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Abstract
This paper presents a test of significance consistent under nonparametric alternatives. Under the
null hypothesis, a regressor has no effect on the regression model. Our statistic does not require
to estimate the model on the alterngtive hypothesis, which is left unspecified. Hence, no
smoothing techniques are required. The statistic is a weighted empirical process which resembles
the Cram@r-von Mises. The asymptotic test is consistent under Pitman’s alternatives converging
to the null at a rate n''2, A Monte-Carlo experiment illustrates the performance of the test in small
samples. We also include two applications involving biomedical and acid rain data.
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1 Introduction

The article proposes a test of constancy of regression curves, which is consistent in the
direction of nonparametric alternatives. When the regression function is parametrized,
standard F-tests can be implemented, and they will be consistent in the direction of the
parametrized alternative. However, F-tests may be inconsistent under certain alternatives

when the underlying model is misspecified.

The problem of consistert testing a fit of a parametric model in the direction of non-
parametric alternatives attached the attention of many authors. Some references on this
subject are Yanagimoto and Yanagimoto (1987), Cleveland and Devlin (1988), Cox et
al. (1988), Eubank and Spiegelman (1990), Kozek (1991), and Hardle and Mammem
(1993). All the above mentioned tests are based on the distance between a parametric
and a nonparametric fit. Raz (1990) proposed a randomization test for no effect based
on the residual sum of squares of smooth regression estimates. The estimation of the
model on the alternative requires the choice of the amount of smoothing employed, and

the performance of the test will usually depend on such a choice.

The test proposed in this paper avoids estimation of the model under the alternative.
It is based on a weighted empirical process, which has been used before by Hong-zhi and

Bing (1991) and by Delgado (1993) in other contexts.

The rest of the paper is organized as follows. In next section we present the statistic,
which resembles in spirit the Cramér-von Mises (Cramér 1928 and von-Mises 1931). In
fact they share the same asymptotic null distribution. Section 3 presents results of a
small Monte-Carlo experiment which illustrates the performance of our test in practice.

Section 4 provides two applications. First, we apply the statistic to test mean indepen-




dence between lymphocyte concentrations and inmunological status in men with human
inmunodeficiency virus infection. In the second application, we test the hypothesis of
equal trend functions of rain sulfate concentration (adjusted by amount of rainfall) in two

cities.

2 Test statistic

We assume that data are recorded in the form {(z:,Y;), i=1,2;..,n}, where Y; is a real
valued response and z; is a scalar design variable which becomes dense in the observational
interval as the sample size increases. The z; come from the interval [0,1], or any other
bounded interval. We want to test the hypothesis of no relationship between the response
and the design variable. Formally, we assume that the data are structured according to
the model

Y, =m(z;) +e, i=12,.n, (1)

where €;, i > 1, denote zero mean independent errors which do not depend on z;, and
Var(e;) = 02 The regression function m(-) is of unknown functional form and it is
assumed to be bounded and continuous on [0,1]. Let the design be such that, for each n
and i = 1,2,...,n , z; is the i/n quantile of a distribution with density r(-). Our test is
based on the functional S(t) = fot(m(u) — p) r(u) du , where u = fol m(u) r(u) du. Thus,

the hypothesis of no relationship can be characterized as
Ho:S(t)=0 allte [0,1], versus H,:S(t)#0 somete|[0,1]. (2)

The null hypothesis entails that m(z) = p for all z in any subinterval of [0,1] where
r(z) does not vanish. Under the alternative hypothesis, there exists a subinterval of [0, 1]

where m(z) varies with = and 7(x) does not vanish.




Thought the discussion here is centered in the fixed design case, our test can also be
applied to a regression model with random regressors assuming independence between

regression errors and explanatory variables.

A natural estimate of S(t) is given by

I o 1Al
Sa(t) = = g(y,- -~V l@<t)== g(x -Y),
where 1(A) is the indicator function of the event A . Note that Sy,(zx) = n™!? ELI (Y;-Y).
Then, the behavior of Sy, (zx) under Hy does not depend on the assumptions made on the

design points. We propose the test statistic

n

T, =Y Sn(z:)?/63, (3)

i=1
where 62 = (2n)~' 77 (Yi41~Y;)? is a strongly consistent estimate of 02 both under Ho
and H; (note that m(-) is continuous). The usual variance estimate s2 = n=! i | (Y; —
Y)? is also strongly consistent under Ho but under Hy, 82 — 02 + [ m(w)? r(u) du > o2
with probability 1 as n — co. Therefore, a test statistic scaling by 62 will always be more
powerful than a test statistic scaling by s2. The scale factor 62 has also been used before

by Rice (1984), Hall and Hart (1990), King et al. (1991) and Delgado (1993).

