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Abstract. This paper considers semi-parametric frequency domain inference for
seasonal or cyclical time series with asymmetric long memory properties. It is shown
that tapering the data reduces the bias caused by the asymmetry of the spectral density at
the cyclical frequency. We provide a joint treatment of different tapering schemes and of
the log-periodogram regression and Gaussian semi-parametric estimates of the memory
parameters. Tapering allows for a less restrictive trimming of frequencies for the analysis
of the asymptotic properties of both estimates when allowing for asymmetries. Simple
rules for inference are feasible thanks to tapering and their validity in finite samples is
investigated in a simulation exercise and for an empirical example.

Keywords. Seasonality; cycles; periodogram; long range dependence; asymptotic
normality.

1. INTRODUCTION

A time series xt, t ¼ 0,±1, . . . , with spectral density function f(k) and lag j
autocovariance cj such that

cj ¼
Z p

�p
cosðjkÞf ðkÞdk j ¼ 0;�1; �2; . . . ;

has standard long memory or long range dependence if

f ðkÞ � Cjkj�2d as k ! 0; ð1Þ

where 0 < C < 1 and 1/2 < d < 1/2 is a real parameter known as memory
parameter. Similarly, if xt has long memory then

cj � Kj2d�1 as j ! 1; ð2Þ

where K is a finite constant. Although standard long memory is the most popular
case, there exist processes which similarly show strong persistence at some
frequency x 2 (0, p] such that the spectral density satisfies

f ðxþ kÞ � Cjkj�2d as k ! 0: ð3Þ

A time series xt with such a spectral density displays cycles of period 2p/x, more
persistent the larger d is. The condition d < 1/2 entails stationarity and d > 1/2
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is usually required for invertibility. If d > 0, f(k) diverges at x and, more
precisely, we say that xt has persistence or positive memory; if d < 0, f(k) has a
zero at x and we say that xt has antipersistence or negative memory and if d
0, xt has short memory. Arteche and Robinson (1999) called such property
Seasonal or Cyclical Long Memory (SCLM) and review some issues related to
SCLM processes such as parametric models, estimation and statistical inference.
More recently Ould Haye and Viano (2003) discuss the effects of seasonal long
memory on some limit theorems. Oppenheim et al. (2000) and Lildholdt (2002)
show that the seasonal long memory that has been empirically found in many
macroeconomic time series can be explained by cross sectional aggregation and
structural changes, providing ways of generating parametric seasonal long
memory models.

The autocovariances of SCLM processes show an asymptotic slow decay
typical of long memory but with oscillations that depend on the frequency x,
where the spectral pole or zero occurs such that

cj � K cosðjxÞj2d�1 as j ! 1 ð4Þ

(see e.g. Chung, 1996 or Gray et al., 1989).
The extension of the concept of long memory from x 0 to any x between 0

and p broadens the scope for modelling because (3) can be extended to

f ðxþ kÞ � C1k
�2d1 as k ! 0þ

f ðx kÞ � C2k
�2d2 as k ! 0þ;

ð5Þ

where x 2 (0, p),

0 < Ci < 1; jdij <
1

2
; i 1; 2 ð6Þ

and we permit

d1 6 d2 and/or C1 6 C2: ð7Þ

Since the spectrum is symmetric about zero and p, the possibility (7) is excluded
for x 0, p, but for x 2 (0, p) any values of Ci and di satisfying (6) are possible.
Clearly (5) nests (3) as a special case. This class of processes has been introduced
by Arteche and Robinson (2000) and called Seasonal or Cyclical Asymmetric
Long Memory (SCALM).

The spectral asymmetry involves a different persistence of the cycles of period
just shorter and just larger than 2p/x. To shed some light in this concept consider
quarterly data with x p/2 and d1 > d2. This implies that the cycles of period
slightly shorter than four are more persistent than the corresponding cycles of
period just larger, so that in the long run the cycles tend to be slightly shorter than
four periods. In this case the ACF displays asymmetric cycles so correlation
before multiple lags of four decays slower than correlation for lags after four such
that summer observations are more related with long horizon future spring
observations than with the corresponding future fall (see Arteche and Robinson,
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2000). The opposite situation arises when d2 > d1. The asymmetric long memory
entails this asymmetric asymptotic behaviour in the (cyclical) persistence of the
series.

Nowadays there exist several well established estimators of the memory
parameters. Time domain parametric techniques, such as exact maximum
likelihood, require an entire knowledge of the autocovariances and have a
difficult implementation for SCLM processes due to the complicated functional
form of the autocovariances. Moreover, explicit form of these autocovariances
may not be available in some cases. Semiparametric techniques that only consider
asymptotic behaviour of the autocovariances are only valid (if they are at all) for
estimation of the largest memory parameter if there exist more than one. Thus
frequency domain techniques, more closely related with our definition (3) of
SCLM or (5) of SCALM, seem more appropriate and permit the estimation of
different memory parameters corresponding to different spectral poles. Since we
only aim to estimate d, we avoid fully parametric methods that, although more
efficient under a complete and correct specification of the model, suffer
inconsistency under misspecification of f(k), even if f is only misspecified at
frequencies far from x.

This paper focuses on two widely extended semiparametric techniques: the
variant of Robinson (1995a) of the log periodogram regression first introduced
by Geweke and Porter Hudak (1983) and the more efficient Gaussian
semiparametric estimator of Robinson (1995b). Both have been considered
under SCALM by Arteche and Robinson (2000). When d1 6 d2, trimming of
frequencies close to x seems necessary to avoid the distorting influence of the
periodogram at the other side of the spectral pole under investigation, the larger
the difference between d1 and d2, the stronger the trimming needed. Recent work
by Velasco (1999a, 1999b) regarding semiparametric estimation for
nonstationary long memory series suggests that this trimming can be reduced
by tapering the data and using the tapered periodogram instead of the raw
periodogram.

The properties of both estimators depend strongly on the normalized
periodogram Iij=Cik

�2di
j , where I1j I(x þ kj), I2j I(x kj) are periodogram

ordinates I(k) |W(k)|2, where W(k) is the Discrete Fourier Transform (DFT),

W ðkÞ : 2pnð Þ�1
Xn
t 1

xteitk

and kj 2pj/n are the Fourier frequencies with n the sample size. Its behaviour is
discussed in Section 2, considering j both fixed and tending to 1. It is shown that
tapering the data may help to reduce the bias caused by the asymmetry of the
spectral density. Section 3 focuses on the tapered log periodogram regression and
Section 4 pays attention to the Gaussian semiparametric estimator. Section 5
shows the finite sample behaviour of both tapered and untapered estimates and
Section 6 applies both to a growth rate series of the monthly US industrial
production. Technical details are placed in the Appendix.
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2. BIAS OF THE PERIODOGRAM

The periodogram is the basic tool to estimate the spectral density function.
Hannan (1973) showed that the periodograms evaluated at Fourier frequencies
close to a fixed frequency k are asymptotically independent and identically
distributed as ðf ðkÞ=2Þv22, where v22 is the chi square distribution with two degrees
of freedom. However his assumptions rule out the possibility of long range
dependence. Yajima (1989) allowed for the possibility of long memory and gave
the joint asymptotic distribution of the periodogram evaluated at a set of fixed
frequencies not depending on n, so that Fourier frequencies are not considered.
These results have led some authors (e.g. Geweke and Porter Hudak, 1983, based
their proof on Hannan’s theorem) to conclude that the log periodogram estimator
proposed by Geweke and Porter Hudak is asymptotically normal with variance
p2/6. However, the log periodogram and the Gaussian semiparametric estimators,
are based on Fourier frequencies kj 2pj/n. Consequently these frequencies do
change with n, so that Yajima’s result can not be applied. On the other hand, for
d < 0 Hannan (1973) stated that the periodogram evaluated at a finite number of
Fourier frequencies close to the origin converges in probability to zero. However,
when we normalize with the spectral density the remainder is divided by a
quantity which approaches zero, and therefore need not be negligible. These facts
have been noted in Hurvich and Beltrao (1993) and Robinson (1995a), who
considered the asymptotic distribution of the periodogram normalized by the
spectral density of weakly stationary long memory time series at Fourier
frequencies, kj 2pj/n, where j is fixed and n ! 1. They proved that in this
context the normalized periodograms are not asymptotically identically
distributed. In fact limn!1E[I(kj)/f(kj)] depends on j and d and is typically
greater than 1, implying positive asymptotic relative bias in the periodogram as
estimate of f(k). In this section we extend these results to stationary SCALM
processes with spectral density as in (5). We focus first on the relative bias of the
periodogram at frequencies x þ kj with fixed j.

