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1. INTRODUCTION 

The solution concept used in most applications of noncooperative game 
theory is Nash equilibrium [Nash (1951)]. A mixed strategy profile is a Nash 
equilibrium if no player can increase bis payoff by unilaterally changing bis 
strategy. Thus, Nash equilibrium presumes that the players' behavior is 
individualistic (Le., only "individual" rather than "coordinated" or "coali­
tional" deviations are considered), and also that players choose their 
actions independently (i.e., they use "mixed" rather than "correlated" 
strategies). 

This paper reports the results of an experiment designed to test whether 
these presumptions are appropriate when, as it is often the case in 
situations modelled as noncooperative games, preplay communication is 
possible, but binding agreements cannot be made. (In a Cournot oligopoly, 
for example, competitors may be unable to enforceably contract output 
levels due to antitrust regulation, although they may be able to freely 
discuss the outputs they intend to choose.) In the experiment subjects 
communicate by plain conversation prior to playing a simple game. In this 
setting, we find that the presumption of individualistic and independent 
behavior underlying the concept of Nash equilibrium is inappropriate. 
Instead, we observe behavior to be coordinated and correlated. Statistical 
tests reject Nash equilibrium as an explanation of observed play. The game 
has a correlated equilibrium which is immune to coalitional deviations, and 
which explains the data when the possibility of errors by players is 
introduced.1 

Our experimental results show that preplay communication introduces 
possibilities for coordination that may alter the outcome of a game in a 
fundamental way, and therefore that there is a need for solution concepts 
which account for these possibilities. Recently a number of such solution 
concepts were developed. These concepts presume that players coordinate 
their actions to their mutual benefit, although coordination is limited by 
the inability of players to commit. Among these, the concepts of strong 
Nash equilibrium (SNE) introduced by Aumann (1959), and coalition-proof 
Nash equilibrium (CPNE) developed by Bernheim et al. (1987) are perhaps 
best known. 

A strategy profile is a SNE if no coalition of players by changing their 
strategies can make its members better off. Hence a SNE is invulnerable 
to any deviation by any coalition. The concept of strong Nash equilibrium 
may be too strong as it requires that an equilibrium be invulnerable even 

lTo the best of our knowledge this experiment is the first providing empirical evidence of 
the play of a correlated equilibrium (which is not also a Nash equihbrium). 
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to deviations which are themselves vulnerable to further deviations.2 This 
problem with SNE was recognized by Bernheim et al. (1987), who pro­
posed the notion of CPNE: A strategy profile is a CPNE if no coalition has 
a self-enforcing deviation which makes its members better off. A deviation 
is self-enforcing if no proper subcoalition of the deviating coalition has a 
further self-enforcing deviation which makes its members better off. 

These solution concepts maintain the presumption that players choose 
their actions independently. When players can communicate, however, this 
presumption may not be appropriate. In the foIlowing game, which we 
refer to as the Three Player Matching Pennies Game (TPMPG), coordina­
tion may give rise to correlated play. 

Three players each simultaneously choose heads or tails. If aH three faces 
match, then players 1 and 2 each win a penny while player 3 loses two pennies. 
Otherwise, player 3 wins two pennies while players 1 and 2 each lose a penny. 

The matrix representation of the game is given in Table I below, where 
players 1, 2, and 3 choose, respectively, the row, the column, and the 
matrix. 

In this game, players 1 and 2 have completely common interests (either 
they both win a penny or they both lose a penny), and their interests are 
completely opposed to those of player 3 (when they win, player 3 loses two 
pennies, and when they lose, player 3 wins two pennies). If players 1 and 2 
can communicate, one might expect that they will coordinate their actions 
(i.e., they wiIl both choose heads or both choose tails) as they lose 
whenever their actions do not match. When players 1 and 2 act as a 
"team," the game effectively becomes the usual (two player) matching 
pennies game, which has a unique Nash (and unique correlated) equilib­
rium where each team chooses heads or tails with equal probability; i.e., 
with probability i players 1 and 2 both choose heads and with probability i 
both choose tails, while player 3 chooses heads or tails with equal probabil­
ity. The resulting probability distribution over action profiles O.e., corre­
lated strategy) is given in Table 11. As this probability distribution is not the 

2Indeed, in many games (e.g., the prisoners' dilemma) a SNE does not existo 
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product of its marginals, it cannot be generated by any mixed strategy 
profile. Thus, if players can communicate prior to play, one might not 
expect the players to choose their actions independently in this game. 

Einy and Peleg (1995) (E & P) and Moreno and Wooders (1996) (M & W) 
develop notions of coalition-proof correlated equilibrium (CPCE) which not 
only presume that players coordinate their actions to their mutual benefit, 
but also allow correlated play. A CPCE is a correlated strategy from which 
no coalition has a self-enforcing deviation which makes its members better 
ofe The notion of self-enforcingness used is the same as the one implicit 
in CPNE. Introducing the possibility of correlated play, however, makes it 
difficult to determine which deviations are feasible, and what is the 
appropriate criterion to use in deciding which deviations are improving. 
E & P and M & W take different approaches to resolving these difficulties, 
thereby obtaining different equilibrium notions. For the TPMPG, however, 
both equilibrium notions identify the correlated strategy in Table 11 as the 
game's unique CPCE. Milgrom and Roberts (1996) recently extended 
Moreno and Wooders' notion of CPCE to allow for the possibility that not 
all coalitions may be able to form, due perhaps to limited communication 
possibilities. Also Ray (1996) introduces a notion of coalition-proof corre­
lated equilibrium. (We do not discuss this notion here since it presumes, 
unlike the notions of E & P and M & W, that players' possibilities to 
correlate their play are limited to those achievable using an exogenously 
given correlating device.) 

The paper is organized as follows. In Section 2 we discuss the experi­
mental game and we study its equilibria. Section 3 discusses the experi­
mental designo Section 4 describes the experimental results and performs 

3Since deviations by a single player are always self enforcing, a CPCE must be a co"elated 
equilibrium [see Aumann (1974) and (1987)]. A correlated strategy is a correlated equilibrium 
if for every action profile which is selected with positive probability, no pi ayer, knowing only 
the action he is to play, can increase his expected payoff by taking a different action. The 
notion of correlated equilibrium admits the possibility of correlated play, although it main­
tains the presumption of individualistic behavior. 
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sorne preliminary tests of altemative hypotheses about players behavior. 
Section 5 studies the implications of introducing errors into the TPMPG. 
Section 6 is devoted to testing for coordinated and correlated behavior and 
to testing whether observed play can be explained by any of the solutions 
concepts discussed when players make errors. Section 7 concludes. 

2. EQUILIBRIA OF THE THREE PLAYER MATCHING 
PENNIES GAME 

Our experimental game is the TPMPG. This game is simple enough that 
equilibrium theory will have a good chance of succeeding in an experimen­
tal setting, yet the possibility of coordinated and correlated behavior play 
an important role. In this section we describe the equilibria of the 
TPMPG. 

