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1 Introduction 

The article proposes a test of constancy of regression curves, which is consistent in the 

direction of nonparametric alternatives. When the regression function is parametrized, 

standard F-tests can be implemented, and they will be consistent in the direction of the 

parametrized alternative. However, F-tests may be inconsistent under certain alternatives 

when the underlying model is misspecified. 

The problem of consistent testing a fit of a parametric model in the direction of non­

parametric alternatives attached the attention of many authors. Some references on this 

subject are Yanagimoto and Yanagimoto (1987), Cleveland and Devlin (1988), Cox et 

al. (1988), Eubank and Spiegelman (1990), Kozek (1991), and Hardle and Mammem 

(1993). All the aboye mentioned tests are based on the distance between a parametric 

and a nonparametric fit. Raz (1990) proposed a randomization test for no effect based 

on the residual sum of squares of smooth regression estimates. The estimation of the 

model on the alternative requires the choice of the amount of smoothing employed, and 

the performance of the test will usually depend on such a choice. 

The test proposed in this paper avoids estimation of the model under the alternative. 

It is based on a weighted empirical process, which has been used before by Hong-zhi and 

Bing (1991) and by Delgado (1993) in other contexts. 

The rest of the paper is organized as follows. In next section we present the statistic, 

which resembles in spirit the Cramer-von Mises (Cramer 1928 and von-Mises 1931). In 

fact they share the same asymptotic null distribution. Section 3 presents results of a 

small Monte-CarIo experiment which illustrates the performance of our test in practice. 

Section 4 provides two applications. First, we apply the statistic to test mean indepen­

2 



2 

dence between lymphocyte concentrations and inmunological status in men with human 

inmunodeficiency virus infection. In the second application, we test the hypothesis of 

equal trend functions of rain sulfate concentration (adjusted by amount of rainfall) in two 

cities. 

Test statistic 

We assume that data are recorded in the form {(Xi,}i), i=1,2, .. ,n}, where Yi is a real 

valued response and Xi is a scalar design variable which becomes dense in the observational 

interval as the sample size increases. The Xi come from the interval [0,1], or any other 

bounded interva1. We want to test the hypothesis of no relationship between the response 

and the design variable. Formally, we assume that the data are structured according to 

the model 

(1) 

where éi, i ~ 1, denote zero mean independent errors which do not depend on Xi, and 

Var(éi) = (12. The regression function m(.) is of unknown functional form and it is 

assumed to be bounded and continuous on [0,1]. Let the design be such that, for each n 

and i = l,2, ... ,n , Xi is the i/n quantile of a distribution with density r(.). Our test is 

based on the functional S(t) = J;(m(u) -11-) r(u) du , where 11- = Jo
l 
m(u) r(u) duo Thus, 

the hypothesis of no relationship can be characterized as 

Ho : S(t) = O all t E [0,1], versus H l : S(t) 1: O sorne t E [0,1]. (2) 

The null hypothesis entails that m(x) = 11- for a11 X in any subinterval of [0,1] where 

r(x) does not vanish. Under the alternative hypothesis, there exists a subinterval of [O, 1] 

where m(x) varies with X and r(x) does not vanish. 
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Thought the discussion here is centered in the fixed design case, our test can also be 

applied to a regression model with random regressors assuming independence between 

regression errors and explanatory variables. 

A natural estimate of S(t) is given by 

1 n _ 1 Int] _ 
Sn(t) = - ~)~ - Y) 1(Xi ~ t) == - ~)~ - Y), 

n i=1 n i=1 

where 1(A) is tbe indicatorfunction ofthe event A. Note that Sn(XA:) = n-] L~=1 (~-Y). 

Then, the behavior of Sn(XA:) under Ro does not depend on the assumptions made on the 

design points. We propose tbe test statistic 

n 

Tn ==� LSn(Xi)2/&~, (3) 
i=1 

where &~ = (2n) -1 L~:1] (~+1 - ~)2 is a strongly consistent estimate of 0-2 both under Ro 

and H] (note that m(·) is continuous). The usual variance estimate 8~ = n -] L~= 1 (~ ­

2y)2 is also strongly consistent under Ho but under H], 8~ - 0-2+J; m(u)2 r(u) du> 0­

with probability 1 as n-oo. Therefore, a test statistic scaling by &~ will always be more 

powerful than a test statistic scaling by 8~. The scale factor &~ has also been used before 

by Rice (1984), Hall and Hart (1990), King et al. (1991) and Delgado (1993). 

By Donslrer's invariance principIe applied to the partial sums n- 1/ 2 L~:,tI cdo- and the 

continuous mapping theorem 

(4) 

weakly in distribution as n - 00, where W(t) is a Brownian Bridge. Tben, since &~ is 

strongly consistent, by (4) and applying tbe continuous mapping theorem, 

(5) 

in distribution as n - 00 under Ro. 
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Interestingly, the statistic Tn has the same asymptotic nu11 distribution than the 

Cramer-von Mises statistic. The distribution of T has been tabulated by Anderson and 

Darling (1952). 