Theorem 1. Let xt be a real valued stationary process with spectral density (5).
Let j be fixed and denote

Ljðd1; d2Þ : E
I1j

C1k
�2d1
j

" #
:

Then:
(a) If d2 < d1

lim
n!1

Ljðd1; d2Þ 2pjj j2d1
Z 1

0

wjðk; d1Þdk;

(b) if d2 d1 d

lim
n!1

Ljðd1; d2Þ 2pjj j2d
Z 1

0

wjðk; dÞdkþ
C2

C1
2pjj j2d

Z 0

�1
wjðk; dÞdk

�
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(c) and if d1 < d2

lim
n!1

n2ðd1�d2ÞLjðd1; d2Þ
C2

C1
j2pjj2d1

Z 0

�1
wjðk; d2Þdk;

where

wjðk; dÞ :
2

p

sin2 k
2

ð2pj kÞ2
jkj�2d :

Theorem 1 focuses on the behaviour of the normalized periodogram at Fourier
frequencies just after x. A similar result is obtained for frequencies just before the
spectral pole/zero. In particular, the asymptotic relative bias evaluated at those
frequencies diverges as n ! 1, when d1 > d2.

When d1 d2 and C1 C2 our Theorem 1 corresponds to that in Hurvich and
Beltrao (1993). However, when d2 < d1, the asymptotic relative bias, although
depending on d1 and j, reduces with respect to that obtained by Hurvich and
Beltrao at zero frequency. Finally, when d1 < d2 the asymptotic relative bias of
the periodogram increases without limit as n ! 1. Hurvich and Beltrao (1993)
and Hurvich and Ray (1995) suggest tapering the data to reduce the bias of the
periodogram as estimate of the spectral density at Fourier frequencies close to a
spectral pole/zero. Based on this bias reduction Arteche and Robinson (2000)
pointed out the possibility of avoiding the trimming in the log periodogram and
Gaussian semiparametric estimation under SCALM by using a tapered
periodogram

ITðkÞ jW TðkÞj2 : 2p
Xn
t 1

hTt
�� ��2 !�1=2Xn

t 1

hTt xte
itk

������
������
2

; ð8Þ

where fhTt g
n
t 1 is a sequence of constants (the taper) such that

P
hTt
�� ��2 bn and

0 < b < 1, IT(k) and WT(k) are the tapered periodogram and DFT respectively
at frequency k and denote IT1j ITðx þ kjÞ and IT2j ITðx kjÞ.

There are several alternative tapering schemes with desirable properties to
control leakage from remote frequencies. Following Velasco (1999a, 1999b) we
may consider a general class of tapers of type I and orders p 1, 2, . . . denoted as
fhð1;pÞt g, whose DFT satisfies

Dð1;pÞðkÞ :
Xn
t 1

hð1;pÞt eitk
aðkÞ
np�1

sin½nk=2p�
sin½k=2�

� �p

; ð9Þ

where a(k) is a complex function whose modulus is positive and bounded. Some
examples of tapers, which satisfy (9) are the triangular Barlett window (p 2),
Parzen window (p 4) or the Zhurbenko (1979) taper for integer p.

This class of tapers provides interesting insight in the behaviour of the
periodogram of time series with spectral densities displaying peaks or troughs but
have the undesirable property of introducing some extra dependence among
adjacent periodogram ordinates. This implies that the design of many frequency
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domain memory estimates requires to skip some periodogram ordinates or either
adapt inference to that dependence. The use of a restricted set of Fourier
frequencies generally leads to a loss of efficiency (Velasco, 1999a). To reduce the
size of such set of omitted frequencies, Hurvich et al. (2002) and Hurvich and
Chen (2000) propose alternative complex data tapers. Setting

hð2;sÞt hð2;sÞt;n : 1 e2ipt=n
� �s�1

; ð10Þ

the tapered periodogram and DFT with a type II taper fhð2;sÞt g of order s
1,2, . . . , is obtained by

I ð2;sÞðkÞ jW ð2;sÞðkÞj2 : 2p
Xn
t 1

jhð2;sÞt j2
 !�1=2Xn

t 1

hð2;sÞt xteitk

������
������
2

:

It can be shown that
Pn

t 1 jh
ð2;sÞ
t j2 nas; where as : ð 2ðs 1Þ

s 1
Þ. Here the

order s is equivalent to s 1 as set by Hurvich et al. (2002) but equivalent to the
order p of Velasco (1999a, 1999b) or Hurvich and Chen (2000), so both tapers of
orders p s 1 are equivalent to the usual DFT and periodogram. For higher
orders they share similar properties since both classes satisfy the inequality, p s,

jDðv;pÞðkÞj � C
n

1þ njkjð Þp � Cmin n; n1�pjkj�p� �
; ð11Þ

v 1, 2. The main difference is that tapers of type I are not exactly ortogonal,
that is, for any Fourier frequencies kj, kk and p > 1

Aðv;pÞ
jk :

Z p

�p
Eðv;sÞ
jk ðkÞdk

with

Eðv;pÞ
jk ðkÞ : 2p

Xn
t 1

hðv;pÞt

��� ���2
 !�1

Dðv;pÞðxþ kj kÞDðv;pÞðxþ kk kÞ; v 1; 2;

for D(v,p) the complex conjugate of D(v,p), and limn!1 Að1;pÞ
jk is not null, whereas

Að2;sÞ
jk

Z p

�p
Eð2;sÞ
jk ðkÞdk 0

for all positive integer s and |j k| � s mod n. When |j k| < s we obtain (cf.
eqn 7 in Hurvich et al., 2002) that

Að2;sÞ
jk ðasÞ�1ð 1Þj�k 2ðs 1Þ

s 1þ j k

� �
:

For data tapers of type I, we can achieve for j, k 1, . . . , n/2, j 6 k,

Að1;pÞ
jk

Z p

�p
Eð1;pÞ
jk ðkÞdk Oðjj kj�pÞ; ð12Þ

�
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which shows that if the Fourier frequencies kj and kk are sufficiently apart, the

kernels D(1,p)(x þ kj k) and D(1,p)(x þ kk k) are almost, but not exactly,
orthogonal.

Theorem 2 investigates the bias of the tapered periodogram at Fourier
frequencies for fixed j.

Theorem 2. Let xt have spectral density (5) and let I(v,p)(k) be the tapered
periodogram (8) with a taper satisfying (9) for v 1, or (10) for v 2. Let j be fixed
and denote

Lðv;pÞj ðd1; d2Þ : E
I ðv;pÞ1j

C1k
�2d1
j

" #
:

Then:
(a) If d2 < d1

lim
n!1

Lðv;pÞj ðd1; d2Þ 2pjj j2d1
Z 1

0

wðv;pÞ
j ðk; d1Þdk:

(b) If d2 d1 d

lim
n!1

Lðv;pÞj ðd1; d2Þ 2pjj j2d
Z 1

0

wðv;pÞ
j ðk; dÞdkþ C2

C1
2pjj j2d

Z 0

�1
wðv;pÞ
j ðk; dÞdk:

(c) If d1 < d2

lim
n!1

n2ðd1�d2ÞLðv;pÞj ðd1; d2Þ
C2

C1
j2pjj2d1

Z 0

�1
wðv;pÞ
j ðk; d2Þdk;

where

wð1;pÞ
j ðk; dÞ : 22p�1 að0Þj j2

pb

sin2p 2pj�k
2p

� �
ð2pj kÞ2p

jkj�2d ;

and

wð2;pÞ
j ðk; dÞ : 2

p
jkj�2d sin2

k
2
a�1
p

Xp�1

k 0

p 1
k

� �
1ð Þk

ð2p jþ kð Þ kÞ

 !2

:

The bias of the periodogram is reduced with an adequate taper but when d2 > d1
it is still growing with n. Consider for example the cosine bell or Hanning taper as
suggested by Hurvich and Ray (1995) with weights hcost 0:5ð1 cosð2pt=nÞÞ. In
this case

Pn
t 1 hcost

� 	2
3n=8 and

DcosðkÞ 1

2
DðkÞ 1

4
D k

2p
n

� �
1

4
D kþ 2p

n

� �
;

where DðkÞ
Pn

1 expðitkÞ is the Dirichlet Kernel. Note that the cosine bell does
not satisfy condition (9) but shares some asymptotic properties with type I tapers
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with p 1 and 3. The asymptotic relative bias of the periodogram in this case is
the one given in Theorem 2 with

wcos
j ðk; dÞ 16

3p
sin2

k
2
kj j�2d 0:5

2pj k
0:25

2pðjþ 1Þ k
0:25

2pðj 1Þ k


 �2

;

which shows that tapers of type II are a complex generalization of the cosine bell
(which would be of order, s 3).

It is also interesting to analyse the covariances between discrete Fourier
transforms at frequencies x þ kj for increasing j. For the raw series see Arteche
and Robinson (2000). Consider the following assumptions:

Assumption 1. The spectral density f( ) satisfies for b 2 (0, 2] and at frequency
x 2 (0, p)

f ðxþ kÞ � C1k
�2d1ð1þ OðkbÞÞ

f ðx kÞ � C2k
�2d2ð1þ OðkbÞÞ

as k ! 0þ for 0 < Ci < 1, (1/2) < di < (1/2), i 1, 2.