Nash Equilibria and Coalition-Proof Nash Equilibria 

The pure strategy profiles (H, H, T) and (T, T, H), and the mixed 
strategy profile where each player chooses heads or tails with equal 
probability are the only Nash equilibria of the TPMPG. In each of the 
pure Nash equilibria players 1 and 2 each lose a penny, while player 3 wins 
two pennies. In the mixed strategy Nash equilibrium players 1 and 2 each 
obtain an expected payoff of -t, while player 3's expected payoff is l. 

None of the Nash equilibria is a CPNE: In each of the pure strategy 
Nash equilibria, the coalition of players 1 and 2 by jointly deviating in 
order to "match" player 3's action-i.e., both choosing T in the equilib­
rium (H, H, T), and both choosing H in the equilibrium (T, T, H)-can 
each win a penny. Both deviations are self-enforcing as neither player 1 
nor player 2 can gain by deviating further. Hence neither (H, H, T) nor 
(T, T, H) is a CPNE. The mixed Nash equilibrium is not a CPNE, as the 
deviation in which players 1 and 2 both choose T is also improving (players 
1 and 2 obtain a payoff of O) and self-enforcing. Therefore the TPMPG has 
no CPNE since a CPNE must be a Nash equilibrium.4 

Coalition-Proof Co"elated Equilibria 

We establish that the correlated strategy in Table 11, denoted by p*, is a 
CPCE of the TPMPG by showing that no coalition of players has an 
improving deviation. Clearly, neither player 1 nor player 2 can improve by 

~ SNE is always a CPNE since a SNE is invulnerable to improving deviations, self-en­
forcing or otherwise, by any coalition of players. Thus, the TPMPG does not have a SNE 
either. 
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unilaterally deviating, as they both lose whenever they choose different 
actions. In addition, given the strategies of players 1 and 2, player 3 obtains 
a payoff of zero regardless of the strategy he plays; therefore he cannot 
improve either by unilaterally deviating. (Hence p* is a correlated equilib­
rium.) Moreover, as player 3's interests are completely opposed to those of 
players 1 and 2, no coalition of more than one player which includes player 
3 has a deviation which is improving for all its members. Further, when 
player 3's action is selected according to p*, he chooses heads or tails with 
equal probability; hence players 1 and 2 obtain at most a payoff of zero 
from any deviation. Since they already obtain a payoff of zero when action 
profiles are selected according to p*, the coalition of players 1 and 2 does 
not have an improving deviation either. Thus, p* is a CPCE.of the 
TPMPG.5 

We now establish that although the set of correlated equilibria is large, 
the incentive constraints which guarantee that a correlated strategy is 
immune to coalitional deviations identify the correlated strategy p*. Thus, 
any equilibrium theory based on the presumption that players coordinate 
their actions to their mutual benefit, and which allows correlated behavior 
should identify this strategy as the game's unique equilibrium. Therefore, 
in addition to testing the notions of CPCE proposed by E & P and M & W, 
the present experiment provides a test for any equilibrium theory consis­
tent with these premises. 

Let P be an arbitrary correlated equilibrium, i.e., immune to individual 
deviations, and write Pijk for the probability of action profile 0, j, k) E 

{H, T)3. Consider the (self-enforcing) deviation by the coalition of players 
1 and 2 in which they both choose H with probability one. When player 3 
continues to choose his action according to p, then the probability that he 
chooses H is PHHH + PHTH + PTHH + PTTH; in this case players 1 and 2 
each win a penny. In any other case (i.e., when player 3 chooses T) players 
1 and 2 each lose a penny. Thus, if players 1 and 2 deviate to both 
choosing H, each obtains 

UD = PHHH + PHTH + PTHH + PTTH - PHHT - PHTT - PTHT - PTTT' 

For P to be immune to deviations of this kind it must satisfy UD :::;; U1(p) 
= U2(p), where U¡(p) denotes the expected payoff of player i when 
actions are chosen according to p. For P to be immune to the deviation in 
which players 1 and 2 both choose T with probability one, P must satisfy 
also - UD :s;; U1(p) = U2(p). Therefore, we have Uip) = Uz{p) ~ O. Fur­
ther, P must satisfy Uip) ~ O since otherwise it would not be immune to 

SIn fact, we have shown that p* is a "strong correlated equilibriurn," as it is irnrnune to any 
deviation (self-enforcing or otherwise) by any coalition. 
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the deviation in which player 3 chooses H and T with equal probability, 
independently of the choices of players 1 and 2-this deviation guarantees 
player 3 a payoff of zero. Since the game is zero sum, this implies 
U¡(p) = O for i = 1,2,3. 

We now complete the argument that if P is irnmune to coalitional 
deviations, then P = p*. Since P is a correlated equilibrium, the incentive 
constraints for player 3 require PTTH ;::: PHHH and PHHT ;::: PTTT. These 
two inequalities and U/p) = O imply PTTH = PHHH' PHHT = PTTT' and 
PHTH = PHTT = PTHT = PTHH = O. Using these probabilities to ca1culate 
Ulp) and UD, we have that U1(p);::: UD implies PTTT;::: PTTH' and 
U1(p) ;::: - UD implies PHHH ;::: PHHT. Thus, we get 

PTTT ;::: PTTH = PHHH ?=. PHHT = PTTT· 

Because these probabilities must add up to one, we have PTTH = PHHH = 

PHHT = PTTT = t· Hence P = p*, and therefore p* is the unique CPCE of 
the TPMPG. 

3. EXPERIMENTAL DESIGN 

In the version of the TPMPG played in the experiment, each player 
chose either circle or square. We adopted these labels for the strategies as 
the labels "Heads" and "Tails" are suggestive of randomization. A subject's 
role in the game was indicated by one of the colors "Blue," "Red," or 
"White." The game was described to the subjects as foHows: If aH three 
players choose the same figure Cthat is, if aH three choose circle or aH 
three choose square), then the Blue and the Red player each earn $7.50 
and the White player earns $0. In any other case, the Blue and the Red 
player each earn $0 and the White player earns $15.00. Subjects played the 
game only once. 

Subjects were recruited in groups of 12 for sessions lasting 1 hour.6 

None of the subjects had previously participated in the experiment. Prior 
to the subjects entering the lab, 12 computers were "linked" by software to 
form four groups of three computers. Each subject was seated at one of 
these computers. The game was played anonyrnously as subjects did not 
know which computers where in the same group. 

In order to provide the subjects with the rich communication opportuni­
ties presumed by the notions of coalition-proofness we discuss, each 
subject was able to cornmunicate both publicly and privately with the other 
members of his group. Subjects used their computers to communicate for 

6In seven sessions only nine subjects participated due to "no shows." 
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15 minutes before choosing their actions. To facilitate this communication, 
each subject's computer screen was divided into three windows. A label at 
the top of each window indicated which players could send messages to 
that window and which players could see that window's messages. 

