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Abstract

We analyse the properties of nonparametric spectral estimates when applied to long memory
and trending nonstationary multiple time series. We show that they estimate consistently a gener-
alized or pseudo-spectral density matrix at frequencies both close and away from the origin and
we obtain the asymptotic distribution of the estimates. Using adequate data tapers this technique
is consistent for observations with any degree of nonstationarity, including polynomial trends.
We propose an estimate of the degree of fractional cointegration for possibly nonstationary se-
ries based on coherence estimates around zero frequency and analyse its 8nite sample properties
in comparison with residual-based inference. We apply this new semiparametric estimate to an
example vector time series. c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

In many empirical studies, it is found that the most relevant property of spectral
density estimates of observed time series is a marked peak at zero frequency. This fea-
ture is often associated with long-range or trending nonstationary behaviours. However
these estimates, usually of nonparametric nature and designed for short-memory series,
are constructed without detrending or explicit account of their long-run properties. This
makes diBcult the application of standard inference rules and the interpretation of such
features, well documented otherwise, since the nonstationarity may aCect the properties
of spectral estimates.
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To describe low-frequency behaviour it is often assumed that the spectral density
f(�) of an observed covariance stationary sequence satis8es for a positive constant G,

f(�) ∼ G�−2d as � → 0+; (1)

where d¡ 1
2 is the parameter that governs the degree of memory of the series, but

f(�) can be smooth outside a neighbourhood of the origin. For d¡ 1
2 the process is

stationary, and (1) allows spectral densities that either diverge, are positive or zero
at � = 0. If d∈ (0; 12 ) we say that the series exhibits long-memory or long-range
dependence. If d=0 the spectral density is bounded at �=0 and the process is called
short memory or weakly dependent. When d¡ 0 the spectral density is zero at the
origin and the series displays negative memory or antipersistent behaviour, due in most
cases to overdiCerentiation of observed time series. Related properties can be expressed
alternatively in the time domain in terms of the autocovariance sequence and hold for
fractional processes such as ARFIMA. See e.g. Robinson (1994a) or Beran (1994) for
a review of the literature on long-memory or long-range dependent processes.

After integer diCerencing, many nonstationary series are transformed into (second-
order) stationary ones with spectral density satisfying (1), as is the case of standard
ARFIMA models with d¿ 1

2 . Then we consider the transfer function of the diCerence
operator to de8ne a generalized or pseudo-spectral density (PSD) f(�) with power law
behaviour at the origin as in (1), but adding to d the number of integer diCerences taken
to achieve stationarity. This PSD, though with similar shape to the spectral density of
the stationary increments for frequencies away from the origin, is not integrable and
cannot represent a decomposition of the (in8nite) variance of the nonstationary time
series. However, as suggested by Solo (1992) and Hurvich and Ray (1995), f(�) has
an interpretation as the limit of the expectation of the sample periodogram as occurs for
stationary series. We show in this paper that this PSD is the quantity actually estimated
in practice by smoothed spectral estimates, completing the analysis of estimates of full
and semiparametric long-memory models without assumptions about the degree of the
possible nonstationarity (see Velasco and Robinson, 2000; Velasco, 1999a, b).

We analyse in this paper the properties of standard nonparametric smoothed spec-
tral estimates for both frequencies close and away from the zero-frequency singular-
ity for possibly long-memory and nonstationary or trending series. In a multivariate
context, for estimates based on discrete averages of periodogram ordinates we found
similar asymptotic results as those for stationary set-ups and bounded spectral densi-
ties itemized in, e.g. Hannan (1970, Section V.5) or Brillinger (1975, Section 4.2).
Assuming only local conditions around the frequency of interest we show the con-
sistency and asymptotic normality of the nonparametric estimates for linear processes.
Robinson (1994b) considered periodogram averages around the origin to estimate the
spectral measure. Hidalgo (1996) and Marinucci (2000) analysed the properties of spec-
tral estimators based on autocovariances for stationary and nonstationary long-memory
processes, respectively, under diCerent sets of assumptions, but periodogram-based esti-
mates may be more natural in many contexts as they are often better designed to avoid
leaking from remote frequencies. When the memory is very high, tapering the data
(Tukey, 1967) might be necessary to reduce the bias in the nonparametric estimation
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or to eliminate stochastic and deterministic trends, con8rming the desirable resolution
properties of such technique for stationary series found by, e.g. Zhurbenko (1979),
Dahlhaus (1985) or Robinson (1986).
For the analysis of multivariate long-memory or (fractionally) integrated time series,

possibly nonstationary, a key concept is that of cointegration. A vector of time series
with equal memory components is cointegrated if a linear combination of them has
smaller memory, the order of cointegration being this reduction in persistence measured
by the memory parameter. The usual assumption is that the original series have a
unit root, d = 1, and a linear combination is weakly dependent, d = 0, but other
possibilities are also plausible as suggested originally by Granger (1981) and Engle
and Granger (1987). When no assumption is made about the memory of the series, an
additional inference problem is the determination of the cointegration order. This entails
estimation of the memory of the original series (and testing for same memory) and
of the cointegrating errors, mostly through residuals in an estimated regression model.
Using nonparametric estimates of the coherence between two series at frequencies
close to the origin we propose in this paper narrow band estimates of the order of
cointegration in the spirit of Robinson and Marinucci’s (2001) or Marinucci’s (2000)
slope estimates. We discuss inference based of such estimates and compare its 8nite
sample performance with residual-based semiparametric alternatives.
The paper is organized as follows. We 8rst present in the next section the main

de8nitions and properties of nonstationary long-memory time series and data taper
sequences. In Section 3 we de8ne the nonparametric estimates of the PSD and 8nd
suBcient conditions for their consistency and asymptotic normality. Section 4 proposes
the new estimate of the cointegration order and in the next two sections its 8nite sample
properties are analysed, and it is applied to an example vector time series. Proofs are
given in the appendix.

2. Nonstationary time series and data tapers

Following Hurvich and Ray (1995) in a univariate context, we propose a gen-
eral model for possibly nonstationary integrated vector processes with components
{Xrt}; r = 1; : : : ; R, each with memory parameter dr ¿− 1

2 . We say that the observed
sequence Xrt has memory dr ¿− 1

2 if Urt = �DrXrt ; Dr = �dr + 1
2�, is stationary with

mean �r , possibly diCerent from zero, and spectral density fUr (�) = grr(�) behaving
as Grr�−2(dr−Dr) around the origin, − 1

2 6dr − Dr ¡ 1
2 . Here � = 1 − L, where L is

the lag operator. However, the de8nition of long-memory or fractional nonstationary
models in terms of partial sums of stationary long-memory processes we adopt here is
not the only possibility to obtain processes with similar long-run properties. Thus, for
example, Robinson and Marinucci (2001) and Tanaka (1999) use truncated fractional
diCerence 8lters that generate nonstationary series for any value of d.
De8ne the PSD of Xrt as

frr(�) = |1− exp(i�)|−2Drgrr(�) ∼ Grr�−2dr as � → 0+; (2)
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0¡Grr ¡∞. When 2dr¿ 1; frr(�) is not integrable in [−�; �] and it is not a spectral
density. We assume that grr(�) is the spectral density of a stationary process, but
not necessarily ARMA, and it can be zero or unbounded at frequencies � �=0, but
integrable for second-order stationarity. Note that if �r �=0 the observed time series
has a deterministic component and if Dr¿ 1 this is a polynomial trend.

Similarly, we de8ne the (pseudo) cross-spectral density of a pair of series
(Xrt ; Xst) as

frs(�) = (1− exp(i�))−Dr (1− exp(−i�))−Dsgrs(�) ∼ Grs�−dr−ds as � → 0+;

06 |Grs|¡∞, where grs(�) is the cross-spectral density of (Urt ; Ust), and if |Grs|=0
we account for zero coherence between Urt and Ust at zero frequency. See Lobato
(1997) for a discussion on multivariate long-memory semiparametric models.

The basic statistic for our frequency domain analysis is the tapered discrete Fourier
transform (DFT). The DFT of Xrt for a deterministic taper sequence ht and n obser-
vations t = 1; : : : ; n and r = 1; : : : ; R; (�j = 2�j=n), is de8ned as

wr(�j) = w(Xrt ; ht ; �j) =

(
2�

n∑
t=1

h2t

)−1=2 n∑
t=1

htXrt exp(i�jt);

and the (cross) periodogram of Xrt and Xrt is

Irs(�j) = wr(�j)ws(�j);

where the overline indicates complex conjugation. Tapering downweights the obser-
vations and both extremes of the observed data sequence to control leakage from
frequencies where nonstationarity is suspected in the observed time series.

The usual DFT is obtained setting ht ≡ 1; t = 1; : : : ; n, while the cosine or Hanning
taper is given by ht= 1

2(1−cos[2�t=n]). For sample size n=4N , where N is an integer,
the weights hPt of the Parzen window are

hPt =

{
2{1− |(2t − n)=n|}3; 16 t6N or 3N6 t6 4N;

1− 6[{(2t − n)=n}2 − |(2t − n)=n|3]; N ¡ t¡ 3N:

Zhurbenko (1979) used a class of data tapers {hZt } suggested by Kolmogorov, indexed
by the order p= 1; 2; : : : ; assuming N = n=p integer. For p= 3, Zhurbenko’s weights
are similar to the cosine window, and when p = 4; hZt are very close to hPt , sharing
similar asymptotic properties. If p=2, Zhurbenko taper is equal to Barlett’s triangular
window and when p= 1 they are constant.

We denote as Iprs(�j) = wr(�j)ws(�j) the (cross) periodogram with a taper of order
p according with the following de8nition:

De�nition. A sequence of positive data tapers {ht}n1 symmetric around �n=2� is of
order p if

(i) maxt ht = 1; and limn→∞ (1=n)
∑n

t=1 h2t = B for some 0¡B¡∞.
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(ii) For N = n=p (which we assume integer);

n∑
t=1

ht exp{it�}= a(�)
np−1

(
sin[n�=2p]
sin[�=2]

)p
; (3)

where a(�) is a complex function; whose modulus is bounded and bounded away
from zero; with p − 1 derivatives; all bounded in modulus as n increases for
�∈ [− �; �].