Assumption 2. f ðkÞ aðkÞaðkÞ=2p and in a neighbourhood ( e, 0) [ (0, e) of x
a() is differentiable and as k ! 0þ,

d
dk

aðxþ kÞ
����

���� Oðk�1�d1Þ;

d
dk

aðx kÞ
����

���� Oðk�1�d2Þ:

Then we obtain Theorem 3, which is valid for both types of tapers since they
satisfy (11).

Theorem 3. Let Assumptions 1 and 2 hold and let k k(n) and j j(n) be two
sequences of positive integers such that j > k, g: j k, j/n ! 0 as n ! 1, and
consider tapers of orders p � 2. Then as n ! 1, v 1, 2,
(a) EW ðv;pÞðx þ kjÞW ðv;pÞðx þ kjÞ f ðx þ kjÞ þ Oð#jjðd�Þ þ k�2d1

j j�1Þ:
(b) EW ðv;pÞðx þ kjÞW ðv;pÞðx þ kjÞ Oð#jjðd�Þ þ k�2d1

j j�pÞ:
(c) EW ðv;pÞðx þ kjÞW ðv;pÞðx þ kkÞ fjkA

ðv;pÞ
jk þ Oð#jkðd�Þ þ k�d1

j k�d1
k ðjkÞ�1=2

g1�pÞ:
(d) EW ðv;pÞðx þ kjÞW ðv;pÞðx þ kkÞ Oð#jkðd�Þ þ k�d1

j k�d1
k ðjkÞ�p=2Þ;

where #jkðdÞ : jkð Þ
1
2�p kjkk
� 	�d

, d�: maxfd1, d2g and fjk : ajak=2p, ai:
a(x þ ki), i j, k.

Note that for tapers of type I fjkA
ð1;pÞ
jk OððkjkkÞ�d1g�pÞ; cf. (12), whereas for

type II tapers Að2;pÞ
jk 0 if j k � p.
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The relative bias of the periodogram is crucial for the properties of frequency
domain estimators. It affects not only the memory parameters estimates as those
considered in Sections 3 7, but also the estimation of an unknown pole. In many
applications the location and number of spectral poles can be known in advance,
but for many other cases Hidalgo and Soulier (2003) considered the estimation of
the location of the pole x 2 (0, p) by means of maximizing the (usual)
periodogram at Fourier frequencies. Using the tapered periodogram I(v,p) we set
the pole estimate as

x̂ðv;pÞ
n

2p
n
arg max

1�k�½n=2�
I ðv;pÞðkkÞ:

Under slightly stronger conditions than those imposed in this paper (for
example only one spectral singularity is permitted) Hidalgo and Soulier (2003)
show the almost rate n consistency of their estimate of x, xðv;1Þ

n . Under spectral
asymmetry the situation is different. Using the results in Theorem 3 and Lemmas
1 and 2 in the Appendix it can be shown that as n ! 1, p > 1,

n
vn

ðx̂ðv;pÞ
n xÞ !p 0

for vn a positive nondecreasing sequence such that

lim
n!1

ndðd
��d�Þ

vdðd
��d�þp�0:5Þ�1

n logd n
þ lim

n!1

log n
v2d�n

0; ð13Þ

where d�: minfd1, d2g > 0 and 2d is a positive integer such that Assumption 5
holds with Ee2dt finite for some d � 2. For the symmetric situation in Hidalgo and
Soulier (2003) the first condition in (13) is redundant since in that case
d� d� 0, p 1 and d 4. Under spectral asymmetry, condition (13) imposes
a slower rate of convergence of x̂ðv;pÞ

n the higher the difference (d� d�). This
distorting effect can be reduced using a taper of higher order p.

3. LOG-PERIODOGRAM REGRESSION

The basic log periodogram regression estimates, d̂i for i 1, 2, in the version
suggested by Robinson (1995a), are obtained by least squares in the regression

log I ðv;pÞij aþ dð 2 log kjÞ þ uj; j 1; 2; . . . ;m; ð14Þ

where m goes to infinity but at a slower rate than n, in such a way that the band of
frequencies used in the estimation degenerates to zero as the sample size increases.
Clearly the properties of d̂i are closely related to those of I ðv;pÞij =Cik

�2di
j . These

variables are not asymptotically independent nor identically distributed. To avoid
the negative influence of these undesirable characteristics, Künsch (1986) and
Robinson (1995a) suggested omitting l frequencies close to the spectral pole/zero,
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although this trimming seems not necessary (Hurvich et al., 1998), at least in the
symmetric case x 0. However, under SCALM, Theorems 1 and 3 suggest that
trimming is unavoidable due to the n2(d

��di) term, at least for the estimation of the
lower memory parameter. Tapering can reduce the bias of the periodogram at
frequencies close to x, so that a less restrictive trimming is sufficient.

The correlation foundamongperiodogramordinates canbe taken into account in
differentwayswhen the log periodogram regression is designed.Afirst alternative is
the use of only asymptotically uncorrelated periodogram ordinates. For type II
tapers such approach would imply to neglect p 1 frequencies of every p in the log
periodogram regression. To alleviate the efficiency loss incurred following such
policy, Hurvich et al. (2002) used a pooling of periodogram ordinates as proposed
by Robinson (1995a), where the periodogram I ð2;pÞij is replaced by

~I ð2;pÞij :
XðMþp�1Þðj�1ÞþM

k ðMþp�1Þðj�1Þþ1

I ð2;pÞik

for j 1; . . . ; ~K; ~K : [m/(M þ p 1)]. Up to p 1 frequencies are dropped of
every M þ p 1 and the efficiency is of magnitude M/(M þ p 1) compared to
a 1/p efficiency, when no pooling is employed. However for data tapers of type I
(p > 1) there is not clear cut, because the correlation among periodograms is
never zero. Nevertheless, it dies out very fast in |j k| for both types of tapers
(for type II the leading term is zero for |j k| � p) so we can consider the use of all
frequencies in the regression, that is

�I ð2;pÞij :
XMj

k Mðj�1Þþ1

I ð2;pÞik

for j 1; . . . ;K; K : [m/M], where the correlation among adjacent log �I ð2;pÞij
should appear in the asymptotic variance of the log periodogram estimates (see
definition of Xðv;pÞ

M in Theorem 4 below). For tapers of type II, if M � p 1, the
correlation is due at most from the previous and next log periodograms, but if p is
large compared to M, many more pooled periodograms might correlate, but at
most a fixed number of them. For tapers of type I all pooled periodograms
display correlation.

Robinson (1995a), for p 1 and all M, and Hurvich et al. (2002), for p > 1
and large M, give explicit expressions for the expectation and variance of the
pooled log periodogram log ~I ð2;pÞij ; which can be used to estimate the asymptotic
variance of the log periodogram memory estimate. Instead of trying a
generalization of these results, in order to obtain closed expressions for the
limit autocorrelations (for increasing j with n, j/n ! 0),

r2M ;v;p kð Þ : lim
n!1

Cov log�I ðv;pÞij ; log�I ðv;pÞijþjkj

h i
; k 1; 2; . . . ;

we use the approach of Robinson (1995a) and propose a consistent estimation of
such asymptotic variance based on the residuals of (14), which takes into account
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the correlation across Fourier frequencies. Note that Cov½log�I ðv;pÞij ; log�I ðv;pÞijþjkj� only
depends asymptotically on the frequency gap k (and on M and the taper
characteristics v, p), but not on the reference frequency kj, neither on the scale
given by f(kj) or Cik

�2di
j because of the log transformation. Proceeding as in

Robinson (1995a, proof of Thms 3 and 4) we could calculate r2M ;v;p kð Þ supposing
that the real and imaginary parts of the components of �I ðv;pÞij are zero mean normal
variates with covariance structure given by the leading terms of the approxima
tions of Theorem 3, (a) and (b), after normalization by fjj and fjk respectively.

Let for i 1, 2 and v 1, 2, p > 1,

d̂ðv;pÞM ;i :
X�K
j lþ1

r2j

 !�1 X�K
j lþ1

rj log�I
ðv;pÞ
ij ;

where rj : 2 log yj K lð Þ�1P�K
k lþ1 2 log ykð Þ, yj : (2j 1)pM/n.

We consider now the asymptotic distribution of d̂ðv;pÞM ;i under the following
assumptions, when type II tapers are used:

Assumption 3. xt is a Gaussian process.

Assumption 4. As n ! 1

m1=2 logm
l

þ n2ðd
��diÞ

l2p�1þ2ðd��diÞ
þ lðlog nÞ2

m
þ m2bþ1

n2b
! 0:

The second condition term on the left hand side of Assumption 4 establishes a
trimming of l frequencies, which is smaller, the larger is p. The other terms appear
also in Assumption 6 of Robinson (1995a) for untapered log periodogram
inference of zero frequency long memory time series and Assumption 4 in Arteche
and Robinson (2000) for SCALM series.

