the analyst to fit the real data of the projects. 

From this perspective, different equaüon patterns have come out [8], [11], but none of them has 
produced enough evidence to be considered the defínitive cost function, in case there is one. 

Nevertheless, the characteristic that has to be satisfied by the estimation equation is: the model 
should be capable of doing its best on estimating reliabiy the majority of the real valúes» 

As we mentioned above, it has not been possible until now to obtain an equation, set of equations 
or patterns of equations that can satisfy this premise, and therefore there is no reference or 
comparison parameter. Then it can be assumed that the equations are not a good tool to obtain an 
optimum prediction. 

For this reason, this work aims more at the prediction of the effort without considering cost or 
production functions. Statistical and artificial intelligence methods (regression, neuronal networks, 
instance based learning and some other procedures) have also been used due to their capability to 
predict. 

3. Machine Learning Methods Used 

In this work, different methods based on instance selections have been used. In the following 
paragraphs the methods are briefly described. 

3.1. Neural Networks 

Human beings have a deep desire to reproduce cognitive skills by artificial means. The 
appearance of a new field of study called artificial intelligence proves the fascination of human 
beings for the understanding of intelligence. 

One of the most developed fields in this área has been the "neural networks". Neural network 
could be described as the computerized simulation of the behaviour of parís of the human brain by 
replicating in a low scale the patterns that it performs to obtain results from perceived experiences. 

Specifically, we are dealing with the analysis and reproduction of the learning and 
acknowledgement mechanism which some of the most evoived species possess. Artificial neural 
networks can be characterized as computational models involving functions such as capability to 
adapt and learn, clustering and parallel processing. 
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3.2. K* 

The distance between instances can be defíned as the complexity of transforming one instance into 
another. Calculation of the complexity is done in two steps. First a finite set of transformations 
that map instances to instances is defíned, A program to transform one instance a to another b is a 
finite sequence of transformations starting at a and ending at b. 

Following the usual development of the complexity theory such programs (sequences) are made 
"prefix free" by appending a termination symbol to each string. The usual definition of the 
(Kolmogorov [15]) complexity of a program is the Iength of the shortest string representing the 
program. Using this approach a Kolmogorov distance between two instances can be defined as the 
Iength of the shortest string connecting the two instances. This approach focuses on a single 
transformation (the shortest one), out of many possible transformations. The result is a measure of 
distance which is very sensitive to small changes in the instance space and which does not solve in 
a satisfactory way the smoothness problem. The K* distance tries to deal with this problem by 
summing up all possible transformations between two instances. 

On real datasets it performs well against a range of both rule-based and instance-based learning 
schemes. The technique of summing up the probabilities of all possible transformation paths 
solves the smoothness problem and contributes strongíy to its good overall performance. The 
underlying theory also allows clean integration of both symbolic and real valué attributes and a 
principled way of dealing with missing valúes. 

The implementation and results showed in [6] are a first implementation of K* method to predict 
real valué attributes. 

3 3 . Instance-Based Learner 

Instance-based learner (IBL) classifíes an instance by comparing it to a datábase of pre-classified 
examples. The fundamental assumption is that similar instances will have similar classifications. 
The corresponding components of an instance-based learner are the distance function which 
determines how similar two instances are, and the classification function which specifies how 
instance similarities yield a final classification for the new instance. In addition to these two 
components, IBL algorithms have a concept description updater that determines whether new 
instances should be added to the instance data base and which instances from the datábase should 
be used for the classification. In simple IBL algorithms, after an instance has been classified, it is 
always moved to the instance datábase along with the correct classification. More complex 
algorithms may filter which instances are added to the instance datábase to reduce storage 
requirements and improve tolerance to noisy data. 

The nearest neighbour algorithms are the simplest instance-based learners. They use some domain 
specific distance function to retrieve the single most similar instance from the training set. The 
classification of the retrieved instance is given as the classification for the new instance. Edited 
nearest neighbour algorithms are selective, in which instances are stored in the datábase and used 
in classification. K-nearest neighbour (KNN) algorithms are only slightly more complex. The k 
nearest neighbours of the new instance are retrieved and whichever class is predominant among 
them is given as the new instances classification. A standard nearest neighbour classification is the 
same as a k-nearest neighbour classifier for which k=L 
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1B1 is an implementation of a nearest neighbour algorithm with a specific distance function. Real 
valued attributes are normalised to a common scale so all attributes have equal weight and the 
missing values are assumed to be maximally different than the present value. 1B2 contains 
extensions to reduce storage requirements; only misclassified instances are saved. 

