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Abstract _ 

How to combine information from different sources is becoming an important statistical 

area of research under the name of Meta Analysis. This paper shows that the estimation of a 

parameter or the forecast of a random variable can also be seen as a process of combining 

information. It is shown that this approach can provide sorne useful insights on the robustness 

properties of sorne statistical procedures, and it also allows the comparison of statistical models 

within a common framework. Sorne general combining rules are illustrated using examples from 

ANOVA analysis, diagnostics in regression, time series forecasting, missing value estimation and 

recursive estimation using the Kalman Filter. 
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1. INTRODUCTION 

The proliferation of statistical studies in many areas of research has led to a growing 

interest in developping methods of combining information from different studies. This area 

of research was named Meta-Analysis by Glass (1976) and it has received considerable 

attention in the Social Sciences (Hedges and Olkin, 1985; Wolf, 1986). Examples of the use 

of Meta-Analysis in other scientific areas can be found in Utts (1991), Mosteller and 

Chalmers (1992), Dear and Begg (1992), Hedges(1992) and the references included in these 

papers. 

The process of estimation of an unknown quantity, O, that can be a fixed parameter 

or a random variable, can always be seen as a process of combining information from the 

data about O. Understanding this process is crucial to evaluate the performance of an 

estimation rule. Often, we have independent sources of information about O. Por instance, 

a sample of size n can be considered as a set of j independent samples of size 11;, with Enj 

= n. If we have unbiased and independent estimates of the unknowm quantity, 01"", On they 

are usually combining according to the following well known rule 

Rule l. Given n unbiased and independen~ estimates o¡ of a scaler parameter Owith non zero 

variances C1?, the best (minimum variance) linear unbiased estímate (BLUE) of O, OT' is given 

by 

(1.1) 

and the variance of the pooled estimate, On is given by (E C1jo2)"1. 

This rule is commonly applied in Meta-Analysis for the parametric estimation of 

effect size from a series of experiments (see Hedges and Olkin, Chp.6). This paper 

generalizes this rule for dependent and vector-valued unknown quantities and apply it to 

several common statistical estimation problem that are presented as particular cases of the 

general problem of combining different sources of information. It is shown that this approach 

provides sorne insights about the properties of the procedures considered. Also, it provides 
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a common ground to compare several models and estimation procedures. 

The paper is organized as follows. In section 2 we show that looking at ANOVA from 

the perspective of rule I allows a simple understanding of the robustness properties of the 

estimators and of the importance of equal sample size in all groups. Section 3 shows that this 

approach is useful to compare two models for forecasting growth in a time series. Section 

4 analyzes the estimation of missing values in linear time series and shows how this approach 

leads to a simple solution for dealing with the end effects. Section 5 discusses how the 

structure of an estimator in linear regression can suggest new diagnostics to evaluate the data 

robustness of the fitted model. Section 6 presents the more general rule for combining 

information used in the paper and applies it to derive recursive estimators and diagnostic 

measures. Finally, section 7 includes sorne concluding remarks. 

2. ROBUSTNESS IN ANOVA PROBLEMS 

Suppose we have two independent samples (x" ... , xJ, (y" ... , yrJ from the same 

population and we want to estimate its mean and variance. Assuming normality, and calling 

x, y, the sample means, and S,2 and S22 the unbiased sample variances, the application of rule 

I leads to 

n-m ­ (2.1)p. = n+m x + n+m Y 

and 

2 (n-l) s~ + (m-l) si 
Sr = (2.2)

n+m-2 

The result in (2.2) fol1ows because in normal samples Var (S2) = 2<f/(n-1). When the 

population is not normal p. is still the best linear unbiased estimator, whereas s? is not. This 

happens because the variance of xis always ,r/n and then rule I always leads to (2.1), 

whatever the parent population. However, the variance of s? for nonnormal populations is 

usually a more complex function of n: for instance, when the population is x2
, it is given by 
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c¡4/g(n), where gen) is an increasing function of n. Therefore, for non normal populations the 

general estimate of rr given by rule 1 is 

2 gen) S2 + g(m) S2 
Sr = (2.3)

g (n ) + g (m) 1 g (n) +g (m) 2 • 

If n=m, (2.2) and (2.3) are both equal to (S12 + sI2)/2, and the estimate is robust: it 

is BLUE whatever the population. However, if the sample sizes n and m are very different, 

then (2.2) and (2.3) will produce different answers. 

