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Abstract

This paper proposes a model selection approach for the specification of the cointegrating rank in the VECM representation
of VAR models. Asymptotic properties of estimates are derived and their features compared with the traditional likelihood
ratio based approach.  1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

The specification of an accurate short and long run dynamic structure is a crucial preliminary step
in multivariate ARMA type time series models. Although the determination of the lag structure and
cointegrating rank (k and r hereafter) is usually not the final objective of a modelling exercise it might
have a great impact on subsequent inferences about the persistence of shocks, impulse responses,
variance decomposition, forecasting etc. The most commonly used strategy by practitioners involves
first obtaining an estimate of the lag length k using some information theoretic criterion or sequential
testing strategy and then determining the cointegrating rank within a p-dimensional VAR(k)
specification using the likelihood ratio based approach proposed by Johansen (1991). Although the
limiting distribution of the LR statistic depends solely on the number of common trends p 2 r and not
on the lag length k, in a misspecified VAR in which errors are not iid (due to an overly parsimonious
lag choice for instance), inferences that rely on the iid based tabulated distributions will be wrong
even asymptotically. Another undesirable feature of the sequential testing approach is the fact that by
construction it will not lead to a consistent estimate of r due to the constraint imposed by the size of
the test. This aspect might become particularly burdensome in large dimensional systems where the
build up of Type I errors can be considerable (see Gonzalo and Pitarakis (1995)). The primary
objective of this paper is to evaluate the asymptotic and finite sample properties of a model selection
based approach for the estimation of r and compare its behaviour with that of the traditional LR based
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strategy. Given the extensive coverage of the lag length selection issue in the recent literature (see
¨Lutkepohl, 1985, 1991; Gonzalo and Pitarakis, 1997, for an overview) our analysis will only focus on

the implications of a misspecified lag length on the competing approaches. The plan of the paper is as
follows. Section 2 will lay out the methodology and the asymptotic properties of the model selection
based estimates. Section 3 will evaluate their properties from a practitioner’s point of view and
Section 4 concludes.

2. The model selection approach

2.1. Asymptotic properties

We assume that the data are driven by a p dimensional VAR(k) model in which the long run impact
matrix has rank r where r 5 0, . . . , p and k 5 1, . . . ,K with K assumed to be a known upperbound for
k. We further let k and r denote the true lag length and cointegrating rank, respectively. More0 0

specifically we consider the following vector error correction representation for X 5 (x , . . . ,x )9t 1t pt

k 210

DX 5 PX 1 O GDX 1 e (1)t t21 j t2j t
j51

ˆwith e assumed to be a Gaussian iid(0,V ) process and V .0. Assuming that a particular estimate k oft

the unknown lag length has been obtained, we now view the estimation of r as a model selection
problem where one chooses a model among a finite portfolio of p11 competing models as follows

ˆr̂ 5 Min [IC(ruk )] (2)0#r#p

where

cTˆˆ ˆ ]IC(ruk ) 5 loguV(ruk )u 1 m . (3)rT

ˆ ˆV(ruk ) in Eq. (3) denotes the residual covariance matrix estimated from Eq. (1) under the
ˆrestriction that rank(P )5r and with k fitted lags. m represents the number of freely estimatedr

2 2 2ˆ ˆparameters, with m 52pr2r when k51 and more generally m 5p (k21)12pr2r and c is ar r T

deterministic penalty term. When c 52, Eq. (3) reduces to the well known AIC criterion (Akaike,T

1969, 1974), when c 5log T we have the BIC criterion (Schwarz, 1978) and c 52 log log T refers toT T

the HQ criterion (Hannan and Quinn, 1979). The following two propositions establish the main results
of the paper.

ˆProposition 2.1: Letting r denote the true rank of P in Eq. (1) and r the estimated rank obtained0 p
cTˆ ˆ ]from Eq. (2) with k$k , then r →r iff: (i) →0; and (ii) c →`.0 0 TT

Proof: See Appendix A.

