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This paper proposes sign-based tests for simple and composite hypotheses on the long­
memory parameter of a time series process. The tests allow for nonstationary hypothesis, such 
as unit root, as well as for stationary hypotheses, such as weak dependence or no integration. 
The proposed generalized Lagrange multiplier sign tests for simple hypotheses on the long­
memory parameter are exact and locally optimal among those in their class. We also propose 
tests for composite hypotheses on the parameters of ARFIMA(p, d, q) processes. The resulting 
tests statistics have a standard normal limiting distribution under the null hypothesis. 
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1. Introduction 

Statistical inferences based on signs are robust to a significant amount of gross 
errors and still valid in the presence of observations with infinite variance. At the 
same time, the resulting inferences have high relative asymptotic efficiency. However, 
the most attractive feature of this methodology is that the resulting generalized score 
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or Lagrange multiplier tests are exact, and also locally optimal among those in their 
class. This methodological approach has been systematically set out by Boldin and 
coauthors, and the state of the arts is lucidly presented in the monograph by Boldin 
et al. (1997). 

Sign-based inference on the parameters of an autoregressive process have been 
developed by Boldin (1995, 1996) and Boldin and Tyurin (1994), the ARMA case 
has been studied by Boldin and Stute (2000). Chapters 6 and 7 of the mentioned 
monograph by Boldin et al. (1997) discuss sign-based inference on the parameter of 
the AR(I) process in stationary, instable and explosive situations. 

This methodology is especially appealing when applied to time series exhibiting 
infinite variance, which are likely in many fields, such as finance, economics, 
telecommunications and hydrology. However, it may be difficult to distinguish 
between a long-memory behavior and a short-memory process with a large variance. 
Some time series are expected to exhibit the Noah effect (high variability or infinite 
variance) and the Joseph effect (i.e. self-similarity or long-run dependence), like 
Ethernet traffic data (see Willinger et aI., 1995, 1997; and the references in Beran, 
1994, Section 11.1). Similar problems arise when testing for conditional volatility, 
which often requires fourth marginal moments of observations, that may not exist 
for many data sets, but which typically display long-range properties (see e.g. 
Robinson, 1991). Furthermore, outlier innovations in trending integrated time series 
may lead to spurious structural changes that explain the observed persistence in 
many situations (parke, 1999). 

Fractionally integrated ARMA (ARFIMA) models with symmetric stable 
innovations, or in the domain of attraction of a stable law, have been studied by 
Kokoszka and Taqqu (1995, 1996a, b) and an algorithm for simulating stable 
ARFIMA process is provided by Kokoszka and Taqqu (1999). These authors 
studied the asymptotic properties of periodogram-based estimates of parameters. 
Also robust estimates of regression models with stationary long-memory errors have 
received some attention (see e.g. Beran, 1991; Koul and Surgailis, 1997; and the 
references therein), but there has been no attempt yet of developing robust inference 
for the long-memory parameter of stationary or nonstationary fractional time series. 
On the other hand, for the particular case of the instable AR(I) process, there have 
been several proposals for using robust methods when testing the unit root 
hypothesis in the direction of autoregressive alternatives, see e.g. Boldin et al. (1997), 
Breitung and Gourieroux (1997), Campbell and Dufour (1995), Hasan and Koenker 
(1997), Phillips (1995) and Wright (2000). 

In this paper, we propose tests on the long-memory parameter using signs of 
residuals. These tests are relatively more efficient than any other test based on signs. 
We will use a different definition of the ARFIMA model which allows us to consider 
simultaneously stationary and non stationary processes, so any value of the long­
memory parameter is allowed, including also some overdifferencing hypothesis. The 
resulting tests are still valid in the presence of infinite variances, and exact tests on 
simple hypothesis are provided. We also consider testing composite hypothesis on 
the long-memory parameter for general ARFIMA(p, d, q) models, which yields, as a 
particular case, tests for the composite unit root hypothesis in the direction of 
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long-memory alternatives. The basic result is a uniform approximation for the score 
statistic based on the sign of residuals, extending to long-range-dependent data 
results of Boldin (1996) and Boldin and Stute (2000) for weakly dependent processes. 

The rest of the paper is organized as follows. An exact test for simple hypothesis is 
presented in Section 2, where it is also discussed the asymptotic behavior of the test 
and its power in the direction of Pitman's alternatives. Section 3 is devoted to tests 
for simple linear hypotheses on the parameter vector of a possibly nonstationary 
ARFIMA model. Section 4 proposes a test on the composite hypothesis of the long­
memory parameter. The results of a Monte Carlo study are placed in Section 5. 
Mathematical proofs can be found in Section 6, and they are based in some 
instrumental results in a Lemmata at the end of the paper. 

2. Testing simple hypotheses 

Consider the model 

(1 - L)d Ut = Bt. 1 = 1, 2, ... , Us = 0 all s::::;; 0, (1) 

where dis an unknown parameter, and we assume, at the moment, that {Btlt;;.1 are iid 
with a (nondegenerate) unknown distribution function G, L denotes the lag 
operator, i.e. LUt = Ut-h and the fractional difference operator is given by the formal 
binomial expansion 

00 

(1-L)d = Lt/lid)Ii, 
j=O 

rU-d) 
t/lid) := ru + l)r(-d)' j = 0, 1, ... , 

where r(z) = fooo r-Ie-x dx so, using Stirling's formula, the coefficients t/lid) 
behave as r(-d)-Ird-I as j --+ 00. Thus t/lo(d) = 1 and t/lid) = t/lj_l(d)U - d-
1)/j,j~ 1. When dis a positive integer, only the first d + 1 terms are nonzero and we 
obtain the usual definition of the dth difference operator. 

Model (1) can be interpreted as a truncated AR(oo) process, and it is said that {Ut} 
is fractionally integrated of order d or that it is an ARFIMA(O, d, 0) process. The 
parameter d determines the long-range properties of Ut. while in Sections 3 and 4 we 
consider that the short run behavior is further determined by some ARMA 
parameters. The process {utl has also a moving average (MA) representation. 
Inverting the fractional difference operator in (1) we obtain 

t-I 
Ut=(1-L)-dBt=Lt/li-d)Bt-j, 1=1,2, ... , Bs=O, s::::;;O. (2) 

j=O 

The weights t/li-d),j = 0, 1, ... , are not absolute summable for any d>O, which is a 
major source of technical difficulties, compared to the exponentially decreasing 
coefficients in the MA(oo) representation of ARMA processes. Asymptotically 
equivalent operators to fractional differencing, cf. Robinson and Marinucci (2001), 
could be considered within the methodology developed in this paper, as long as the 
coefficients of their MA representation are monotone for values of d in an interval of 
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zero, as are the t/li-d),j = 1,2, ... , see Lemma I(a). Note that the process Ut is not 
stationary for any value d"# 0, but is increasingly instable as d grows. This set up 
allows us to consider series for any value of d, not limited to the usual stationary and 
invertible range, (-0.5,0.5), as when considering an infinite series in (2) with et of 
finite variance, or to some open interval inside (0,0.5) as, for instance, in Kokoszka 
and Taqqu (I996b). 

Given observations I1ltn := {ut. t = 1, ... ,n}, we are interested in testing the 
hypothesis 

Ho: d = do, 

in the direction of one- and two-sided alternatives under the following minimal 
assumptions: 

AI. E(el) = 0 and Elelll+~<OO, some 15>0. 
A2. G(O) =!. 
A3. There exists a density g(x) = G'(x) such that 9 is Holder continuous of order 

y E (0, I] at x = 0, g(O) > 0, and sUPx g(x) < 00. 

Assumption Al is fairly weak, and A2 is often required in robust inference. It can be 
easily tested, noticing that under A2, n l / 2(Gn(0) - 1/2) converges in distribution to a 
normal with zero mean and variance 1/4, where Gn is the empirical distribution of {utl. 
The composite hypothesis of equality between mean and median can be tested in the 
lines of the symmetry test proposed by Bai and Ng (2002). Assumption A3 is 
frequently required for obtaining central limit theorems in robust procedures, e.g. in 
order to derive the asymptotic distribution of the least absolute deviation estimator. 

We propose an exact test based on signs of innovations, computed under the 
restriction on the null. These innovations have the form 

so 

t-I t-I 

et(do) = L t/I/do)ut-j = L t/lido - d)et_j, t = 1,2, .... 
j=O j=O 

Therefore, under Ho, et(do) == Bled) == et. Consider the sign functions 

StO := sign(et(·)) = 2· 1 (etO >0) - 1, 

where I(A) is the indicator function of the event A. Since {St(d)} are distributed as a 
uniform random variable taking values + 1 and -1, and under the alternative 
hypothesis {St(do)} are possibly autocorrelated with mean different that zero, 
{St(do)} form a basis for constructing test statistics. These tests are nonparametric, in 
the sense that they are locally most powerful (LMP) within a certain class, without 
any knowledge of the G functional form. The test statistic is 

(3) 
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where 

is the jth order autocorrelation estimate of {StO}. Notice that {St(d)} have mean 
zero and variance one under Ho, and Y'!i(d) is a consistent estimator of the jth order 
autocorrelation of St(d). 