This result will also be true in ANOVA problems. Suppose we have k different 

groups. Then, under the standard hypothesis of homogeneity in variance in all groups, the 

residual variance estimate is given by 

2 _ 2~ In¡-l]
SR - iJ -k Si (2.4)

n-

n, 

where s? = (n¡-I)"1 E (Yij_y)2 is the unbiased variance estimate in group i. Again, if the 
N 

population is not normal (2.4) may be a very bad estimate and will be in contradiction with 

rule 1. However, when the sample size is equal in aH groups and assuming Var (s?) = 

aA/gen), it will be BLUE, whatever the population, for here gen¡} == gen). 

3. COMPARING ESTIMATES OF GROWTH IN TIME SERIES 

Two procedures often used for forecasting the future growth of a given time series 

are: (i) detrend the observed data by regressing the observations on time, fit a stationary time 

series model to the residuals from this regression and build the forecast as the sum of the 

deterministic trend and the forecast of the stationary residual; (ii) difference the series, fit 

a stationary ARMA model in the first difference of the series and forecast the series using 

the ARIMA mode1. Typically models built in this way inelude a constant for many economic 

time series. The decision on which of these two procedures should be used is made by testing 

weather or not the series has one unit root. However, the available tests are not very 

powerful, specially for short time series, (see for instance De long et al 1992) and, therefore, 
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it is important to understand the consequences of using these models. 

Let Y. be the time series data and let us assume, for the sake of simplicity, that the 

sample size is n=2m+1. Let t={-m, ... , 0, ... , +m}. Then the least squares estimator of 

the slope in the regression on time 

y, = (30+{3lt+U, E(u) = 0, Var(u) = (12 (3.1) 

is given by 

(3.2) 

Calling bt = YCYt-1 the observed growth at time t and after sorne straightforward 

manipulations that are shown in Peña (1995), the estimate of the slope can be written as 

(jI = L 
m 

w· (b.+b lo ·) (3.3)
j_1 J J J 

where the weights Wj are given by 

j= 1, ... ,m 

where ao = 3/(2m + 1) and al = 3/m(2m + 1)(m + 1), and add up to one. Therefore the 

estimated growth ~I is a weighted mean of all the observed growths bj , with decreasing 

weight from the center of the sample. The maximum weights are given to bl and bo, that 

correspond to the observed growth in the middle of the sample perlod, and the minimum 

weights are given to bm and bl _m, the first and last observed growth. Note that the weight 

decrease quadratically from the middle of the sample. 

The estimator (3.3) has an interesting interpretation. In the assumption that the linear 

model (3.1) holds, the 2m values bt (t= -m+ 1, ...m) are unbiased estimates for {3. The 

covariance matrlx of these 2m estimates is the Toeplitz matrlx: 
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202 -02 O O 

-02 202 -02 

V = (3.4) 
-02 

O -02 202 

Now we can set the following rule (see, for instance Newbold and Granger, 1974). 

Rule II: given a vector Oof unbiased estimators of a parameter 8 with covariance matrix V, 

the best (in the mean squared sense) linear unbiased estimator of 8 is given by 

(3.5) 

where l' = (1 1 ... 1), and the variance of 6T is given by 

(3.6) 

This Rule 11 is a particular case of the Rule V that is proved in the appendix. 

The inverse of the Toeplitz matrix (3.4) has been studied by Shaman (1969) who 

obtained the exact inverse of a first order moving average process. As V can be interpreted 

as the covariance matrix of a non-invertible (8= 1) first order moving average process, then 

V-I = {vij } , is given by 

i(2m-j+1) j ~ i, i =1, ... , 2m,
2n+1 

and Vij = Vji' Therefore 

2m 2m-1 2m-2 1 

2m-1 2(2m-1) 2 (2m-2) ... 2 

V- I = 1 

0 2 (2m+1) 

2m-2 

2 

2(2m-2) 

4 

3 (2m-2) 

6 

000 

... 

3 

2m-1 

1 2 3 2m 

It is easy to show that the estimator (3.3) can also be obtained by applying Rule 11 to the 
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unbiased but correlated estimates bt. 