ˆProposition 2.2: Letting r denote the true rank of P in Eq. (1) and r the estimated rank obtained0 p
cTˆ ˆ ]from Eq. (2) with k,k , then r →r iff: (i) →0; and (ii) c →`.0 0 TT
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Proof: See Appendix A.
It is well known that the LR based sequential testing strategy will lead to wrong inferences if

applied to a VAR(k) in which k,k since the iid errors assumption gets violated. An important feature0

of the model selection approach as pointed out in Proposition 2.2 is that a correctly specified or
overparameterized model is not a prerequisite for obtaining consistent estimates of the cointegrating
rank, provided that the penalty term used in the criterion satisfies conditions (i) and (ii). It is true that
when proceeding the conventional way it might always be possible to whiten the errors by adding
extra lagged dependent variables on the right-hand side of Eq. (1) but given the enormous distortions
one may face when degrees of freedom are scarce common sense often suggests a certain principle of
parsimony, especially when the system dimension is large. The consistency result in Proposition 2.2
allows greater flexibility and reduced risk in the trade off between the selected order and the available
degrees of freedom.

2.2. Computational aspects

ˆ ˆThe minimization problem in Eq. (2) involves the estimation of V(ruk ) across all possible values of
r, rendering the approach less practical than a straightforward computation of the LR statistic. It is
however possible to transform the expression of IC(r) so that it incorporates only the eigenvalues
(canonical correlations between DX and X ) used in the computation of the LR statistic, thust t21

rendering the approach straightforward to implement. Using the same notation as in Johansen (1991),
ˆ ˆ 9 ˆ ˆwe let S 51/T ou u for i, j50,1 where u and u are the residuals from the DX 5A DX 1ij it jt 0t 1t t 1 t21

. . . 1A DX 1u and X 5B DX 1 . . . 1B DX 1u regressions, respectively,k21 t2k11 0t t21 1 t21 k21 t2k11 1t
ˆwhen the model under investigation is a VAR(k). Next we let l with i51 . . . , p denote thei

21 21 ˆ ˆeigenvalues of S S S S with l $ . . . $l and where the LR statistic is given by LR52T11 10 00 01 1 p
p 21 21 21 21ˆo log (12l ). Since the eigenvalues of S S S S are the same as the ones of S S S Si5r11 i 11 10 00 01 00 01 11 10

21 21 21 21ˆ ˆand since V5S 2S S S it follows that uS u uV u5uI 2S S S S u, leading to the following00 01 11 10 00 p 00 01 11 10

relationship
r

ˆ ˆlog uV(r)u 5 log uS u 1O log(1 2 l ). (4)00 i
i51

Thus we can rewrite IC(r) as

r cTˆ ]IC(r) 5 log uS u 1O log(1 2 l ) 1 m . (5)00 i rTi51

To simplify the implementation of the approach even further we could focus on the minimization of
]] ]]
IC(r)5IC(r)2IC( p) for r50, . . . , p21 where IC(r) is given by

p
]] 2ˆIC(r) 5 2 T O log(1 2 l ) 2 c ( p 2 r) (6)i T

i5r11

]]
and IC( p)50. Thus, instead of having to run a set of reduced rank regressions, the only input required
to implement the above approach is the set of eigenvalues entering the LR statistic and which are
readily available from most packages.
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3. Performance study

In this section we evaluate the finite sample performance of the model selection approach and
compare its behaviour with that of the LR based strategy. We consider the implementation of the

1competing approaches on both properly specified and misspecified models in order to also highlight
the relative robustness of each technique when the fitted model is underparameterized. Within the
model selection approach in addition to the well known AIC, BIC, HQ type penalties we also
introduce an additional criterion (LCIC thereafter), the penalty of which is given by (log T 1

2 log log T ) /2 (i.e. a linear combination of the BIC and HQ). This alternative criterion clearly
satisfies both requirements of Proposition 2.1 or 2.3 and will therefore also lead to consistent
estimates of the cointegrating rank. The literature on model selection criteria is rich in ad hoc
suggestions of alternative penalty terms that could potentially overcome the empirically established
overly parsimonious estimates obtained by the BIC or the drawbacks of using weak or constant
penalty terms. In Zhang (1992), for instance, the author argued that penalty terms should lie between
1.5 and 5 under most circumstances. Our motivation for introducing the LCIC criterion follows this
same line of thought with the main concern of having a penalty term that could not only overcome
excessive parsimony or overranking in finite samples but also continue to satisfy the consistency
requirements.