The higher the order, the more dramatic is the eCect of tapering, being possible to
deal with series with arbitrary high memory if enough tapering is applied, i.e. if p is
suBciently large (Velasco, 1999a). The raw DFT weights, the identity, are of order
p= 1, and from now on when p= 1 we will imply the usual DFT, without tapering.
The eCect on tapering can be illustrated by the following properties. Thus, summa-

tion by parts yields for a diCerentiable taper which vanishes at the boundaries, with
derivative h′t ,

w(Xrt ; ht ; �) ≈ 1
1− exp(i�)

[
w(�Xrt ; ht ; �) +

1
n
w(Xrt ; h′t ; �)

]
;

explaining, if the term multiplied by 1=n is negligible, how a suBciently smooth ta-
per (i.e. of suBciently high order p) can deal with arbitrarily high levels of mem-
ory d, justifying de8nition (2). In fact, from Hurvich and Ray (1995) and Velasco
(1999a), we obtain in Theorems 1 and 2 (to follow) Solo’s (1992) inversion calcula-
tion for nonstationary frr(�),

E[Iprr(�jp)] =

(
2�

n∑
t=1

h2t

)−1 ∫ �

−�
|Dh(�− �jp)|2frr(�) d� → frr(�jp); (4)

as n → ∞, where Dh(�) =
∑n

t=1 ht exp{i�t}. Then, the tapered periodogram is
asymptotically unbiased for the PSD of nonstationary series at Fourier frequencies �jp;
j �=0 (modN ).

Furthermore, tapers of order p allow inference for time series with polynomial trends
of orders up to p − 1 without need of identi8cation or estimation because for a data
taper of order p, the DFT is invariant to these trends,

w(t‘; ht ; �jp) = 0; ‘ = 0; 1; : : : ; p− 1: (5)

See Lobato and Velasco (2000) for an application of this property.
We now review in a multivariate context some results obtained in Robinson (1995a)

and Velasco (1999a) for the (tapered) DFT of possibly nonstationary time series. Here
we are only concerned with positive Fourier frequencies 0¡�j6 �, since we can anal-
yse negative ones by complex conjugation and symmetry. The regularity conditions on
the behaviour of grr(�) around the frequency ! of interest, 06 !¡�, are summarized
in Section 3. The case !=0 is of interest for the analysis of the persistence properties
of the observed vector series, including cointegration properties.
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We 8rst analyse the covariance matrix of the raw wr(�j) with no tapering. De8ne
vr(�) = wr(�)=f

1=2
rr (�).

Theorem 1 (p = 1). Under Assumptions 1 and 4; (4′ for ! = 0); dr ∈ (− 1
2 ; 1); r =

1; : : : ; R; � = 0; for sequences of positive integers j = j(n) and k = k(n) such that
0¡k¡j¡n=2; �j; �k → !∈ [0; �] as n → ∞ and de6ning $j;k=jdr−1kds−1 log(1+j);

(a) E[vr(�j) Nvs(�j)] = Hrs(�j) + O(j−1 log(1 + j) + $j; j);
(b) E[vr(�j)vs(�j)] = O(j−1 log(1 + j) + $j; j);
(c) E[vr(�j) Nvs(�k)]; E[vr(�j)vs(�k)] = O(k−1 log(1 + j) + $j;k).

Hrs(�) is the coherence at frequency � between Urt and Ust and $j;k bounds the
nonstationarity bias due to the nonintegrability of frr(�) for dr¿ 0:5. For values dr¿ 1
the periodogram is not unbiased for the PSD frr(�), though its expectation is 8nite for
d¡ 1:5 (see Hurvich and Ray, 1995). Tapering helps to control this bias using (3) to
deal with nonstationary series and deterministic trends. However, the full advantage of
the tapering only shows up when we assume further smoothness conditions on f(�).
Denote by &=1; 2 the number of derivatives of f(�) around ! and set the normalized
tapered Fourier transform vTr (�) = wT

r (�)=f
1=2
rr (�).

Theorem 2 (p¿ 2). Under Assumptions 1; 4; 6 (4′ and 6′ for ! = 0); dr ¿ − 1
2 ; a

data taper of order p= 2; 3; : : : ; with either

(i) �r = �s = 0 and p¿max{dr; ds};
(ii) p¿max{Dr; Ds}+ 1 any �r; �s;

for sequences of positive integers k=k(n) and j=j(n); and ' ≡ j−k; 16k¡j6n=(2p);
�jp; �kp → !∈ [0; �] as n → ∞; $j;k ≡ jdr−pkds−p log(1 + j);

(a) E[vTr (�jp)vTs (�jp)] = Hrs(�jp) + O(j−& + $j; j);
(b) E[vTr (�jp)v

T
s (�jp)] = O(j−p + $j; j);

(c) E[vTr (�jp)vTs (�kp)]; E[v
T
r (�jp)v

T
s (�kp)] = O(k−1'1−p + k−1'−p{log n}[p=2] + '−p

+ $j;k).

In part (c) the log n factor only appears when p = 2 but not otherwise. Thus, the
tapered periodogram (with a taper of order p) is unbiased at Fourier frequencies �jp
for any dr ¡p if �r = 0, (i), or with some extra tapering if there are deterministic
polynomial trends in time (�r �=0 in (ii)).

3. Nonparametric estimates of the PSD matrix

We analyse in this section the properties of traditional nonparametric kernel spectral
estimates at frequencies !; 0¡!¡�, 8xed in the asymptotics, and at frequencies in a
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degenerating band around the origin with ! → 0 as the sample size increases, as when
e.g. != �j with j increasing slowly.
We de8ne the following class of statistics, based on a discrete average of the (pos-

sibly tapered) periodogram ordinates Iprs(�j) at the Fourier frequencies closest to the
frequency of interest !:

f̂
M
rs (!) =

2�p
n

∑
j

KM (!− �jp)Iprs(�jp);

where KM (x) = MK(Mx) and K(x) integrates to 1 and is of compact support inside
[−�; �]. M is a bandwidth number which increases with the sample size in the asymp-
totics. The summation in j runs for all the �jp in the support of KM , including O(nM−1)
Fourier frequencies (that is, j = v; v ± 1; : : : ; v ± �n=2Mp�, if the support of K is ex-
actly [ − �; �], where �pv is the closest frequency to ! for each n; v integer). When

the series is not stationary, the frequency domain estimates f̂
M
rs are not necessarily

asymptotically equivalent to estimates constructed in terms of the sample (cross) auto-
covariances, since our analysis depends crucially on the properties of the periodogram
at Fourier frequencies (Theorems 1 and 2).

We need the following regularity conditions for the asymptotic analysis of the prop-

erties of f̂
M
rs (!).

Assumption 1. For dr ¿− 1
2 ; r; s= 1; : : : ; R;

grs(�) = Grs�−dr−ds+Dr+Ds(1 + o(1)) as � → 0+;

for some 0¡Grr ¡∞ and 06 |Grs|¡∞; r �= s.

Assumption 2. Ut = � +
∑∞

j=0 Ajjt−j with
∑∞

j=0 ‖Aj‖2 ¡∞; where ‖ · ‖ denotes
the supremum norm and jt satis8es a.s. E(jt |It−1) = 0; E(jtj′t |It−1) = �;
+rr = 1; E(ja(t)jb(t)jc(t)|It−1) = �abc with |�abc|¡∞ for a; b; c = 1; : : : ; R;
E(ja(t)jb(t)jc(t)jd(t)|It−1)=�abcd; where |�abcd|¡∞ for a; b; c; d=1; : : : ; R and It−1

is the .-8eld of events generated by {js; s6 t − 1}.

Assumption 3. The function K is even; has compact support inside [ − �; �]; satis8es
a Lipschitz condition and∫ �

−�
K(x) dx = 1; ‖K‖22 =

∫ �

−�
K2(x) dx¡∞:

Assumption 4. |grs(�)|¿ 0 and grs(�) is boundedly diCerentiable for �∈ (!− /; !+ /);
some /¿ 0; r; s= 1; : : : ; R.

Assumption 5. Ars(�) is boundedly diCerentiable for �∈ (! − /; ! + /); some /¿ 0; r;
s= 1; : : : ; R.

Assumption 6. grs(�) is twice boundedly diCerentiable for �∈ (! − /; ! + /); some
/¿ 0; r; s= 1; : : : ; R.
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Assumption 1 deals with the possible long memory or nonstationarity of the ob-
served series, while Assumptions 4–6 impose some smoothness on the spectral density
grs around the frequency of interest. Only Assumptions 1 and 4 are needed for the
analysis of the covariance of the usual DFT in Theorem 1, but Assumption 6 is used
to control smoothing bias and to fully use tapering properties when p¿ 1 in The-
orem 2. Similar conditions are used for parametric and semiparametric inference on
long-memory processes, imposing here only local conditions around the frequency of
interest, allowing for PSDs with (integrable) poles or zeroes at remote frequencies.

Assumption 2 imposes linearity of the (diCerenced) stationary zero mean series
U(?)

t = Ut − �; Ut = (U1t ; : : : ; URt)′. It was introduced by Robinson (1995b) and
Lobato (1997, 1999) to analyse semiparametric estimates of d for stationary long-memory
processes and it does not restrict the form of fU (�) = g(�) in any way and is only
restrictive in the linearity it imposes. Note that the variance of the components of jt is
set to one for identi8ability in Assumption 2. De8ne A(�) =

∑∞
j=0 Ajeij�, and denote

each of its rows by Ar(�) = (Ar1(�); : : : ; ArR(�)). Then the spectral density matrix of
jt is fj(�) = (2�)−1�, so g(�) = (2�)−1A(�)�A∗(�), with typical element

grs(�) =
1
2�

Ar(�)�A∗
s (�) =

1
2�

R∑
a=1

R∑
b=1

Ara(�)+abAsb(−�);

where ∗ stands for simultaneous transposition and complex conjugation. Denote Br(�)=
(1− ei�)−DrAr(�); r=1; : : : ; R, so frs(�)= (2�)−1Br(�)�B∗

s (�). Assumption 5 imposes
smoothness on the components of A (equivalently B) around the frequency of interest,
implying Assumption 4.

Assumption 3 is standard in nonparametric kernel estimation and is satis8ed by
many kernels employed in spectral analysis with compact support, like the uniform
and Barlett–Priestley kernels.

The 8rst result of the paper is about the consistency and asymptotic distribution of

the nonparametric estimate f̂
M
rs (!) for |!|¿ 0 8xed with n. To centre the asymptotic

distribution in the actual value of frs(!), we need to undersmooth the nonparametric
estimates and use Assumption 6 for bias control. We recall that for complex quantities,
the covariance is de8ned conjugating the second term in the expectation, so the variance
is de8ned as the expectation of the squared modulus of the mean-corrected variates
(see e.g. Brillinger (1975, p. 89) for the J -dimensional complex normal distribution,
denoted as NC

J ; J 8xed). Set d∗ =maxr=1; :::;R dr and for r(i); s(i)∈{1; : : : ; R},
Frs(!) = (fr(1)s(1)(!1); : : : ; fr(J )s(J )(!J ))′;

where F̂
M
rs (!) is de8ned accordingly, and

5p = lim
n→∞

(
n∑
1

h2t

)−2 n−p∑
k=0;p;2p;:::

[
n∑
1

h2t cos t�k

]2
:

All theorems are proved in the appendix.