By Donsker’s invariance principle applied to the partial sums n=1/2 Z:;tl] €;/o and the

continuous mapping theorem

n'/28,(t)/o — W(2) ()

weakly in distribution as n — oo, where W(t) is a Brownian Bridge. Then, since 62 is

strongly consistent, by (4) and applying the continuous mapping theorem,
1
T, —»T= / W(t)? dt (5)
0

in distribution as n — oo under Hy.




Interestingly, the statistic 7, has the same asymptotic null distribution than the
Cramér-von Mises statistic. The distribution of T has been tabulated by Anderson and

Darling (1952).
Under H,, with t fixed, we have
Sn(t) — S(t) (6)
with probability 1 as n — co. Thus, T;, diverges to infinity under H;.
Define T,, such that Pr(T > T,) = a, then (5) and (6) imply that
nli’rgo Pr(T, > Ta) = o under Hy and ,.]l.";‘o Pr(T,, > ¢) =1 all fized c under Hl

The null hypothesis Hy will be rejected at the level e of significance when the observed
T, dominates T. Some critical values are Tp; = 0.34730, Tp.os = 0.46136 and Tpo; =

0.74346.

Consider local alternatives
Hin:m(z) = p+n"Y2ch(z) foreachz € |0,1], (M
where c is a fixed constant and h(-) is a continuous and bounded function. Under Hy,,
1 t 2
Tn—-s‘/- (ca_I/ h(u) r(u) du+ W(t)) dt (8)
0 0

in distribution as n — oco. Then T;, diverges to oo as ¢ — oo under H;,. Hence, the test

is asymptotically powerful under alternatives converging to the null at a rate n-1/2,

3 Monte-Carlo

In all the experiments observations are generated according to the model

Y, = m(a:,) +e&, 1=1,2,...,n,




where ¢; are generated independent and identically distributed with different distributions
and the design variable z; = i/n . We consider the same regression models and errors

distributions as Raz (1990) for the sake of comparison:

Null : Y.=4+¢;.
Linear : Y. =2001 z; +¢;.
Quadratic: Y; = 9513 (z; - 2)? +¢;.
Sinusoidal :  Y; = 1.155 sin(4(i — 1)7/n) +¢;.
The errors are generated according to a normal, sinh~!-normal and lognormal, each with

Zero mean an unit variance.

We report percentage of rejections under the null and the different alternatives of our

test and the standard t-ratio.

TABLE I ABOUT HERE

The empirical and nominal levels of the t-ratio test are very close for all sample sizes.
For the smallest sample sizes (n = 15,30) our test overreject Hp, but for the greatest
sample sizes both tests behave similarly. Under the linear alternative, our test rejects
more for the smallest sample sizes, as it also happened under Hy. Under the quadratic
alternative the empirical power of the t-ratio test is even smaller than its nominal level,
while our test shows to be very powerful. Under the sinusoidal alternative both tests are

powerful but ours behaves better.
TABLE Il ABOUT HERE

Other tests based on nonparametric estimates of the regression model on the alternative
hypothesis, typically depend on the choice of the amount of smoothing. The reported

empirical powers in Raz (1990) variate a lot depending on the amount of smoothing




employed, though this variation decreases when higher order kernels (of order 4) are
employed. Our test is at least as powerful as the test proposed by Raz (1990) for the
majority of smoothing numbers chosen.

The level distortions of the asymptotic test, when the sample size is very small, can
be corrected by approximating the exact critical values by a bootstrap or implementing a
random permutation test. A bootstrap approximation to the exact critical values can be

based on the statistic
n 1 i =2
=X [n' 2 -Y"))?
i=1 j=1

where {Y)*,Y7,...,Y>} is a random sample with replacement from {Y3,Y2,...,Y,} and
Y = E;;l Y;*. By repeated resampling compute Tro such that Pr {T,, > Tha | X } = a,
where X={(z;,Y;),i = 1,...,n}. The bootstrap test consists of rejecting Hy when the ob-
served T, exceeds Trha. Note that E (Y7 =Y~ | X) = 0 and limpoo Pr (T >z | X) =
Pr (T > z). In fact, it can be proved, using similar arguments than Hall and Hart (1990)

that the bootstrap error level is of order n~2 rather than n~!

corresponding to the asymp-
totic test. Also, while T, approximate the exact critical values with an error of order n’g,

the error of the asymptotic test is of order n~!.
TABLE III ABOUT HERE

Table 111 reports the proportion of rejections using the bootstrap version of our test. It
exhibits extraordinary level accuracy for all distributions and sample sizes. The empirical
power is comparable to that of the t-ratio test under the linear alternative. Under the

quadratic and sinusoidal alternative, the bootstrap test is also very powerful.