We show that the resulting test is LMP, in the sense that the curvature of the 
power function (i.e. its mean rate of increase) is maximum, amongst all the tests 
based on signs, in a neighborhood of do; also we provide the distribution of Tn(do) 
for each n. In fact, Tn(do) is a generalized Lagrange multiplier (GLM) test statistic, 
based on the same principle as the tests proposed by Robinson (1994) and Tanaka 
(1999), which are LMP under Gaussianity. The test statistic proposed by Tanaka 
(1999) is related to ours; it has form (3), substituting Y'!iO by 

A .(.) = L~=j+l BtOBt-i') 
YnJ ",n ( )2 ' 

L..t=l Bt' 

thejth order autocorrelation estimate of {BtO}. Robinson's (1994) test has also the 
form in (3), using autocorrelation estimates in the frequency domain. Robinson's 
(1994) and Tanaka's (1999) tests are LMP when innovations are Gaussian, but they 
can be arbitrarily inefficient under departures from Gaussianity, and their properties 
have not been investigated when innovations variances are infinite. 

Also, we provide the asymptotic distribution of the test statistic suitably 
standardized, and prove the consistency of the test. In particular, we show that 
n-1/ 2 Tn(do) converges in distribution under the null hypothesis to a normal random 
variable centered at zero and with variance n2/6, as Robinson's (1994) and Tanaka's 
(1999) tests. Finally, we provide an uniform asymptotic first-order expansion, which 
forms a basis for studying the behavior of the test under local alternatives, as well as 
for studying its asymptotic relative efficiency (ARE). 

2.1. Localoptimality 

Given observations I1ltn' consider the vector of signs 

sn(11lt n, do) = (SI (do), ... , Sido))'. 

The possible observed values of the random vector Sn(l1ltn, do) are vectors of the form 

(4) 

where Si can take the values + 1 and -1. A test can be based on a critical region f2, 
which is a set of n x 1 vectors of form (4). That is, Ho is rejected when the following 
event occurs: 
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The power of the test is a function of d, of the form, 

Pr{Sn(Oltn,do) E ~Id}. 

First, fix an arbitrary significance level (x, such that, under Ho, 

(5) 

When A2 holds, Pr{Sn(Oltn, do) = sn} = 2-n under Ho, where sn is a vector ofform (4), 
only multiples of 2-n can be taken for the level (X in (5), and the critical region ~ 
contains exactly K = 2n(X points of form (4). The LMP test is the one exceeding 
the power function of any other test in a vicinity of do. Consider for definiteness the 
alternative HI: d>do. Amongst the tests with a given significance level, we are 
interested in the one whose power function has the highest rate of increase in a 
vicinity of do. In other words, we look for the test with critical region ~, which 
maximizes 

a Pr{Sn (Oltn , do) E ~ I d = do} 
ad 

subject to (5). Since 

a Pr{Sn (Oltn , do) E ~ I d = do} = L aPr{Sn(Oltn, do) = sn I d = do} , 

ad s"E12 ad 

(6) 

we should include into ~ the vectors sn for which (6) is as large as possible. That is, 
the critical region will be of the form, 

where the constant is chosen such that (5) is satisfied. The value of the constant, that 
is, the critical value can be obtained by Monte Carlo as accurately as desired. 

The next proposition provides an expression for Pr{Sn(Oltn, do) = sn}. 

Proposition 1. If AI-A3 holds,for each n~2, 

+ oOd - dol) as d -+ do. 

Therefore, under the same assumptions, 

a Pr{Sn (Oltn , do) = sn Id = do} 

ad (
I)n-I n-I I n 

2" g(O)EIBII ~ j m~1 SmSm-j 

n-I I n 

()( L -;- L SmSm-j, 
j=1 J m=j+1 
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noticing that Nido - d)/8dJd=tio = rl, which shows that the test based on Tn(do) 
is LMP, as stated in next theorem, which also states that Tido) enjoys a pivotal 
distribution under the null hypothesis, and therefore, the quantiles of the test 
statistic, 

qlJn = ~ {(inf{t: Pr(Tn::;:;;t I d = do)~O} + sup{t: Pr(t: Tn::;:;;t I d = do)::;:;;Om, 

can be computed for each n. 

Theorem 1. Under AI-A3, the test with critical region, for each n~2, 

f2 = {Oltn : Tn(do»ql-rxn} 

is a locally optimal sign test at the rx-Ievel of significance (i.e. a locally unbiased sign test 
of maximal mean curvature)for testing Ho in the direction OfHl: d>do. The test with 
critical region 

f2 = {Oltn : Tn(do)<qrxn} 

is a locally optimal sign test at the rx-Ievel of significance for testing Ho in the direction 
OfHl: d<do. The test with critical region 

f2={Oltn : Tido)<qrxn and Tido»ql_rxn} 

is a locally optimal sign test at the 2rx-Ievel of significance for testing Ho in the direction 
OfHl: d#do. Under Ho, the test statistic Tn(do) is distribution free for each n. 

The Tn(d) quantiles can be calculated exactly by enumeration, trying 
all 2n equiprobable combinations of signs, but it is computationally very expensive. 
Alternatively, they can also be computed very accurately by Monte Carlo (see 
Table I below). 

2.2. Asymptotic test 

The asymptotic distribution as n -+ 00 of the test statistic T n, suitably 
standardized, is an immediate consequence of Anderson (1971) Theorem 7.7.5. 

Table 1 
Exact critical values of Tn(d)/.fii 

0.5% 1% 2.5% 5% 10% 90% 95% 97.5% 99% 99.5% 

n= 50 -1.90 -1.77 -1.55 -1.36 -1.13 1.26 1.76 2.23 2.81 3.27 
n= 100 -2.06 -1.90 -1.90 -1.44 -1.17 1.27 1.74 2.17 2.70 3.13 
n=200 -2.19 -2.01 -1.74 -1.49 -1.20 1.28 1.73 2.13 2.63 2.99 
n=400 -2.27 -2.09 -1.80 -1.54 -1.23 1.29 1.72 2.11 2.57 2.91 
n = 1000 -2.39 -2.16 -1.86 -1.58 -1.26 1.29 1.68 2.04 2.48 2.77 
n = 2000 -2.42 -2.23 -1.88 -1.60 -1.27 1.29 1.68 2.02 2.42 2.70 
n=oo -2.58 -2.33 -1.96 -1.64 -1.28 1.28 1.64 1.96 2.33 2.58 
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Theorem 2. If AI-A3 hold, as n --+ 00, 

I d (n2) In Tid) --+ N 0'6 . 

Then, asymptotic critical values based on the standard normal distribution can be 
used for large sample sizes. 

2.3. Power under local alternatives 

Consider Pitman's alternatives of the form, 

for some constant a. The next proposition is essential for providing a Central Limit 
theorem (CLT) for n-1/2Tn(do) under Hln(a). 

Proposition 2. If AI-A3 hold, under H1n(a), as n --+ 00, 

where () is an arbitrary positive and finite constant, C is a positive constant, 
v<y* /[2(1 + 2y*)], y* = min{c5, y} and 

A = -2g(0)EIBlln2/6. 

Note that the drift value parameter A does not depend on do, unlike, for instance, 
when testing for AR or ARMA parameters (cf. Boldin, 1995). As an immediate 
consequence of the above proposition, the next theorem states that the test does not 
have trivial power in the direction of Hln(a) for a#O, and shows that, 
asymptotically, the power of the test does not depend on do. 

Theorem 3. If AI-A3 hold, under H1n(a), as n --+ 00, 

I d ( n2 n2) In Tn(do) --+ N 2ag(0)EIB11 6' 6 . 

2.4. ARE 

We now compare the ARE of our sign test with statistic Tn(do) with respect to 
known tests, such as Tanaka (1999) or Robinson (1994). These latter tests are 
Gaussian score tests constructed in the time and frequency domain, respectively, and 
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share the same asymptotic distribution. Tanaka's test has the form, 

n-I 1 
L!an(do) = n L -: Ynido), 

j=1 J 

just replacing in Tn(do) the sign sample autocorrelations of the residuals Bt(do) under 
Ho by the usual autocorrelations. On the other hand, Robinson's tests are designed 
in the frequency domain. A version of them for testing Ho is 

2 n-I 

L~obl(do) := -2 n 1/2 L log 12 sin(Aj/2)II1I8(Aj,do), 
O's(do)n j=1 

where 11I8(Aj, do) = (2nn)-IIL~=1 Bt(do) exp(iAjl) 12 is the periodogram of the residuals 
{Bt(do)} and Aj = 2nj/n are the Fourier frequencies, with 

1 n 2 n 
U;(do) := - L Bt(do)2 = -..!: L 11I8(Aj, do). 

n t=1 n j=1 

A different version which does not use fractional differentiation is 

L Rob2(d ) 2n ~ I 12· (l /2) 1 I nu(Aj) 
n 0:= a;(do)nI/2 f=r og sm j 12 sin(Aj/2)1-2do ' 

where Inu(Aj) = (2nn)-IIL~=1 Ut exp(iAjl) 12 is the periodogram of the data I1ltn and 

a: d .= ~ ~ 2nlnu(Aj) 
s( 0)· n f=r 12 sin(Aj/2)1-2dO • 

These authors obtained that under Hln(a), both L!an(do) and L~obl(do) converge 
in distribution to a normal random variable centered at an2/6 and with variance 
n2/6. A similar result can be expected for L~ob2(do) under (1) and some restrictions 
on d (see Velasco and Robinson, 2000). 