A BIue player, for example, had windows labelled "BIue-Red," 
"BIue-White," and "BIue-Red-White." A BIue player could communi­
cate privately with the Red (White) player in his group by exchanging 
messages in the BIue-Red (BIue-White) window. A BIue player communi­
cated publicly through the BIue-Red-White window.7 The screen of a 
BIue player is displayed in Fig. l. 

The mechanics of exchanging messages were simple. To send a message 
to a particular window, a subject activated it by using his mouse to point 
and click on it. The subject then composed his message, which was 
displayed in the lower box of the window as it was typed. The message was 
sent when the subject used his mouse to point and click on the ~ubmit 

7A Red player had windows labelled Blue-Red, Red-White, and Blue-Red-White, while a 
White player had windows labelled Blue-White, Red-White, and Blue-Red-White. 

FIG. 1. A Blue player's screen. 
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button at the bottom of the window. A message sent to a window was then 
displayed on the screens of all the players listed in the window's label. A 
message sent to the Blue-Red window, for example, was displayed in the 
Blue-Red window of the screens of both the Blue and the Red player. 
Whenever a player sent a message, a tag was automatically attached which 
identified his color. The tag also indicated the hour and minute that the 
message was sent. 

A transcript of players' dialog in one of the sessions is given in Appendix 
B. In this transcript, the first message in the Blue-Red, Red-White, and 
Blue-Red-White windows were practice messages. The time spent ex­
changing these messages was not included in the 15 minutes of the 
communication phase.8 (Transcripts are available upon request.) 

Anonymity 

The solution concepts we discuss apply to situations where the players of 
the game cannot make binding agreements. Therefore, preserving the 
anonymity of subjects throughout the experiment was an essential feature 
of the experimental designo Had subjects not been anonymous, reneging on 
agreements would be costly and, in that case, agreements are no longer 
entirely nonbinding. Anonymity also had the important role of eliminating 
the possibility of credible promises of side payments. In order to preserve 
anonymity, subjects were instructed that they were not to send messages in 
which they identified themselves. They were also told that their messages 
would be monitored to insure that they did not identify themselves. No 
other constraints were placed on the content of messages. 

Expected Utility and Expected Monetary Payoff 

The TPMPG has only two outcomes; either the figures of aH three 
players are the same (a "win" for the Blue and the Red players and a 
"loss" for the White pI ayer), or they are not all the same (a win for the 
White player and a loss for the Blue and Red players). Therefore, provided 
that each player prefers the outcome where he wins (and obtains a higher 
monetary payoff in this case), and provided that each player's preferences 
over lotteries can be represented by a von Neumann-Morgenstem utility 
function, we can take monetary payoffs to be utility payoffs. Since payoffs 

8 Experimental games in which sorne subset of players has coincident interests, and 
therefore has an incentive to communicate truthfully, may be especially useful for experimen­
tal tests of a solution concept. In the TPMPG, for example, examination of the transcripts 
allows us to obtain an insight into what the Blue and the Red players expect the White player 
to do, and how these players formulate a plan for communicating with the White player. 
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in the experimental game can be obtained by positive affine transforma­
tions of the payoffs of the version of the TPMPG presented in the 
Introduction, the equilibria of these games are the same. 

One-Shot 

There are several reasons why one might want to avoid an experimental 
design where the game is played repeatedly. First, once the game is 
repeated, risk attitudes become relevant as risk averse players may have an 
incentive to coordinate their play in a way which reduces the riskiness of 
their payoffs. (As already noted, no assumption about the risk attitudes of 
players is necessary for the one-shot game.) Second, repetition (with fixed 
partners) raises the possibility of "renegotiation." A version of CPCE 
which accounts for renegotiation, and which is thus appropriate for dy­
namic games, has not yet been developed. Our design avoids these compli­
cations, and thus makes the interpretation of our results clear. Of course, 
in a one-shot design it is essential that the game be simple, since subjects 
will not have the chance to "learn" the game by playing it repeatedly. The 
TPMPG, however, is simple enough that we can be confident that it is 
understood at first play. This issue is discussed further in Section 6, where 
we test whether experience alters play. 

4. THE EXPERIMENTAL DATA 

Table III presents the empirical frequency of each action profile after 69 
plays of the TPMPG.9 The number in parentheses below each frequency is 
the number of times that profile was observed. In the game, each player 
had two actions, circle (C) or square (S). An action profile is a triple 

9The frequencies do not add up to 1 due to rounding. 

TABLE III 
Empirical Frequency Distribution 

e s 
e s e s 

e 0.261 0.072 e 0.217 0.029 
(18) (5) (15) (2) 

S 
0.014 0.188 

S 
0.029 0.188 

(1) (13) (2) (13) 
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0, j, k) in the set {e, sp of possible action profiles, where i, j, and k. 
denote, respectively, the action of the Blue (row), Red (column), and 
White (matrix) playero Blue and Red players won in 31 of 69 plays, a win 
frequency which is not significantly different from one half, the win 
frequency implied by the CPCE of the game. In the mixed Nash equilib­
rium this win frequency is only 25%, and in either of the pure Nash 
equilibria it is 0%. The hypothesis that this win frequency is 25% is 
rejected for degrees of significance as small as 0.005. Of course, the 
hypothesis that this win frequency is 0% is rejected at any level of 
significance. Blue players chose circle in 40 of the plays, while Red and 
White players chose circle in 36 and 37 plays, respectively. Each player's 
frequency of circle is not, however, statistically significantly different from 
one half. 

Next we investigate whether our data is consistent with the presumption 
of independent behavior underlying the concepts of Nash equilibrium, 
CPNE, and SNE. Our data can be regarded as a sequence of independent 
realizations of a multinomial random variable whose values are the ele­
ments of the set of possible action profiles. Different hypotheses about the 
data generating process can be framed as different restrictions on the 
multinomial distribution. Throughout we conduct hypothesis tests using 
the "likelihood ratio test." 