IB3 is a further extension to improve tolerance to noisy data; instances that have a sufficiently bad 
classification history are forgotten and only instances that have a good classification history are 
used for classification. 

4. Used Data 

Eleven sets of data have been used. Each set shows information about certain amount of software 
development projects. For each project, there are two variables: one, (independent variable) that 
refers to the size of the generated code -measured in lines of code or function points-, and the 
other (dependant variable) that indicates the effort (time) invested in the development of projects. 
The data sets used in this work are the following: 

1st Set: Abran and Robillard [1], Projects: 21. It is a subset out of a total of 36 projects. The code 
size is measured in function points and the effort in person-days. 

2nd Set: Albrecht and Gaffney [2], Projects: 24. This data set corresponds to projects carried out by 
IBM and analysed by Shepperd and Schofield [20]. 

3rd Set: Bailey and Basili [3]. Projects: 18. The code size is indicated in thousands of lines of code 
(KLOC) and the effort is indicated in man-months. 

4th Set: Belady and Lehman [4]. Projects: 33. The code size is indicated in lines of code (LOC) 
and the effort is indicated in man-months. 

5th Set: Boehm [5]. Projects: 63. One of the most analysed sets. 

6th Set: Heiat and Heiat [10]. Projects: 35. Small scale projects. The size of the code is indicated 
in LOC and the effort is indicated in person-hours. 

7th Set: Kemerer [13]. Projects: 15. It was used to test different estimation methods. The 
independent variable used is function points. 

8th Set: Miyazaki [18]. Projects: 47. The code size is indicated in KLOC. 

9th Set: Shepperd and Schofield [20]. This data set has been used to test the method of estimation 
by analogy. The independent variable is the number of files. 

10 Set: Deshamais [7]. Projects: 61. This data set relates function points to effort, using the 
concepts of entity and transaction to identify the function points. 

11th Set: Kitchenham and Taylor [14]. Projects: 33. This data set is composed of 33 projects 
developed in the same language (S3, a high level language). The data relates LOC to effort (man-
months). 
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It is important to highlight that, as it can be appreciated in the previous descriptions, the number of 
sets of projects is limited and also the number of projects in each set is small (the biggest set has 
63 projects). These data sets have been obtained through the analysis made of some software 
development companies. These analyses, in most cases, have been performed along several years, 

5, Results 

As it can be appreciated, the size of the data sets is different, this is, the amount of projects is 
variable: For example, the biggest set (Boehm) has 63 and the smallest (Kemerer) has 15. In this 
work, a data analysis tool called WEKA [21] has been used. It includes methods such as: KNN, 
linear regression, neural networks and K* (previously described). It is necessary to notice that the 
results published in [8] were used as a reference in order to measure the efficiency of the 
previously mentioned methods. The methods used in [8] were approximation to square, cubic and 
logarithmic functions and genetic programming, indicated in this section as Curve and GP, 
respectively. 

In Table l and Table 2 are shown the results obtained using the previously described methods as 
prediction tools applied to the eleven data sets. 

In the first two rows the results of the reference methods (GP and Curve) are shown. Next, the 
results obtained by the KNN method with k=3 (KNN-3) y k=4 (KNN-4). Experiments varying the 
value of parameter k have been carried out, but the best results were obtained using these values. 

In the row number five, the level of prediction and error obtained with NN are shown. In this case, 
different architecture of back propagation of NN have been proved (different number of hidden 
layers and nodes per layer were used, but the best results were obtained using one hidden layer 
and 20 neurons in this layer). The NNs have been trained until they reach convergence. 

Results obtained with linear and arithmetic regressions are shown in rows number 6 and 7. 

Finally, the results provided by K* method, previously described, are shown. 

The analyzed data set is indicated in each one of the columns through the name of the set. 

5.1 Prediction capacity 

One of the most important factors to take into account by a project leader is the effort required in 
the development of a software project. Thus, it is necessary to have a prediction method that 
generates appropriate predictions with the smallest possible error. 