Therefore the ARE of the sign test based on Tn(do) with respect to the tests based 
on scores Ln(d) equals 

eT,L = (2g(0)EIBI 1)2. 

This ARE has the same expression as that of sign tests for finite AR(P) models 
against least squares tests and does not depend on do nor on the scale parameter of 
G(x), see the discussion in Boldin et al. (1997, p. 157). 

3. Testing multiple hypotheses 

We consider now the problem of hypothesis testing on parameters of general 
ARFIMA models extending Boldin and Stute's (2000) treatment for ARMA 
processes. Consider the ARFIMA(p, d, q) model 

AiL)(1 - L)dUt = Bb(L)Bt. (7) 

9



where the et satisfy the same conditions as in Section 2, es = Us = 0, all s::::;;O, AiL) : 
= 1 - aIL - ... - apLP and Bb(L) := 1 + blL + ... + bqLq, with a = (aJ, ... ,ap)', b = 
(bJ, ... , bq)' and () = (d, a', b')'. 

The nonparametric sign tests of Section 2 are extended in this section for multiple 
hypotheses Ho : () = ()o. These tests are based on the signs of the residuals computed 
under the restriction on the null, {St«()o)}, where, for ()o = (do,a'o,b~)', 

et«()O) = Aao(L)(1 - L)doUt + Bbo(L)et«()O), t~ 1, 

with B~(z) = 1 - B.(z) and et = et«()) = 0 all t::::;;O. We assume the following 
conditions on the autoregressive polynomials. 

A4. The polynomials Aiz) and Bb(Z) have roots outside the unit circle. 
AS. The polynomials Aiz) and Bb(Z) have no roots in common. 

As in Section 2, the test statistics are based on Y'!i«()o), the jth order autocorrelation 
estimate of {St«()o)}, with StO = sign(el)). We follow here the same strategy. 

3.1. Localoptimality 

Considering the vector of signs 

Sn(Olt n, ()o) = (SI «()o), ... , Sn«()O))', 

our test is based on a critical region f2, which is a set of n x 1 vectors of form (4), 
such that Ho is rejected when the {Oltn : sn(Oltn, ()o) E f2} occurs. The power of the test 
is then Pr{Sn(Oltn• ()o) E f21 ()}. Now fix an arbitrary significance level (x. such that, 
under Ho, 

(8) 

Since when A2 holds, Pr{Sn(Oltn, ()o) = sn} = rn under Ho and the critical region f2 
contains exactly K = 2n(X points of form (4). The LMP test is the one exceeding the 
power function of any other test in a vicinity of ()o. 

For the alternative HI : d>do the discussion follows as in Section 2. We look for 
the test with critical region f2, which maximizes 

a Pr{Sn (Oltn , ()o) E f21 () = ()o} 
ad 

subject to (5). Since 

a Pr{Sn (Oltn , ()o) E f21 () = ()o} = L aPr{Sn(Oltn, ()o) = sn I () = ()o} , 

ad s"E12 ad 

we should include into f2 the vectors sn for which (6) is as large as possible. That is, 
the critical region will be, 

III {s a Pr{Sn (Oltn , ()O) = sn I () = ()O} } 
,;z =: ad ~const , 
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where the constant is chosen such that (8) is satisfied. The value of the constant, 
which is the critical value, can be obtained by Monte Carlo as accurately as desired. 
Similar arguments can be derived to justify optimal tests for alternatives aj > aiO, 
i = I, ... ,p, and bk>bkO, k = I, ... ,q. 

Let the sequence {(Xt = (Xt(a)} be defined by the linear recursion 

(Xt = al(Xt-1 + ... + ap(Xt-p, 1 = 1,2, ... 

with (Xt = 0 for 1<0 and (xo = 1 and the sequence {f3t = f3tCb)} be defined by 

f3t = -blf3t-1 - ... - bqf3t-b 1 = 1,2, ... 

with f3t = 0 for 1<0 and 130 = 1. The next proposition provides expressions for 
Pr{Sn(Oltn, eo) = sn}. 

Proposition 3. If AI-A4 holds, as d --+ doJor each n~2, 

Pr{Sn(Oltn, eo) = sn} 

= (~) n (I + 2g(0)EI611 ~ t/lido - d) t smsm-j) 
J=I m=J+I 

+ o(ld - dol), 

as aj --+ aiO, i = I, ... ,p, n~i + I, 

and, as bk --+ bkO, k = I, ... ,q, n~k + I, 
Pr{Sn(Oltn, eo) = sn} 

(I)n ( n-k-I n ) 
= 2 1 + 2g(0)EI611 ~ f3j(eo) ~ SmSm-j-k(bk - bkO) 

J=I m=k+J+I 

+ o(lbk - bkO I). 

Therefore, under the same assumptions of the proposition, 

a Pr{Sn (Oltn , do) = sn 1 e = eo} ~ 1 ~ 
ad ()( L..J -:- L..J SmSm-j, 

j=1 J m=j+1 

which shows that the test based on 
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is LMP for HI : d> do as stated in next Theorem, with a pivotal distribution. Similar 
to Boldin and Stute (2000), we set 

n-i-I 

T-:nl)(()o) := n ~ oc (() )y- (() ) L..J j 0 n,i+j 0, 
j=1 

n-k-I 

T~p+k)(()o) := n L f3i()oYfn,k+i()o). 
j=1 

Theorem 4. Under AI-A4, the test with critical region, for each n ~ 2, 

is a locally optimal sign test at the oc-Ievel of significance for testing Ho in the direction 
of HI : d>do among the tests based on sn(()o). 

The tests with critical region 

are locally optimal sign test at the oc-Ievel of significance for testing Ho in the direction 
of HI : ai>aiO· 

The test with critical region 

are locally optimal sign test at the oc-Ievel of significance for testing Ho in the 
direction of HI : bk > bkO. Under Ho, the test statistics T~)(()o) are distribution 
free. 

Reversing the inequalities, similar results hold for sign tests against HI : ()j < ()jO, 

j = 0, ... , 1 + p + q. The T~)(()) quantiles can be calculated by enumeration or by 
Monte Carlo as those of Tn(d). 

3.2. Asymptotic test 

The asymptotic distribution of the (suitably standardized) sign score statistic 

is given in the next theorem extending the results of Theorem 2. 

Theorem 5. If AI-A4 hold, as n --+ 00, 

1 d 
.jii In(()) --+ N(O, A(())) , 
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where A(O) is a matrix with components, 

00 1 n2 

Al1(0)=L"2=-6' 
t=1 t 

00 

A ·(0) = ~ IXt+i-1 . 1 
1,1+1 L...J t ' l = , ... ,p, 

t=1 

AI,I+p+k(O) = E Pt+k-I, k = I, ... ,q, 
t=1 t 
00 

AI+i,l+iO) = L IXtIXt+li-jl' i,j = I, ... ,p, 
t=O 

00 

AI+p+k,l+p+iO) = L PtPt+lk-jl' k,j = I, ... ,q, 
t=O 

00 00 

AI+i,l+p+k(O) = I(i~k) L PtIXt+i-k + I(i<k) L IXtPt+k-i, 
t=O t=O 

i= I, ... ,p, k= I, ... ,q. 

Then, asymptotic critical values based on the standard normal distribution can be 
used for large sample sizes. 

For testing the null hypothesis Ho: 0 = 00 versus HI: 0#00 we can employ the 
quadratic form 

Kn(Oo) = In(Oo)' A(Oo)-lln(Oo) 

if additionally AS holds, so if the conditions of Theorem S and AS are satisfied, 
under Ho, 

1 2 
- Kn(OO)"""*d Xp+q+I' 
n 

3.3. Power under local alternatives 

Consider Pitman's alternatives of the form, 

Hln(r): 0 = On := 00 + :n + 0(n-
I
/
2
), 

for some constant (p + q + I) x 1 vector r. Next proposition is essential for 
providing a CLT for n- I / 2 In(00) under Hln(r). 

Proposition 4. If AI-A4 hold, under Hln(r), as n """* 00, 

sup In- I/2 In(On + n-I/2 p) - n-I/2 In(On) - A(Oo)pl = op(1), 
Ipl.;;CnV 
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where p is an arbitrary positive and finite constant vector, C is a positive constant, 
v<y*/[2(1 + 2y*)] , y* =min{c5,y} and 

A(O) = -2g(0)EIBIIA(0). 

The following theorem states that the test does not have trivial power in the 
direction of Hln(r) for r#O. 

Theorem 6. If AI-A4 hold, under Hln(r), as n -+ 00, 

I d 
.jii In(Oo) -+ N(2g(0)EIBIIA(00)r, A(Oo)). 