Theorem 4. Under Assumptions 1 4, as n ! 1, p > 1,

m
p

d̂ð2;pÞM ;i di
� �

!d N 0;M�1Xð2;pÞ
M

� �
;

where

Xðv;pÞ
M : lim

n!1
m

X�K
j lþ1

r2j

 !�2 X�K
j lþ1

X1þðp�1Þ=M½ �

k � 1þðp�1Þ=M½ �
rjrjþkr

2
M ;v;p kð Þ:

Note that the second condition on Assumption 4 imposing a lowest rate of
increase on l with n appears to control leakage due to possibly different memory
parameters on the two sides of the spectral peak and is always satisfied if
n2l�1�2p ! 0 as n ! 1 because d� di < 1. Note anyway that the first
condition of Assumption 4 imposes the growing rate of l to be at least of order
m1/2 log m, independently of the taper order p, but in principle m needs to grow

�
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with n only slightly faster than l(log n)2. For b 1, which is usual in cyclical long
memory processes as those discussed in Arteche and Robinson (1999), valid
choices of the bandwidth and trimming for any p > 1 are m � nb and l � na such
that 2/5 < a < b < 2/3.

For type I tapers a similar result could be possible at least if the order p > 1 is
high enough in order to guarantee that m�1

P�K
j lþ1

P�K�j
k ‘�jþ1 rjrjþkr2M ;v;p kð Þ

converge to a positive constant and the fast decaying in Að1;pÞ
jk allow us to

employ a truncation argument. Alternatively, an increasing gap among regressors
would provide an asymptotically normal estimate, but with an infinite efficiency
loss (cf. Velasco, 1999b).

For type II tapers, v 2, it is also possible to drop p 1 frequencies, every
M þ p 1, so only asymptotically uncorrelated pooled (log )periodograms are
employed, and a similar asymptotic result to Theorem 4 holds with a simplified
asymptotic variance given by

Xð2;pÞ
M : lim

n!1

1

m

X~K
j lþ1

r2j

 !�1

r2M ;2;pð0Þ:

For large M, we obtain

r2M ;2;pð0Þ �
1

M þ p 1

C 4p 3ð ÞC4 pð Þ
C4 2p 1ð Þ

(cf. Thm 1 of Hurvich et al., 2002), whereas when no taper is applied (so p 1,
for both v 1,2) and no dropping neither pooling of frequencies is used, M 1,

Xðv;1Þ
1 lim

n!1

1

m

Xm
j lþ1

r2j

 !�1

r21;v;1ð0Þ
r21;v;1ð0Þ

4

p2

24

since r2M ;v;1 0ð Þ w0ðMÞ, where w(z) C0(z)/C(z) is the digamma function.
We now propose a consistent feasible estimate of Xðv;pÞ

M in the lines suggested by
Robinson (1995a) by means of the observed residuals, j l þ 1; . . . ;K;

ûðv;pÞM ;j : log�I ðv;pÞij Ĉðv;pÞ
M ;i þ 2d̂ðv;pÞM ;i log yj;

where Ĉðv;pÞ
M ;i are the ordinary least squares (OLS) estimates of the intercept Ci in

the log periodogram regression. Then, setting the sample residual autocovari
ances

r̂2M ;v;p kð Þ : 1

K jkj
X�K�jkj

j lþ1

ûðv;pÞM ;j û
ðv;pÞ
M ;jþjkj;

we can estimate the asymptotic variance of the log periodogram regression
estimate by means of

X̂ðv;pÞ
M : m

X�K
j lþ1

r2j

 !�2 X�K
j lþ1

X‘
k �‘

rjrjþkr̂
2
M ;v;pðkÞ;

�
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where ‘ is a fixed integer such that ‘ � [1 þ (p 1)/M], when v 2, fixed with n.
The consistency of such estimate for type II tapers is established in Theorem 5.

Theorem 5. Under Assumptions 1 4, as n ! 1,

X̂ð2;pÞ
M !p X

ð2;pÞ
M :

Also two sided estimates of Xðv;pÞ
M could be justified. For type I tapers, v 1, it

could be chosen an increasing lag number ‘, such that ‘�1 þ ‘m�1 ! 0 as n ! 1,
being able to take into account asymptotically the correlation among all the
tapered periodograms displayed in the asymptotic variance.

4. GAUSSIAN SEMIPARAMETRIC ESTIMATION

In the SCALM case, the Gaussian semiparametric estimates of d1 and d2 are

~di : argmin
H

RiðdÞ; i 1; 2; v 1; 2;

where

RiðdÞ : log ~CiðdÞ
2d

m l

Xm
j lþ1

log kj; ~CiðdÞ
1

m l

Xm
j lþ1

k2dj Iij;

and H [D1, D2], where 0.5 < D1 < D2 < 0.5 and di 2 H. Under asymmetric
long memory a strong trimming is needed as pointed out by Arteche and
Robinson (2000). Again this trimming can be reduced by means of tapering. The
tapered Gaussian semiparametric estimates are

~dðv;pÞi : argmin
H

Rðv;pÞ
i ðdÞ; i 1; 2;

where Rðv;pÞ
i ðdÞ is defined in terms of the periodogram I ðv;pÞij with a v type taper of

order p.
The consistency of these estimators need the following assumptions.

Assumption 5. xt Ex1
P1

j 0 ajet�j and
P1

j 0 a
2
j < 1, where E[et|Ft�1] 0,

E½e2t jFt�1� 1 for t 0,±1,±2, . . . , Ft is the r field generated by es, s � t, and
there exists a random variable e such that Ee2 < 1 and for all g > 0 and some
j < 1, P(|et| > g) � jP(|e| > g).

Assumption 6. For i 1, 2,

n2ðd
��diÞ

l2p�1þ2ðd��diÞ
log mþ l

m
þ m

n
! 0

as n ! 1.

Assumption 6 relaxes significantly the trimming needed for consistency of the
untapered estimate in Arteche and Robinson (2000). Considering l � na,

�
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Assumption 6 implies that a > 2(d� di)[2p 1 þ 2(d� di)]
�1, which for

p > 1 significantly relaxes the condition a > 2(d� di)[1 þ 2(d� di)]
�1

required in Arteche and Robinson (2000) for the untapered estimate. If in
addition m � nb valid choices of a and b are 2/5 < a < b < 1 for any p > 1.

Theorem 6. Under Assumptions 1, 2, 5 and 6, ~diðv;pÞ !
p
di.

For the asymptotic normality we need the following additional assumptions.

Assumption 7. Assumption 5 holds and

Eðe3t jFt�1Þ l3 and Eðe4t jFt�1Þ l4; t 0;�1; . . .

for finite constants l3 and l4.

Assumption 8. For i 1, 2,

n2ðd
��diÞ

l2p�1þ2ðd��diÞ
logmþ l2 log2 m

m
þ m2bþ1

n2b
ðlogmÞ2 ! 0

as n ! 1.

Theorem 7. Under Assumptions 1, 2, 7 and 8

m
p

ð~dðv;pÞi diÞ!
d
N 0;

1

4
Uðv;pÞ

� �
;

where

Uðv;pÞ : lim
n!1

n
Xn
1

hðv;pÞt

��� ���2
 !�2Xn

1

hðv;pÞt

��� ���4:
Remark. The U(v,p) factor arises due to the correlation introduced among

periodogram ordinates by tapering. It can be substituted by the quantity whose
limit is evaluated in the definition, with n equal to the sample size or any other
larger integer, to estimate the asymptotic variance of ~dðv;pÞi and to construct
confidence intervals and Wald tests. Compared with the log periodogram
estimate, asymptotic inference based on the Gaussian semi parametric estimate
is simpler and more efficient (for the same bandwidth m) since the asymptotic
variance has an explicit expression, which can be easily computed, permitting a
more straightforward inference and can be showed to be smaller for p 1 and
any M (cf. Robinson 1995a, 1995b). Gaussian estimation also avoids dropping
of frequencies and the choice of pooling, but trimming is necessary for both
estimates in the presence of possible asymmetry. Nevertheless Gaussian

�
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estimation requires numerical optimization, whereas the log periodogram
regression can be performed by OLS and asymptotic variance estimation can
be based on standard subroutines for autocorrelation robust standard errors.