Theorem 3. For |!|¿ 0 as n → ∞ under Assumptions 1–5 and

Mn−1 +M−1 → 0 as n → ∞; (6)
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and either

(i) �r = �s = 0 and p¿max{dr; ds};
(ii) p¿max{Dr; Ds}+ 1; any �r; �s;

then

f̂
M
rs (!)− frs(!) →p 0:

Further, for !i ∈ (−�; �)− {0}; i = 1; : : : ; J , 6xed with n, with Assumption 6,

M 3n−1 log n+M−5n → 0 as n → ∞; (7)

and either

(iii) � = 0 and p= 1 and

M−1n4d∗−3 log2 n → 0 as n → ∞; (8)

(iv) � = 0 and p¿d∗ and

M−1n2(d∗−p)+1 log n → 0 as n → ∞: (9)

(v) p¿ �d∗ + 1
2�+ 1 and p¿ 1 (any �),

we obtain that√
n
M

{F̂M
rs (!)− Frs(!)} →d NC

J (0; 2�p5p‖K‖26(!)) as n → ∞;

where 6(!) = [.ij(!)]; .ij(!) = 7(!i − !j)fr(i)r( j)(!i)fs(i)s( j)(−!i) + 7(!i + !j)fr(i)s( j)(!i)
fr( j)s(i)(!i); r(i); r(j); s(i); s(j)∈{1; : : : ; J}.

We decided for simplicity not to include the cases !i =±� (but the standard results
hold, see e.g. Brillinger, 1975, Theorem 7.4.3). A condition like (6) is also minimal for
nonparametric estimation of smooth spectral densities. Tapering allows the consistent
estimation of f with trending observations without need of initial detrending, (ii), and
without any kind of tapering it is possible to estimate f consistently for nonstationary
but transitory processes with d¡ 1, (i).

The taper variance inQation factor 5p is smaller than 1.05 for Zhurbenko kernels
with p¿ 1 (51 ≡ 1), implying moderate increments in the asymptotic variance of the
estimates (apart from the p factor due to the reduced number of frequencies used in

f̂
M
rs ). Note that 5p = 8p, where 8p is the usual tapering variance correction (see

e.g. Dahlhaus, 1985) if the sum in k in the de8nition of 5p were running for all the
possible values,

8p = lim
n→∞ n

(
n∑
1

h2t

)−2 n∑
1

h4t ;

by Parseval’s identity. The results also hold for the cosine bell taper with 5c =8c = 35
18

when − 1
2 ¡d∗ ¡ 3

2 ; �= 0, considering all possible frequencies, like if p= 1 (see the
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discussion in Velasco, 1999b). Notice that spectral estimates at diCerent frequencies are
asymptotically independent for |!h|¿ 0 as in the weak dependence case with bounded
spectral density.

When considering estimation in a degenerating band of zero frequency we need to
adapt our assumptions:

Assumption 4′. grs(�) is diCerentiable for �∈ (0; /); some /¿ 0; r; s= 1; : : : ; R; and

d
d�

grs(�) = O(�−dr−ds+Dr+Ds−1) as � → 0+:

Assumption 5′. Ar(�) is diCerentiable for �∈ (0; /); some /¿ 0; r = 1; : : : ; R; and

dAr(�)
d�

=O(�−1‖Ar(�)‖) as � → 0+:

Assumption 6′. grs(�) is twice diCerentiable for �∈ (0; /); some /¿ 0; r; s = 1; : : : ; R;
with

d2

d�2
grs(�) = O(�−dr−ds+Dr+Ds−2) as � → 0+:

The corresponding result for these frequencies is stated as

Theorem 4. For |!| → 0 as n → ∞ under Assumptions 1–3; 4′; 5′; (6);

(|!|M)−1 + (n|!|)−1 log n+ (n|!|)2(d−p) log n → 0 as n → ∞ (10)

and either (i) or (ii) of Theorem 3 then;

f̂
M
rs (!)
frs(!)

− 1 →p 0:

If we further take Assumption 6′,

M 3n−1 log n+M−5|!|−4n → 0 as n → ∞; (11)

and either

(iii) � = 0; d∗ ¡ 3
4 and p= 1;

(iv) take (iv) or (v) of Theorem 3 and

M−1n(n|!|)2(d∗−p) log n → 0 as n → ∞; (12)

we obtain that√
n
M

f̂
M
rs (!)− frs(!)

(frr(!)fss(!))1=2
→d NC

1 (0; 2�p5p‖K‖2) as n → ∞:
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The condition (|!|M)−1 + (|!|n)−1 log n → 0 as n → ∞ in (10) is needed now to
avoid periodogram ordinates too close to the singularity of the PSD at the origin. The
last condition in (10) controls the degree of nonstationarity when d is close to the
degree of tapering applied, p. When !=�j, then j may grow as n/, any 0¡/¡ 1, for
consistency. Condition (11) further restricts the range of low frequencies ! for which

we can obtain the asymptotic normality of f̂
M
rs (!), though if !=�j it would be possible

to consider j ∼ n5=6+/ for any /¿ 0.
The restrictions on the value of d∗ (i.e. the degree of nonstationarity) depend on

the tapering degree p in a parallel way as was found for semiparametric estimates a
similar environment by Velasco (1999a, b) and by Velasco and Robinson (2000) for
parametric estimates. Thus, for any allowed choice of M; p¿d∗ + 1

2 is suBcient for
(12). When p = 1 and all !i are 8xed, it is possible to 8nd sequences M which lead
to asymptotically normal estimates if d∗ ¡ 5

6 . Weaker conditions on the smoothing
bandwidth M would be suBcient for a central limit theorem if we substitute Frs(!) by
E[F̂ rs(!)] or if we employ higher order kernels or estimate higher order bias terms.
Finally, note that the asymptotic variance in Theorem 3 changes the sign of the

frequency when !i =−!j in fr( j)s(i)(!i) with respect to Brillinger (1975, Theorem and
Corollary 7.4.3), otherwise when !i=!j and considering f̂r( j)s( j)(−!1)=f̂s( j)r( j)(!1) we
would obtain a contradiction. However, this is correctly stated in his equation (7.2.14),
but not in the second line of (7.2.13).
All standard results for linear and nonlinear functions of the PSD (real and imaginary

parts, modulus, coherency, phase, transfer function) can be deduced from Theorems 3
and 4. See e.g. Hannan (1970, Section V.5). These spectral estimates can be used for
long memory estimation (Hassler, 1993; Chen et al., 1994; Reisen, 1994) and for eB-
cient Hannan’s (1963) regression for long-memory and nonstationary series (Robinson
and Hidalgo, 1998; Marinucci, 2000), apart from nonparametric descriptive analysis. In
the next section we take this further and analyse the behaviour of coherence measures
for cointegrated series, and estimate a semiparametric model for them.

4. Spectral analysis of cointegrated time series

We will denote a time series whose stationary increments have spectral density
satisfying Assumption 1 as integrated of order dr; I(dr), generalizing the usual I(0)
and I(1) terminology (see Engle and Granger, 1987). The parameter dr determines the
main long-run properties of I(dr) processes. Let the observable bivariate time series
(Yt; Xt) be I(d) (i.e. dY = dX = d¿ 0 in Assumption 1) and satisfy

Yt = bXt + Zt (13)

for some b �=0, where the cointegrating error Zt is I(d − ;); 0¡;6d, and may
be correlated with Xt at some frequencies (all � = 0). If such Zt exists with ;¿ 0
we say that the pair (Yt; Xt) is cointegrated because a linear combination of them is
less nonstationary and can be interpreted as a long-run relationship where the Zt are
departures from equilibrium. Often this set-up is only sensible if the errors Zt are
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transitory, i.e. if d− ;¡ 1 so shocks do not have a permanent eCect on the long-run
equilibrium. The main inference issues in cointegrated systems are the estimation of
the long-run relationship b and of the memory of the series involved, d and d− ;.
We strengthen Assumption 1 and suppose that the PSD matrix f of Xt and Z satis8es

f(�) = �−2d

(
Gxx Gxz�;

Gzx�; Gzz�2;

)
(1 + O(�2)) as � → 0+

for some constants |Gab|¡∞; a; b∈{x; z}, where the matrix G= {Gab} is Hermitian
and nonsingular.
The memory d of the observables can be estimated directly from either Xt or Yt ,

e.g. using the semiparametric estimates of Robinson (1995a, b). However, Zt is not
observed in order to estimate d− ; or ;. The regression model (13) can be estimated
(for example using spectral estimates as in Marinucci, 2000) and residuals can be used
instead, but asymptotic properties of estimates of b depend crucially on ; (Robinson
and Marinucci, 2001) and the same can be expected for residual-based estimates (see
e.g. Hassler et al., 2001). Here we propose an estimation method for ; related to our
previous nonparametric analysis and avoiding intermediate steps.
De8ne the coherence Hab(�) between two time series at and bt at frequency � as

Hab(�) =
fab(�)

(faa(�)fbb(�))1=2
;

so |Hzx(�) − Hzx(0)| = O(|�|2) as � → 0+, where |Hzx(0)|2 = |Gzx|2=(GzzGxx), which
holds, e.g. for certain ARFIMA processes (cf. Assumption 3 of Robinson, 1995a).
Then, employing model (13), and pretending that the series are stationary to calculate

the autocovariances (otherwise, integer diCerence (13) a suBcient number of times and
then multiply by the unit root transfer functions) the PSD of Yt is

fyy(�) = b2fxx(�) + fzz(�) + 2bRefzx(�) ∼ b2Gxx�−2d as � → 0+;

and the cross-PSD of Xt and Yt satis8es

fxy(�) = bfxx(�) + fxz(�) ∼ bGxx�−2d as � → 0+:

Therefore, Xt and Yt have coherence equal to one at zero frequency, Hxy(0)=1, and the
PSD matrix of (Xt; Yt) is singular at �=0. Note that the generalized coherence Hxy(�)
de8ned in terms of the PSDs for nonstationary series belongs to the interval [0; 1] for
all � as in the stationary case, independent of whether the PSDs are unbounded or zero
at some frequencies.
After straightforward manipulations using (13) we can write the square coherence

as

|Hxy(�)|2 = 1− fzz(�)
fyy(�)

+
|fzx(�)|2

fyy(�)fxx(�)
: (14)

12



Substituting in (14) the approximation of fyy as � → 0+,

|Hxy(�)|2 = 1−
(
Gzz

Gxx
− |Gzx|2

G2
xx

)(
1− 2�;

ReGzx

Gxx

)
�2; +O(�4; + �2+2;)

∼ 1− GH�2;

for a real constant 0¡GH ¡∞,

GH =
Gzz

Gxx

[
1− |Gzx|2

GxxGzz

]
;

depending on the (normalized) noise-to-signal ratio and on the coherence at zero be-
tween Xt and Zt . Taking logs, we have

log(1− |Hxy(�)|2) ∼ logGH + 2; log � as � → 0+; (15)

and we may try to estimate ; using consistent estimates of |Hxy(�)|2 at frequencies
�j in a degenerating band around the origin. Notice that the smaller the ; the worse
is the above approximation for |Hxy(�)| based on the leading terms of the expansion,
1− GH�2;, but in this case also estimates of b have slower rates of convergence (see
e.g. Robinson and Marinucci, 2001). This approach is valid for both stationary and
nonstationary series (tapering might be used to eliminate some intercept or polynomial
trend in (13) or to cover very nonstationary situations, d¿ 1) and it is not aCected
asymptotically by the endogeneity of the residuals (Hzx(�) �=0) because of its semi-
parametric nature. However, if Xt and Zt are incoherent at zero frequency, Hzx(0) = 0,
so Gzx = 0 and GH = GzzG−1

xx , then |Hxy(�)|2 = 1− GH�2; + O(�4;) reducing the bias
of the semiparametric model (15). In any case we can consider terms of order �3;,
etc. for greater accuracy. For a general R×1 vector time series similar approximations
should be possible in terms of multiple correlation coeBcients based on the coherence
matrix H(�).