We initially focused on a simple trivariate family of models given by x 5rx 1e , Dx 5e1t 1t21 1t it it

(i52,3), with e ;NID(0,I ) and r [[0.6,1] with increments of magnitude 0.05, thus allowing ourt 3

experiments to encompass both power and ‘size’ aspects. The sample size ranged from T5150 to
T5650 with increments of 100 across N52000 replications. For this experiment, all inference
strategies have been evaluated on a correctly specified model (i.e. by fitting k51 lags). There are three
main points that can be drawn from the correct decision frequencies (empirical probabilities of
selecting the true rank) displayed in Table 1. The AIC based correct decision frequencies display
practically no variability across all sample sizes, pointing to the correct rank approximately 50–60%
of the times across all values of r and T. Contrary to its popularity and overall good performance
when used for lag length determination purposes, in this framework it is clearly unreliable with a
strong tendency to overrank and no tendency to improve as T increases. Turning to the BIC criterion,
our results suggest that it performed as well as the LR based approach for values of r up to 0.80 but
subsequently failed to move away from r 50, clearly unable to detect the presence of a weak0

cointegrating relationship even for samples as large as T5650. Despite the fact that the criterion leads
to consistent estimates the consistency property is clearly not noticeable in finite and even moderately
large sample sizes when the alternative is close to the null. It is only when we experimented with
values of T greater than 1000 that we started observing a progression towards r . The HQ criterion on0

the other hand showed a relatively good performance, consistently outperforming the LR based
approach even across small sample sizes. Finally the LCIC criterion also showed a behaviour very
similar to that of the LR based strategy tracking its performance very closely. In summary, when
fitting the correct model, model selection criteria such as the HQ and LCIC performed very similarly
to the LR but none of the competing strategies stood out as a clear overall outperformer.

Next we focused on experiments where the model estimated with only one lag (k51) is
misspecified do to either VAR(1) or VMA(1) errors in the DGP. The latter case imply a true infinite

1 For our purpose properly specified and misspecified models refer to models where k5k and k,k , respectively.0 0

4



Table 1
Correct decision frequencies (%)

DGP: x 5rx 1e , Dx 5e (i52,3)1t 1t21 1t it it

r T5150 T5250 T5350 T5450 T5550 T5650

0.60 AIC 64 63 64 62 65 64
0.60 BIC 97 99 100 100 100 100
0.60 HQ 90 92 94 94 94 95
0.60 LR 94 95 94 94 95 95
0.60 LCIC 96 98 98 99 99 100
0.65 AIC 63 65 63 65 64 64
0.65 BIC 92 99 100 100 100 100
0.65 HQ 92 92 93 93 95 95
0.65 LR 94 95 94 94 95 94
0.65 LCIC 96 98 98 98 99 99
0.70 AIC 64 64 63 65 63 63
0.70 BIC 76 99 100 100 100 100
0.70 HQ 90 92 94 94 94 94
0.70 LR 89 94 95 95 94 94
0.70 LCIC 92 98 99 98 99 99
0.75 AIC 64 64 66 64 63 65
0.75 BIC 49 95 100 100 100 100
0.75 HQ 89 92 95 93 95 95
0.75 LR 77 94 96 94 95 96
0.75 LCIC 80 97 99 99 99 99
0.80 AIC 64 64 64 64 64 64
0.80 BIC 23 73 98 100 100 100
0.80 HQ 78 92 94 95 96 96
0.80 LR 54 92 95 95 96 95
0.80 LCIC 52 93 98 99 99 99
0.85 AIC 62 64 64 63 63 62
0.85 BIC 7 31 68 94 100 100
0.85 HQ 55 87 93 94 96 97
0.85 LR 31 75 94 95 96 96
0.85 LCIC 25 64 93 98 99 99
0.90 AIC 55 63 66 66 66 64
0.90 BIC 2 5 14 36 61 83
0.90 HQ 27 54 81 92 95 95
0.90 LR 14 36 67 88 94 95
0.90 LCIC 10 21 44 76 92 98
0.95 AIC 41 50 58 64 63 64
0.95 BIC 1 1 1 1 2 4
0.95 HQ 12 17 23 38 51 69
0.95 LR 6 10 16 27 42 59
0.95 LCIC 4 5 5 9 14 25
1.00 AIC 47 47 50 51 50 49
1.00 BIC 100 100 100 100 100 100
1.00 HQ 90 93 94 96 95 96
1.00 LR 96 96 96 95 96 96
1.00 LCIC 98 99 99 100 100 100
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order VAR in differences and the former a level VAR in which k 52. The motivation here is to0