To measure the prediction capacity of the methods, the reliability level (in percentage) of the 
obtained results can be used. This will reflect how good (resemblance to the actual values) are the 
results produced by a given method. 

Another measure to be considered is the error. The error indicates the difference between the 
predicted value and the real one. It can be considered of similar importance to the reliability level, 
but with certain caution. When making the cumulative of all the errors for a certain data set, if 
there was one value whose error was much bigger than the errors of the remaining ones and the 
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error of these is minimal, it can slant the result by reflecting too big error, being opposed 
therefore, to the previous parameter. 

To measure the prediction capacity of the methods, two well-known measures have been used: 
PRED and MMRE that are described next. 

-

5.1.1. PRED (/) 

Level / prediction (PRED(/)) can be defined as the quotient between the number of cases in which 
the estimated values are within the absolute I limit of the real values and the total number of cases: 

Let 

where 

Where e; is a real value of the variable in the project, ej is its estimate and n is the number of 
projects. It can be stated then that if the MMRE is low, we will be able to make a good number of 
predictions. The criterion to consider a model as good is that it has an MMRE < 0,25, 

5.2 Analysis of Results 

As it has already been explained, to measure the efficiency of the methods under study, the 
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methods Curve and PG have been taken as reference. It is necessary to mention that, neither in the 
methods under study nor in the reference ones, testing instances have been used. All the elements 
of each one of the analysed sets have been used for training. 

In Table 1 the prediction results are shown. The best results in each one of the domains are 
indicated in bold. 

-
In the domain Albrecht, the prediction that makes the method GP is of 64,00, being this the best 
result, but the difference with the following better one is small: the prediction of K* with a value 
of 62,50. Similar situations are given in the domain Bailey, where, although GP is the best (73,70), 
the result of K* (72,22) is very close. 

Table 1. Obtained predictions with 25% level (best results in bold). 

Table2. Media Magnitude of Relative Error (best results in bold). 

On the other hand, in the domain Abran, certainly the best methods are K*, NN and AR (80,95), 
followed by GP (77,30), also with a minimal difference. 

In the domain Belady, as in the previous one, the best method is K*, but here it is necessary to 
highlight that the difference with the following better one is considerable: K*=90,91 and 
GP=35,50. Important differences have also occurred in the domains Boehm, Heiat and 
Kitchenham where K* continues being the best method (76,19, 97,14 and 84,85 respectively) and 
knn-3 (20,63) and AR (97,13 and 59,05) are the next best ones. GP is lower than these ones. 

In the domain Miyazaki the method that provides the better result was knn-3. The difference with 
the next best one (GP) is approximately of 10%. 

In the domain Desharnais the best method is AR (58,53) and the next one is GP (51,60). In the 
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domains Shepperd and Kemerer, the best method also AR (83,33 and 73,33 respectively), but it is 
followed by knn-3 (72,22) and K* (66,67) respectively. GP is lower than these ones. 

Thus, it can be said that the best of the two reference methods -as for prediction reference- is GP. 
When GP presents good results, the difference with the methods studied in this work is small. On 
the other hand, when some of the methods under study produce more accurate predictions than GP 
the difference is considerable. The excellent results that K* provides must be pointed out. 

In Table 2 the results of the generated errors are shown. The best results in each one of the domains 
or data sets are indicated in bold. 

Only in two of the 11 domains, the reference methods are better than the method studied in this 
work, but in these cases with minimal differences. For example: for the domain Heiat, the best is 
GP with an error of 0,0870, followed by AR with 0,0890 and Curve with 0,0892; for the domain 
Albrecht, the best is Curve (0,5313). 

Knn-3 and AR also provide good results in different domains, but as in the previous case, the 
difference with the following best results is minimal: in the domain Miyazaki, the errors for knn-
3=0,3980 and Curve=0,3999; in the domain Desharnais, AR=0,3331, knn-3=0,3372; in the 
domain Abran, AR=0,1593, NN=0,2178. 

In three of the eleven domains, K* was the best and in all of them the difference of results 
between the two is considerable: in the domain Boehm the MMRE for K* is of 0,3662 and for 
Curve is of 1,1336; in the domain Kitchenham the MMRE for K* is of 0,1495 and for knn-3 is of 
0,6662; in the domain Belady the MMRE for K* is 0,2352 and for Curve is 0,6528. 