If in addition AS holds, then under Hln(r), 

I 2 
- Kn(OO)-+d Xp+q+1 (A(Oo)) 
n 

where A(Oo) := (2g(0)EIBI 1)2r' A(Oo)r is the non centrality parameter of the chi-square 
distribution. 

As for simple hypothesis, the power does not depend on do asymptotically, though 
it does depend on short-memory ARMA parameters. Similar ARE comparisons of 
our sign tests based on In(Oo) with respect to known tests, such as Tanaka (1999) or 
Robinson's (1994), can be discussed as in Section 2. 

4. Testing composite hypotheses 

Frequently we are interested in testing hypothesis about d, 

H~: d = do 

where 0(2) := (a',b')' is a nuisance parameter, since d determines the main features of 
the long run dynamics of ut. including whether the series is a weak dependent process 
(d = 0) or is a unit root process, (d = I). Also one side tests can be set, such as 
whether the processes is trending nonstationary (d = O.S) against stationarity 
(d <O.S). For other composite hypotheses concerning ARMA parameters, see Boldin 
and Stute (2000). 

The power of the signs tests for composite hypotheses will be studied under the 
sequence of alternatives 

H;n<h): 0 = On := 00 + hn-I/2, 

where 00 = (do, 0(2)'), and h = (h(I), h(2)'), is a fixed (1 + p + q)-vector. Thus the 
alternatives H;n<h) allow the nuisance parameters 0(2) to vary in a range of order 
O(n- I/ 2). 

We can partition the matrix A(O) as 

o (J B'(O)) 
A( ) = B(O) M(O) , 
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where B(O) is a column vector and J = ~~I t-2 = n2/6. Set 

( 
c-1/2(0) 0') 

V(O) = -c-1/2(0)M-I(0)B(0) M-1/2(0) , 

where cCO) = J - B'(O)M-I(O)B(O), so V(O)V'(O) = A -1(0). 
Let {On} be a sequence of estimates of 0 which may depend on the conjectured 

value do and on the observations I1ltn, such that 
1/2 A n (On - On) = Op(1), 

under H;n(h). In particular O~I) might be taken to be do, so in this case OOn = 
A9~ A~ 1/2 A~ 

(do, On )" where On is a n -consistent estimate of 0 . There are many robust 
estimates for AR and ARMA models available in the literature which are n1/2_ 

consistent for infinite variance innovations and that could be used for O~2). See e.g. 
Yohai and Maronna (1977), Bloomfield and Steiger (1983), Pollard (1991), Davis 
and Resnik (1986), Mikosch et al. (1995) and Boldin et al. (1997). Note that 0(2) does 
not include the long-memory parameter d which is given by H~, so these robust 

ARMA estimates are applied to the prefiltered series (1 - L)dOUt• 

For testing H~ we will use the test statistic 
'It A -I A' A 2 

Ln(Ono) := n (n 0 Vnln(OnO)) 

where n stands for the projection onto the subspace spanned by the first coordinate 
vector. 

Theorem 7. If AI-AS hold, under H;n(h), as n -+ 00, 

A d 2 
L~(Ono) -+ XI (AiOo)) , 

where AiOo) = (2g(0)EIBllh(I»)2 c(Oo). 
In particular, under H~, 

A d 2 
L~(Ono) -+ XI' 

One side tests, useful for testing against more stationarity or nonstationary 
I A' A d 

alternatives, can be based on the fact that n-I 2n 0 VnliOno) -+ N(O, I) and 
interpreted as in Robinson (1994). 

5. Monte Carlo 

For sample sizes n = 50,100,200,400 we consider Pitman's local fractional 
hypothesis 

a 
Hln( -a): d = dn := do - .jii 
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for a = 0,0.5,1,1.5,2. Data is generated as Ut = (1- L)-dnet. Setting do = 1, we are 
able to compare sign and Tanaka's score tests directed against fractional alternatives 
(d<I) with the Dickey-Fuller test for an unit root (d= 1) directed against 
weak stationarity (d = 0). We also investigate the finite sample properties 
of a robustified version of Dickey-Fuller test based on ranks introduced by Breitung 
and Gourieroux (1997). We consider four different distributions: et rv lID, N(O, 1), 14, 

12 and 11. The first one has all moments, but the Im distribution only has m - e 
bounded absolute moments, e>O. The different tables report the percentage of 
rejections by one-sided tests of the null hypothesis Ho: d = 1 at the 5% of 
significance in 100,000 experiments. In power comparisons, Dickey-Fuller and 
Tanaka tests use asymptotic critical values, while our sign test and Breitung and 
Gourieroux (1997) test are exact, and critical values are obtained by Monte Carlo for 
each sample size. 

Table 1 report the exact critical values of our scaled test statistic Tn (do) j .jii 
under the null d = do, for one- and two-sided hypothesis and several sample 
sizes. 

The exact critical values are far away from the asymptotic ones, even for fairly 
large sample sizes. This point is confirmed in Table 2, where we report the empirical 
sizes for the different asymptotic tests, based on the standard normal approximation 
for the sign and Tanaka's tests. 

Table 2 
Empirical size of asymptotic tests at 5% of significance 

sign sign* Tanaka Tanaka* Dickey-Fuller 

N(O, 1) n= 50 1.67 3.66 1.52 2.96 5.36 
n = 100 2.58 4.77 2.54 4.35 5.23 
n=200 3.23 5.36 3.20 5.l2 4.96 
n=400 3.75 5.60 3.81 5.61 5.01 

t4 n= 50 1.67 3.82 1.38 2.73 5.23 
n = 100 2.62 4.86 2.40 4.l8 5.03 
n=200 3.36 5.42 3.l6 5.05 4.94 
n=400 3.81 5.65 3.70 5.50 4.78 

t2 n= 50 1.63 3.58 1.22 2.28 4.52 
n = 100 2.60 4.80 1.99 3.38 4.38 
n=200 3.31 5.37 2.63 4.04 4.23 
n=400 3.82 5.63 2.98 4.27 4.37 

t\ n= 50 1.68 3.60 1.16 1.67 3.l3 
n = 100 2.60 4.81 1.53 2.l2 2.86 
n=200 3.33 5.44 1.66 2.l5 2.81 
n=400 3.83 5.02 1.65 2.l1 2.75 
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Despite the statistic Tn discussed in the text and the original Tanaka's test, we also 
report results, in the column sign*, for the asymptotic test based on the statistic, 

_ 1 n 

Ti·) = - L Pni')' 
n j=1 

where 

_ () = ~;=j+1 [StO - Si,)][St-j{·) - SnO] 

Pn; ~;=1 [Sl) - SnO]2 

is the jth sample autocorrelation of StO. Using standard arguments, it is 
straightforward to show that Tn(do) - Tn(do) = op(n-1/ 2) under Ho. Likewise, in 
the column Tanaka*, we report the proportion of rejections for the test statistic 
based on the sample autocorrelations of BtO instead of Y'!i' The asymptotic size 
accuracy of sign and Tanaka tests is quite poor for the sample sizes considered, 
compared with the accuracy of the Dickey-Fuller test, though the modified versions 
(sign* and Tanaka*) are more accurate. As expected, Tanaka's test performs very 
poorly in the presence of errors with fat distribution tails. 

Tables 3-6 report the empirical power of the tests under local alternatives. The 
sign test rejects more frequently the null hypothesis than Tanaka's test under small 
local departures (a = 0.5, 1) when the error distribution exhibit fat tails. As expected, 

Table 3 
Empirical power at 5% of significance of the exact sign test 

a 

0.5 1.5 2 

N(O, 1) n= 50 8.75 l3.99 21.01 29.57 
n = 100 8.60 l3.60 20.66 29.33 
n=200 8.39 l3.36 20.08 28.56 
n=400 8.33 l3.20 19.75 28.01 

n= 50 9.39 15.83 24.29 33.94 
n = 100 9.22 15.64 24.54 34.93 
n=200 8.99 15.33 23.90 34.54 
n=400 9.08 15.34 23.91 33.94 

n= 50 10.97 19.20 29.24 39.90 
n = 100 10.79 19.62 30.85 42.94 
n=200 10.82 19.75 31.39 44.73 
n=400 10.70 19.68 31.79 45.52 

n= 50 7.08 14.23 23.05 31.40 
n = 100 10.92 22.22 35.03 47.78 
n=200 l3.73 28.60 45.00 59.74 
n=400 16.l9 34.l4 52.76 69.72 
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Table 4 
Empirical power at 5% of significance of Tanaka's asymptotic test 

a 

0.5 1.5 2 

N(O,l) n= 50 4.l3 9.91 1O.l0 36.31 
n = 100 6.l4 l3.73 26.l5 43.39 
n=200 7.75 15.92 29.35 45.88 
n=400 8.72 17.24 30.54 46.70 

t4 n= 50 3.85 9.21 19.68 35.72 
n = 100 5.99 l3.38 25.65 42.92 
n=200 7.35 15.49 28.59 45.63 
n=400 8.35 16.71 30.06 46.68 

t2 n= 50 3.23 7.66 16.52 33.l3 
n = 100 4.78 10.54 21.91 41.09 
n=200 5.87 12.50 24.94 43.94 
n=400 6.74 l3.70 26.50 45.30 

h n= 50 2.07 4.l6 9.34 22.52 
n = 100 2.71 5.30 11.61 29.86 
n=200 2.88 5.54 12.51 33.34 
n=400 2.73 5.51 12.01 34.l0 

the empirical power does not change much when the innovations have at least one 
moment (i.e. Normal, 14 and 12) for sample sizes relatively large (n greater than 100). 
Interestingly, when the error does not have first moments, the empirical power of the 
test increases with n, which may indicate that the test is able to detect local 
alternatives converging to the null faster than n-1/ 2 under these circumstances. 