For each action profile (i, j, k) E (e, sp, denote by Pijk its probability. 
A sample can be represented by a vector n = (nijk)ijk E {e,s¡J' where each 
n ijk is the number of times action profile 0, j, k) was observed. Also 
denote by N the number of observations in a sample (Le., N = 
Lijk E (e, S}3 n ijk )· The log of the likelihood that a sample n was generated 
by a multinomial distribution P = (Pijk)ijk E {e, S}3 is 

l(p)=lna+ L nijklnpijk' 
ijkE (e, S}3 

where a = N!j(nijkE{e,s¡J n ijk !). 
We first consider the null hypothesis that in our sample all three players 

chose their actions independently against the alternative hypothesis that 
they did not (Le., that the sample was generated by an arbitrary multino­
mial distribution).lO Under the null hypothesis, the likelihood attains its 
maximum at Pi~k = (n i .. n.j .n .. k)jN

3, where ni.) n.j ., and n .. k are, respec­
tively, the number of times that Blue players chose action i, Red players 

lO We test for independence using maximum likelihood ratio tests, rather than using a 
simpler goodness of fit test, since maximum likelihood techniques will become necessary for 
our later analysis. 
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.chose action j, and White players chose action k. Under the altemative 
hypothesis, the likelihood attains its maximum at filjk = nijk/N. The 
likelihood ratio, given by 

is asymptotically distributed as chi-square with 4 degrees oí íreedom. The 
degrees oí íreedom are the difterence between the dimension oí the 
parameter space under the altemative hypothesis (7 in this case) and 
under the null hypothesis (3 in this case). Tests oí pairwise independence 
are constructed in a similar íashion [see, e.g., Mood et al. (1974)]. 

The results oí likelihood ratio tests oí independence oí players' actions 
are given in Table IV below. The column X5.05 provides a value such that 
ií the likelihood ratio exceeds this value, then the null hypothesis is 
rejected at the 0.05 significance level; the number in parentheses indicates 
the degrees oí íreedom oí the chi-square. 

The hypothesis that the actions oí all three players are independent is 
rejected at the 0.05 significance level. In íact, it is rejected íor significance 
levels as small as 0.005. The source oí this rejection is the apparent 
correlation in the actions oí Blue and Red players; the hypothesis that the 
Blue and Red players choose their actions independently is rejected at 
significance levels as small as 0.005. The hypotheses oí pairwise indepen­
dence between Blue and White and between Red and White are not 
rejected at the 0.05 level oí significance. 

Although these results are inconsistent with the presumption oí inde­
pendence implicit in the concept oí Nash equilibrium, on the basis oí these 
tests alone one cannot conclude that observed behavior is not the result oí 
Nash equilibrium play. Difterent Nash equilibria in diííerent plays oí the 
game could lead to the appearance oí correlation, even ií actions in any 

TABLEIV 
Likelihood Ratio Tests of Independence 

Null: Independence of Likelihood 
players' actions X6.05 ratio 

Blue-Red-White 9.49 (4) 40.71 
Blue-White 3.84 (1) 0.58 
Red-White 3.84 (1) 0.02 
Blue-Red 3.84 (1) 339.70 
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given play were independent. In Section 6 we test this hypothesis. The 
results of the tests of independence, however, are consistent with the 
prediction of CPCE that Blue and Red players correlate their actions, and 
that the actions of Blue and Red players are uncorrelated with the actions 
of White players. 

The presumption that players coordinate their actions to their mutual 
benefit implies for the TPMPG that Blue and Red players choose the same 
figure. Indeed, this occurred in 59 plays. Nonetheless, Blue and Red 
players "failed to coordinate" in 10 of the 69 plays, which is inconsistent 
with CPCE. 

Examining the transcripts provides sorne insight into the sources of 
coordination failures. The most common source of coordination failures is 
Blue or Red players proposing, in the Blue-Red window, a last-minute 
change in the figure to be chosen (this seems to explain four of the 
observed coordination failures). Such a proposal by a Blue player, for 
example, left the Red player uncertain of how to play. The second most 
common cause of coordination failures was a player choosing a figure 
different from the one he agreed to choose (this was the case in three 
plays). One coordination failure seemingly was due to a player's failure to 
understand the game; another coordination failure occurred when the 
entire communication phase was consumed discussing the strategy of play, 
thereby leaving the Blue and the Red players no time to select a figure to 
coordinate on. Only one coordination failure seems to have been due to 
Blue and Red players failing to recognize the benefits of coordination. We 
note also that in two plays the Blue and Red players fail to recognize the 
benefits of coordination, yet choose the same figure, resulting in "unex­
pected" coordination successes. We conclude that explaining player behav­
ior requires accounting for the possibility that players make errors. In the 
next section we present a model of play in the TPMPG which admits this 
possibility. 

5. THE THREE PLAYER MATCHING PENNIES GAME 
WITH ERRORS 

In experimental settings there are a number of elements that might lead 
a player to choose an action different from the one he intended: a player 
may misunderstand the rules of the experimental game, or he may simply 
make an error. In our experiment, there is also the possibility that a 
player's choice of an action may be based on a "miscommunication" (i.e., a 
message may be 'misinterpreted, the source of a message may be confused, 
or a message may be sent to a player different from the one intended). A 
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theory which ignores the possibility of errors might be rejected, even 
though it correctly predicts "intended behavior." 

We introduce the possibility of errors into the TPMPG by assuming that 
when a player selects a figure, with probability 1 - e he chooses the figure 
he intended, but with probability e he chooses a figure randomly (Le., he 
chooses "square" or "circle" with equal probability). We assume that aH 
players make errors with the same probability, that the errors of players 
are independent, and that the error structure is common knowledge. 

The TPMPG combined with errors by players yields a new game which 
we denote by TPMPG( e). In this new game, apure strategy for a player is 
interpreted as the action he intends to play. The payoff of each player for 
each profile of intended actions is given in Table V below, where w = 
7.5pw(e), and 1 = 7.5p¡(e). The term pw(e) = 1 - ~e + te2 is the proba­
bility that aH the players choose the same figure when aH the players 
intend to choose the same figure, and p¡(e) = !e - te2 is this probability 
when one of the players intends to choose a figure different from the 
figure of another player. For error rates e less than one, the payoffs in the 
TPMPG( e) can be obtained by positive affine transformations of the 
payoffs in the original TPMPG, and therefore the equilibria of these 
games are the same. 

In the TPMPG( e) it is necessary to make a distinction between intended 
actions and actual actions (Le., the actions that are observed). The proba­
bility distribution over intended actions is generaHy different from the 
probability distribution over actual actions, the latter distribution depend­
ing on the error rate. Thus, although the equilibria of the TPMPG and 
TPMPG( e) are the same, the probability distributions over profiles of 
actual actions corresponding to these equilibria are generaHy different. 
(An exception is the mixed Nash equilibrium.) Henceforth denote by 
(}k = (e/2)k(1 - (e/2»3-\ the probability that exactly k players choose 
an action different from the one intended. 