When an ARMA model is fitted to the residuals of the regression model, the equation� 

for the h steps ahead forecast where we call Yt(h) = E[Yt+h I Yo Yt-\, ... ] is� 

(3.7) 

where nt(h) is the forecast of the zero mean stationary process fitted to the residuals. As for� 

a stationary process the long run forecast converges to the mean, nt(h) - 0, and the� 

parameter ~\ is the long-run estimated growth of the time series.� 

Let us compare (3.7), with the growth estimate provided by the integrated ARIMA� 

model� 

Vy, = {3+n l (3.8) 

where V = l-B and BYt = Yt-\ and nt follows a zero mean stationary ARMA model. Letting� 

V denote the covariance matrix of nt, the estimate of {3 in (3.8) is given by the generalized� 

least squares estimator� 

(3.9) 

where the vector b has components bt = YCYt-l' Assuming that nt is stationary and invertible� 

it is well known (see Fuller 1976) that b = (l/(n-l» E b¡ is asymptotically unbiased for {3.� 

When n is large, the expected forecast h periods ahead is given by� 

2', (h) = b h + nI (h) (3.10) 

where nt(h) is the h-step ahead forecast of the stationary process nt. As for h large the nt(h)� 

will go to zero, the long-run growth will be estimated by a weighted average with uniform� 

weighing of the observed growths bt.� 
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In summary, the two models forecast future growth by using a weighted average of� 

the observed growths in the sample. Linear regression gives minimum weight to the last� 

observed growth and maximum weight to the center of the sample periodo The ARIMA� 

model gives uniform weighting in aH the years in the sample. A comparation of the� 

forecasting performance of these and other models used for forecasting growth can be found� 

in Peña (1995).� 

4. ESTIMATING MISSING VALUES IN TIME SERIES 

Suppose a Gaussian stationary time series Yt that foHows the general representation 

y t = E 1t iYt- i + a t (4.1) 
i=l 

where élt is a white noise process with variance (la
Z' Then, if the value YT is missing, we can� 

obtain an unbiased estimate of it by ussing� 

... 
•')(0) _ ~ 
YT - LJ 1t i YT-i , (4.2) 

i=l 

and this estimate will have variance (la
z, Also, from (4.1) we can write 

y T= 1t.? (YT+i-t 1t iYT+j-i] + aT/1t j (4.3) 
~=1 

i .. j 

Thus we can obtain additional unbiased estimates of YT from (4.3) by 

(4.4) 

with variance c?/7r/. As aH these estimates are unbiased and independent given the observed 

data, the best linear unbiased estimate of the missing value YT is readily obtained by applying 

Rule 1 

(4.5) 
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where ?ro = -1. It is easy to show (Maravall and Peña, 1995) that this estimate is equivalent� 

to the well known expression for the missing value estimation in a gaussian stationary time� 

series� 

00 

}' = -L P~(YT-i+YT+1)	 (4.6) 
1-0 

(See Grenander and Rosenblatt, 1957, and Peña and Maravall, 1991). However, the� 

advantage of formulation (4.5) is that it provides a c1ear understanding of how to proceed� 

when the missing value is near the extremes of the series so that the two side symmetric filter� 

(4.6) has to be truncated. Then, we have to combine (4.2) with the n-T estimates(4.4) that� 

are available and the exact formula for the finite sample interpolator is� 

n-T 2 
1tj

YT,F = L n y~j)	 (4.7) 
j=O� ~ 2� 

LJ 1tj� 
o� 

This idea can be easily extended to groups of missing observations. We will illustrate� 

it here with an example: suppose we have an AR(1) process in which the values YT and YT+l� 

are missing. Then, for YT we have the two estimates:� 

1>(0) _ .... (4.7).YT - '+'YT - 1 

with variance u/, and 

,')(2) = .... -2y (4.8).Y T '+' T+2 

with variance ua
2(1 +q;,2)14}. The best linear unbiased estimate will be 

(4.9) 

that agrees with the general formula obtained by a different approach in Peña and Maravall 

(1991). The estimate of YT+l will be similar to (4.9) but with the roles of YT-J and YT-2 

reversed. 
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5. SENSITIVITY ANALYSIS IN REGRESSION 

It is well known that in the linear regression model 

y = (30 + (3¡x + u, E(u) = 0, Var(u) = cr (5.1) 

the least square estimate of the slope is given by 

?J = E w· b.JtJ I (5.2) 

where w¡ = (x¡-x)2/E(x¡-X)2 is a sel of weights (w¡ ~ 0, E W¡ = 1) and the b¡ are estimates 

of the slope that can be built up by using the sample data: 

(5.3) 

These estimates are not independent, because 3.,¡'b = 0, where ax' = «x¡-x) '" ("o-x» and 

b = (b¡, ... , bJ. They have a singular covariance matrix� 

s = D .¡ (1 - 1/n 1 1') D .¡ cr�b x x (5.4) 

where Dx is a diagonal matrix such that the ith diagonal element is the ith element of 3.,¡, that 

is diag (DJ = ax• Then, we can use the following rule. 