Tables 5 and 6 report the empirical power for the asymptotic Dickey-Fuller test, 
and the exact Dickey-Fuller test based on ranks. The asymptotic tests is less powerful 
than the robust exact test under departures from normality. However, the percentage 
of rejections converges to the nominal size for increasing n. That is, the simulations 
indicates that the two versions of the Dickey-Fuller test seem to have trivial power 
under local alternatives to the unit root null hypothesis, converging to the null at the 
rate n-1/ 2• 

6. Proofs 

Proof of Proposition 1. Henceforth, Sn(Oltn, do) := Sn(do). Apply Lemma 3 recur­
sively with the initial condition in Lemma 2, as in (17), and applying Lemma 4, for 
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Table 5 
Empirical power at 5% of significance of Dickey-Fuller exact test based on ranks 

a 

0.5 1.5 2 

N(O, 1) n= 50 7.71 11.22 16.52 23.53 
n = 100 6.95 9.42 12.68 16.98 
n=200 6.07 7.87 9.65 12.44 
n=400 6.00 7.23 8.58 9.92 

t4 n= 50 7.49 11.29 16.43 23.38 
n = 100 6.86 9.24 12.70 16.81 
n=200 8.40 10.33 12.85 15.56 
n=400 5.86 7.04 8.27 10.04 

t2 n= 50 7.65 11.33 16.87 23.87 
n = 100 6.89 9.53 l3.05 17.57 
n=200 6.33 8.l2 10.33 12.89 
n=400 5.95 7.l0 8.54 10.04 

h n= 50 9.65 14.69 20.71 27.76 
n = 100 8.51 12.49 16.64 21.68 
n=200 7.60 10.43 l3.70 16.84 
n=400 7.l9 9.09 11.46 l3.65 

y* = min(c5, y), we obtain, as d --+ do, 

= G) n + g(O) ~ ~ smt/lido - d) [ G) n-I EIBIlsm_j + O(ldo - dl~/(I+~»)] 
+ O(ldo - dll+yo) 

= (~) n [1 + 2g(0)EIBII ~ t/lido - d) t smsm-j] 
J=I m=J+I 

+ O(ldo - dll+yo) + O(ldo - dll+M1+~»), 

after noticing that It/lido - d)I/ldo - dl = 0(1) as d --+ do,j = 1,2, ... , by Lemma 1 
(b), and that c5,y*>O. D 

Proof of Theorem 1. It follows from Proposition 1. D 

Proof of Theorem 2. It follows from Anderson's (1971) Theorems 7.7.1 and 7.7.5; see 
also the proof of Theorem 6.2.3 of Boldin et al. (1997). D 
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Table 6 
Empirical power at 5% of significance of Dickey-Fuller asymptotic test 

a 

0.5 1.5 

N(O,l) n= 50 7.48 10.35 14.l0 
n = 100 6.65 8.43 10.66 
n=200 5.93 7.05 8.40 
n=400 5.65 6.39 7.23 

t4 n= 50 7.21 10.02 l3.78 
n = 100 6.45 8.29 10.54 
n=200 5.79 6.97 8.29 
n=400 5.51 6.28 7.04 

t2 n= 50 6.33 8.88 12.27 
n = 100 5.65 7.20 9.l5 
n=200 5.l5 6.08 7.32 
n=400 4.96 5.51 6.40 

h n= 50 4.32 6.08 16.25 
n = 100 3.71 4.89 6.36 
n=200 3.38 4.l4 4.99 
n=400 3.24 3.59 4.l5 

Proof of Proposition 2. It follows from the definition of Tn that 

n- I / 2 Tn(dn + n- I / 2 ()) - n- I / 2 Tn(dn) 

n-I 

= n-I
/
2 L rl{Ynidn + n- I

/
2

()) - Ynidn)}. 
t=1 

Then defining Llk(X) as 

and setting '1n := n-I / 2() we have under Hln(a), that 

Sk(dn + '1n) = sign(Lldn+'1nud 

= sign(LI'1nBk) 

= 1 - 2L1k('1nUk-1 ('1n)), 

2 

19.12 
l3.45 
9.96 
8.l4 

18.71 
l3.36 
9.73 
8.07 

16.76 
11.71 
8.92 
7.31 

12.44 
8.32 
6.06 
4.74 

(9) 
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where Uk-I('1n) := '1;1(1 - LI'1n)ek, and LI = LI(L) = 1 - L is the difference operator. 
Then (9) is 

n-I 

L r l
{4xtn('1n) + 4Ytn('1n) - 2zti'1n)}, 

t=1 

where 

Now the proof of the proposition is immediate from Lemmas 5-9 with 
'1n = ()n- 1/2• D 

Proof of Theorem 3. It follows from the CLT of Theorem 2 with d = dn and 
Proposition 2 with () = -a. D 

Proof of Proposition 3. The proposition follows as Proposition I, adapting the 
proofs of Lemmas 3 and 4 accordingly, noticing that under model (7) we have 
that 

l(et«()O)<O) = l(et<[Lld(L)ae(L) - LldO(L)aeo(L)]Ut + [b~(L)et - b~o(L)et«()O)]). 

Then, if only one aj changes, j = I, ... ,p, we have that 

1 (et«()O) < 0) 

( 
d Lld(L) ) 

= 1 et < [ael j - ae!)LI (L)Ut_j + ~2(L) Be
2
(L) [ael(L) - ae!(L)]Ut 

= 1 (et < [ael j - ae~)xe(L )et-j), 

whereas if only d changes, 

1 (et«()O) < 0) 

= 1 (et<[1 - Lldo-d(L)]Lld(L)Ael(L)Ut +B:2(L) :::~~~ [Lld(L) - LldO(L)]Ut) 

= 1 (et < IXe(L) ~ "'id - do)et_j). 
J=I 
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If only one bk changes, k = 1, ... , q, we have that 

l(et(Oo)<O) = 1 (et < [bO,k - bOo,k]et-k + t bOoAet-r - et_r(Oo)]) , 

where et-r - et-r(OO) = [boo,k - bo,k]Hic/(L)et-r-k. Then 1 (et(Oo) <0) = l(et<[bo,k­
bOo,k]!3Oo(L)et-d. D 

Proof of Theorem 4. It follows directly from Proposition 3. D 

Proof of Theorem 5. It follows from Anderson's (1971) Theorem 7.7.5 as 
Theorem 2. D 

Proof of Proposition 4. The proof is based on a combination of the ideas of 
Proposition 2-for the fractional aspect and Theorem 3.1 (Boldin and Stute, 2000), 
for the MA part and the joint effect of the drift of short- and long-memory 
parameters. Note that, '1n = Pln-1/2 , 

(0 + -1/2 ) _ = (LI'1n(L) _ 1) + (Aon+n-1/2iL) BOn(L) 
et n n P et et A (L) B (L) On on+n-1/2p 

(10) 

+ (LI'1n(L) _ 1) (AOn+n-1/2p(L) BOn(L) 
AOn(L) BOn+n-1/2p(L) 

(11) 

The contribution of the two approximation terms on (10) to n-1/2In(On + n-1/2p) -
n-1/2In(On) is dealt with as in Proposition 2 and as in Boldin and Stute (2000), 
respectively. The contribution of (11) is the joint contribution of the locally in the 
memory parameter and the ARMA parameters, and is of smaller order as we now 
argue. The idea is to include this contribution in the remainder term (J't(p) used in 
Boldin and Stute (2000) such that, 

sup l(J't(p) I ::;;;.a-t. t = 1, ... ,n, n>no, 

where 

1 n 
sup -1 - L Ea-t < 00, 

n og n t=1 

and (J't(p), a-t are fft_I-measurable for t = 1, ... ,no This follows because, 

(LI'1n(L) - 1) (1 - AOn+n-1/2iL) Bo.(L) ) = n-I E IJep . 
Ao.(L) BOn+n-1/2iL) j=2 nJ 

where sUPn lepnjl::;;;' Cj-I, j = 2, ... ,n as n --+ 00, an C denotes, henceforth, a generic 
constant. So, the truncated filter up to lag n satisfies lepi1)1 = O(log n). The bound 
on L:=I Ea-t is enough for the methods of Boldin and Stute (2000) to go through for 
our set up. D 

Proof of Theorem 6. The first statement follows from Proposition 4 and Theorem 5 
as in the proof of Theorem 3. The second follows at once from the first. D 
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Proof of Theorem 7. By assumption nl/2(On - (}n) = Op(1) under H~n<h), and hence 
nl/2(Oon - (}n) = Op(1) as well. Therefore in view of Proposition 4, consistency ofVn 
and definition of V«(}), we have 

1/2 A' A 1/2 A' A' 1/2 A n- V n1i(}on) = n- V n1i(}o) - 2g(0)EIBIIV nA«(}o)n «(}On - (}n) + op(1) 

Then, since 

= n-I/2V'«(}o)ln«(}o) - 2g(0)EIB!lV'«(}o)A«(}o)nl/2(Oon - (}n) + op(1) 

= n- I
/
2V'«(}o)ln((Jo) - 2g(O)EIBlIV-I«(}o)(h(1),nl/2(e~~ - (}~2»)')' + op(1). 

the last equality implies 

no n-I/2V:ln(Oon) = no n-I/2V'«(}o)ln«(}o) - 2g(0)EIBllcl/2«(}o)h(l) + op(1). 