In Table 3 and Table 4 the prediction results and errors, respectively, are shown, corresponding to 
K* and K* with crossed validation. It can be appreciated that the difference of results among the 
two methods is important. This is because in the crossed validation were used some of the 
instances for testing, that way diminishing the efficiency of the method, due to the poverty of the 
model (reduced number of instances and variables). 

Tabic 3. Prediction for K* and K* with cross validation. 

Method 

K* 

K*CV 

|)Al \ ii 
:;XBnui::: 

80,95 

57,14 

Albrcphf 

62,50 

25,00 

Bailey: 

72,22 

66,67 

: BciSiJy : 

90,91 

12,12 

M m 

76,19 

6,35 

mm 
97,14 

91,43 

Kcmr-er 

66,67 

40,00 

Mijrafc' 

44,68 

23,40 

:; Shepp, 

61.11 

38,89 

DysllW. 

46,34 

41,46 

Kitchen 

84,85 

15,15 

Table 4. MMRE for K* and K* with cross validation. 

Method 

K* 

K*CV 

•Ahiwrj;;: 

0,2511 

0,3800 

Altirepht 

0,6371 

1,6991 

Bailey 

0,2450 

0,3325 

Belady 

0,2352 

3,5386 

•Boe.bni 

0,3662 

9,4863 

DATA SET 

/llefai: 

0,0998 

0,1222 

Kemerec 

0,2654 

0,7631 

Miyaz, 

0,4065 

1,3663 

Sliepp. 

0,4364 

0,8145 

Deshsr. 

0,3946 

0,4433 

Kitchen. 

0,1495 

2,1594 

In order to visualize the behaviour of each one of the methods in different domains, as in 
prediction and error, some graphics are shown (Figures 1, 2, 3, 4, 5, 6). The discontinuous line 
represents the value obtained by the reference method for the different domains. This value is 
indicated by y. To compare the level prediction, GP was considered as reference method, since it 
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provides better results than Curve method. And for the error, Curve was considered as a reference 
method, given that it presents better results than GP. 

Figure 1. Prediction in Heiat domain. Figure 2. Prediction in Abran domain. 

Figure 3. Prediction in Kitchenharo domain. 

It can be seen that the prediction is not homogeneous, given that in the Heiat domain (see Figure I) 
only two methods improve (and just by a little) the reference method y = 94,40 (K* = 97,14; AR 
== 97,13), and in Kitchenham domain (see Figure 3) the K* method has gone beyond by fan y = 
32,40, K*= 84,85. 

Figure 4. MMRE in Albrecht domain. Figure 5. MMRE in Bailey domain. 

Figure 4 (corresponding to Albrecht domain) shows that none of the methods enhanced the error 
produced by the reference one (Curve), but in Figure 6 (corresponding to Desharnais domain) most 
of them have improved the results obtained by the reference method (y = 0,5428). 

317 



Figure 6. MMRE in Desharnais domain. 

6. Conclusions 

The estimation of the effort invested in the development of software projects can turn into a 
complicated problem to be solved if the appropriate models are not available. Unfortunately until 
this moment this is the situation, since there are not the necessary records in the software 
development companies. Years of investigation are required in order to obtain the volumes of 
information needed to carry out a prediction with a good level of reliability and with a low error 
margin. 

The domains are not the most suitable, due to their size and limited number of variables, and 
because of the fact that they depend on the particular casuistry of each company. 

The quality of the prediction can improve if more appropriate sets of data are available and a more 
deep study of the methods is performed. 

In this work, machine learning techniques have been used for the task of predicting project cost 
using a set of domains that represents different types of projects. A study of the behaviour of 
different methods has been presented. 

The obtained results show that the outcomes of the methods used are not homogeneous for all 
domains. In some cases, one method has proved to be better than the rest, and has obtained 
excellent results, whereas in others the predictions are far below the 25% threshold and/or the 
MMRE is far too big. 

Nevertheless, the results obtained in this work are satisfactory since both the prediction levels and 
the error produced by some of the methods used can be considered excellent taking into account 
the limited characteristics of the models used. That is the case of the method K*. 
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