Under H 1, with t fixed, we have 

(6) 

with probability 1 as n-oo. Thus, Tn diverges to infinity under H1. 

Define Ta such that Pr(T ;::: Ta ) = a, then (5) and (6) imply that 

lim Pr(Tn > Ta ) = a under Ho and lim Pr(Tn > e) = 1 all lixed e under H1 • 
n-.,.oo n-too 

The nu11 hypothesis Ho will be rejected at the level a of significance when the observed 

Tn dominates Ta . Some critical values are TO. 1 = 0.34730, TO.05 = 0.46136 and To.o1 = 

0.74346. 

Consider local alternatives 

H1n : m(x) = /-l + n-1/ 2 c h(x) lor each x E [0,1], (7) 

where e is a fixed constant and h(·) is a continuous and bounded fundion. Under H 1n 

Tn 
1(t )2-1 e a- 1 1h(u) r(u) du+ W(t) dt (8) 

in distribution as n-oo. Then Tn diverges to 00 as e - 00 under H 1n• Hence, the test 

is asymptotica11y powerful under alternatives converging to the nu11 at arate n-] /2. 

Mont~Carlo 

In a11 the experiments observations are generated according to the model 

Yi = m(xd +E:i, i = 1,2, ... ,n, 
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wbere éi are generated independent and identica11y distributed witb different distributions 

and tbe design variable Xi = i/n . We consider tbe same regression models and errors 

distributions as HAz (1990) Cor tbe sake oC comparison: 

Null: Yi =4+éi. 

Linear: Yi = 2.001 Xi + éi. 

Quadratic: Yi = 9.513 (Xi - x)2 + éi. 

Sinusoidal : Yi = 1.155 sin(4(i -l}7r/n) + éi' 

Tbe errors are generated according to a normal, sinb-1-normal and lognormal, eacb witb 

zero mean an unit variance. 

We report percentage oC rejections under tbe nu11 and tbe different alternatives oC our 

test and tbe standard t-ratio. 

TABLE 1 ABOUT HERE 

Tbe empirical and nominallevels oC tbe t-ratio test are very close Cor a11 sample sizes. 

For tbe sma11est sample sizes (n = 15,30) our test overreject Ro, but Cor tbe greatest 

sample sizes botb tests bebave similarly. Under tbe linear alternative, our test rejects 

more Cor tbe sma11est sample sizes, as it also bappened under Ro. Under tbe quadratic 

alternative tbe empirical power oC tbe t-ratio test is even sma11er tban its nominal level, 

wbile our test sbows to be very powerful. Under tbe sinusoidal alternative botb tests are 

powerCul but ours bebaves better. 

TABLE JI ABOUT HERE 

Otber tests based on nonparametric estimates oC tbe regression model on tbe alternative 

bypotbesis, typica11y depend on tbe cboice oC tbe amount oC smootbing. Tbe reported 

empirical powers in HAz (1990) variate a lot depending on tbe amount oC smootbing 
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employed, though this variation decreases when higher order kernels (of order 4) are 

employed. Our test is at least as powerful as the test proposed by Raz (1990) for the 

majority of smoothing numbers chosen. 

The level distortions of the asymptotic test, when the sample size is very small, can 

be corrected by approximating the exact critical values by a bootstrap or implementing a 

random permutation test. A bootstrap approximation to the exact critical values can be 

based on the statistic 

where {Y¡", Y2*, ... ,y,:} is a random sample with replacement from {Y1 , Y2, ,." Yn } and 

Y* = L:~=1 Yi*. By repeated resampling compute Tna such that Pr {Tn ~ Tna IX} = 0:, 

where X={(Xi, Yi), i = 1, ,.. ,n}. The bootstrap test consists ofrejecting Ho when the oh­

served Tn exceeds Tna. Note that E (Yi* - y* IX) = O and liffin-->oo Pr (T':: ~ x IX) = 

Pr (T ~ x). In fact, it can be proved, using similar arguments than Hall and Hart (1990) 

that the bootstrap error level is of order n-2 rather than n- 1 corresponding to the asymp­

totic test. Also, while TOt approximate the exact critical values with an error of order n - i , 

the error of the asymptotic test is of order n- 1• 

TABLE 111 ABOUT HERE 

Table III reports the proportion of rejections using the bootstrap version of our test. It 

exhibits extraordinary level accuracy for aIl distributions and sample sizes. The empirical 

power is comparable to that of the t-ratio test under the linear alternative, Under the 

quadratic and sinusoidal alternative, the bootstrap test is also very powerfu1. 
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4 Empirical ApplicatiODS. 