Rule lll: Given n dependent estimates Oi with singular covariance matrix So, the best linear 

unbiased estimator of 8 is given by 

(5.5) 

where So' is a generalized inverse of So, and the variance of the pooled estimator OT is 
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It is straightforward to check that a generalized inverse of (5.4) is given by 

S · - D Dx CT·2 (5.6)b- x , 

because 1'Dx = 0, and ifwe apply (5.5) to (5.6) and (5.3) as 1'Sb' l' = 1I~ E (X¡-X)2 we� 

obtain (5.2). In summary (5.2) is again the BLUE estimate given the estimates b¡. This� 

estimate can also be written as a weighted function of the estimates� 

b .. = Y¡-Yj (5.7)v x.-x. 
I J 

that are independent, and have variance 2~/(X¡-Xj)2. Therefore, the BLUE based on bij must 

be 

(5.8) 

and it is straightforward to show that this estimate is equivalent to (5.2). 

Equations (5.2) shows that the leverage (x.¡-x)2/E(X¡-X)2 determines the potential� 

influential of an observation on the estimated slope of the regression line, whereas the� 

observed effect depends also on b¡. Since ~ is the sum of n components w¡b¡, the relative� 

importance of a point in determining ~ can be measured by� 

(5.9) 

n _ 

where SXy = E (x¡-x)(YeY). Note that o¡ is a measure of the influence of a point (x¡, yiJ on 
¡.\ 

the slope, whereas the usual statistics of influence, as the one due to Cook (1977), tries to 

identify both outliers and influential points. Also, the Cook's statistic can be very affected 

by masking (see Peña and Yohai, 1995) whereas o¡ is noto For instance, table 1 presents a 

set of artificial data with three large influential observations that are not identified neither by 

Di (Cook's statistics) nor by the studentizied residual (ti) as extremes, but they are clearly 

indicated as the most influential on the slope by the statistic (5.9) 
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x 1 2 3 4 5 6 7 8 9 10 17 17 17 

Y 2 3 4 5 6 7 8 9 10 11 25 25 25 

D·I .25 .10 .03 .00 .00 .01 .02 .05 .08 .14 .16 .16 .16 

ti 1.4 1.0 .6 .3 -0.1 -0.4 -0.7 -1 -1.4 -1.7 .9 .9 .9 

Ó 1.3 1 .7 .5 .3 .1 .0 .0 .0 .0 2.6 2.6 2.6 

Table 1 

Consider now the multiple regression model 

Y=X/3+U (5.10) 

where X is nxp and we suppose to simplify the presentation and without loss of generality 

that aH the variables have zero mean. Then, it is well known that each of the components of 

~ can be written as 

(5.11) 

where 

(5.12) 

and eij .R is the ith component of the vector of residuals ej .R obtained by regressing Xj on aH 

the other explanatory variables. That is, if Xmis a matrix without the jth column, Xj, and .y 
= (X' (j) XIj])-l X[j]'Xj is the least square estimate of this regression, then ej = Xj - X[j] .y. The 

. h .. b 2/~ 2welg t Wij lS glven y eij .R eij .R •ÓJ 

Suppose that we are mainly interested in sorne regression coefficient ~j that is of 

special interest. Then, the usual diagnostic statistics that look at the change on the whole 

'vector of parameter estimates may not be useful. However, the weights wij provide a natural 

and simple way of looking at the potential effect of an observation. These weights can be 

computed from 
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(5.13) 

where H(j> is the hat or projection matrix built without variable Xj • A plot of the variables wij 

can be useful to judge about the robustness of one estimate to the given sample. 

As in the simple regression case a measure of the influence of point (X¡ y¡) on the 

estimation of ~j can be built by 

A different problem occurs when we have a sample of n¡ data points (Xi Y¡), 

i =1,2, ... , ni in which we have obtained /3¡ = (X¡' X¡)"I X¡' Y¡ with covariance s? (X¡'X¡)-I, 

and we want to combine both estimates to obtain the BLUE. Then we can use the following 

rule. 