5. FINITE SAMPLE BEHAVIOUR

To illustrate the finite sample properties of the memory estimates we generate
Gaussian SCALM processes with spectral density

f ðkÞ
1
2p 1þ ei2k
�� ���2d1 if p

2 < k � p;
1
2p 1þ ei2k
�� ���2d2 if 0 � k � p

2 ;

(

which shows a pole or zero (depending on the values of d1 and d2) at p/2. We take
d1, d2 f 0.4, 0.2, 0, 0.2, 0.4g, which correspond to positive memory or

TABLE I

Bias of Estimates of d1, n ¼ 256, m ¼ 32

d1nd2

l 0

�0.4 �0.2 0 0.2 0.4

�0.4 ~d1(d̂1) 0.0251 (0.0292) 0.0313 (0.0369) 0.0489 (0.0552) 0.0977 (0.1066) 0.2083 (0.2189)
~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0170 (0.0095) 0.0192 (0.0121) 0.0312 (0.0257) 0.1000 (0.0905) 0.3205 (0.2203)

�0.2 ~d1 (d̂1) �0.0037 (0.0049) �0.0011 (0.0074) 0.0066 (0.0167) 0.0312 (0.0417) 0.1011 (0.1171)
~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0096 (0.0003) �0.0087 (0.0013) �0.0040 (0.0070) 0.0298 (0.0371) 0.1818 (0.1402)

0 ~d1 (d̂1) �0.0154 (�0.0071) �0.0145 (�0.0056) �0.0117 (�0.0019) �0.0019 (0.0088) 0.0325 (0.0453)
~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0158 (�0.0047) �0.0155 (�0.0043) �0.0139 (�0.0019) �0.0016 (0.0107) 0.0807 (0.0725)

0.2 ~d1 (d̂1) �0.0209 (�0.0119) �0.0206 (�0.0115) �0.0197 (�0.0104) �0.0165 (�0.0067) �0.0030 (0.0078)
~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0151 (�0.0034) �0.0149 (�0.0031) �0.0144 (�0.0024) �0.0105 (0.0014) 0.0229 (0.0289)

0.4 ~d1 (d̂1) �0.0284 (�0.0115) �0.0284 (�0.0113) �0.0283 (�0.0111) �0.0276 (�0.0106) �0.0241 (�0.0062)
~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0186 (0.0070) �0.0186 (0.0071) �0.0184 (0.0074) �0.0175 (0.0086) �0.0100 (0.0165)

l 1

�0.4 �0.2 0 0.2 0.4
�0.4 ~d1 (d̂1) 0.0308 (0.0293) 0.0338 (0.0331) 0.0411 (0.0410) 0.0616 (0.0636) 0.1220 (0.1352)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0294 (0.0133) 0.0300 (0.0141) 0.0313 (0.0158) 0.0346 (0.0194) 0.0480 (0.0343)
�0.2 ~d1 (d̂1) 0.0020 (0.0113) 0.0038 (0.0129) 0.0078 (0.0177) 0.0191 (0.0291) 0.0552 (0.0709)

~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0023 (0.0039) �0.0020 (0.0046) �0.0013 (0.0059) 0.0005 (0.0076) 0.0080 (0.0147)
0 ~d1 (d̂1) �0.0100 (�0.0001) �0.0092 (0.0006) �0.0074 (0.0024) �0.0024 (0.0079) 0.0156 (0.0279)

~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0127 (�0.0030) �0.0124 (�0.0026) �0.0120 (�0.0020) �0.0112 (�0.0008) �0.0076 (0.0017)
0.2 ~d1 (d̂1) �0.0177 (�0.0074) �0.0173 (�0.0070) �0.0166 (�0.0062) �0.0146 (�0.0040) �0.0067 (0.0030)

~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0195 (�0.0086) �0.0194 (�0.0086) �0.0192 (�0.0083) �0.0188 (�0.0075) �0.0171 (�0.0062)
0.4 ~d1 (d̂1) �0.0325 (�0.0113) �0.0324 (�0.0109) �0.0323 (�0.0107) �0.0319 (�0.0099) �0.0297 (�0.0078)

~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0428 (�0.0123) �0.0428 (�0.0122) �0.0427 (�0.0120) �0.0425 (�0.0117) �0.0419 (�0.0108)

l 2

�0.4 �0.2 0 0.2 0.4
�0.4 ~d1 (d̂1) 0.0354 (0.0240) 0.0369 (0.0264) 0.0408 (0.0320) 0.0524 (0.0449) 0.0902 (0.0940)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0405 (0.0150) 0.0408 (0.0154) 0.0414 (0.0161) 0.0429 (0.0183) 0.0521 (0.0299)
�0.2 ~d1 (d̂1) 0.0021 (0.0081) 0.0032 (0.0098) 0.0057 (0.0129) 0.0134 (0.0207) 0.0389 (0.0516)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0015 (0.0048) 0.0017 (0.0053) 0.0020 (0.0062) 0.0029 (0.0076) 0.0085 (0.0134)
0 ~d1 (d̂1) �0.0117 (�0.0034) �0.0111 (�0.0028) �0.0096 (�0.0010) �0.0053 (0.0028) 0.0092 (0.0184)

~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0123 (�0.0031) �0.0122 (�0.0028) �0.0119 (�0.0023) �0.0114 (�0.0014) �0.0086 (0.0017)
0.2 ~d1 (d̂1) �0.0214 (�0.0124) �0.0210 (�0.0120) �0.0202 (�0.0111) �0.0180 (�0.0088) �0.0104 (�0.0023)

~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0234 (�0.0108) �0.0233 (�0.0108) �0.0232 (�0.0105) �0.0229 (�0.0097) �0.0215 (�0.0080)
0.4 ~d1 (d̂1) �0.0427 (�0.0184) �0.0425 (�0.0181) �0.0422 (�0.0176) �0.0413 (�0.0164) �0.0385 (�0.0134)

~dð1;2Þ1 (d̂ð1;2Þ1 ) �0.0550 (�0.0173) �0.0550 (�0.0172) �0.0549 (�0.0171) �0.0549 (�0.0166) �0.0543 (�0.0153)
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persistence (0.2, 0.4), short memory (0) and negative memory or antipersistence
( 0.2, 0.4). We consider a sample size n 256 and bandwidth m 32. The
effect of the trimming on the bias and the mean square error (MSE) on both
tapered and untapered estimates is assessed by considering l 0, 1, 2. The
number of replications was 1000. For a description of the simulating technique see
Arteche and Robinson (2000).

We just consider a representative type I taper of order p 2 (triangular
Barlett). Tables I and II show the bias and MSE of the two semi parametric
estimates of d1 for the different situations considered. The untrimmed estimates
are highly biased and with high MSE in those cases, where d2 > d1.

When the first frequency is omitted both bias and MSE decrease significantly in
the extreme cases d2 > d1, especially, when the tapered periodogram is used. The
decrease in bias compensates the increase in variance caused by tapering such that
the MSE is lower for the tapered estimates. A stronger trimming (l 2) is only
beneficial for the bias of the untapered estimates, when d2 > d1 and the MSE only
decreases for d2 0.4 and d1 0.4. For the tapered estimates, theMSE grows in

TABLE II

MSE of Estimates of d1, n ¼ 256, m ¼ 32

d1nd2

l 0

�0.4 �0.2 0 0.2 0.4

�0.4 ~d1 (d̂1) 0.0094 (0.0176) 0.0099 (0.0185) 0.0120 (0.0219) 0.0216 (0.0315) 0.0613 (0.0722)
~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0120 (0.0263) 0.0122 (0.0267) 0.0134 (0.0268) 0.0257 (0.0332) 0.1282 (0.0743)

�0.2 ~d1 (d̂1) 0.0116 (0.0185) 0.0116 (0.0190) 0.0119 (0.0191) 0.0134 (0.0219) 0.0250 (0.0355)
~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0178 (0.0261) 0.0178 (0.0262) 0.0180 (0.0254) 0.0188 (0.0270) 0.0549 (0.0454)

0 ~d1 (d̂1) 0.0121 (0.0195) 0.0122 (0.0193) 0.0122 (0.0192) 0.0122 (0.0195) 0.0140 (0.0223)
~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0189 (0.0260) 0.0189 (0.0259) 0.0190 (0.0253) 0.0185 (0.0248) 0.0250 (0.0304)

0.2 ~d1 (d̂1) 0.0124 (0.0193) 0.0124 (0.0195) 0.0125 (0.0199) 0.0125 (0.0200) 0.0126 (0.0199)
~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0182 (0.0245) 0.0182 (0.0246) 0.0182 (0.0245) 0.0180 (0.0244) 0.0179 (0.0254)

0.4 ~d1 (d̂1) 0.0103 (0.0186) 0.0104 (0.0186) 0.0104 (0.0188) 0.0104 (0.0192) 0.0103 (0.0193)
~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0121 (0.0239) 0.0121 (0.0239) 0.0121 (0.0239) 0.0121 (0.0239) 0.0118 (0.0249)

l 1

�0.4 �0.2 0 0.2 0.4
�0.4 ~d1 (d̂1) 0.0124 (0.0258) 0.0126 (0.0258) 0.0133 (0.0268) 0.0165 (0.0301) 0.0319 (0.0469)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0164 (0.0375) 0.0165 (0.0374) 0.0167 (0.0374) 0.0172 (0.0384) 0.0192 (0.0404)
�0.2 ~d1 (d̂1) 0.0160 (0.0259) 0.0159 (0.0261) 0.0159 (0.0258) 0.0163 (0.0271) 0.0203 (0.0317)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0242 (0.0381) 0.0243 (0.0378) 0.0244 (0.0374) 0.0245 (0.0377) 0.0249 (0.0387)
0 ~d1 (d̂1) 0.0167 (0.0263) 0.0166 (0.0265) 0.0165 (0.0266) 0.0165 (0.0262) 0.0172 (0.0264)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0265 (0.0378) 0.0265 (0.0377) 0.0265 (0.0375) 0.0266 (0.0374) 0.0267 (0.0382)
0.2 ~d1 (d̂1) 0.0169 (0.0264) 0.0168 (0.0265) 0.0168 (0.0265) 0.0167 (0.0259) 0.0167 (0.0260)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0260 (0.0375) 0.0260 (0.0377) 0.0261 (0.0377) 0.0261 (0.0376) 0.0261 (0.0379)
0.4 ~d1 (d̂1) 0.0135 (0.0263) 0.0134 (0.0261) 0.0134 (0.0259) 0.0133 (0.0257) 0.0131 (0.0256)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0199 (0.0370) 0.0199 (0.0370) 0.0199 (0.0370) 0.0199 (0.0371) 0.0198 (0.0374)