evaluate the performance of the various strategies when a misspecified model is fitted to the data.
Although the literature provides well established techniques for whitening potentially dependent
errors, misspecification is a real risk when dealing with limited sample sizes. Table 2 presents correct
decision frequencies based on the following DGP: Dx 5u , u 5r u 1e with r 50.5, r 50.3,it it it i it21 it 1 2

r 50.2 and where e ;NID(0,I ). Thus, the true model is in fact a purely nonstationary VAR(2) with3 t 3

r 50. We considered the various rank selection strategies based on underfitted (k51,k 52) and0 0

correctly specified (k5k ) models. Results are summarized in Table 2. At this stage it is worth0

emphasizing the fact that within the underfitted case inferences based on the LR testing strategy will
be wrong since its ‘true’ asymptotic distribution will depend on the parameters driving the error
process and will not be the one tabulated in the literature under the iid errors assumption. This is
somehow reflected by the correct decision frequencies which although are reasonable in magnitude,
do not reflect the true ability of LR to detect the correct rank. Indeed it is interesting to observe the
clustering around 80% even for samples as large as T5650. The ‘consistent’ model selection criteria
(BIC, HQ, LCIC) on the other hand show a clear and rapid tendency to converge towards the correct
rank even when the estimated model is underparameterized. Although one might argue that since the
BIC has a tendency to cluster at r50 the figures might not reflect its true ability to select the true
rank, this criticism is not valid for the HQ and LCIC criteria which displayed an excellent
performance in smaller sample sizes and also converged rapidly towards r 50 as T was allowed to0

increase. When we reconsidered the same experiments by fitting the correct lag length (i.e. setting
k52 in the estimated models) the model selection criteria and the LR statistic showed a very similar
behaviour. The LR by construction selected the correct magnitude approximately 95% of the times
and the model selection criteria converged rapidly by selecting the true rank close to 100% of the
times. In summary this set of experiments suggest that when models are misspecified model selection
criteria such as the HQ and LCIC may be more reliable than the standard testing approach.

Finally, we evaluated the various strategies within a DGP with r 50 driven by moving average0

errors. More specifically we considered the following model: Dx 5e 2u e (i51,2,3) withit it i it21

Table 2
Correct decision frequencies (%)

DGP: Dx 5u , u 5r u 1e (i51,2,3), r 50.5, r 50.3, r 50.1it it it i it21 it 1 2 3

k,k T5150 T5250 T5350 T5450 T5550 T56500

AIC 30 33 34 31 34 33
BIC 92 94 95 97 97 98
HQ 66 72 75 77 78 80
LR 79 79 80 79 79 79
LCIC 83 87 89 91 91 93

k5k T5150 T5250 T5350 T5450 T5550 T56500

AIC 46 46 48 47 47 48
BIC 99 100 100 100 100 100
HQ 87 92 94 94 96 96
LR 94 96 95 96 97 96
LCIC 97 99 99 100 100 100
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Table 3
Correct decision frequencies (%)

DGP: Dx 5e 2u e (i51,2,3), u 50.5, u 50.2, u 51it it i it21 1 2 3

k51,k 5` T5150 T5250 T5350 T5450 T5550 T56500

AIC 16 14 12 12 14 12
BIC 81 85 87 87 88 87
HQ 50 49 55 54 55 56
LR 63 59 60 58 58 57
LCIC 70 71 75 75 76 77

u 50.5, u 50.2, u 50.1 and e ;NID(0,I ). The correct decision frequencies based on models fitted1 2 3 t 3

with only one lag are presented in Table 3. The LR based frequencies are again clustered at around
60% across all sample sizes, with no improvement tendency as T increases. The testing strategy is
again outperformed by the HQ and especially the LCIC based approaches in both moderate and larger
sample sizes.