Rule IV: If 01 is an unbiased estimator of () with covariance matrix VI and O2 is also unbiased 

for () with covariance V2 and these two estimates are independent, the best linear unbiased 

estimator (minimizing the trace of the variance covariance matrix) is given by 

(5.15) 

and the covariance matrix of the pooled estimator is 

(5.16) 

This rule is a particular case of Rule V that will be proved in the appendix, and 

generalizes rule 1 to the vector case. For instance, the BLUE estimate of /3 when combining 

two independent samples with the same parameter /3 but different residual variance is given 

by 
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6. RECURSIVE ESTIMATION 

Suppose we have a parametric model Yl = f(xl, e, aJ, that relates a vector of 

responses to a set of explanatory variables, Xl> a vector e of p parameters and a set of 

unobserved random variables a¡. We will say that a basie estimate of e is an estimate 

obtained from a sample of size p, while an elemental estimate of e is an estimate obtained 

from a sample of size one. We will say that an estimate is proper if it is obtained from a 

sample of at least size p. For instance, if e= (¡J., o) and Yl = ¡J. + (J al' where a¡ is a zero 

mean and unit variance scaler variable, the basic estimate requires n=2, and the elemental 

estimates, from a sample of size one Yi, are given by p, = Yi, rr = O, with a singular 

variance covariance matrix. In the standard regression model where ¡3 is px 1, the basic 

estimate of e= (¡3, al) requires p+ 1 data. The elemental estimate of ¡3 given a sample (y¡, 

Xi) of size one is obtained from Xi'~i = y¡. Using the Moore-Peurose generalized inverse (see 

Guttman (1982» and calling A" to the generalized inverse of A the solution of this equation 

can be written as 

(6.1) 

where Xi is a px 1 column vector and will have a singular covariance matrix. 

Sometimes we need to combine a proper and an elemental estimate of e. For instance, 

in regression recursive estimation where we have an estimate ~(n) of (5.10) based on n data 

points, we observe Yn+¡ and need to revise ~(n) to obtain ~(n+¡)' In general, given a px1 vector 

of parameters e we will say that lJ¡ is an elemental unbiased estimator of e if (1) the 

covariance matrix of ej , Vj, is such that rank (V¡) = 1; (2) given p independent estimates ej 

with covariance matrices Vi, the matrix V¡" + ... + Vp·, where Vi· is a generalized inverse of 

V is nonsingular; (3) Combining these p estimates by 

(6.2) 

we obtain a basic unbiased estimator of e. For instance, in linear regression the estimate 

(6.1) is elemental unbiased, because (1) the pxp covariance matrix of the estimate ~i' Vj, is 
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V· = x·x·' (x.'X.\o2al has rank equal to one' (2) V.o = x·x·' l/al andI I I 1 iI , I 1 I 

and (3) combining ~i by 

l3T = 
¡-t 
t (Ex¡ x¡')otX¡Yi = (X'X)-tx'y (6.3)� 

we obtain the basic BLUE estimate. We can generalize (6.1) as follows:� 

Rule V: Given n independent estimates O¡ unbiased or elemental unbiased with covariance� 

matrices Vi, that may be singular, the best (minimizing the trace of the covariance matrix)� 

unbiased estimate is given by� 

(6.4) 

where Vi- is the Moore-Penrose generalized inverse of Vi, and where we have assumed that� 

EV¡- is non singular. The covariance matrix of OT is then easily seen to be� 

11 

VT-t = LVi-t. (6.5) 
¡~t 

This Rule is proved in the appendix. 

The application of this Rule V to recursive estimation leads directIy to the Kalman 

Filter. To show this, let us consider the standard state space formulation of a dynamic model 

with observation equation 

(6.6) 

and state equation 

(6.7) 
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where Yt is rxl, At is rxp with rank (AJ=r, Et is Nr(O,CJ, Ut is pxp and Üt - Np(O, RJ. In 

this model, at any time t we may consider two independent estimates of O. The first is the 

forecast of the state that comes from (6.7) 

iJ (1) = U iJ 
t t t-I (6.8) 

and whose covariance matrix can be obtained from 

(6.9) 

calling It = {Yu ... , YI} the information until time t, defining 

(6.10) 

and letting Vt = Vt1u we have from (6.9) that the covariance matrix of (6.8) is given by 