Denote by ;̂ the least-squares estimate of ; based on the regression (15) of
log(1− |Ĥ xy(�j)|2) on Wj = 2 log �j, for frequencies �j; j = ‘; : : : ; m,

;̂=


 m∑

j=‘

W̃
2
j




−1
m∑
j=‘

W̃ j log(1− |Ĥ xy(�j)|2)

with W̃ j =Wj − NW , where NW is the sample mean of the Wj, and

|Ĥ xy(�j)|2 =
|f̂M

xy (�j)|2

f̂
M
xx (�j)f̂

M
yy(�j)

:

We may call this estimate log-coherence regression estimate in parallel to Geweke and
Porter-Hudak’s (1983) log-periodogram regression estimate of the memory parameter
d. As in Robinson (1995a) we introduce a trimming of the very 8rst ‘ coherence
estimates, which may not have very desirable asymptotic properties. The analysis of ;̂
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is complicated with respect to the log-periodogram regression estimate of d due to the
nonlinear and nonparametric nature of sample coherences |Ĥ xy(�j)|2. We show 8rst the
consistency of ;̂ under conditions similar to those of Theorem 3 and then approximate
its variability for large samples. We can write, W2 =

∑m
j=‘ W̃

2
j ,

;̂− ;=W−1
2

m∑
j=‘

W̃ j log
1− |Ĥ xy(�j)|2
1− |Hxy(�j)|2 + @m;

where the bias term is @m =O(m−1∑
j |W̃ j|�;j ) = O((m=n);) as in Robinson (1995a).

We obtain then

;̂− ;=W−1
2

m∑
j=‘

W̃ jŜj +W−1
2

m∑
j=‘

W̃ jĈj +O
((m

n

);)
; (16)

where Ŝj = Âj − B̂j is the linear part,

Âj =
f̂

M
xx (�j)f̂

M
yy(�j)− |f̂M

xy (�j)|2
fxx(�j)fyy(�j)(1− |Hxy(�j)|2) ; B̂j =

f̂
M
xx (�j)f̂

M
yy(�j)

fxx(�j)fyy(�j)
;

and

Ĉj = log
1− |Ĥ xy(�j)|2
1− |Hxy(�j)|2 − Ŝj = (log Âj − Âj + 1)− (log B̂j − B̂j + 1):

We now analyse the properties of the spectral estimates included in ;̂ under some
stronger conditions.

Lemma 1. Under Assumptions 1–3; 4′–6′ (p=1; �=0) for Gaussian Xt; Yt ; 0¡;¡ 1
2 ;

0¡d¡ 3
4 ; M

−1 +Mn−1 + (m− ‘)−1 +mn−1 → 0 as n → ∞; and if for some C¿ 1;

(n2;−1‘−2;M + n2(1+;)‘−2(1+;)M−2)logm+MC=2nC(2;−0:5)‘1−2;C logC m → 0;
(17)

as n → ∞; then a; b∈{X; Y};

max
‘6j6m

(1− |Hxy(�j)|2)−1(faa(�j)fbb(�j))−1=2|f̂M
ab (�j)− fab(�j)|

=op(log
−1m): (18)

We impose d¡ 3
4 and Gaussianity to simplify proofs and avoid conditions on the

moments of the linear innovations. Note that under (17), condition (10) for the con-

sistency of f̂
M
ab (!) holds for ! = �j; ‘6 j6m. The implications of the conditions of

Lemma 1 are very strong on the trimming ‘ to obtain the uniform consistency of the
spectral estimates in the frequency band of the log-coherence regression, though in
practical applications this may not be needed as long as zero frequency periodograms
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are avoided. Thus, if ‘ ∼ Ana; m ∼ Bnb; M ∼ Cnc; 0¡a6 b¡ 1; 0¡c¡ 1, (17)
holds if

max{(1 + ;)(1− a)− c; 4;(1− a) + c − 1}¡ 0;

which, when e.g. ;= 0:2 holds for a= 0:6 and c = 0:5.
Then under the assumptions of Lemma 1, ;̂−;=op(1) as n → ∞, because using that

maxj |W̃ j|=O(logm) and maxj |Âj−1|=op(log
−1m); maxj |B̂j−1|=op(log

−1m) both
implied by (18), we obtain that maxj |Ŝj|= op(log

−1m) and maxj |Ĉj|= op(log
−1m).

Now we proceed heuristically. Since the spectral estimates are approximately inde-
pendent if they include periodogram ordinates at non-overlapping frequencies, so are
the coherence estimates, the log-coherence regression estimate would be approximately
normal in large samples. To estimate its variance we can approximate Var[log(1 −
|Ĥ xy(�j)|2)] by 4 Var[tanh−1(|Ĥ xy(�j)|)] using that log(1−x2)+2 tanh−1(x)= log(1+
x) → 2 log 2 as x → 1−, so

Var[;̂]≈
(∑

W̃
2
j

)−2
4
∑
j

∑
k

W̃ jW̃ k

×Cov[tanh−1(|Ĥ xy(�j)|); tanh−1(|Ĥ xy(�k)|)]: (19)

Here the transformation tanh−1 is variance stabilizing because Ĥ xy is a sort of cor-
relation coeBcient in the frequency domain, and when Ĥ xy is de8ned using spectral
estimates with uniform weights over 2q+1 Fourier frequencies we can write (see e.g.
Brillinger, 1975, p. 312),

Var[tanh−1(|Ĥ xy(�j)|)] ≈ 1
2(2q+ 1)

: (20)

We can also approximate for |t|6 2q:

Cov[tanh−1(|Ĥ xy(�j)|); tanh−1(|Ĥ xy(�j+t)|)] ≈ 2q+ 1− |t|
2(2q+ 1)2

; (21)

and if the estimates Ĥ xy are evaluated at frequencies suBciently far apart we can
suppose they are asymptotically uncorrelated. Plugging (20) and (21) in (19) we can
estimate the sampling variance of ;̂ for each m and q. For tapered series this approx-
imation can be adjusted by 5p and p as for f̂ (cf. Theorems 3 and 4).
We can also justify these variance estimates using the linear approximation to ;̂

given by the 8rst term on the right-hand side of (16). Thus,

Var[Ŝj]{fxx(�j)fyy(�j)(1− |Hxy(�j)|2)}2

= |Hxy(�j)|4 Var[f̂M
xx (�j)f̂

M
yy(�j)]

− 2|Hxy(�j)|2 Cov[f̂M
xx (�j)f̂

M
yy(�j); |f̂

M
xy (�j)|2] + Var[|f̂M

xy (�j)|2];
15



and for uniform weights this is approximately equal to 1=(2q+ 1) times

|Hxy(�j)|4{2fxx(�j)fyy(�j)|fxy(�j)|2 + 8f2
xx(�j)f

2
yy(�j)}

− 20|Hxy(�j)|2fxx(�j)fyy(�j)|fxy(�j)|2

+ 2fxx(�j)fyy(�j)|fxy(�j)|2 + 8|fxy(�j)|4;

under appropriate conditions on the higher order cumulants of jt , e.g. assuming Gaus-
sianity. Thus for small �j,

Var[Ŝj] ≈ 2
2q+ 1

|Hxy(�j)|2 ≈ 2
2q+ 1

: (22)

Alternatively, we can write that

Ŝj =
f̂

M
xx (�j)f̂

M
yy(�j)

fxx(�j)fyy(�j)
|Hxy(�j)|2 − |Ĥ xy(�j)|2

1− |Hxy(�j)|2 ≈ |Hxy(�j)|2 − |Ĥ xy(�j)|2
1− |Hxy(�j)|2 ;

and then use the fact that

Var[|Ĥ xy(�j)|2] ≈ 2
2q+ 1

|Hxy(�j)|2(1− |Hxy(�j)|2)2 (23)

(e.g. Brillinger, 1975, p. 309) to obtain again the approximation (22). Similar approx-
imations can be used for the covariances between Ŝj and Ŝk ; j �= k.

5. Simulation results

In this section we simulate the performance of the estimate ;̂ of the cointegration
degree in comparison with semiparametric procedures based on OLS residuals. In par-
ticular, we use the log-periodogram regression estimate (Geweke and Porter-Hudak,
1983; Robinson, 1995a) and an estimate based on a local Gaussian or Whittle likeli-
hood (KSunsch, 1987; Robinson, 1995b). These estimates are consistent for nonstation-
ary series when d¡ 1, or d¡p if tapering of order p is applied (�=0), see Velasco
(1999a, b). We use the Zhurbenko taper of order p=2, which is valid for d¡ 1:5 for
memory estimation with any �.
We have simulated cointegrated Gaussian series (Xt; Yt) of lengths n=128 and 256

according to (13) with three pairs of cointegration values, CI(1,0) (; = 1), CI(1.3,
0.9) (; = 0:4), and CI(1.1,0.4) (; = 0:7). All the observed series are nonstationary
while the residuals are weakly dependent, nonstationary but mean reverting and sta-
tionary long memory, respectively. The Xt series are all ARFIMA(0; d; 0), while Zt are
ARFIMA(2; d−;; 0) with autoregressive coeBcients E1=0:34 and E2=−0:9, guarantee-
ing that the PSDs of Zt shows a peak at �=4�=9 (Models 1–3), or ARFIMA(1; d−;; 0),
(Models 1′–3′) with E1=0:3 and 0:6. The innovations are zero mean Gaussian indepen-
dent sequences 'X ; 'Z with standard deviations (sd’s) .X =1; .Z =2, respectively, and

16



correlation 0.5. Nonstationary series are obtained by integration of series with memory
parameter d − 1. Similar data generation processes have been used previously in the
CI(0; 1) case by Robinson and Marinucci (2001).