Now, this expression and the fact that 

no n-I/2V'«(}o)li(}o)--+dN(0, 1) 

prove the theorem. D 

7. Lemmata 

The first Lemma provides bounds on t/lj' which are applied for bounding its 
derivatives at different places. The rest of the lemmas are applied for proving the 
different propositions and theorems in the text. 

Lemma 1. Define 1Xj{'1) := -t/li'1)/'1, '1#0 and 1Xj{0) := lim'1~o - t/li'1)/'1,j = 1,2, .... 
Then 

(a) 1Xj{'1) is monotone decreasing for all '1 such that I'll < 1, j = 2,3, .... 
(b) There exists a neighborhood of zero, say .IV, such that, 

11Xj{'1) - rll::::;; Ci'1Ij1'1I- l log2U + 1), for each '1 E .IV and each j = 1,2, ... 

(c) For any constant K>O, sUPI'1I';;Kn-' 'E.J=IIIXj{'1)1 = O(log n), for all r>O, as 
n --+ 00. 

Proof. (a) Since 1Xj{'1) >0, we only need to check that 

a art log 1Xj{'1) <0, I'll < 1. 

First, for '1>0, we have that 10glXj{'1) = 10g(-t/li'1)) -log'1 or using for '1<0 that 
log 1Xj{'1) = 10g(t/li'1)) - log( -'1). Then it is immediate to check that 

a . 1 art log 1Xj{'1) = cp( -'1) - cp(j - '1) - ;:,' 
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where cp('1) = 810gr('1)/8'1 is the digamma function. Now, using that 

j-I 1 
cp(z + J) = cp(z) + L -

r=Oz+r 

(e.g. Theorem 1.2.7 of Andrews et aI., 1999) the claim follows. 
(b) First notice that, 

1 
"';('1) = r 2(-'1)ru + 1) (-r(-'1)r'U - '1) + r(j - '1)r'(-'1)), 

where r'('1) = 8r('1)/aq and "';('1) = 8t/Ji'1)/8'1. Similarly, with rl/('1) = &r('1)/aq2 
and "';('1) = &"'i'1)/aq2 we obtain that 

"';('1) = ~&~ 1) -r2(-'1)r(j - '1)rl/(-'1) - r 2(-'1)r'(j - '1)r'(-'1) 

-4 ( r 3
( -'1)rl/U - '1) + r2( -'1)r'( -'1)r'U - '1) ) 

-2r2(-'1)r'(j - '1)r'(-'1) + 2r'(-'1)2r U - '1)r(-'1) 

(12) 

see expression (4.21) in p. 124 of Wright (1995). Then use that 

a" r(x + a) b h 
8xh r(x + b) =;x!l- log x(1 + 0(1)) as x --+ 00 for h = 0, 1,2, (13) 

proved in Lemma 2 of Wright (1995), to bound "'i'1) and its derivatives for large j. 
Therefore, applying a mean value theorem argument for '1 E .K 

"'i'1) = "'iO) + '1",;(0) + ~ '12",;('1*), j = 1,2, ... 

for some 1'1*1::::;; 1'11. Now, take into account that 

"'iO) = 0, ",;(0) = -rI, j = 1,2, ... 

(so IXiO) = rl) and that, for all '1* with 1'1*1::::;; I'll in .K, 

(14) 

1"';('1*)1::::;; Cjl'1°I-llog2 j::::;; CjI'1I-llog2U + 1), j = 1,2,... (15) 

using (12}-{13) (cf. bound for a2i'1) in Wright, 1995, p. 124). Then, (14) and (15) 
prove (b). 

(c) is an straightforward consequence of (b), because using that IXi'1»O, there 
exists a constant C such that, 

n 1 n _, 
sup ~ IIXi'1) - rll::::;; C - ~ jKn -llog2 n 

_7 L..J nr L..J 1'1I";,,Kn j=1 j=1 

( 
Kn-' log3 n) 

=0 n --
nr 

= 0(1) as n --+ 00, 

after noticing that nKn-' = 0(1) as n --+ 00 for all r> O. Thus, applying the triangle 
inequality sUPI'1I";"Kn-' LJ=II IXi'1)1 = o (LJ=d- l

) + 0(1) = O(log n). D 
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Lemma 2. Under AI-A3, 

1 
Pr{SI(do) = sd = 2' 

Proof. It follows directly from A2, since El (do) = (1 - L)do-dEI = El by (2). D 

Lemma 3. Under AI-A3, for each k = 2, 3, ... , 

Pr{Sk(do) = sk} = ~ Pr{Sk-l(do) = sk-I} 

k-I 
+ g(O)Sk L t/lido - d)E[Ek_jI(Sk-l(do) = sk-I)] 

j=1 

+ O(ldo - dF
o
+I

), 

as d -+ do, where y* = min(c5, y). 

Proof. Let fFm the sigma algebra of events generated by {Ek,k::::;;m}. Then, for each 
k=2, ... ,n, 

Pr[Sk(do) = sk] 

= E{ I(Sk-l(do) = Sk-I) ([1 (Sk(do) = 1)] 1 ~Sk + I(Sk(do) = -1) 1 ~ Sk)} 

= E{ I(Sk-l(do) = Sk-I)C ~Sk - SkI(Ek(do) <0)) } 
= E{ l(Sk-l(do) = Sk-I)C ~Sk - SkE[l (Bk< - ~ l/I/do - d)Bk-j ) IfFk- l ]) } 

= 1 ~ Sk E[1(Sk-l(do) = sk-l)]_ SkE [l(Sk-l(do) = Sk-l)G( - ~ l/Iido - d)ek_j ) l 
Assumption A3 guarantees that G(x) = G(O) + xg(px) for some p E [-1, 1]. Also, by 
A3 9 is Holder continuous at zero of order y* E (O,y], i.e. Ig(x) - g(O)I::::;;MlxIYo

, 

where M is a constant that may depend on y*. Take y* = min(c5, y), then, Ig(px)­
g(O) 1 ::::;; ClxFo

, and G(x) = G(O) + xg(O) + e(x), where e(x)::::;; Clxly"+I. Therefore, 

E [I(Sk-l(do) = Sk-I)G( - ~ t/lido - d)Ek_j ) 1 

{ [

1 k-I 
= E I(Sk-l(do) = sk-I) 2 - g(O) ~ t/lido - d)Ek-j 

+e( - ~ t/lido - d)Ek-j ) l}. 
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And the lemma is proved after noticing that, by definition of e and von Bahr and 
Esseen (1965) Theorem 2, 

El 1 (S'-I (do) = ",-I). ( - ~ "'/do - d)"-i) I "CEI~ "'/do - d)'k-ill+>, 

k-l 
::::;;2CElell1+y" L Il/Iido - d)I1+y" 

j=l 

= O(ldo - dll+yo) as d --+ do, 

by Lemma I (b). D 

Lemma 4. Under AI-A3, for each k = 1,2, ... and m = I, ... ,k, and some c5 > 0, 

E[Bml(Sk(do) = sk)] = Sm G) k EIBII + O(ldo - dl~/(I+~»), 
as d --+ do. 

Proof. Applying Lemma 3 recursively, with initial condition in Lemma 2, 

E[I(Sk(do) = sk)] 

= Gr +g(O) ~ ~ smt/lido - d) Gr-mE[Bm_j I (Sm-I(do) = sm-I)] 

+ O(ldo - dF
o
+I) as d --+ do 

= G) k + O(ldo - dl) as d --+ do. 

Now write, 

E[Bml(Sk(do) = sk)] = E[Bm(l(Sk(do) = sk) - I(Sk(d) = sk))] 

+ E[Bm I (Sk(d) = sk)]. 

(16) 

(17) 

Applying Holders' inequality, the first term on the right-hand side of (17) is bounded 
by 

Now, 

EII(Sk(do) = sk) - I(Sk(d) = sk)1 

= Pr(Sk(do) = sk,Sk(d)=ftsk) + Pr(Sk(do)=ftsk,Sk(d) = sk) 

::::;; Pr(Sk(do) =ft Sk(d)) 

k 

::::;; L Pr(Sj{do)=ftSj{d)) 
j=1 

(18) 
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for each k = 1,2, ... , with 

Pr(Sj{do)=ftSj{d)) = Pr(Bj{do) >0, Bj{d)::::;;O) + Pr(Bj{do)::::;;O, Bj{d) > 0). 