TABLE V 
The Three Player Matching Pennies Game (E) 

e 
e 

e w, w,(15 - 2w) 
S 1,1, (15 - 21) 

s 

1,1, (15 - 21) 
1,1, (15 - 21) 

e 
s 

e 

1, 1, (15 - 21) 
1, 1, (15 - 21) 

s 
s 

1,1, (15 - 21) 
w,w,(15 - 2w) 



15

Nash Equilibria of the Three Player Matching Pennies Game 
with Errors 

Each of the Nash equilibria gives rise to a probability distribution over 
actual action profiles of the form given in Table VI below.u The probabili­
ties Pk differ for each of the equilibria: when the players intend to play the 
pure strategy Nash equilibrium (S, S, C), then Pk = fh; when they intend 
to play the pure strategy Nash equilibrium (C, C, S), then Pk = 83 - k ; 

finally, if the players intend to play the mixed strategy Nash equilibrium, 
then Pk = i· 

Coalition-Proof Nash Equilibrium of the Three Player Matching 
Pennies Game with Errors 

In the CPCE of the TPMPG( e), with probability ! the Blue and the 
Red players both intend to choose square and with probability ! they both 
intend to choose circle, while the White player intends to choose each 
figure with equal probability. The probability distribution over actual 
action profiles is given in Table VII, where {) = e(l - (e/2)) is the 
probability that the Blue and the Red players fail to coordinate their 
actions. Unlike the probability distribution over intended action profiles 
(see Table 11), the probability distribution over actual action profiles gives 
each outcome a positive probability. Hence when players make errors, the 
likelihood of any finite sample is positive under the hypothesis that players 
play the CPCE of the game. Thus, we can no longer automatically reject 
this hypothesis if there is a coordination failure. 

11 The labels e and S in this table now represent actual (i.e., observed) actions, whereas in 
Table III they represented intended actions. 

e 
s 

TABLE VI 
Nash Equilibria in the Three Player Matching Pennies Game (E) 

e 

pz 
Pl 

e 
s 

Pl 
Po 

e 
s 

e 

P3 
Pz 

s 
s 

Pz 
Pl 
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e 

S 

TABLE VII 
Coalition-Proof Nash Equilibrium in the Three Player Matching Pennies Game 

e s 
e s e s 

1-iJ iJ 1 - iJ iJ 
e 

4 4 4 4 
iJ 1-iJ iJ 1 - iJ 

4 4 
S 

4 4 

6. TESTS OF HYPOTHESES IN THE THREE PLAYER 
MATCHING PENNIES GAME WITH ERRORS 

In this section we analyze the experimental data in the context of the 
TPMPG(e). We test the underlying assumptions of the alternative solution 
concepts (Le., independent versus correlated behavior, and individualistic 
versus coordinated behavior), and also we test alternative equilibrium 
theories. Finally, we discuss the results of experiments designed to test 
whether experience reduces the frequency of errors. We begin by deriving 
the likelihood function for each of the hypotheses of interest. 

Independent Behavior 

In Section 4 we reported the results of tests of independence of the 
players' (actual) actions. The presumption of independence in the 
TPMPG( e) pertains to players intended actions rather than to their actual 
play. It is easy to check, however, that since players make errors indepen­
dentIy, whenever players intend to choose their actions independentIy, 
then actual actions are also independent. Hence incorporating the possibil­
ity that players make errors do es not increase the maximum likelihood 
under the hypothesis of independence, and the results of tests of indepen­
dence for the TPMPG( e) are the same as those reported in Section 4 for 
the TPMPG. 

Coordinated Play 

As we noted in Section 4, the presumption that players coordinate their 
actions to their mutual benefit would lead Blue and Red players always to 
choose the same action. Thus, under the null hypothesis of coordinated 
behavior, intended actions are selected according to a multinomial distri-



17

bution P = (Pijk)ijk E (e,sj3 satisfying 

Pece + Pees + Psse + Psss = 1. 

In this case, actual actions are selected according to the multinomial p 
given by 

Pijk = Pijk (jo + (p -. ijk + Pi-. jk + Pij-. k) (jI 

+ (p -. i-. jk + P -. ij-. k + Pi-. j-. k) (j2 + P -. i-. j-. k (j3' 

where --, r = S if r = C, and --, r = C if r = S. The likelihood of our data 
under the hypothesis that Blue and Red players coordinate their actions is 
obtained by replacing these probabilities in Eq. ( * ). 

Nash Equilibrium 

Since the TPMPG has multiple Nash equilibria, an appropriate test for 
whether our data was generated by Nash equilibrium play must allow the 
possibility that observed play is the result of a "mixture" of Nash equilib­
ria. When the pure strategy Nash equilibria (S, S, C) and (C, C, S) gener­
ated a proportion Al and A2 of the observed plays, respectively, and the 
mixed Nash equilibrium generated the remaining observed plays, the 
probability distribution over actual actions is of the form in Table VI, 
where 

From this multinomial distribution one can calculate the log likelihood 
function using Eq. ( * ). For our data this function is 

INE(A l , A2, E) = In a + 13 In Po + 19ln PI + 22ln P2 + 15ln P3. 

Coalition-Proof Correlated Equilibrium 

The probability distribution over actual action profiles that results when 
players choose their actions according to the CPCE of the TPMPG( E) is 
described in Table VII. Given a sample n, denote by NF the number of 
observations where the Blue and the Red players fail to coordinate their 
actions (i.e., NF = nese + nsee + nses + ness ). Using Eq. (*), one can 
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calculate the log likelihood that the observed data was generated by the 
CPCE of the game as 

8 1 - 8 
¡CPCE( E) = In a + NF ln¡ + (N - NF )ln-

4
-. 

For our sample, NF = 10 and N = 69. 

Results 

The results of our tests are presented in Table VIII below. The first row 
contains the maximum likelihood estimate of the error rate and the value 
of the likelihood ratio under the null hypothesis that Blue and Red players 
coordinated their actions. At the 0.05 significance level we fail to reject 
this null hypothesis. Thus, the presence of coordination failures in our data 
can be explained as the result of players' errors. 

The second row contains the maximum likelihood estimate of the error 
rate and the value of the likelihood ratio under the null hypothesis that 
the data was generated by a mixture of the three Nash equilibria, against 
the alternative that the data was generated by sorne arbitrary multinomial 
distribution. According to the likelihood ratio test, this null hypothesis is 
rejected at the 0.05 level of significance; in fact, it is rejected for levels of 
significance as small as 0.005. Although we do not report the tests here, 
each of the null hypotheses that the data was generated by the mixed or 
either of the pure Nash equilibria of the game is also rejected. 

The third row of Table VIII shows the results of the maximum likeli­
hood estimation of the error rate, and the value of the likelihood ratio 
under the null hypothesis that the data was generated by the CPCE of the 

TABLE VIII 
Tests of Hypotheses in the Three Player Matching Pennies Game (E) 

Null hypothesis X6.05 e Likelihood ratio 

Coordinated playa 7.82 (3) 0.1592 3.16 
Mixture of NE b 9.49 (4) 0.5437 34.61 
CPCE 12.59 (6) 0.1573 4.42 

aThe parameter estimates are Pece = 0.32, Pees = 0.22, and Psse = 0.22. 
These estimates were obtained using Gauss. The standard errors of these 
estimates are, respectively, 0.067, 0.058, and 0.060; the standard error of the 
estimated error rate is 0.051. 

b A A 

The parameter estimates are Á1 = 0.4493 and Á2 = 0.5507, with standard 
errors of, respectively, 0.0891 and 0.0891; the standard error of the estimated 
error rate is 0.0863. 