The bandwidths were m=6; 12; 18 for n=128 and m=12; 24; 36 for n=256 while for
coherence estimation we used uniform weights q=1; 2. The estimates ;̂ are calculated
from the original data and from tapered data with Zhurbenko taper of order p = 2.
Note that if no taper is used f̂M is not consistent for our simulated series (dX ¿ 1).
We also construct estimates ;̂� based on the increments (�Xt; �Yt). For AR(1) series
we only report the estimates based on nontapered series with N = 256.

For comparison purposes we consider alternative estimates of ; based on OLS resid-
uals. Notice that for these series the OLS estimate satis8es b̂−b=Op(n−;) (cases II, IV
and III, respectively, of Robinson and Marinucci, 2001). We consider two semipara-
metric estimation procedures with the same bandwidths as for ;̂: the log-periodogram
regression (;̂L) and the local Gaussian semiparametric estimate (;̂G). These estimates
are implemented with three diCerent input series. We 8rst estimate d starting with Xt

and with the OLS residuals Ẑ t we estimate the order dZ of integration of Zt and set
the estimate of ; as d̂− d̂Z. We also substitute Xt by �Xt and Ẑ t by �Ẑt and 8nally
we only diCerentiate the observed series but work with the original residuals, adapting
the estimates of ; accordingly. Note that some of these estimates are not consistent
for the models considered, but that some systematic biases may cancel out.

We report the mean, sd and mean square error (mse) of the estimates across 500
replications. We also give in parentheses the approximations of the sd’s of ;̂ based on
(19) for both values of q and each m, taking into account the tapering applied.

The main conclusions for the ARFIMA(2; d; 0) cointegrating series are as follows
(see Tables 1–3 for N =256 and 128 and Models 1–3, respectively). Coherence-based
estimates with q = 1 perform slightly better than those with q = 2, except for Model
2 where the situation is reversed, though the improvement in the sd is smaller than
that predicted by (19). The estimates ;̂� based on (stationary) increments work uni-
formly much worse than those with original data, except for Model 2, where the
similar performance is explained in terms of the nonstationarity of the cointegrating
residuals, so the diCerenced residuals are invertible, in contrast with the other two
cases.

The variance approximation (19) gives a good indication of the sample variability
of ;̂ for both n and q and all m, though it underestimates the sample variance for
the smallest values of m, especially for n= 128. With tapering the variance increment
is only slightly overestimated by (19) for large m, but the bias performance is more
erratic than without tapering, leading to larger mse for all estimates considered. For
the sample sizes considered the best results were attained for the largest values of m,
both in terms of sample bias and sd.

Coherence estimates have similar properties than residual-based estimates for Models
1 and 3 but do not achieve results close to the best performances of log-periodogram
and Gaussian estimates for Model 2. Among the alternatives to construct these resid-
ual estimates, the uniformly best is to use diCerenced data and original residuals,
though, as expected, the second one using both diCerenced data and residuals works
better for Model 2, while using both original data and residuals seems to have no
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Table 1
Model 1, ; = 1; CI(1; 0); E1 = 0:34; E2 =−0:9

p m q = 2 q = 1 X; Ẑ t �Xt ; �Ẑt �Xt ; Ẑ t

;̂ ;̂� ;̂ ;̂� ;̂L ;̂G ;̂L ;̂G ;̂L ;̂G

n = 256
1 12 Mean 1.167 0.335 0.976 0.282 0.980 0.683 0.249 0.175 1.000 0.890

sd (0.29) (0.24) 0.321 0.369 0.297 0.354 0.341 0.266 0.405 0.245 0.337 0.267
mse 0.131 0.578 0.089 0.637 0.117 0.171 0.729 0.741 0.114 0.083

24 Mean 1.122 0.481 1.011 0.411 1.025 0.743 0.423 0.299 1.019 0.849
sd (0.19) (0.16) 0.205 0.313 0.196 0.306 0.213 0.169 0.334 0.226 0.199 0.169
mse 0.057 0.368 0.038 0.441 0.046 0.094 0.444 0.543 0.040 0.051

36 Mean 1.087 0.524 1.009 0.465 1.077 0.828 0.550 0.404 1.048 0.882
sd (0.15) (0.13) 0.159 0.266 0.156 0.270 0.172 0.138 0.303 0.220 0.153 0.133
mse 0.033 0.297 0.025 0.359 0.035 0.049 0.294 0.404 0.026 0.032

2 12 Mean 1.074 0.870 0.965 0.856 1.027 0.708 0.937 0.630 0.955 0.653
sd (0.47) (0.42) 0.482 0.460 0.466 0.433 0.644 0.518 0.629 0.488 0.634 0.500
mse 0.238 0.229 0.219 0.208 0.416 0.353 0.399 0.375 0.404 0.370

24 Mean 1.048 0.919 0.979 0.907 1.036 0.742 0.977 0.686 0.991 0.700
sd (0.29) (0.26) 0.284 0.294 0.278 0.270 0.338 0.273 0.340 0.258 0.329 0.257
mse 0.083 0.093 0.077 0.082 0.115 0.141 0.116 0.165 0.108 0.156

36 Mean 0.984 0.890 0.942 0.888 1.070 0.822 1.029 0.780 1.037 0.785
sd (0.22) (0.20) 0.211 0.219 0.211 0.208 0.252 0.214 0.257 0.204 0.251 0.203
mse 0.045 0.060 0.048 0.056 0.069 0.077 0.067 0.090 0.064 0.087

n = 128
1 6 Mean 1.141 0.305 0.869 0.221 0.995 0.686 0.461 0.411 1.042 0.955

sd (0.37) (0.35) 0.537 0.467 0.468 0.452 0.466 0.336 0.546 0.296 0.471 0.324
mse 0.309 0.701 0.236 0.812 0.217 0.212 0.588 0.434 0.224 0.107

12 Mean 1.172 0.419 0.979 0.345 1.004 0.697 0.352 0.249 0.994 0.849
sd (0.29) (0.24) 0.331 0.372 0.295 0.365 0.361 0.268 0.434 0.279 0.333 0.262
mse 0.139 0.476 0.088 0.562 0.130 0.164 0.608 0.642 0.111 0.092

18 Mean 1.126 0.461 0.985 0.394 1.059 0.784 0.483 0.356 1.039 0.876
sd (0.23) (0.19) 0.246 0.314 0.230 0.320 0.268 0.211 0.370 0.255 0.245 0.202
mse 0.076 0.389 0.053 0.469 0.075 0.091 0.404 0.480 0.062 0.056

2 6 Mean 1.056 0.817 0.807 0.658 1.024 0.740 0.966 0.675 0.977 0.691
sd (0.60) (0.68) 0.592 0.548 0.749 0.718 0.954 0.476 0.878 0.461 0.878 0.468
mse 0.354 0.334 0.598 0.633 0.912 0.294 0.771 0.318 0.772 0.315

12 Mean 1.045 0.846 0.942 0.822 1.020 0.726 0.927 0.642 0.974 0.681
sd (0.47) (0.42) 0.461 0.462 0.440 0.431 0.634 0.492 0.599 0.475 0.608 0.483
mse 0.215 0.237 0.197 0.218 0.402 0.318 0.364 0.354 0.370 0.335

18 Mean 0.975 0.817 0.910 0.813 1.083 0.784 0.998 0.715 1.029 0.740
sd (0.36) (0.32) 0.308 0.310 0.311 0.302 0.441 0.360 0.427 0.346 0.430 0.349
mse 0.096 0.130 0.105 0.126 0.201 0.177 0.182 0.201 0.186 0.190

advantage in any case. Gaussian semiparametric estimates have less variability than
log-periodogram ones, but are in general more biased. Here again tapering increases
sd’s and mse’s.
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Table 2
Model 2, ; = 0:4; CI(1:3; 0:9); E1 = 0:34; E2 =−0:9

p m q = 2 q = 1 Xt ; Ẑ t �Xt ; �Ẑt �Xt ; Ẑ t

;̂ ;̂� ;̂ ;̂� ;̂L ;̂G ;̂L ;̂G ;̂L ;̂G

n = 256
1 12 Mean 0.344 0.304 0.254 0.279 0.316 0.242 0.370 0.274 0.465 0.346

sd (0.29) (0.24) 0.351 0.304 0.308 0.292 0.354 0.220 0.333 0.220 0.359 0.251
mse 0.126 0.101 0.116 0.100 0.132 0.073 0.112 0.064 0.133 0.066

24 Mean 0.336 0.317 0.276 0.299 0.285 0.198 0.395 0.287 0.447 0.318
sd (0.19) (0.16) 0.206 0.189 0.194 0.188 0.220 0.134 0.201 0.137 0.220 0.147
mse 0.046 0.043 0.053 0.045 0.062 0.059 0.041 0.032 0.050 0.028

36 Mean 0.385 0.331 0.327 0.315 0.335 0.224 0.443 0.337 0.470 0.353
sd (0.15) (0.13) 0.154 0.141 0.151 0.143 0.170 0.113 0.156 0.116 0.172 0.120
mse 0.024 0.024 0.028 0.028 0.033 0.044 0.026 0.017 0.035 0.017

2 12 Mean 0.443 0.281 0.362 0.267 0.427 0.331 0.369 0.302 0.321 0.242
sd (0.47) (0.42) 0.511 0.456 0.474 0.443 0.665 0.461 0.634 0.447 0.648 0.459
mse 0.263 0.222 0.226 0.214 0.443 0.217 0.402 0.210 0.426 0.235

24 Mean 0.426 0.322 0.366 0.302 0.429 0.307 0.384 0.280 0.358 0.248
sd (0.29) (0.26) 0.295 0.282 0.285 0.271 0.323 0.234 0.313 0.221 0.325 0.229
mse 0.087 0.086 0.082 0.083 0.105 0.064 0.098 0.063 0.107 0.075

36 Mean 0.421 0.345 0.376 0.328 0.476 0.352 0.445 0.332 0.424 0.303
sd (0.22) (0.20) 0.218 0.212 0.216 0.209 0.248 0.183 0.238 0.172 0.243 0.177
mse 0.048 0.048 0.047 0.049 0.067 0.036 0.059 0.034 0.060 0.041

n = 128
1 6 Mean 0.403 0.241 0.269 0.208 0.359 0.308 0.404 0.318 0.473 0.376

sd (0.37) (0.35) 0.616 0.422 0.486 0.432 0.407 0.259 0.474 0.307 0.483 0.324
mse 0.380 0.204 0.254 0.224 0.167 0.075 0.224 0.101 0.239 0.106

12 Mean 0.418 0.297 0.312 0.265 0.337 0.26 0.374 0.277 0.469 0.354
sd (0.29) (0.24) 0.337 0.295 0.295 0.283 0.346 0.227 0.318 0.220 0.355 0.264
mse 0.114 0.098 0.095 0.098 0.123 0.071 0.102 0.064 0.131 0.072

18 Mean 0.457 0.329 0.358 0.292 0.372 0.263 0.433 0.325 0.490 0.373
sd (0.23) (0.19) 0.245 0.215 0.227 0.213 0.258 0.169 0.247 0.175 0.266 0.192
mse 0.064 0.051 0.053 0.057 0.068 0.047 0.062 0.036 0.079 0.038