Then, for each integer j, 

Pr(Bj{do»O, Bj{d)::::;;O) = pr(Bj> - ~ t/lido - d)Bj_toBj::::;;O) 

= pr(-E t/lido - d)Bj_t<Bj::::;;O) 
t=1 

::::;;E [E [I ( -I~ t/lido - d)Bj-tl <Bj::::;;O) Iffj - I ]] 

::::;; CEI~ t/lt(do - d)Bj-tl 

j-I 

::::;; CEIBII L It/lido - d)l, 
t=1 

because G(O) - G(x)::::;;Clxl, x::::;; 0, and the last expression is O(ldo - dl) 
as d --+ do for each integer j because t/liO) = 0, t~ I and the mean value theorem, 
see Lemma I (b). Applying a similar bound for Pr(Bj{do)::::;;O,Bj{d»O) we obtain 
that 

EII(Sk(do) = sk) - I(Sk(d) = sk)1 = O(ldo - dl) as d --+ do, 

and (18) is O(ldo - dl~/(l+~»). 
The second term on the right-hand side of (17) is 

E[Bml(Sk(d) = sk)] = E [ CUI(Sign(B) = S))Bml(Sign(Bm) = sm)] 

(
I)k-I 

= 2 E[Bml(sign(Bm) = Sm)] 

(
I)k-I (I)k = 2 SmE[BII(BI > 0)] = 2 smEIBd, 

after noticing that, since E(BI) = 0, 

I I 
E[BII(BI >0)] = 2 E[BI(2. I(BI >0) - I)] +2 E(BI) 

= ~ E[Blsign(BI)] 

I 
= 2EIBII. 

Thus, (17), (18) and (19) prove the lemma. D 

(19) 

27



Lemma 5. Let r> 1/4, en = en-r
• Then under Hln(a) and assuming the same 

conditions as in Proposition 2, as n -+ 00, 

Proof. First, (1 - LI'1n)Bk = '1nUk-I('1n), where 

k-I 

Uk-I ('1n) = L rxi'1n)Bk-j, 
j=1 

with rxi'1n) defined as in Lemma I. 
Divide the interval [-en, en] into 3mn subintervals by the points 

'1sn = -en + 2en3-mn s, s = 0, I, ... , 3mn . 

Choose rl such that 0 < rl < rand r + rl > 1/2 and let 3mn 
rv nrl. 

For an arbitrary l'1nl ~ en select the point '1tn from among the points {'1sn} such 
that 

V 
O~'1tn - '1n ~ e n3-mn = 2' 

V:= 2en3-mn , so '1t-l,n~'1n~'1tn~'1n + V/2~'1t+l,n by Lemma (a), and for all 
j>O, 

rxi'1t-l,n) ~ rxi'1n) ~ rxi'1tn)· (20) 

Define the variables, 

Bk('1sn):= Bk{1 - ~ I(Bk~O)}, 
'1sn 

Bk('1sn):= Bk{1 - ~ I(Bk~O)} 
'1sn 

and the variables 

k-I 

Uk-I ('1tn) := L rxi'1tn)Bk-i'1tn), 
j=1 

k-I 

Uk-I ('1tn) := L rxi'1t-I,SBk-i'1tn)' 
j=1 

Then it follows that 

'1tnBk('1tn) ~ '1nBk ~ '1tnBk('1tn) 

and, using (20), that, k = 0, I, ... ,n - I, 

(21) 
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Writing 

Xtn('1n) := Xtn('1n, Un), 

where Un = (UI, ... ,Un-I), ilsn = (UI ('1sn) , ... ,Un-I ('1sn)), Usn = (UI ('1sn) , ... ,Un-I ('1sn)), 
we obtain that 

n-I n-I 
L rl Xtn('1n, Un)::::;; L rl Xtn('1n, Uen) 
t=1 t=1 

+n- I / 2 ~ rl t {L1k-I('7lnUk~I-I'l('7ln))G('7lnUk~I'l('7ln)) }, 

1=1 k=t+ 1 - L1k-I('7lnUk-t-l,l('7ln)G('7lnUk-l,e('7ln» 

n-I n-I 
L rl xti'1n, Un) ~ L rl xti'1n, Uen) 
t=1 t=1 

_n- I / 2 ~ rl t {L1k-I('7lnUk~I-I,e('7ln»G('7lnUk~I'l('7ln» }. 

1=1 k=t+1 -L1k-I('7lnUk-I-I,l('7ln»G('7lnUk-l,e('7ln» 

In order to discretize en, we see that these last two inequalities imply that 

sup lE rIXtn('1n) I 

l'1nl.;;en t=1 

::::;; sup L rl Xtn('1sn, Usn) + sup L rl Xtn('1sn, Usn) 
I

n-I I In-I I 
s.;;3mn t=1 s.;;3mn t=1 

~ rl ,,{ .L1k-t('1snUk-t-I,s('1sn))G('1snUk-l,i'1sn)) } 
+ sup L..J nl/2 L..J - - . 

s.;;3mn t=1 k=t+1 -.L1k-t('1snUk-t-l,i'1sn))G('1snUk-I,s('1sn)) 

Consider now the first term in (22) depending on Xtn('1sn, Usn). Writing 
~k(t) = ~k(n, s, t) 

:= .L1k-t('1 snUk-t-I,s('1sn)){ .L1k('1 snUk-I,s('1sn)) - G('1 snUk-I,s('1 sn))} 

- .L1k-t(O){.L1k(O) - G(O)}, 

we obtain that 

(22) 

Consider the triangular array ~k(t). For k = t + 1, ... ,n, and each t = 1, ... ,n - 1, 
~k(t) is a martingale difference sequence, so it has zero mean, E~k(t)~it) = 0, and 

E~i(t)::::;; 2 sup g(x){EI'1snUk-I,s('1sn) I + EI'1snUk-t-I,s('1sn)l} = O(n-r log n), 
x 

since l'1snl::::;;en = O(n-r), and using that, by Lemma l(c), for each k = 1,2, ... 
k-2 

EIUk-l,i'1sn) I ::::;; L IIXi'1s-l,n)IEIBk-1-j1 = O(log n). 
j=1 
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Furthermore, E~k(t)~it') = 0, for any t, 1', so the ~k are also uncorrelated between 
rows. Then by Chebyshev's inequality, for any 6>0, 

p{ sup lE rIXtn('1sn,Usn)I>6} 
s.;;3mn t=1 

3

mn 

{In-I I } ::::;; ~ p ~ rIXtn('1sn, U sn) >6 

This equals 
3mn n-I n-I n n 

6
2 L L L rlrln- I L L E[~k(t)~k'(t')] 

s=O t=1 1'=1 k=t+1 k'=I'+1 

n-I n-I n 

::::;; C3mn L L 1'-1 rln- I L E[~k(t)~k(t')] 
t=1 1'=1 k=t+1 
n-I n-I 

::::;; C3mn L L rl rln-r log n = O(nr1 - rlog3 n) = 0(1), 
t=1 1'=1 

using Cauchy inequality. Bya similar argument 

sup lE t- IXtn('1sn, Usn ) I = op(1). 
s.;;3mn t=1 

Consider now the last term on the right-hand side of (22), which is not greater than 
n-I rl n 

sup L 1/2 L {Ll k- t('1snUk-t-l,i'1sn)) 
s.;;3mn t=1 n k=t+1 

- Llk-t('1 snUk-t-l,i'1 sn))} G('1 snUk-l,i'1 sn)) 
n-I rl n 

+ sup L 1/2 L {G('1snUk-l,i'1sn)) 
s.;;3mn t=1 n k=t+1 

- G('1 snUk-l,i'1 sn))} Llk-t('1 snUk-t-l,i'1 sn))· 

Now (24) does not exceed 
n-I n 

sup n- I
/
2 L rl L {G('1snUk-l,i'1sn)) - G('1snUk-l,i'1sn))} 

s.;;3mn t=1 k=t+1 
n-I n 

::::;; sup sup g(x)n- I/2 L rl L '1sn{Uk-l,i'1sn ) - Uk-l,i'1sn )} 
s.;;3mn x t=1 k=t+1 

n-I n 

::::;;2Bn3-mn sup g(x)n- I/2 L rl L IUk-lI 
x t=1 k=t+1 

= Op(nl/2-rl-r log n) = op(1). 