We apply the proposed test to data on cell counts oí Iymphocyte concentrations in a 

sample oí 58 men aged 34-36 with a positive test íor the human immunodeficiency virus 

(HIV) antibody. Details on the data set are given in Lang et al. (1987). This data set 

was also used by Raz (1990) íor illustrating his test procedure. The explanatory variable 

is immunological status explained by a skin test 15core measuring skin reactions on seven 

antigens. Cell counts oí Len 2a lymphocytes are used as response variables. Under the null 

hypothesis, lymphocyte counts are unrelated to the skin score test. Figure 1 presents two 

regression curve estimates using kernel smoothers and a bandwidth close to that chosen 

by Raz (1990). One oí the regression curve estimate15 do not use the last six ob8ervations 

in order to avoid boundary effects. 

FIGURE 1 ABOUT HERE 

The two curves seem quite horizontal, suggesting that there is not clear relationship 

between the response and the design variable. The íew extreme observations can determine 

the slope oí the curve. Raz (1990) obtained a P-value oí 0.045, while Tn = 0.1983 (P­

value~ 0.27). Thus, the null hypothesis can not be rejected using our statistic at any 

reasonable significance level. 

The test is also applied to detect a difference between the shapes oí two regression 

íunctions. That is, we have data consisting oí observations {(ti, Zi, Xi), i = 1,2, .. ,n} 

and structured according to the model 

(9) 
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We want to test the bypothesis that f(·) and g(.) differ by a simple sbift. This hy­

pothesis is tested by means of the statistic Tn applied to the response variable yt - Zi. 

The test is applied to data on concentration of sulfate in North Caroline rain. This data 

bave been used before by Hall and Hart (1990), and consist of weekly measurements of 

rainfall amount and concentration of sulfate in the rain over tbe period 1979 to 1983 on two 

towns, Coweeta and Lewiston. It is compared the natural logarithm of acid concentration 

adjusted for the covariate 'amount of rainfall' as a function oí time in the two towns. 

There are several weeks where data is not available for both locations and this is why the 

number of observations do not correspond to the weeks observed. In fact, we have 189 

available observations for comparing the two regression curves, among the 260 weeks in 

the study. Hall and Hart (1990) did not find evidence of autocorrelation of the error terms 

based on residuals computed from nonparametric kernel regression estimates. 

FIGURE 11 ABOUT HERE 

Hall and Hart (1990) obtained a P-value of 0.097 concluding that the shape of the two 

regression curves are different. We arrive to the same conclusion, using the whole data 

set (189 available observations). The value obtained for our test statistic is Tn = 1.1175, 

(P-valueR:: 0.001) which implies rejection of Ro at any reasonable significance level. Figure 

11 presents a plot of the data with the regression curves estimated by Nadaraya-Watson 

kernel method (Nadaraya 1964, Watson 1964) and with a bandwidth number close to that 

used by Hall and Hart (1990). For this bandwidth choice, the shape ofthe regression curves 

is sinusoidal, but this shape is not so evident when we use other bandwidth numbers. The 

regression curve corresponding to Coweeta change its sbape around the week 150th. We 

applied the test for the first 150 weeks (109 available observations), the corresponding 
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statistic is Tn = 0.043 (P-value~ 0.9), so we are unable to reject the null hypothesis that 

the two regression functions have identical shape when using the first 150 weeks. 

We also applied our statistic to each town in order to test the presence of a trend in 

the regression curves. Using the whole sample, Tn = 2.0514 (P-value~ O) in Coweeta 

and Tn = 0.1042 (P-value~ 0.43) in Lewiston. Thus, we reject the null hypothesis that 

there is not a trend in the regression curve in Coweeta but we are unable to reject such 

hypothesis in Lewiston. However, using observations from the week 19 to the week 194 

(152 observations), in order to avoid the outliers at the beginning and at the end ofthe 

observational period, we obtain Tn = 0.3406 (P-value~ 0.1). 

The bootstrap P-values were always very close to their asymptotic counterparts in all 

applications. 
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Table I. Proportion of rejections under Ha in 5000 replications. 

NULL I Error 

Normal 

T-Ratio Lgnml 

Sinhip-l 

Normal 

Nonparamet. Lgnml 

sinhip-l 

ex 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

n=15 

0.098 
0.049 
0.009 

0.089 
0.041 
0.007 

0.096 
0.043 
0.006 

0.164 
0.099 
0.039 

0.157 
0.097 
0.037 

0.158 
0.097 
0.032 

n=30 

0.095 
0.048 
0.009 

0.098 
0.042 
0.006 

0.096 
0.04,5 
0.007 

0.131 
0.070 
0.020 

0.128 
0.070 
0.018 

0.130 
0.070 
0.017 

n=50 n=100 

0.105 0.110 
0.052 0.058 
0.011 0.012 

0.098 0.108 
0.046 0.054 
0.006 0.008 

0.101 0.106 
0.051 0.052 
0.010 0.010 

0.123 0.117 
0.065 0.061 
0.014 0.014 

0.113 0.110 
0.052 0.054 
0.013 0.009 

0.118 0.110 
0.063 0.053 
0.011 0.010 
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