2 6 Mean 0.434 0.252 0.271 0.145 0.444 0.369 0.354 0.318 0.313 0.274
sd (0.60) (0.68) 0.650 0.602 0.734 0.724 1.335 0.461 1.121 0.455 1.140 0.479
mse 0.424 0.385 0.556 0.589 1.785 0.213 1.260 0.214 1.306 0.245

12 Mean 0.476 0.308 0.390 0.278 0.440 0.332 0.377 0.304 0.334 0.253
sd (0.47) (0.42) 0.467 0.451 0.438 0.450 0.627 0.431 0.585 0.42 0.619 0.445
mse 0.224 0.212 0.192 0.217 0.395 0.190 0.343 0.186 0.387 0.220

18 Mean 0.488 0.354 0.412 0.320 0.492 0.351 0.451 0.323 0.416 0.286
sd (0.35) (0.31) 0.323 0.307 0.316 0.312 0.418 0.302 0.411 0.293 0.415 0.301
mse 0.112 0.097 0.100 0.103 0.183 0.094 0.171 0.092 0.173 0.104

We report the simulation results for the ARFIMA(1; d; 0) cointegrating series in
Tables 4–6 for E1=0:3; 0:6. Here the estimation is more diBcult, since the signal=noise
ratio at low frequencies is smaller than in the previous model. The results for E1 =0:3
are similar than before, though the best results correspond always to residual-based
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Table 3
Model 3, ; = 0:7; CI(1:1; 0:4); E1 = 0:34; E2 =−0:9

p m q = 2 q = 1 Xt ; Ẑ t �Xt ; �Ẑt �Xt ; Ẑ t

;̂ ;̂� ;̂ ;̂� ;̂L ;̂G ;̂L ;̂G ;̂L ;̂G

n = 256
1 12 Mean 0.818 0.392 0.663 0.351 0.715 0.502 0.402 0.287 0.740 0.602

sd (0.29) (0.24) 0.333 0.329 0.303 0.328 0.364 0.250 0.386 0.246 0.359 0.252
mse 0.125 0.203 0.093 0.230 0.132 0.101 0.238 0.231 0.130 0.073

24 Mean 0.773 0.434 0.682 0.405 0.729 0.511 0.485 0.351 0.744 0.581
sd (0.19) (0.16) 0.199 0.237 0.196 0.235 0.206 0.146 0.266 0.179 0.201 0.149
mse 0.045 0.127 0.039 0.142 0.043 0.057 0.117 0.154 0.042 0.036

36 Mean 0.773 0.455 0.701 0.427 0.776 0.566 0.557 0.427 0.766 0.621
sd (0.15) (0.13) 0.160 0.180 0.158 0.191 0.165 0.124 0.219 0.164 0.162 0.123
mse 0.031 0.092 0.025 0.111 0.033 0.033 0.068 0.101 0.030 0.021

2 12 Mean 0.741 0.571 0.635 0.544 0.728 0.512 0.649 0.458 0.651 0.453
sd (0.47) (0.42) 0.509 0.475 0.464 0.432 0.659 0.493 0.649 0.480 0.645 0.482
mse 0.260 0.242 0.220 0.211 0.435 0.278 0.424 0.289 0.418 0.293

24 Mean 0.701 0.593 0.638 0.578 0.727 0.524 0.672 0.482 0.671 0.478
sd (0.29) (0.26) 0.289 0.290 0.282 0.269 0.325 0.249 0.325 0.233 0.322 0.237
mse 0.083 0.096 0.084 0.087 0.106 0.093 0.107 0.102 0.105 0.105

36 Mean 0.669 0.591 0.626 0.582 0.766 0.583 0.73 0.552 0.726 0.544
sd (0.22) (0.20) 0.215 0.217 0.215 0.208 0.247 0.196 0.248 0.186 0.245 0.187
mse 0.047 0.059 0.052 0.057 0.065 0.052 0.062 0.057 0.061 0.059

n = 128
1 6 Mean 0.818 0.306 0.596 0.244 0.745 0.539 0.48 0.396 0.773 0.662

sd (0.37) (0.35) 0.570 0.422 0.485 0.439 0.466 0.296 0.497 0.295 0.479 0.333
mse 0.339 0.334 0.246 0.401 0.220 0.113 0.296 0.180 0.235 0.112

12 Mean 0.841 0.381 0.677 0.334 0.749 0.526 0.408 0.305 0.747 0.606
sd (0.29) (0.24) 0.336 0.310 0.304 0.302 0.378 0.250 0.359 0.232 0.355 0.266
mse 0.133 0.198 0.093 0.226 0.145 0.093 0.214 0.210 0.128 0.080

18 Mean 0.829 0.411 0.698 0.366 0.793 0.570 0.507 0.384 0.783 0.636
sd (0.23) (0.19) 0.249 0.247 0.234 0.245 0.268 0.192 0.29 0.198 0.255 0.196
mse 0.079 0.144 0.055 0.172 0.081 0.054 0.121 0.139 0.072 0.042

2 6 Mean 0.678 0.500 0.499 0.361 0.735 0.553 0.640 0.500 0.648 0.500
sd (0.60) (0.68) 0.645 0.594 0.754 0.712 1.072 0.474 0.899 0.463 0.900 0.479
mse 0.417 0.393 0.609 0.622 1.151 0.247 0.812 0.254 0.813 0.269

12 Mean 0.711 0.545 0.621 0.513 0.756 0.552 0.665 0.492 0.678 0.499
sd (0.47) (0.42) 0.464 0.454 0.446 0.437 0.647 0.466 0.619 0.453 0.634 0.472
mse 0.215 0.230 0.205 0.226 0.422 0.239 0.384 0.248 0.402 0.264

18 Mean 0.690 0.560 0.622 0.536 0.800 0.577 0.732 0.528 0.739 0.528
sd (0.35) (0.32) 0.313 0.310 0.315 0.305 0.435 0.330 0.438 0.323 0.429 0.324
mse 0.098 0.115 0.106 0.120 0.200 0.124 0.193 0.134 0.186 0.135

estimates: the log-periodogram regression for Models 1 and 3 and Gaussian estimation
for Model 2. In this last case, coherence-based estimates have large biases, usually
growing with m, but the sds in all cases are in line with approximation (19). For
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Table 4
Model 1′; ; = 1; CI(1; 0)

n = 256 q = 2 q = 1 Xt ; Ẑ t �Xt ; �Ẑt �Xt ; Ẑ t

p m ;̂ ;̂� ;̂ ;̂� ;̂L ;̂G ;̂L ;̂G ;̂L ;̂G

E1 = 0:3
1 12 Mean 1.024 0.539 0.877 0.507 0.936 0.683 0.594 0.430 0.924 0.736

sd (0.29) (0.24) 0.330 0.346 0.297 0.350 0.361 0.262 0.433 0.287 0.355 0.252
mse 0.109 0.332 0.103 0.366 0.134 0.169 0.353 0.408 0.132 0.133

24 Mean 0.829 0.488 0.778 0.491 0.889 0.694 0.656 0.519 0.866 0.716
sd (0.19) (0.16) 0.211 0.215 0.198 0.227 0.214 0.157 0.285 0.207 0.213 0.153
mse 0.074 0.308 0.089 0.311 0.058 0.118 0.200 0.274 0.063 0.104

36 Mean 0.696 0.415 0.682 0.434 0.827 0.690 0.634 0.553 0.791 0.705
sd (0.15) (0.13) 0.175 0.163 0.170 0.177 0.186 0.125 0.219 0.169 0.173 0.122
mse 0.123 0.369 0.130 0.351 0.065 0.112 0.182 0.229 0.074 0.102

E1 = 0:6
1 12 Mean 0.837 0.412 0.737 0.429 0.866 0.666 0.621 0.486 0.841 0.696

sd (0.29) (0.24) 0.329 0.300 0.298 0.294 0.368 0.259 0.396 0.271 0.353 0.251
mse 0.134 0.436 0.158 0.412 0.154 0.178 0.300 0.337 0.150 0.156

24 Mean 0.603 0.321 0.588 0.358 0.754 0.629 0.582 0.524 0.718 0.646
sd (0.19) (0.16) 0.213 0.187 0.203 0.190 0.222 0.153 0.256 0.180 0.215 0.153
mse 0.203 0.496 0.211 0.448 0.110 0.161 0.241 0.259 0.126 0.149

36 Mean 0.473 0.252 0.485 0.294 0.654 0.576 0.514 0.507 0.614 0.592
sd (0.14) (0.13) 0.172 0.145 0.169 0.151 0.186 0.121 0.192 0.137 0.170 0.120
mse 0.307 0.581 0.294 0.521 0.155 0.195 0.273 0.262 0.178 0.180

larger E1 the performance of all estimates deteriorates, especially that of ;̂ and ;̂� for
Models 2 and 3.

In conclusion, ;̂ seems a simple competitive alternative to residual-based estimates,
which may be aCected by the combination of memory estimates for observed series
and cointegrating residuals.

6. Empirical example

Dueker and Startz (1998) analysed 120 monthly observations from January 1987 to
December 1996 on 10-year government bond rates from the United States and Canada.
We analyse here the same log series, denoted as Xt and Yt , respectively (see Fig. 1).
Standard procedures used by these authors do not reject the hypothesis of a unit root
(d= 1) for both series nor the hypothesis of no cointegration, but the visual evidence
is in favour of a long-run relationship, probably diCerent from the CI(1; 0) paradigm.