(23) 

(24) 

(25) 
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It remains to bound (23). It does not exceed 

n-I n 

sup n-1/2 L rl L {Ll k('1snUk-l,sC'1sn)) - Ll k('1snUk-I,sC'1sn))} 
s.;;3mn 

1=1 k=2 

-1/2 ~ -I ~{Llk('1snUk-I,sC'1sn)) - G('1snUk-I,sC'1sn)) } 
::::;; sup n L..J t L..J _ _ 

s.;;3mn 
1=1 k=2 -Llk('1snUk-l,sC'1sn)) + G('1snUk-l,sC'1sn)) 

(26) 

n-I n 

+ sup n-1/2 L rl L {G('1snUk-l,sC'1sn)) - G('1snUk-I,sC'1sn))} 
s.;;3mn 

1=1 k=2 
(27) 

Now (27) can be shown to be op(1) as (25). Consider (26). Put 

Vk = vk(n,s) 

:= Llk('1snUk-I,sC'1sn)) - G('1snUk-l,sC'1sn)) - Llk('1snUk-l,sC'1sn)) + G('1snUk-l,sC'1sn))· 

Then (26) becomes 

s~~En In-
1/2 ~ rl ~ Vk(n,s)l· 

Now the variables Vk are centered, uncorrelated, and sUPs.;;3mn Ev~ = O(n- r 3-mn
) = 

O(n-r-rl) uniformly in k. Therefore by Chebyshev's inequality for 
any B>O, 

p{ sUEn In-
1/2 E rl t Vkl ~B} 

s.;;3 1=1 k=2 
3mn n-I n-I n 

::::;;B-
2n-1 L L L rlr-I L Ev~ = O(n-r log2 n) = 0(1), 

s=O 1=1 1'=1 k=2 

which completes the proof of the lemma. D 

Lemma 6. Let r> 1/4, en = en-r• Then under the assumptions of Proposition 2 and 
Hln(a), as n --+ 00, 

Proof. Note that 

which can be shown to be op(1) using the methods of the previous lemma. D 
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Lemma 7. Let y* = min{c5,y} and en = en-r, r>O, o<e<oo. Then under the 
assumptions of Proposition 2 and H1ia), as n -+ 00, 

Proof. Under the set up of Lemma 5, but now with 3mn 
rv log n, inequality (21) and 

the mono tonicity of Llk(X) imply that 

and 

Llk- t('1nUk-t-l) - Llk-t(O) ::::;;Llk-t('1cnUk-t-l,C('1Cn)) - Llk-t(O) 

::::;; ILlk-t('1cnUk-t-I,t('1Cn)) - Llk-t(O)1 

+ ILlk-t('1CnUk-t-I,t('1Cn)) - Llk-t(O)1 

Llk- t('1nUk-t-l) - Llk-t(O) ~Llk-t('1CnUk-t-l,C('1Cn)) - Llk-t(O) 

~ ILlk-t('1CnUk-t-I,t('1Cn)) - Llk-t(O)1 

+ ILlk-t('1cnUk-t-I,t('1Cn)) - Llk-t(O)1 

Therefore 

sup ILlk-t('1nUk-t-l) - Llk-t(O) I ::::;; sup ILlk-t('1nsUk-t-I,sC'1ns)) - Llk-t(O)1 (28) 
l'Inl';; en s.;;3mn 

We obtain that the expectation of (28) is 

E sup ILlk-t('1nsUk-t-l,sC'1ns)) - Llk-t(O)1 
s~3mn 

3mn 

::::;; L EI Llk-t('1nsUk-t-I,sC'1ns)) - Llk-t(O)1 
s=o 
3mn 

(29) 

::::;; L [P{O < Bk-t < l'1nsUk-t-l,sC'1ns)l} + P{ -1'1nsUk-t-l,sC'1ns) < Bk-t < 01}]. (30) 
s=o 

The first probability is equal to, 

E[G(I'1nsUk-t-1,sC'1ns)l) - G(O)]::::;; sup g(x)EI'1nsUk-t-1,sC'1ns)1 = O(n-r log n), 
x 

applying Lemma 1 (c). The second probability is estimated in the same way, so that 
(30) is O(n-r log2 n). Similarly, 

E sup ILlk-t(Uk-t-l) - Llk-t(O)1 = O(n-r log2 n). 
l'Inl.;;en 
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Hence applying Holder's inequality we obtain that 

E sup In-I E rl t {Ll k- t('1nUk-t-l) - Llk- t(O)}Uk-I('1n) I 
l'1nl.;;en t=1 k=1 

n-I n 

::::;;n-I L rl LE sup ILlk-t('1nUk-t-l) - Llk-t(O)lIuk-I('1n)1 
t=1 k=1 l'1nl.;;en 

n-I n [ 1 y0/(l+1'") 
::::;;n-I L rl L E sup ILlk-t('1nUk-t-l) - Llk_t(O)I(I+1'")/y" 

t=1 k=1 l'1nl.;;en 

X (E sup IUk-1 ('1n)II+YO) Ij(1+y°) 
l'1nl.;;en 

= O({n-r log2 n}1'" j(1+y0) log n) = O(n-ryO j(1+y0) log3 n), 

completing the proof of the lemma, after noticing that, by Lemma l(a), (c), 

E sup IUk('1n)II+1'"::::;; E (E sup IIXj{'1n)11 Bk-j I) 1+1'" 
l'1nl.;;en j=1 l'1nl.;;en 

,. CE (t 1,,(-6l ,)II'k-j I) 1 +t 

,. C (t 1,,( -6l,)lf t 1,,( -B,)IEI',_i+t 

= O(log1+y
O n), 

using again Holder's inequality. D 

Lemma 8. Then under the assumptions of Proposition 2 and Hln(a), as n --+ 00, 

where sUPn EI<;nl = 0(1). 

Proof. We consider only the case 0<15< 1. We write 

t-I k 
Uk-I ('1n) = L IXi'1n)Bk-s + IXt('1n)Bk-t + L IXi'1n)Bk-s, 

s=1 s=t+1 

33



so that 

n-I n 

n-I L rl L Llk-t(O)Uk-1 ('1n) 
t=1 k=t+1 

n-I n t-2 

= n-I L rl L Llk-t(O) L 1Xs('1n)Bk-s (31) 
t=1 k=t+1 s=1 

n-I n 

+ n-I L rl L Llk-t(O)lXt('1n)Bk-t (32) 
t=1 k=t+1 
n-I n k 

+ n-I L rl L Llk-t(O) L 1Xs('1n)Bk-s. (33) 
t=1 k=t+1 s=t+1 

Consider (31). The expectation of its absolute value is bounded by 

(34) 

using that Llk(O)Bk+t-s are iid with 1 + y*th finite moment, t - s>O (see von Bahr and 
Esseen, 1965). 

Next, using the same argument, (32) equals -! EIBdn2 /6 + b4n, where Elb4nl = 
0(1), because by Lemma 1(b) 

n-I n n-I 
n-I L rllXt-I('1n) L 1 = L rllXt('1n)n - t 

t=1 k=t+1 t=1 n 
n-I n-I 

= L t-1IXt('1n) - n-I L IXt('1n) 
t=1 t=1 
n-I 

= L r2 + OO'1nD + O(n l'1n l-1 + n-Ilog n) 
t=1 

n2 

= 6+ 0(1) 
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and 

n-I t-I 
EI c54nl = L rl L (Xi'1n) {O(n4 /(1+1'") + n-I log n)} 

t=1 s=O 
= O(n-y°/(l+1'")loi n) = 0(1). 

Finally (33) is also O(n-1'"/(1+yO)log3 n), and this completes the proof of the 
lemma. D 

Lemma 9. Let y* = min(c5, y) and let r>(l + y*)/[2(1 + 2y*)], en = en-r, 0< e<oo. 
Then under the assumptions of Proposition 2 and Hln(a) 

Proof. We have that 

n-I 
L rIYti'1n) 
t=1 

n-I n 

= G(O) L rl n- I
/
2 L (LJk-t('1nUk-t-1 ('1n)) - LJk-t(O)) (35) 

t=1 k=t+1 
n-I rl n 

+ L nl/2 L LJk-t('1nUk-t-1 ('1n))g«(h'1nUk- 1 ('1n))'1nUk- 1 ('1n) , (36) 
t=1 k=t+1 

where (h E (0,1). By the proof of Lemma 6, (35) is op(1) uniformly over l'1nl::::;; en 
since r>(1 + y*)/[2(1 + 2y*)]>i· 

By the condition Ig(x) - g(O)I::::;; ClxFo
, y* = min(c5, y), we can rewrite (36) as 

n-I n 

g(O)'1n L rl n- I
/
2 L LJk-t('1nUk-t-1 ('1n))Uk-1 ('1n) + Pn, (37) 

t=1 k=t+1 

where for l'1n I::::;; en 

n-I n 

IPnl::::;; Cnl/21'1nl l+Yo L rln-I L IUk_I('1n)I!+Yo 
t=1 k=1 

= Op(nl/21'1i+Y°log n) = op(1) 

for r>(1 + y*)/[2(1 + 2y*)]. 
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The main term of (37) can be represented as 

n-I n 

g(0)'1nnl /
2 L r1n-

1 L {Ll k-t('1nUk-t-I('1n)) - Llk-t(O)}Uk-I('1n) (38) 
t=1 k=t+1 

n-I n 

+ g(0)'1nnl /
2 L r1n-1 L Llk-t(O)Uk-1 ('1n)· (39) 

t=1 k=t+1 

By Lemma 7, the expectation of the supremum of (38) over l'1nl :,;;JEJn is 0(1). 
Finally (39) is, under Hln(a), 

1 n2 

- 2" g(0)EI611 "6 () + !,;no 

where sup I!,;nl = op(1) by Lemma 8. D 
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