19

TPMPG( fE). The maximum likelihood estimator of the error rate is 

(The second order condition for a maximum is that NF < N /2, a condition 
which is satisfied by our data.) According to the likelihood ratio test we fail 
to reject this hypothesis at the 0.05 significance level. In fact, we fail to 
reject this hypothesis for significance levels as large as 0.5. 

The failure to reject the null hypothesis that the data was generated by 
the CPCE of the TPMPG( fE) against the altemative that it was generated 
by an arbitrary multinomial distribution is very robust with respect to the 
error rateo The curve in Fig. 2 below shows the value of the likelihood ratio 
as a function of the error rateo A horizontal line was drawn at the value 
12.59. (A chi-square with 6 degrees of freedom is less than 12.59 with 
probability 0.95). At a 0.05 significance level, we fail to reject the null 
hypothesis that the data was generated by the CPCE of the TPMPG( fE) for 
a large range of error rates (any rate in the interval [0.054,0.353]). 

It is worth pointing out that at the 0.05 significance level we do not 
reject the null hypothesis that the data was generated by the CPCE of the 
game against the altemative hypothesis that it was generated by an 
arbitrary correlated equilibrium. Denoting the maximum value of the log 
likelihood under the null and altemative by ¡CPCE and ¡CE, the likelihood 
ratio for this test satisfies 

24 

22 

6 

0.3 0.4 0.5 

FIG. 2. Likelihood ratio for CPCE as a function of E. 
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where 1 A is the maximum value of the log likelihood under the hypothesis 
that the data is generated by an arbitrary multinomial. (The inequality 
follows from the fact that ICE ::s; lA since the hypothesis that the data was 
generated by an arbitrary correlated equilibrium is more restrictive than it 
having been generated by an arbitrary multinomial. Likelihood ratio values 
are taken from Table VIII.) Also under the alternative that the data was 
generated by a correlated equilibrium, the parameter space has a dimen­
sion no less than three as there are at least four linearly independent 
correlated equilibria (the three Nash equilibria and the CPCE); therefore 
the likelihood ratio is asymptotically distributed as a chi-square with 
k ~ (3 - 1) degrees of freedom. Thus, 

Xlos(k) ~ Xlos(2) = 5.99 > 4.42 ~ _2(ICPCE _ICE), 

and hence we fail to reject the null that the data was generated by the 
CPCE against the alternative that it was generated by an arbitrary corre­
lated equilibrium. 

We continue to reject the null hypothesis that the data was generated by 
a mixture of the Nash equilibria even with the more restrictive alternative 
that the data was generated by an arbitrary correlated equilibrium. The 
likelihood ratio for this test satisfies 

-2(lNE - ICE) = -2(lNE -lA) + 2(lCE -lA) 

~ -2(INE -lA) + 2(lCPCE -lA) 

= 34.61 - 4.42 = 30.19. 

(The inequality follows from the fact that ICE ~ ICPCE.) On the other hand, 
the likelihood ratio is asymptoticalIy distributed as a chi-square with 
k ::s; 7 - 3, as the dimension of the parameter space under the alternative 
hypothesis is no greater than 7. The result follows since 30.19 > 9.49 = 

xtos(4) ~ xtos(k). 

Experience and Errors 

Although our statistical tests support the CPCE of the TPMPG(e-) as an 
explanation of observed behavior, the frequency of coordination failures in 
our data might be regarded as "high." This seemingly high frequency of 
coordination failures might have been due to the subjects' lack of experi­
ence with the game, as they played the game only once. In order to test 
whether experience reduces the frequency of coordination failures, we ran 
five sessions in which 12 subjects played the TPMPG three times.12 Mter 

12Subjects were told that they were going to play the game "several times" (they were not 
informed of how many), each time with different partners. 
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each play, a subject was informed of his earnings for that play and the 
choices of the other members of his group. Subjects were then rematched 
so that no two subjects were members of the same group more than once. 
Each of these sessions therefore produced four first plays, four second 
plays, and four third plays. Table IX below presents the results of these 
experiments; each entry n}jk - n;jk - ntjk indicates the number of times 
action profile ijk E {e, S}3 was observed in, respectively, the first, the 
second and the third play. 

Testing whether experience leads to fewer coordination failures amounts 
to testing whether experience reduces error rates. Note that the data 
reported in Table III as well as the data for first plays reported in Table IX 
correspond to observed play of "inexperienced" subjects. Thus, provided 
that the changes in the experimental design under which these new 
observations were generated were not significant, it is appropriate to pool 
this data. We therefore test the null hypothesis that the data reported in 
Table nI and the data for first plays reported in Table IX are drawn from 
the same multinomial distribution against the alternative that they are 
drawn from different multinomials. The likelihood ratio for this test is 5.71 
and therefore we fail to reject this null at the 0.05 significance level since 
5.71 < X.~5(7) = 14.1.13 

In order to test for an experience effect, we therefore pool the data in 
~III~~~~~~~~OC~~~~~~ 
subsequent plays, Le., second and third plays. We then test the null 
hypothesis that the error rate for first plays (89 observations) and the error 
rate for subsequent plays (40 observations) are the same against the 
alternative that they differ. (In each case, maintaining that ~tended play is 
governed by the CPCE.) Since the likelihood ratio for this test is 4.564 > 

13Neither can we reject the null hypotbesis that error rates for the data in Table III and for 
first play data in Table IX are the same against the alternative that they differ, when we 
maintain that intended play is governed by the CPCE. 

e 
s 

e 

8-7-6 
1-0-0 

e 

TABLEIX 
Experience: Empirica! Distribution 

s 

0-0-0 
3-2-2 

e 
s 

e 

4-8-7 
0-0-1 

s 
s 

1-0-0 
3-3-4 
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X.~5(1) = 3.84, we reject this null. 14 (The estimated error rate under the 
null is 0.1064, while under the altemative the estimated error rate is 0.1454 
íor first plays and 0.0253 íor subsequent plays.) Thus experience leads to 
lower error rates. 

Summary 

In summary, our experimental data supports the presumption oí coordi­
nated play, and it strongly rejects the presumption oí independent behav­
ior. Moreover, it supports the hypothesis that the data was generated by 
play oí the CPCE oí the game, while it clearly rejects the hypothesis oí 
Nash equilibrium play. We should note also that although the experiment 
does not allow one to test the predietive power oí the notions oí eoalition­
prooí Nash equilibrium or strong Nash equilibrium (neither type oí equi­
libria exists íor the TPMPG), it provides sorne evidenee against these 
notions as both presume that players ehose their aetions independentIy. In 
addition, neither identifies a eoalition-prooí equilibrium even though there 
is an intuitively compelling one, the CPCE oí the game, whieh is supported 
by the data. 