Dueker and Startz (1998) also 8t a bivariate ARFIMA model with two orders of in-
tegration, one for the diCerenced US series �Xt (d) and one for the cointegration error
(d− ;). They 8nd that d̂=0:674 (0.25) and [d− ;=0:2 (0.10), so ;̂=0:474, while a
joint Wald test rejects d=1 and ;=1. They also estimate the memory of the observed
residuals with Lobato and Robinson’s (1996) average periodogram semiparametric
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Table 5
Model 2′; ; = 0:4; CI(1:3; 0:9)

n = 256 q = 2 q = 1 Xt ; Ẑ t �Xt ; �Ẑt �Xt ; Ẑ t

p m ;̂ ;̂� ;̂ ;̂� ;̂L ;̂G ;̂L ;̂G ;̂L ;̂G

E1 = 0:3
1 12 Mean 0.251 0.153 0.185 0.150 0.265 0.225 0.302 0.269 0.390 0.338

sd (0.29) (0.24) 0.329 0.271 0.289 0.250 0.344 0.222 0.308 0.225 0.346 0.253
mse 0.131 0.135 0.130 0.125 0.137 0.080 0.105 0.068 0.120 0.068

24 Mean 0.172 0.134 0.143 0.137 0.183 0.152 0.278 0.251 0.327 0.286
sd (0.19) (0.16) 0.205 0.172 0.194 0.168 0.219 0.140 0.187 0.140 0.216 0.154
mse 0.094 0.100 0.104 0.098 0.095 0.081 0.050 0.042 0.052 0.037

36 Mean 0.122 0.108 0.107 0.116 0.133 0.118 0.243 0.234 0.284 0.260
sd (0.15) (0.13) 0.156 0.134 0.152 0.133 0.176 0.113 0.148 0.108 0.170 0.119
mse 0.101 0.103 0.109 0.099 0.102 0.093 0.046 0.039 0.042 0.034

E1 = 0:6
1 12 Mean 0.168 0.069 0.122 0.074 0.225 0.207 0.248 0.251 0.339 0.323

sd (0.29) (0.24) 0.310 0.251 0.274 0.230 0.335 0.222 0.302 0.223 0.328 0.253
mse 0.150 0.172 0.152 0.159 0.143 0.086 0.114 0.072 0.111 0.070

24 Mean 0.061 0.053 0.050 0.059 0.096 0.102 0.190 0.189 0.254 0.237
sd (0.19) (0.16) 0.192 0.160 0.182 0.157 0.216 0.140 0.175 0.135 0.205 0.150
mse 0.152 0.146 0.155 0.141 0.139 0.108 0.075 0.062 0.063 0.049

36 Mean −0:013 0.029 −0:011 0.039 0.012 0.042 0.128 0.128 0.198 0.178
sd (0.14) (0.13) 0.156 0.125 0.150 0.125 0.181 0.116 0.136 0.101 0.163 0.117
mse 0.195 0.154 0.192 0.146 0.183 0.141 0.092 0.084 0.068 0.063

estimator, obtaining signi8cantly diCerent from zero values of ;̂, ranging from 0.2
to 0.28 for small bandwidths (m¡ 10 in similar notation to our coherence-based ;̂)
and about 0.4 for larger values of m. This is an alternative procedure to the one justi8ed
by Hassler et al. (2001) and Velasco (2001) for other semiparametric estimates.

We reanalyse this data set 8rst using the techniques summarized in Lobato and
Velasco (2000) using a multivariate generalization of Robinson’s (1995b) Gaussian
semiparametric estimate of the memory d. We use the increments of the original series
without tapering and with a taper of order p = 2 and bandwidths m = 6; 12; 18. A
semiparametric Wald test of equal memory for both bond rates series is performed in
8rst place, with p-values equal to:

p-value Wald Test m= 6 m= 12 m= 18

p= 1 (�X; �Y ) 0.102 0.131 0.119
p= 2 (X; Y ) 0.644 0.211 0.245

and not rejecting the equal memory hypothesis, though by a small margin using
nontapered diCerenced data, as memory estimates for X are slightly larger than those

22



Table 6
Model 3′; ; = 0:7; CI(1:1; 0:4)

n = 256 q = 2 q = 1 Xt ; Ẑ t �Xt ; �Ẑt �Xt ; Ẑ t

p m ;̂ ;̂� ;̂ ;̂� ;̂L ;̂G ;̂L ;̂G ;̂L ;̂G

E1 = 0:3
1 12 Mean 0.660 0.354 0.544 0.357 0.663 0.490 0.543 0.424 0.664 0.529

sd (0.29) (0.24) 0.333 0.289 0.307 0.274 0.370 0.247 0.357 0.250 0.356 0.254
mse 0.112 0.203 0.119 0.193 0.138 0.105 0.152 0.139 0.128 0.094

24 Mean 0.524 0.305 0.488 0.331 0.598 0.456 0.517 0.440 0.590 0.499
sd (0.19) (0.16) 0.214 0.181 0.200 0.183 0.217 0.148 0.223 0.158 0.216 0.154
mse 0.077 0.189 0.085 0.170 0.058 0.081 0.083 0.092 0.059 0.064

36 Mean 0.438 0.254 0.417 0.278 0.542 0.433 0.474 0.437 0.526 0.480
sd (0.15) (0.13) 0.172 0.141 0.169 0.141 0.172 0.115 0.170 0.121 0.169 0.119
mse 0.098 0.219 0.108 0.198 0.054 0.085 0.080 0.084 0.059 0.063

E1 = 0:6
1 12 Mean 0.492 0.211 0.415 0.236 0.593 0.471 0.467 0.421 0.572 0.510

sd (0.29) (0.24) 0.328 0.266 0.303 0.253 0.366 0.245 0.340 0.243 0.351 0.253
mse 0.151 0.309 0.173 0.280 0.146 0.113 0.170 0.137 0.140 0.100

24 Mean 0.346 0.162 0.325 0.189 0.480 0.391 0.407 0.391 0.469 0.438
sd (0.19) (0.16) 0.208 0.169 0.199 0.167 0.213 0.144 0.202 0.149 0.207 0.152
mse 0.169 0.317 0.180 0.289 0.094 0.116 0.127 0.118 0.096 0.092

36 Mean 0.260 0.121 0.259 0.149 0.387 0.321 0.334 0.340 0.381 0.371
sd (0.14) (0.13) 0.161 0.133 0.160 0.134 0.164 0.111 0.153 0.113 0.158 0.115
mse 0.219 0.353 0.220 0.322 0.125 0.156 0.157 0.142 0.127 0.121

1987 1989 1991 1993 1995 1997

1.8

2.0

2.2

2.4

Fig. 1. Logarithm of bond rates, US (solid) and Canada (dotted).
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for Y . Then the common memory parameter Gaussian estimates d̂ are:

Common d̂ m= 6 m= 12 m= 18

p= 1 (�X; �Y ) 0.982 (0.09) 1.010 (0.10) 0.990 (0.08)
p= 2 (X; Y ) 0.818 (0.12) 1.146 (0.14) 0.855 (0.12)

These are noticeable larger that ML estimates obtained by Dueker and Startz (1998).
We 8nally compute zero frequency coherence estimates |Ĥ xy(0)|2 = |Ĝxy|2(ĜxxĜyy)−1

obtained from the previous semiparametric estimation:

|Ĥ xy(0)|2 m= 6 m= 12 m= 18

p= 1 (X; Y ) 0.795 (0.11) 0.752 (0.09) 0.743 (0.07)
p= 2 (X; Y ) 0.800 (0.15) 0.747 (0.13) 0.759 (0.10)

which are inconclusive of coherence smaller than 1 given the sample size and the
bandwidths employed. Notice that the previous procedures have been only justi8ed
under the hypothesis of no cointegration, i.e. with G being nonsingular.
We now estimate nonparametrically the coherence with |Ĥ xy(�j)|2 for q=1; 2; 3 and

p=1; 2. We plot the estimates in Fig. 2 for �‘–�60=�, where ‘=�(2q+1)=2�. Standard
errors can be approximated by (23). In all plots is evident the eCect of increasing the
smoothing in nonparametric estimates and it can be observed that |Hxy(�)|2 ≈ 1−GH�2;

is a reasonable approximation. In the plots of log(1− |Ĥ xy(�j)|2) against 2 log �j, for
j = ‘; : : : ; 30, see Fig. 3, the linear relationship becomes more clear as q increases,
though this is not valid for all the range of frequencies plotted. The OLS estimates of
;̂ obtained from (X; Y ) are

Log-coherence ;̂ m= 6 m= 12 m= 18

q= 1 p= 1 0.371 (0.35) 0.292 (0.24) 0.177 (0.19)
p= 2 0.574 (0.68) 0.549 (0.42) 0.545 (0.32)

q= 2 p= 1 0.650 (0.37) 0.299 (0.29) 0.226 (0.23)
p= 2 0.757 (0.64) 0.670 (0.47) 0.665 (0.37)

q= 3 p= 1 0.704 (0.51) 0.305 (0.31) 0.299 (0.25)
p= 2 1.023 (0.86) 0.681 (0.49) 0.768 (0.39)

As in the simulations, the results with diCerenced data were not interpretable and
are not reported. For p = 1 and m = 18 we are including in the regression the high
coherence points around frequency �15, explaining the low value of ;̂ obtained in this
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Fig. 2. Coherence estimates |Ĥ xy(�j)|2 of bond rates series, against log-frequency log �j; j=‘; ‘+1; : : : ; n=2.
Upper row, no tapering p = 1; lower row, tapering p = 2. Uniform weights: q = 1; 2; 3.

case. The estimates for m = 6 are rather unstable due to the small number of points
in the regression. Then, since for nontapered series the estimates were quite uniform
across values of q, we prefer estimates with q = 1 and m = 12 which have smallest
standard errors and should be also less biased. This gives ;̂ = 0:292 (0.24), which is
lower than the value given by Dueker and Startz (1998), 0:474. However, for tapered
series the estimates are more smoothing dependent, and we obtained from ;̂=0:55 for
q= 1 to ;̂= 0:68 for q= 3, more in agreement with that paper.
Finally, we used residual estimation with a multivariate two-step Gaussian semipara-

metric estimate (Lobato, 1999; Lobato and Velasco, 2000), which remains consistent if
;¿ 0 and has the usual asymptotic distribution if ;¿ 0:5 (Velasco, 2001). We applied
joint estimation between the OLS residual series Z̃ and �X to obtain standard errors
for ;̃= d̃− d̃Z.

Residual-based ;̃ m= 6; 8 m= 12 m= 18

p= 1 (�X; Z̃) 0.186 (0.29) 0.094 (0.20) 0.068 (0.17)
p= 2 (�X; Z̃) 0.159 (0.34) 0.002 (0.37) 0.079 (0.31)
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Fig. 3. Log-coherence estimates log(1 − |Ĥ xy(�j)|2) of bond rates series against log-frequency
2 log �j; j = ‘; ‘ + 1; : : : ; n=4. Upper row, no tapering p = 1; lower row, tapering p = 2. Uniform weights:
q = 1; 2; 3.