l 2

�0.4 �0.2 0 0.2 0.4
�0.4 ~d1 (d̂1) 0.0157 (0.0359) 0.0158 (0.0353) 0.0161 (0.0347) 0.0178 (0.0372) 0.0258 (0.0449)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0218 (0.0509) 0.0218 (0.0508) 0.0220 (0.0509) 0.0223 (0.0512) 0.0242 (0.0535)
�0.2 ~d1 (d̂1) 0.0214 (0.0359) 0.0213 (0.0354) 0.0212 (0.0349) 0.0212 (0.0357) 0.0228 (0.0366)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0317 (0.0516) 0.0318 (0.0512) 0.0319 (0.0507) 0.0321 (0.0507) 0.0327 (0.0519)
0 ~d1 (d̂1) 0.0230 (0.0360) 0.0229 (0.0361) 0.0227 (0.0357) 0.0224 (0.0353) 0.0222 (0.0345)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0351 (0.0505) 0.0352 (0.0503) 0.0353 (0.0502) 0.0354 (0.0501) 0.0356 (0.0509)
0.2 ~d1 (d̂1) 0.0231 (0.0359) 0.0230 (0.0361) 0.0229 (0.0358) 0.0226 (0.0349) 0.0222 (0.0347)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0345 (0.0502) 0.0345 (0.0503) 0.0345 (0.0502) 0.0347 (0.0501) 0.0348 (0.0505)
0.4 ~d1 (d̂1) 0.0182 (0.0355) 0.0181 (0.0352) 0.0180 (0.0350) 0.0179 (0.0345) 0.0174 (0.0343)

~dð1;2Þ1 (d̂ð1;2Þ1 ) 0.0263 (0.0501) 0.0263 (0.0501) 0.0263 (0.0501) 0.0264 (0.0501) 0.0263 (0.0502)
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every case, when l increases from 1 to 2 and only the bias of the tapered log
periodogram estimate decreases in the cases (d1, d2) ( 0.4, 0.2), ( 0.4, 0.4),
( 0.2, 0.4), whereas the bias of the tapered Gaussian semi parametric estimates
increases in every situation. Overall, the main contribution of the tapering is a
significant reduction of the bias of the estimates of the lower memory parameter,
when combined with l � p 1. This lower bound on trimming is natural because
tapering introduces extra correlation with the closest p 1 periodograms, possibly
at the other side of the spectral singularity. This bias reduction is achieved with a
less stringent trimming than in the untapered case and it seems that in practice it is
not necessary to make it sample size dependent, but can be decided only in function
of the data taper used.

6. EMPIRICAL EXAMPLE

We consider the growth rate of the monthly US Industrial Production Index with
base 100 in 1997 from 1919:10 to 2003:9 (n 1008). The deterministic seasonality
of the series have been subtracted by means of seasonal dummies and the strong

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Frequency

Figure 1. Periodogram of the growth rate of US Industrial Production Index.
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seasonality that appears in the periodogram in Figure 1 is free of different
seasonal means. Since n is a multiple of 12, this extraction of the deterministic
seasonality does not affect the periodogram at nonseasonal frequencies kj 6 pj/6,
j 0, 1, . . . , 6, which are the Fourier frequencies used in the estimation of the
memory parameters (Arteche, 2002, pp. 275 6).

We focus on the analysis at frequency p/3, where the possible spectral
asymmetry is finally more evident. Results for other seasonal frequencies are
available upon request. Figure 2 shows Gaussian semi parametric estimates of the
memory parameters d1 and d2 at frequency p/3 for a grid of bandwidths from
m 11 to m 20. We consider untapered and tapered versions for the cosine
and type I tapers of orders p 2 and p 3. The maximum m analysed is 20 in
order to avoid distorting influences of possible spectral poles at neighbouring
seasonal frequencies p/6 and p/2. The effect of the trimming is analysed by
considering l 0, 1, 2. Although the theory shown in this paper is only valid for
d1, d2 < 0.5, we consider also the possibility of nonstationarities appealing to
Velasco (1999b).
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0.6 Cos taper
No taper
p = 2

d1, l = 0 d2, l = 0 

d2, l = 1 
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10 13 16 19
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Figure 2. Gaussian semi-parametric memory estimates at p/3. Estimates of d1 (left column) and d2
(right column) are calculated for m ¼ 11, . . . , 30 and for l ¼ 0 (first row), l ¼ 1 (second row) and l ¼ 2

(third row). No taper, cosine taper and Zhurbenko tapers of orders p ¼ 2, 3 are used.
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Figure 3.Wald tests for spectral symmetry at p/3.Wald test statistics are calculated form ¼ 11, . . . , 30,
l ¼ 0 in (a) and l ¼ 2 in (b), and compared with the asymptotic 5% critical value of a v21 distribution

(horizontal line at 3.84). No taper, cosine taper and Zhurbenko tapers of orders p ¼ 2, 3 are used.
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The memory estimates for l 0 are clearly positive and similar at both sides of
the seasonal peak (especially the untapered ones), suggesting symmetric and
positive long memory at p/3. However, the differences between both estimates
increase with the trimming (l > 0) and the tapering (p > 1).

Figure 3 displays Wald tests of the null hypothesis of spectral symmetry d1 d2
based on the asymptotic distribution of the Gaussian semi parametric estimates
with l 0 and l 2 in Theorem 7. Considering the asymptotic independence of
~dðv;pÞ1 and ~dðv;pÞ2 , the Wald statistics are

2mð~dð1;pÞ1
~dð1;pÞ2 Þ2

Ûð1;pÞ
n

;

where

Ûð1;pÞ
n n

Xn
1

hð1;pÞt

��� ���2
 !�2Xn

1

hð1;pÞt

��� ���4;
which for n 1008 and the tapers of order p 1 (no taper), 2, 3 and the cosine
taper is 1, 1.8, 2.24 and 1.94. TheWald statistics have an asymptotic v21 distribution
under the null of spectral symmetry, d1 d2. The untapered Wald test does not
reject the null hypothesis for any of the bandwidths and trimming considered
(except form 11 and l 2). The situation changes with the tapered and trimmed
test statistics. The larger difference between right and left estimates compensates
the increase in variance so that the hypothesis of symmetry is mostly rejected.

APPENDIX

Proof of Theorems 1 and 2. Since d1, d2 < 0.5, we can write the expectation as

E
I ðv;pÞ1j

C1k
2d1

j

" # Z p

p
gðv;pÞn;j ðkÞdk; ð15Þ

where

gðv;pÞn;j ðkÞ : Kðv;pÞ
n ðxþ kj kÞ f ðkÞ

C1k
2d1

j

and

Kðv;pÞ
n ðkÞ : 2p

X
jhðv;pÞt j2

� � 1

Dðv;pÞðkÞ
�� ��2:

The integral (15) can be decomposed into

Z x n a

p
þ
Z xþn a

x n a
þ
Z p

xþn a


 �
gðv;pÞn;j ðkÞdk:
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for some a 2 (0, 0.5]. The integral over [ p, x n a] can be writtenZ n a

p x
Kðv;pÞ
n ðkj kÞ f ðxþ kÞ

C1k
2d1

j

dk: ð16Þ

Since Kðv;pÞ
n ðkÞ � const:minðn; n1 2pjkj 2pjÞ, we have that for a sufficiently large n (16) is

bounded by

const:n1 2pjkj þ n aj 2pk2d1j

Z p

p
f ðkÞdk Oðn1 2pn2pan 2d1Þ oð1Þ

for 0.5 < d1, d2 < 0.5 and a < 1 þ (d1 0.5)/p. Similarly, the integral between
x þ n a and p isZ p x

n a
Kðv;pÞ
n ðkj kÞ f ðxþ kÞ

C1k
2d1

j

dk � const:n1 2pjkj n aj 2pk2d1j oð1Þ

for a large enough n, such that kj n a < 0 and the same a as before. Thus as n ! 1
and j fixed

E
I ðv;pÞ1j

C1k
2d1

j

" # Z xþn a

x n a
gðv;pÞn;j ðkÞdkþ oð1Þ: ð17Þ

Since the behaviour of the spectral density (5) is different to the right and left of x, we
split the integral in (17) into two. First