7. CONCLUSIONS 

The results oí our experiment stress the importanee oí aeeounting íor 
eoordinated play in noneooperative games with preplay eommunieation. 
Moreover, the experiment strongly suggests that the players' attempt to 
realize mutual gains naturally leads to correlated play. Indeed, in many 
applieations oí noneooperative games the situations under study are ones 
where the players have rieh opportunities to eommunicate prior to play. In 
these applieations, the use oí Nash equilibrium as "the" solution concept 
may not be appropriate. Instead, one should investigate the behavior 
predicted by solution eoneepts that aceount íor the possibilities íor coordi­
nation there might be. More stringent experimental tests oí such concepts 
would consider games in which the equilibrium does not call íor the 
players to choose each oí their actions with equal probability. Such a 
strategic situation is more complex and it seems likely that experience may 
playa greater role than in the present experiment. We regard a full 
examination oí these issues as being an interesting direetion íor further 
research. 

14At the 0.05 significance level, the critical value for the alternative that the error rate for 
subsequent plays is lower than for first plays is 2.71, therefore leading to a stronger rejection 
of the nul1. 
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An alternative approach to dealing with preplay communication is to 
transform the game, introducing explicitly any opportunities to communi­
cate the players might have. There are two potential difficulties with this 
approach: First, it might simply be infeasible when opportunities to com­
municate are rich and unstructured. (With "plain conversation," for exam­
pIe, there is no prespecified arder in which messages may be sent and no 
restriction on the content of messages.) Second, even when communication 
opportunities are limited and structured, and therefore they can be mod­
elled explicitly, taking the Nash equilibria of the transformed game as the 
prediction of play ignores the possibilities for coordinated play that com­
munication might bring about. Moreover, this approach leads to very weak 
predictions: For any Nash equilibrium of the original game there is a Nash 
equilibrium of the transformed game where the players choose their 
messages arbitrarily and then, ignoring all messages, choose their actions 
according to a Nash equilibrium of the original game. 

A feasible and perhaps more practical approach is to devise solution 
concepts which account for communication opportunities implicitIy. More­
over, this approach might lead to stronger predictions. In the TPMPG, for 
example, there is a continuum of correlated equilibria, but only one CPCE. 

APPENDIX A: INSTRUCTIONS 

To control for the possiblity that the order of the presentation of the 
examples may introduce bias in the play, we used two sets of instructions 
which differed in the order the examples were presented, but did not differ 
in any other respecto We could not reject the hypothesis that the data 
generated using different sets of instructions carne from the same proba­
bility distribution. 

Instructions 

If at any time you have a question as I go through these instructions, 
please raise your hand. During this experiment, you may not speak to 
other participants. 

In tbis experiment, you and the other participants have been divided 
into groups of three players. Y ou will play a simple game with the other 
two members of your group. In every group there is one BIue, one Red, 
and one White playero (Please turn over the envelope at your station. The 
color of the sticker on the envelope at your station tells you which type of 
player you are.) Y our monetary earnings from playing the game are 
determined by your color and the choices made by the players in your 
group. 

You will play tbe game only once! 
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Communication 

Before making your choice, you will have the opportunity to communi­
cate with the other members of your group. Y ou communicate by using 
your computer to send and to receive messages. To help you do this, the 
screen in front of you is divided into three windows. Y ou can send 
messages to any of these windows. The label at the top of a window tells 
you which players in your group can see that window's messages. In order 
to show you how you can send messages, you will send a practice message. 

Instructions for Blue Players 

If you are a Blue player, your screen displays the three windows shown 
on the overhead. These windows are labelled Blue-Red, Blue-White, and 
Blue-Red-White. (If you are a BIue player and your screen does not show 
these windows, please raise your hand.) 

y ou can send messages to any window on your screen. Only you and the 
Red player in your group can see messages in the Blue-Red window. Only 
you and the White player in your group can see messages in the Blue-White 
window. AH three players in your group can see messages in the 
Blue-Red-White window. 

y ou will now send a practice message to the Red player (but not the 
White player) in your group. If you are a BIue player, please do the 
following. 

(1) Use your mouse to point and click on the lower box in the 
Blue-Red window; 

(2) type"Hi, this is a rnessage to Red." 

(3) Use your mouse to point and click on the §ubmit button at the 
bottom of the Blue-Red window. 

y our screen now appears as displayed on the overhead. The message you 
just typed is displayed in your Blue-Red window. 

y ou can send messages to White (but not to Red) from the Blue-White 
window, and you can send messages to both Red and White from the 
Blue-Red-White window. 

Instruclions lo Red Players 

If you are a Red player, your screen displays windows labelled Blue-Red, 
Red-White, and Blue-Red-White, as shown in the overhead. (If you are a 
Red player and your screen does not show these windows, please raise 
your hand.) 
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Notice that the message just typed by the Blue player appears in your 
Blue-Red window. At the end of the message is a label which identifies 
Blue as the sender of the message. 

y ou will now send a practice message to the White player (but not the 
Blue player) in your group. If you are a Red player, please do the 
following. 

(1) Use your mouse to point and click on the lower box in the 
Red-White window; 

(2) type "Hi, this is a message to Whi te." 

(3) Use your mouse to point and click on the ~ubmit button in the 
Red-White window. 

Your screen now appears as displayed on the overhead. Y our message to 
White is displayed in your Red-White window. 

You can send messages to Blue (but not to White) from the Blue-Red 
window, and you can send messages to both Blue and White from the 
Blue-Red-White window. 

Instructions to White Players 

If you are a White player, your screen should display the three windows 
shown in the overhead. The windows are labelled Blue-White, Red-White, 
and Blue-Red-White. (If you are a White player and your screen does not 
show these windows, please raise your hand.) 

Notice that the message just typed by the Red pi ayer appears in your 
Red-White window. 

y ou will now send a practice message to both the Blue and the Red 
player in your group. If you are a White player, please do the following. 

(1) Use your mouse to point and click on the lower box in the 
Blue-Red-White window 

(2) type "Hi, this is a message to both the other 
players." 

(3) Use your mouse to point and click on the ~ubmit button in the 
Blue-Red-White window. 

y our screen now appears as displayed on the overhead. Y our message 
appears in your Blue-Red-White window. Your message also is displayed 
in the Blue-Red-White window of the Blue and the Red players in your 
group. 

You can send messages to Blue (but not to Red) from the Blue-White 
window, and you can send messages to Red (but not to Blue) from the 
Red-White window. 
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In this experiment you will remain anonymous. As preserving anonymity 
is important, you may not send messages that in any way identify yourself. 
y ou may not, for example, send a message which gives your name or your 
phone number. The messages you send will be monitored in order to 
insure that you do not identify yourself. 

The Game: Choices and Eamings 

If you have a question as I read through the remaining instructions, 
please raise you hand and a monitor will approach you to answer your 
question. 