Overall our experiments suggest that when the estimated model is misspecified due to residual
autocorrelation in the error process, the model selection criteria are more reliable than the
conventional LR based approach, despite the fact that a substantial sample size might be required for
the convergence to the truth to be visible. When the rank estimate is based on models fitted with the
correct lag structure, both the model selection and LR based strategies display very comparable
behaviour but the former did not seem to offer substantial improvements. This latter conclusion on
correctly specified models also supports earlier simulation based evidence documented in Reimers
(1993).

4. Concluding remarks

In this paper our objective was to evaluate both the theoretical and applied properties of a model
selection based approach for the estimation of the cointegrating rank in multivariate time series
models. We established that model selection based estimates have desirable asymptotic properties and
are more robust to underparameterization than the ones obtained via the LR testing approach. In finite
samples, although the performance of the IC based approach tracks very closely the LR based one
when both procedures are applied to a correctly specified model, when the estimated models are
underparameterized we found that the model selection procedure may provide significant improve-
ments.
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Appendix A

lProof of Proposition 2.1: Letting l.r , from Eq. (5) we have P[IC(l),IC(r )]5P[2To0 0 i5r 1102 2 lˆ ˆlog (12l ).c (2pl2l 22pr 1r )]. Since 2To log (12l ) is O (1), and the right-hand sidei T 0 0 i5r 11 i p0

diverges towards infinity from condition (ii), we have that lim P[IC(l),IC(r )]50 implying thatT →` 0
r0overrranking does not occur asymptotically. For l,r we have P[IC(l),IC(r )]5P[o log (120 0 i5l11

2 2 rc 0Tˆ ˆ]l ), (2pr 2r 1l 22pl)] and since plim(2o log (12l )).0, from condition (i) the right-i 0 0 i5l11 iT

hand side will converge to zero, leading to lim P[IC(l),IC(r )]50, thus implying that underrank-T →` 0
p

ˆing does not occur asymptotically. Taken together the above two results imply that r →r . In order to0

show that the requirements (i) and (ii) on the penalty term are necessary, let us suppose that c isT

bounded by some constant d. Condition (i) still holds and lim P[IC(l),IC(r )]50 ;l,r . ForT →` 0 0
l 2 2ˆl.r we have P[IC(l),IC(r )]5P[2To log (12l ).c (2pl2l 22pr 1r )] which will be0 0 i5r 11 i T 0 00

non-zero since the right-hand side does not converge towards infinity when c is bounded. There is,T

therefore, a positive probability of overranking (i.e. selecting l.r ). In order to see that (i) is0
cT]necessary suppose that it fails, with →c.0. Clearly (ii) is satisfied and for l.r we have0T

r0 ˆlim P[IC(l),IC(r )]50. When l,r , lim P[IC(l),IC(r )]5P[2o log (12l ),c(2pr 2T →` 0 0 T →` 0 i5l11 i 0
2 2r 1l 22pl)] and since c.0 the result follows.0

lˆ ˆProof of Proposition 2.2: When k ,k , the quantity 2To log (12l ) will not converge to the0 i5r 11 i0

same asymptotic distribution as in the correctly specified or overfitted model but will still remain
O (1), thus ensuring that lim P[IC(l),IC(r )]50 when l.r provided that c →`. Similarly,p T →` 0 0 T

r0 ˆplim(2o log (12l )) will remain positive despite the fact that it might not converge towards thei5l11 i
ˆsame limit as when k $k . This will, therefore, ensure that lim P[IC(l),IC(r )]50 when l,r0 T →` 0 0

cT]provided that →0.T
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