Z xþn a

x
gðv;pÞn;j ðkÞdk

Z n a

0

Kðv;pÞ
n ðkj kÞ f ðxþ kÞ

C1k
2d1

j

dk

Z n1 a

0

1

n
Kðv;pÞ
n

2pj k
n

� �
f ðxþ k

nÞ
C1k

2d1
j

dk

Z 1

0

hðv;p;1Þn;j ðkÞdk;

where

hðv;p;1Þn;j ðkÞ : 1

n
Kðv;pÞ
n

2pj k
n

� �
f ðxþ k

nÞ
C1k

2d1
j

v½0;n1 a�

and v[0,n1 a] is the indicator function of the interval [0, n1 a]. Proceeding like in the proof of
Theorem 1 in Hurvich and Beltrao (1993) we see that hðv;p;1Þn;j ðkÞ for the different tapers

considered is dominated by an integrable function. Thus we can use Lebesgue’s dominated
convergence theorem (see for instance Temple, 1971, Thm 9.3.7) and we have that

lim
n!1

Z 1

0

hðv;p;1Þn;j ðkÞdk
Z 1

0

lim
n!1

hðv;p;1Þn;j ðkÞdk
Z 1

0

hðv;pÞ1;j ðkÞdk:

For each taper considered hðv;p;1Þn;j ðkÞ and hðv;pÞ1;j ðkÞ have different expressions. With no
tapering

hðv;1;1Þn;j ðkÞ
sin2 2pj k

2

� �
2pn2 sin2 2pj k

2n

� � f xþ k
n

� 	
C1k

2d1
j

v½0;n1 a�

�
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and

hðv;1Þ1;j ðkÞ 2

p

sin2 2pj k
2

� �
ð2pj kÞ2

k
2pj

����
����

2d1

for 0 � k < 1, using the fact that sin2((2pj k)/2) sin2(k/2) for j an integer. Similarly,
for the type I taper

Kð1;pÞ
n

2pj k
n

� �
:

a 2pj k
n

� ���� ���2
n2p 12pb

sin2p 2pj k
2p

� �
sin2p 2pj k

2n

� �
and

hð1;pÞ1;j ðkÞ : j2pjj2d1 2
2p 1 að0Þj j2

pb

sin2p 2pj k
2p

� �
ð2pj kÞ2p

jkj 2d1 :

Finally, for the type II, taper we use eqn (5) in Hurvich et al. (2002) such that

Dð2;pÞ 2pj k
n

� � Xp 1

k 0

p 1

k

� �
ð 1Þk

sin 2pðjþkÞ k
2

� �
sin 2pðjþkÞ k

2n

� � exp i
nþ 1

2

� �
2pðjþ kÞ k

n

� � �

ð 1Þjþ1 sin
k
2
exp i

nþ 1

2

� �
2pj k

n

� � �

	
Xp 1

k 0

p 1

k

� �
sin 1 2pðjþ kÞ k

2n

� �
expðipkÞ exp pk

n

� �

and thus hð2;pÞ1;j is

hð2;pÞ1;j
2

p
a 1
p sin2

k
2

� �
j2pjj2d1 jkj 2d1

Xp 1

k 0

p 1
k

� �
1ð Þk

ð2p jþ kð Þ kÞ

 !2

:

Regarding the integral over [x n a, x], multiply it by n2(d1 d2),

n2ðd1 d2Þ
Z x

x n a
gðv;pÞn;j ðkÞdk

n2ðd1 d2Þ
Z 0

n a

Kðv;pÞ
n ðkj kÞ f ðxþ kÞ

C1k
2d1

j

dk

n 2d2

Z 0

n1 a

1

n
Kðv;pÞ
n

2pj k
n

� �
f ðxþ k

nÞ
C1

j2pjj2d1dk
Z 0

1
hðv;p;2Þn;j ðkÞdk;

where

hðv;p;2Þn;j ðkÞ j2pjj2d1n 2d2 1

n
Kðv;pÞ
n

2pj k
n

� �
f ðxþ k

nÞ
C1

v½ n1 a ;0�

�

22



and v½ n1 a,0] is the indicator function of the interval [ n1 a, 0]. Proceeding as before we get
that as n ! 1, hðv;p;2Þn;j ðkÞ ! hðv;pÞ2;j ðkÞ for 0 � k < 1, where hðv;1Þ2;j ðkÞ
C2C 1

1 j2pjj2d1wjðk; d2Þ, h
ðv;pÞ
2;j ðkÞ C2C 1

1 j2pjj2d1wðv;pÞ
j ðk; d2Þ, v 1,2, for no tapering and

types I and II tapers respectively.

Now again

lim
n!1

Z 0

1
hðv;p;2Þn;j ðkÞdk

Z 0

1
hðv;pÞ2;j ðkÞdk

using Lebesgue’s dominated convergence theorem. Thus if d1 > d2 thenRx
x n a g

ðv;pÞ
n;j ðkÞdk ! 0 as n ! 1 and consequently a) is proved. When d1 d2 we obtain

the result stated in b). If d1 < d2 then n2(d1 d2) ! 0 as n ! 1 so that the only integral with
a limit different from zero is

n2ðd1 d2Þ
Z x

x n a
gðv;pÞn;j ðkÞdk

and c) is proved. u

Proof of Theorem 3. The proof is similar to that of Theorem 2 in Robinson (1995a) and
Theorem 8 in Velasco (1999a). We focus on the cases where the differences with existing
work are more apparent, namely cases (c) and (d).

(c)

EW ðv;pÞðxþ kjÞW ðv;pÞðxþ kkÞ Aðv;pÞ
jk fjk þ

Z p

p
Eðv;pÞ
jk ðkÞðf ðkÞ fjkÞdk: ð18Þ

Write the integral as

Z xþkk
2

p
þ
Z p

xþ2kj

( )
f ðkÞ fjk
� �

Eðv;pÞ
jk ðkÞdk ð19Þ

þ
Z xþkkþkj

2

xþkk
2

f ðkÞ fjk
� �

Eðv;pÞ
jk ðkÞdk ð20Þ

þ
Z xþ2kj

xþkkþkj
2

f ðkÞ fjk
� �

Eðv;pÞ
jk ðkÞdk: ð21Þ

First we decompose the integral in (19)

Z x e

p
þ
Z x kj

x e
þ
Z x

kk
2

x kj

þ
Z xþkk

2

x
kk
2

þ
Z xþe

xþ2kj

þ
Z p

xþe
:

Now Z x e

p
þ
Z p

xþe

����
���� Oðn1 2pð1þ k d1

j k d1
k ÞÞ

Oð#jkðd1Þk
p 1

2þd1
k k

p 1
2þd1

j ð1þ k d1
j k d1

k ÞÞ Oð#jkðd1ÞÞ:

�

23



The integral over [x e, x kj] is bounded in absolute value by

1

2p
P

jhðv;pÞt j2

Z kj

e
jDðv;pÞðkj kÞjjDðv;pÞðkk kÞjðf ðxþ kÞ fjkÞdk

O n1 2p
Z e

kj

k 2d2 2pdkþ k d1
j k d1

k

Z e

kj

k 2pdk

" # !

O n1 2p k1 2d2 2p
j þ k1 2p d1

j k d1
k

h i� �
O hjkðd�Þkd

�þp 1=2
j kd

�þp 1=2
k k1 2d� 2p

j þ k1 2p d�

j k d�
k

h i� �

O hjkðd�Þ
k
j

� �pþd� 1=2

þ k
j

� �p 1=2
" # !

Oðhjkðd�ÞÞ

using (11). Similarly

Z xþe

xþ2kj

�����
����� Oð#jkðd1ÞÞ:

Now,

Z x
kk
2

x kj

�����
����� � 1

2p
P

jhðv;pÞt j2

Z kk
2

kj

jDðv;pÞðkj kÞjjDðv;pÞðkk kÞjðf ðxþ kÞ fjkÞdk

Oðn1 2pk p
j ½k 2d�

j þ k 2d�
k �k1 p

k Þ

Oð#jkðd�Þk
d� 1

2
j k

1
2þd�

k ½k 2d�
j þ k 2d�

k �Þ Oð#jkðd�ÞÞ

and

Z xþkk
2

x
kk
2

�����
����� � 1

2p
P

jhðv;pÞt j2

Z þkk
2

kk
2

jDðv;pÞðkj kÞjjDðv;pÞðkk kÞjðf ðxþ kÞ fjkÞdk

Oðn1 2pjkj
kk
2
j pk p

k ½k1 2d�
k þ k1 d1

k k d1
j �Þ

Oðn1 2pj kj
2
j pk1 p

k ½k 2d�
k þ k d�

j k d�
k �Þ

Oð#jkðd�Þk
d� 1

2
j k

1
2þd�

k ½k 2d�
k þ k d�

j k d�
k �Þ Oð#jkðd�ÞÞ:

Now (21) is bounded in absolute value by

1

2p
P

jhðv;pÞt j2

Z 2kj

kjþkk
2

jDðv;pÞðkj kÞjjDðv;pÞðkk kÞjff ðxþ kÞ fjkg dk

O n pjkj kkj p
Z 2kj

kjþkk
2

jDðv;pÞðkj kÞjff ðxþ kÞ fjkgdk
 !

and by the mean value theorem, for kj þ kk/2 < k < 2kj,
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f ðxþ kÞ 1

2p
aj�ak

1

2p
aðxþ kÞ�aðxþ kÞ 1

2p
aj�ak

� 1

2p
�aðxþ kÞj j aðxþ kÞ aj

�� ��þ aj
�� �� �aðxþ kÞ �akj j

� �
Oð k kj
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and (21) is

O g p
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kjþkk
2

jDðv;pÞðkj kÞjk 1 2d1
j ½jk kjj þ jk kk j� dk

 !