Please open the envelope at your station. Inside you will find a sheet of 
papero On the side labelled "Record Sheet," please copy the number on 
your bingo ball in the space for "Subject ID." Keep the ball as it is the 
only way in which we can identify you. 

I will now describe the game that you play with the other members of 
your group. In the game, each player chooses either circle or square. Y our 
earnings are determined according to the following rules: 

• If aH three players in your group choose the same figure (that is, if 
all three choose circle or all three choose square), then 

-BIue earns $7.50. 
-Red earns $7.50. 
- White earns $0. 

• If any player in your group chooses a figure different from another 
player, then 

-Blue earns $0. 
- Red earns $0. 
-White earns $15. 

These rules are summarized by the following tableo (A copy of this table 
is on the other side of your record sheet.) 

Choices Eamings 

Blue Red White Sarne figures? Blue Red White 

O O O Yes $7.50 $7.50 $0 

O O O No $0 $0 $15 

O O O No $0 $0 $15 

O O O Yes $7.50 $7.50 $0 

O O O No $0 $0 $15 

O O O No $0 $0 $15 

O O O No $0 $0 $15 

O O O No $0 $0 $15 
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If all the players in your group choose circle, then all have chosen the 
same figure. The first row of the table shows that, in this case, Blue earns 
$7.50, Red earns $7.50, and White earns $0. If Blue chooses square, Red 
chooses circle, and White chooses square then all three players have not 
chosen the same figure. The last row shows that, in this case, BIue and Red 
each earn $0 and White earns $15. 

If you have any questions regarding how your earnings are determined, 
please raise your hand now. 

The experiment proceeds as follows. 

• Before making your choice, you will have 15 mino to communicate 
with the other members .of your group. 

• After 15 min., you will make your choice. 

• Once earnings are computed you will be called by your subject ID, 
one person at a time, to collect your earnings. At that time you will be told 
the choices of the other players in your group. 

• You will then immediately exit the lab. 

REMEMBER: You will play the game only once and you may not send 
messages which identify yourself. 

If you have any questions, please raise your hand now. 

[Subjects communicated for 15 min.] 

The communication phase is now overo Please turn off your monitor. 

• Please make your choice by checking either the circle or the square 
on your record sheet. 

• Put your record sheet back into the envelope. 

[Record sheets were collected.] 

While we determine your earnings, we ask you to take a short quiz to 
test whether you understand how your earnings are determined. 

• Write your subject ID on the quiz where indicated. 

• For the given choices, write the earnings of each player. Y our 
answers to the quiz will not affect your earnings. 

[Quizzes were collected.] 

Please wait at your station until your subject ID is called. 

• When you are called, take your bingo ball to the back of the room 
to collect your earnings. 

• After you are paid, please exit the laboratory. 
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Blue-Red 

Hi, this is a message to Red. {5/23/95, 2:16 
PM,Blue} 

We have to choose the same one and 
convince White to also {5 /23 /95, 2:27 PM, 
Blue} 

How do we do that {5/23/95, 2:28 PM, 
Red} 

Tell white that we are picking a circle so he 
will probably pick a circle thinking that we 
are tricking him. {5/23/95, 2:29 PM, RED} 

Won't he think that is reverse psychology 
anyway? {5/23/95, 2:30 PM, Blue} 

Maybe it will work {5/23/95, 2:30 PM, 
Blue} 

Should 1 tell him we're picking circle? 
{5/23/95, 2:31 PM, Blue} 

If we tell him we are picking a circle he will 
think we are picking a square and pick the 
circle so we should pick the circle {5/23/95, 
2:32 PM, Red} 

Ok 1'11 do it on the open channel {5 /23 /95, 
2:32 PM, Blue} 

Now what do you think he'lI think {5/23/95, 
2:33 PM, Blue} 

He is probably trying to figure out what we 
are really picking {5 /23 /95, 2:34 PM, Red} 

So we're definitly picking circle, right? 
{5/23/95, 2:34 PM, Blue} 

APPENDIX B: TRANSCRIPT 
Players' Actions: (e, s, S) 

Blue-White 

What do you think we should do? 
{5/23/95, 2:27 PM, White} 

Red-White 

"Hi this is a message to white" 
{5 /23 /95,2:18 PM, Red} 

1 really have no idea, you have the What do you think we should 
best chance to win {5 /23 /95, do? {5 /23 /95, 2:28 PM, 
2:28 PM, Blue} White} 

What are you going to pick 
{5/23/95, 2:33 PM, Red} 

Blue-Red-White 

"Hi, this is a message to both the other 
players" {5/23/95, 2:19 PM, White} 

We're going to pick circle {5/23/95, 2:33 
PM,Blue} 

If both of you try to put the same thing you 
have a 50/50 chance ofwinning $7.50 each 
considering that 1 put the opposite. 
However, if 1 just put whatever 1 want, 1 can 
win $15 {5/23/95, 2:34 PM, White} 
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right there is 50/50 chance, basically he 
doesn 't know what we're picking what if he 
thinks we are really picking the circle- he 
doesn't know about reverse psychology 
{5/23/95, 2:36 PM, Red} 

Maybe not! Now we have to figure out what 
he thinks. Should we change our minds to 
him for a bit of confusion and still pick 
circle? {5 /23 /95, 2:37 PM, Blue} 

Maybe we should pick the square, 1 can't 
decide now {5/23/95, 2:37 PM, Red} 

Why don 't we pass messages back and forth 
on the open and directly to him for part of 
the rest of the time and still pick the same 
one, but with all Our messages there's still a 
50/50 chance {5/23/95, 2:38 PM, Blue} 

If we type on the open screen he'lI know 
what we are trying to do. we should just 
decide what we want to pick and hope its 
the same as him. {5/23/95, 2:40 PM, Red} 

Let's do it privately then on the direct to 
white channel {5/23/95, 2:41 PM, Blue} 

So do we pick square? {5/23/95, 2:41 PM, 
Blue} 

What do you mean, let's pick the circle. 
{5/23/95, 2:42 PM, Red} 

Ok {5/23/95, 2:42 PM, Blue} 

How are you doing? {5 /23 /95, 
2:39 PM, Blue} 

I'm doing great {5 /23 /95, 
2:39 PM, White} 

My best chance of winning is to choose 
circle or square without letting you know, so 
1 think that's what I'm going to do. Good 
Luck with your guess of what I'm going to 
pick. If you have anything to say just write 
back. {5/23/95, 2:39 PM, White} 

Thank goodness we don't know anyone else 
in the group, huh? {5/23/95, 2:40 PM, Blue} 

Yes, because 1 would be mad at you for not 
picking what we pick. {5/23/95, 2:41 PM, 
Red} 

1 think 1 got lucky today by sitting in this 
chair. 1 hope it sticks with me after you two 
choose your circles, af was it squares? 
{5/23/95, 2:42 PM, White} 
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