(6.11) 

The second estimate of Oat time t is obtained from (6.6) when Yt is observed. Assuming p > r 

and At At ' non singular, this estimate is given by 

A (2) - A' (A A ')-1 YOt - t t t t· (6.12) 

Using (6.6), it can be written 

(6.13) 

which shows that it is not unbiased for 0t. However, it is easy to see that it is elemental 

unbiased, with singular covariance matrix 

V (l) = A '(A A ')-IC (A A ')-IA (6.14)t t t t t t t t· 
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This matrix has a generalized inverse 

(V (2»)- = A 'c -lAt t t t· 

Therefore, following rule V, the BLUE estimate will have a pooled covariance matrix 

Vol = V -1 + A '(""-lAt tlt-I t '-'t t (6.15) 

and the estimate will be given by 

(6.16) 

or, as it is normally written, 

(6.17) 

Equations (6.15) and (6.17) constitute the Kalman Filter, that appears as a particular case of 

Rule V. 

It is interesting to stress that equation (6.7) provides a clear ground for building 

influence measures of the last observed data in recursive estimation. Calling Otll.1 = 0tOt_1 to 

the forecast of et with information until Yt-I' the change on the parameter vector due to 

observing Yt is given by 

(6.18) 

where etlt_1 = YcAt Otll-I is the predicted residual. The Mahalanobis change on el will be given 

by 

(6.19) 

that can be written as 
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' C-I AV'A 'C-I Dt = etlt_1 t t t t t eut-I' (6.20) 

This diagnostic measure can be built for any statistical model in the state space form (6.6), 

(6.7) and estimated with the Kalman filter. It is straightforward to show that for regression 

models this statistic for the last observed point is equivalent to the one introduced by Cook 

(1977), whereas in ARIMA and transfer function models it is equivalent to the statistic 

introduced by Peña (1990, 1991). 

7. CONCLUDING REMARKS 

Any estimation or forecasting procedure can be seen as a way to combine the 

available information. In Bayesian statistics the prior information is combined with the 

posterior using Bayes' Theorem. In c1assical statistics the different pieces of sample 

information are weighted to obtain the final estimate. When we have unbiased estimators (or 

elemental unbiased) they are lineary combined to obtain the best linear unbiased estimate 

using as weights the (generalized) inverse covariance matrices. We have shown that analyzing 

estimates from this point of view can provide sorne useful insights on the properties of sorne 

statistical procedures. 
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APPENDIX� 

To prove Rule V, let us consider the c1ass of unbiased estimators 

(A.1) 

such that if the Oi (i = 1, ... , n) are unbiased, Or will also be unbiased. The covariance matrix 

of Or is 

n-l n-l n 
Sr = E AY¡A¡'+Vo - E AYo - E VoA¡'+EEA;VoA/ 

~l	 ~l ~l 

and the trace of this matrix is 

m = tr(Sr) = E
n 

tr (AY¡A¡') + tr (Vol - 2 E
n 

tr(A¡Vol +
¡·l� ¡=l 

n-l n-l� 
E E tr (AYoA/).� ¡=l ¡.l 

Now, if V is symmetric we have that a tr (A V)faA = V, atr (A V A')fa A = 2 A V, atr 

(A' V A)fa A = 2 V A, a tr (A V B)fa A = B'V and a tr (B V A)faA = V B', we have 

am n-l = 2 A¡ V¡ - 2 Vo + 2 E A V = o
aA¡� j=l J o 

and so, 

A¡ V¡ = (1 -
n-l
E� Aj) Voj·l 

(A.2) 

Adding the n-1� equations (A.2), we obtain 

n-l n-l n-l n-l 
E V.-l _ E y.-lE A¡ = Vo I E Aj Vo ,¡=l ¡=l j=l ¡=l 

I� 

n-l n-l n-l�
E A¡ (1 + Vo� E Y.-l) = Vo II E v.-l 
¡·l ¡·l /·1� 
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V:
I

I 

and, inserting this result in (A.2) 

n 
A¡ = ( 1: Vi-I)"I V¡-I. 

¡al 

We have assumed in the proof that aH the inverse matrix involved exit; the proof is 

similar when sorne of these matrices are singular by replacing the inverse by the generalized 

inverse of the matrix. 
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