O g pk 1 2d1
j
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:

Finally (20) is bounded in absolute value by
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and again by the mean value theorem, for kk
2 < k <

kj þ kk
2 ;

f ðxþ kÞ 1

2p
aj�ak Oðk 1 2d1

k jk kjj þ k 1 d1
k k d1

j jk kk jÞ

and (20) is

O g pk 1 d1
k gn 1k d1

k

Z kj

kj

jDðv;pÞðkÞjdkþ k d1
j

Z kj

kj

jDðv;pÞðkÞjjkj dk
" # !

Oðg pk d1
k k 1½gk d1

k þ k d1
j �Þ

O g1 pðjkÞ 1=2k d1
j k d1

k
j
k

� �1=2þd1

þ 1

g
j
k

� �1=2
" # !

O g1 pðjkÞ 1=2k d1
j k d1

k

� �

if k � j/2 and

Oðn pjkj kk j p½k 2d1
j þ k 2d1

k �Þ

O k d1
j k d1

k
k
j

� �d1

þ k
j

� � d1
" #

ðj kÞ p

 !

O k d1
j k d1

k g p j
k

� �jd1 j
 !

�

25



O k d1
j k d1

k g1 pj 1 j
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� �jd1j
 !

O k d1
j k d1

k g1 p jkð Þ 1=2 j
k

� �jd1 j 1=2
 !

O k d1
j k d1

k g1 p jkð Þ 1=2
� �

ð22Þ

if k < j/2, because g 1 < 2j 1 and |d1| 0.5 < 0.

(d)

EW ðv;pÞðxþ kjÞW ðv;pÞðxþ kkÞ
Z p

p

1

2p
P

jhðv;pÞt j2
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ð23Þ
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þ
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xþe
þ
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����
���� Oðn1 2pÞ Oð#jkðd1ÞÞ:

The absolute value of the integral over [ x e, x 3kj/2] is bounded by

1

2p
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jhðv;pÞt j2
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e
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O n1 2p
Z e
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2

k p 2d1 dk

 !

Oðn1 2pk1 2d1 p
j Þ Oð#jkðd1ÞÞ:

We obtain similarly the same bound for the integral over [x þ 3kk/2, x þ e]. Now the
integral over [ x 3kj/2, x kj/2] is bounded in absolute value by

1

2p
P

jhðv;pÞt j2

Z kj=2

3
2kj

jDðv;pÞðkj þ kÞjjDðv;pÞð2xþ kk kÞjf ð xþ kÞdk
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j Þ Oðj

p
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p
2k d1

j k d1
k Þ

and likewise for the interval over [x þ kk/2,x þ 3kk/2]. Similarly the integral over
[ x kj/2, x þ kj/2] is bounded in absolute value by

1

2p
P

jhðv;pÞt j2

Z kj=2

kj
2

jDðv;pÞðkj þ kÞjjDðv;pÞð2xþ kk kÞjf ð xþ kÞdk
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j k1 2d�

j Þ Oð#jkðd�ÞÞ

and similarly for the integral over [x kk/2, x þ kk/2]. Finally the absolute value of the
integral over [ x þ kj/2, x þ e] is bounded by
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jhðv;pÞt j2

Z e

kj
2

jDðv;pÞðkj þ kÞjjDðv;pÞð2xþ kk kÞjf ð xþ kÞdk
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2

n1 pk
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2 d2 p dk

 !
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j Þ Oð#jkðd�ÞÞ

and similarly for the integral over [x e, x kk/2]. u

Proof of Theorem 4. Under Gaussianity the proof follows as in Robinson (1995a, Thm 3)
using now our Theorem 3 with v 2 instead of his Theorem 2, and Assumption 4 instead
of his Assumption 6. For tapered data, we have also to replace the identity IJM matrix in
Robinson’s (1995a) eqn (17) by a positive definite squared band matrix of same dimension

containing the asymptotic correlations among tapered DFT (with typical element Að2;pÞ
rs ; for

|r s| < p, with Að2;pÞ
rr 1) and set R 1

2 I2. Then, the bound o(m 1/2) on the r.h.s. of his
equation (17) is preserved in our problem because of Assumption 4, which is similar to

Robinson’s Assumption 6 except the second condition that takes into account the terms
depending on #jk(d) in parts (c) and (d) of our Theorem 3. u

Proof of Theorem 5. It follows similarly as the proof of expression (5.13) in
Robinson (1995a, pp. 1070 1). Note that in the nontapered case p 1 we only need to
consider r̂2M ;2;1ð0Þ as in expression (28) of Robinson (1995a), but that when p > 1 we

have to estimate the correlation between adjacent log periodogram ordinates by means
of r̂2M ;2;pðkÞ; k ±1,±2, . . . ,±‘. The consistency of r̂2M ;2;pðkÞ for r2M ;2;pðkÞ follows as
when k 0 from expression (5.22) of Robinson (1995a) but using now our Theorem 3,

Asumption 4, and our tapering modified DFT variance covariance matrix, cf. proof of
Theorem 4. u

Proof of Theorem 6. For simplicity of exposition we focus on the estimation of d1, that of d2
being similar. Using a similar notation as in Theorem 1 in Robinson (1995a, 1995b) we get
that supH1

|A(H)| op(1) under Assumption 6 because for p � 2

E
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g1j
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where g1j C1k
2d1

j , and from Velasco (1999b) in his proof of Theorem 5 (p. 114)

Var
Xr
j lþ1

ð2pI ðv;pÞej 1Þ
( )

Oðr lÞ ð26Þ

for v 1 and similarly for v 2 (see also Arteche, 2000 for details in SCALM). We need to
show that limn!1P(infH2

S(d) � 0) 0. Now
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Using the definition of aj in pages 1638 and 1639 in Robinson (1995b), (24) and (25) we get
that P(infH2

S(d) � 0) ! 0 if

1

m l

Xm
lþ1

ðaj 1Þð2pI ðv;pÞej 1Þ
�����

����� opð1Þ;

which is proved in p 116 of Velasco (1999b) for v 1 and the proof for v 2 is similar and
easier because of the limited correlation between I ð2;pÞej and I ð2;pÞek . u

Proof of Theorem 7. The proof is an adaptation of Theorem 2 in Robinson (1995b).
The main difference is in the proof of

Xm
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r
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By Lemma 2 and (26) we get the desired result under Assumption 8. This result
guarantees that d2Rp

1ð�d1Þ=d2d!
p
4 for j�d1 d1j � j~d1 d1j. Next we have
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where vj log j
Pm

lþ1 log k=ðm lÞ. By Lemma 2 (28) is op(1) under Assumption 8. Next
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which converges to N(0, 4U) by Lemma 6 of Velasco (1999b) and the fact that
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Lemma 1. Under Assumptions 1 and 2, for p � 2 and integer j such that j/n ! 0 as
n ! 1, Z p

p
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Proof. The proof generalizes that of Lemma 3 in Robinson (1995b), considering the
same intervals of integration (around x) and the bound of

jKðv;pÞ
n ðkÞj � const.	minðn; n1 2pjkj 2pÞ:
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As in the proof of Lemma 3 in Robinson (1995b) we get the boundsZ x d
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and similarly the integral over (x þ 2kj, x þ d). The integral over (x ± kj/2) is
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and finally the integral over (x þ kj/2, x þ 2kj) is, by the mean value theorem
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Lemma 2. Let 0 < l < r � m such that n2(d
�

d1)l1 2p 2(d
�

d1) ! 0 as n ! 1. Under
Assumptions 1, 2 and 5 and p � 2
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Proof. Is based on the proof of (4.8) in Robinson (1995b) in p. 1648 1651. Using
similar notation (noting that in our case the DFT are of tapered data) we need to get the
bound of

E
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a1 þ a2 þ b1 þ b2;

where a1, a2, b1, b2 are defined as in p. 1648 of Robinson (1995b) with
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ej . Using Theorem 2 we get that
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We similarly get the following bound for b1

b1 Oððlog rÞ2 þ l2 þ l 1=2r1=2 log rÞ
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taking into account that the ðAðv;pÞ
jk Þ2 terms cancel out, g a O(1),
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and similarly
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for a > 1. Finally, the terms involving cumulants are

a2 OðlÞ;
b2 Oðl2 þ l log r þ n 1=2ðlog rÞ2Þ;

using Lemma 1 as in Robinson (1995b). u
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