4 Empirical Applications.

We apply the proposed test to data on cell counts of lymphocyte concentrations in a
sample of 58 men aged 34-36 with a positive test for the human immunodeficiency virus
(HIV) antibody. Details on the data set are given in Lang et al. (1987). This data set
was also used by Raz (1990) for illustrating his test procedure. The explanatory variable
is immunological status explained by a skin test score measuring skin reactions on seven
antigens. Cell counts of Len 2a lymphocytes are used as response variables. Under the null
hypothesis, lymphocyte counts are unrelated to the skin score test. Figure I presents two
reg'ressio.n curve estimates using kernel smoothers and a bandwidth close to that chosen
by Raz (1990). One of the regression curve estimates do not use the last six observations

in order to avoid boundary effects.
FIGURE I ABOUT HERE

The two curves seem quite horizontal, suggesting that there is not clear relationship
between the response and the design variable. The few extreme observations can determine
the slope of the curve. Raz (1990) obtained a P-value of 0.045, while T,, = 0.1983 (P-
value~ 0.27). Thus, the null hypothesis can not be rejected using our statistic at any

reasonable significance level.

The test is also applied to detect a difference between the shapes of two regression
functions. That is, we have data consisting of observations {(Y;, Z;,z;), ¢ =1,2,..,n}

and structured according to the model

Yi=f(@)+ey , Zi=g(xi)+ ez (9)




We want to test the hypothesis that f(-) and g(-) differ by a simple shift. This hy-

pothesis is tested by means of the statistic T}, applied to the response variable Y; — Z;.

The test is applied to data on concentration of sulfate in North Caroline rain. This data
have been used before by Hall and Hart (1990), and consist of weekly measurements of
rainfall amount and concentration of sulfate in the rain over the period 1979 to 1983 on two
towns, Coweeta and Lewiston. It is compared the natural logarithm of acid concentration
adjusted for the covariate ’amount of rainfall’ as a function of time in the two towns.
There are several weeks where data is not available for both locations and this is why the
number of observations do not correspond to the weeks observed. In fact, we have 189
available observations for comparing the two regression curves, among the 260 weeks in
the study. Hall and Hart (1990) did not find evidence of autocorrelation of the error terms

based on residuals computed from nonparametric kernel regression estimates.

FIGURE Il ABOUT HERE

Hall and Hart (1990) obtained a P-value of 0.097 concluding that the shape of the two
regression curves are different. We arrive to the same conclusion, using the whole data
set (189 available observations). The value obtained for our test statistic is T, = 1.1175,
(P-value= 0.001) which implies rejection of Hy at any reasonable significance level. Figure
II presents a plot of the data with the regression curves estimated by Nadaraya-Watson
kernel method (Nadaraya 1964, Watson 1964) and with a bandwidth number close to that
used by Hall and Hart (1990). For this bandwidth choice, the shape of the regression curves
is sinusoidal, but this shape is not so evident when we use other bandwidth numbers. The ~
regression curve corresponding to Coweeta change its shape around the week 150th. We

applied the test for the first 150 weeks (109 available observations), the corresponding




statistic is T;, = 0.043 (P-value~ 0.9), so we are unable to reject the null hypothesis that

the two regression functions have identical shape when using the first 150 weeks.

We also applied our statistic to each town in order to test the presence of a trend in
the regression curves. Using the whole sample, T, = 2.0514 (P-valuex 0) in Coweeta
and T,, = 0.1042 (P-value= 0.43) in Lewiston. Thus, we reject the null hypothesis that
there 1s not a trend in the regression curve in Coweeta but we are unable to reject such
hypothesis in Lewiston. However, using observations from the week 19 to the week 194
(152 observations), in order to avoid the outliers at the beginning and at the end of the

observational period, we obtain T;, = 0.3406 (P-value~ 0.1).
The bootstrap P-values were always very close to their asymptotic counterparts in all

applications.
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Table I. Proportion of rejections under H, in 5000 replications.

p——————

NULL Error o n=15 n=30 n=50 n=100
—
0.1 0.098 0.095 0.105 0.110
Normal 0.05 0.049 0.048 0.052 0.058
0.01 0.009 0.009 0.011 0.012

, 0.1 0.089 0.098 0.098 0.108
T-Ratio Lgnml 0.05 0.041 0.042 0.046 0.054
0.01 0.007 0.006 0.006 0.008

0.1 0.096 0.096 0.101 0.106
Sinhip'1 0.05 0.043 0.045 0.051 0.052
0.01 0.006 0.007 0.010 0.010

m
0.1 0.164 0.132 0.123 0.117

Normal 0.05 0.099 0.070 0.065 0.061
0.01 0.039 0.020 0.014 0.014

0.1 0.157 0.128 0.113 0.110
Nonparamet. Lgnml 0.05 0.097 0.070 0.052 0.054
0.01 0.037 0.018 0.013 0.009

0.1 | 0.158 | 0.130 | 0.118 0.110
sinhip™! | 0.05 | 0.097 | 0.070 | 0.063 0.053
0.01 | 0.032 | 0.017 | 0.011 0.010

e —
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