The residual-based procedure obtained values of ;̃ noticeably much smaller than
coherence-based ;̂ for all combinations of m and tapering, casting some doubts about
the reliability of linear OLS-based inference for the present data set.
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Appendix

Proof of Theorem 3. We start approximating the cross-periodogram of the observed
vector series by that of the linear innovations; Ij;p(�jp); times the transfer function;
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including the unit root 8lters of the integer diCerences. De8ne

f̂
j;M
rs (!) =

2�p
n

∑
j

KM (!− �jp)Br(�jp)Ij;p(�jp)B∗
s (�jp);

where the index j runs for |�jp − !|6M−1�.
No tapering [p = 1]. We consider the case with d∗ = max{dr; ds}∈ (− 1

2 ; 1), and
�r = �s = 0 and Dr; Ds = 0; 1. Using Lemma 2 below and the arguments of the proof
of Theorem 1 of Robinson (1995b) (see also the proofs of Theorem 2 and Lemma 1
of Velasco (1999b) and Appendix C of Lobato and Velasco (2000)),

f̂
M
rs (!)− f̂

j;M
rs (!) =

2�
n

∑
j

KM (!− �j)[Irs(�j)− Br(�j)Ij(�j)B∗
s (�j)]

= Op

(
M
n

∑
j

[jd∗−1 + j−1=2](log n)1=2
)

= Op([nd∗−1 + n−1=2](log n)1=2); (A.1)

which is op(1) if d∗ ¡ 1. Notice that for �j ∈ [!− �M−1; !+ �M−1]; maxj �−1
j =O(1)

and max j−1=O(n−1) as n → ∞, and from Assumptions 1 and 4, maxj |Ba(�j)|; a=r; s,
are bounded if |!|¿ 0. Now the theorem follows as when p¿ 1 below, using the exact
orthogonality of the sine and cosine instead of Lemma A.4(A).
Tapering [p¿ 1]. From Theorem 2 and using the same argument as in the proof

of Theorem 3 in Velasco (1999b) or Lemma A.1,

f̂
M
rs (!)− f̂

j;M
rs (!) =

2�p
n

n∑
j

KM (!− �jp)[Iprs(�j)− Br(�j)Ij;p(�j)B∗
s (�j)] (A.2)

=Op

(
M
n

∑
j

[jd∗−p(log n)1=2 + j−1=2]

)

=Op(nd∗−p(log n)1=2 + n−1=2); (A.3)

which is op(1) because p¿d∗.
Now, using the diCerentiability of frs(�) around ! and the Lipschitz property of

KM (�); p¿ 1,

E[f̂
j;M
r; s (!)] =

2�p
n

∑
j

KM (!− �jp)frs(�jp) = frs(!) + O(n−1M +M−1); (A.4)
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where the error is o(1) using (6). For the variance we 8rst obtain for all j; k, and
r; r′; s; s′ ∈{1; : : : ; R}; N = 2�

∑n
t=1 h2t ,

Cov[Br(�jp)Ij(�jp)B∗
s (�jp); Br′(�kp)Ij(�kp)B∗

s′(�kp)]

=
R∑

a=1

R∑
b=1

R∑
c=1

R∑
d=1

Bra(�jp)Bsb(�jp)Br′c(�kp)Bs′d(�kp)Cov[I
j;p
ab (�jp); I

j;p
cd (�kp)]

=N−2
R∑

a=1

R∑
b=1

R∑
c=1

R∑
d=1

Bra(�jp)Bsb(�jp)Br′c(�kp)Bs′d(�kp)

×

 +ac+bd

[
n∑
t

h2t cos t(�jp − �kp)

]2
+ +ad+cb

[
n∑
t

h2t cos t(�jp + �kp)

]2

+
n∑
t

Fabcdh4t




=N−2Br(�jp)+B∗
r′(�kp)Bs(−�jp)+B∗

s′(−�kp)

[
n∑
t

h2t cos t(�jp − �kp)

]2

+N−2Br(�jp)+B∗
s′(−�kp)Br′(−�kp)+B∗

s (�jp)

[
n∑
t

h2t cos t(�jp + �kp)

]2

+N−2
n∑
1

h4t

R∑
a=1

R∑
b=1

R∑
c=1

R∑
d=1

Bra(�jp)Bsb(�jp)Br′c(�kp)Bs′d(�kp)Fabcd;

where Fabcd is the joint fourth-order cumulant of the a; b; c; dth components of jt . Using
Lemma A.4(A), Var[f̂

j;M
rs (!)] is

(
2�p
n

)2 ∑
j

K2
M (!− �jp)Var[Br(�jp)Ij;p(�jp)B∗

s (�jp)]

+
(
2�p
n

)2 ∑
j

∑
k �=j

KM (!− �jp)KM (!− �kp)

×Cov[Br(�jp)Ij(�jp)B∗
s (�jp); Br(�kp)Ij(�kp)B∗

s (�kp)]

= n−2O

( ∑
j

K2
M (!− �jp) +

∑
j

∑
k¿j

KM (!− �jp)KM (!− �kp)
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×[|j − k|−2p + |j + k|−2p + n−1]

)

=O


n−1M + n−2M 2

∑
j

∑
k¿j

{|j − k|−2p + |j + k|−2p + n−1}



=O(n−1M) = o(1)

as n → ∞, so f̂
M
rs (!)− frs(!) →p 0 follows using (6).

For the proof of the central limit theorem we assume for simplicity only positive
frequencies !a ¿ 0 ∀a. This entails no restriction, since it is always possible to write

for positive ! that f̂rs(−!) = f̂rs(!) = f̂sr(!) and deduce the variances and covariances
for the conjugate estimates from those with positive argument and reversed indexes.
We follow the same procedure as in the proof of consistency, but employ Lemma A.2
when p= 1 instead of Lemma A.1.

No tapering [p=1]. From Lemma A.2 and (8), ‖f̂M
rs (!)−f̂

j;M
rs (!)‖=op((n=M)−1=2).

As in the proof of Theorem 3, with Assumption 6 and for all p,

E[f̂
j;M
rs (!)] = frs(!) + O(M 2n−1 +M−2):

Tapering [p¿ 1]. Now (A.3) is op((n=M)−1=2) with (9), if � = 0, or with
p− d∗ ¿ 0:5 if � �=0.

For the central limit theorem we follow Hall and Heyde (1980, Section 3.2) and
consider in detail only the case p¿ 1. We have to consider linear combinations of the

estimates, so for any J ×1 vector G we have that G′f̂
M
rs (!)=G′f̂

M;j
rs (!)+op((n=M)−1=2).

Now

G′f̂
j;M
rs (!)− E[G′f̂

j;M
rs (!)]

=
J∑

a=1

Ga

{
2�p
n

∑
j

KM (!a − �j)Br(a)(�j)Ij(�j)B∗
s(a)(�j)

− p
n

∑
j

KM (!− �j)Br(a)(�j)+B∗
s(a)(�j)

}

=
J∑

a=1

Ga
p
n

∑
j

KM (!a − �j)Br(a)(�j)[∇(1)
j − +]B∗

s(a)(�j)

+
J∑

a=1

Ga
p

n
∑

h2t

∑
j

KM (!a − �j)Br(a)(�j)∇(2)
j B∗

s(a)(�j);

with equivalent notation as before, possibly now with data tapers, ∇(1)
j =(

∑
h2t )

−1∑n
t=1

htht′jtj′t and ∇(2)
j =

∑
t

∑
t′ �=t htht′jtj′t′ exp{i(t − t′)�j}. The 8rst term is negligible
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op((Mn−1)1=2) since ‖∇(1)
j − +‖=Op(n−1=2) with Assumption 2. Then we have√

n
Mp

{G′f̂M
rs (!)− G′frs(!)}=

n∑
t=1

zt + op(1);

where

zt =
J∑

a=1

Ga
p

n
∑

h2t

√
n

Mp

∑
j(a)

KM (!a − �pj(a))Br(a)(�pj(a))

×
∑
s �=t

htjthsj′sB∗
s(a)(�pj(a)) exp{i(t − s)�pj(a)}

= htj′t
t−1∑
s=1

@t−shsjs

is a martingale diCerence sequence,

@t =
1∑
h2t

√
p
nM

J∑
a=1

∑
j(a)

Ha
pj(a) cos t�pj(a);

Ha
pj(a) = 2GaKM (!a − �pj(a))B′

r(a)(�pj(a))Bs(a)(�pj(a)), and the summation in j(a) runs
from −n=2p to n=2p+1, with steps of size p, assuming n=2p is integer for simplicity.

We estimate 8rst the asymptotic variance of f̂
M
,

n∑
t=1

E[ztzt |Ft−1] =
n∑

t=2

h2t

t−1∑
s=1

h2sj′s@′
t−s+@t−sjs (A.5)

+
n∑

t=1

h2t

t−1∑
s=1

t−1∑
r �=s

hshrj′s@′
t−s+@t−rjr : (A.6)

The right-hand side of (A.5) is
n−1∑
t=2

h2t

t−1∑
s=1

h2sj′s@t−s+@∗
t−sjs =

n−1∑
t=1

h2t

n−t∑
s=1

h2s+t Trace[(jtj′t − +)@′
s+@s] (A.7)

+
n−1∑
t=1

h2t

n−t∑
s=1

h2s+t Trace[+@
′
s+@s]; (A.8)

where the right-hand side of (A.7) is op(1), because it has zero mean and variance,
‖@t−s‖=O((Mn)−1=2),

O

(
n−1∑
t=1

h2t

n−t∑
s=1

h2s+t{2Trace[+@′
s+@s+@′

s+@s] + Fabcd Trace[+@′
s+@s]2}

)

=O

(
n−1∑
t=1

n−t∑
s=1

(Mn)−2

)
=O(M−2) = o(1):
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Term (A.8) is, using trigonometric identities (see Velasco (1999b, Lemma 6) for
details),

n−1∑
t=1

h2t

n−t∑
s=1

h2s+t Trace[+@
′
s+@s]

=
p

nMH 2

n−1∑
t=1

h2t

n−t∑
s=1

h2s+t

×Trace


+∑

a

Ga
∑
j(a)

Ha′
pj(a) cos s�pj(a)+

∑
b

Gb
∑
k(b)

Hb
pk(b) cos s�pk(b)




=
p

nMH 2

∑
a

∑
b

∑
j(a)

GaGb

×Trace[+Ha′
pj(a)+H

b∗
pj(a) + +Ha

pj(a)+H
b
−pj(a)]

n−1∑
t=1

h2t

n−t∑
s=1

h2s+t cos
2 s�pj(a)(A.9)

+
p

2nMH 2

∑
a

∑
j(a)

∑
b

∑
k(b)�=±j(a)

GaGb Trace[+Ha′
pj(a)+H

b
pk(b)]

×
n−1∑
t=1

h2t

n−t∑
s=1

h2s+t{cos(sp�j(a)+k(b)) + cos(sp�j(a)−k(b))}: (A.10)

Using ‖Ha
j(a)‖=O(M) and Lemma A.4(B), (A.9) is equal to

p
4nM

∑
a

∑
b

∑
j(a)

GaGb Trace[+Ha′
pj(a)+H

b
pj(a) + +Ha′

pj(a)+H
b
−pj(a)] + O(M=n):

If k(b) �=± j(a), using Lemma A.4(C), (A.10) is

p
4nMH 2

∑
a

∑
j(a)

∑
b

∑
k(b)�=±j(a)

GaGb Trace[+Ha′
pj(a)+H

b
pk(b)]

×


(

n−1∑
t=1

h2t cos tp�j(a)+k(b)

)2
+

(
n−1∑
t=1

h2t cos tp�j(a)−k(b)

)2
+O(M=n);

where Trace[+Ha′
pj(a)+H

b
pk(b)] is

4KM (!a − �pj(a))KM (!b − �pk(b))Br(a)(�pj(a))

+B∗
r(b)(�pk(b))Bs(a)(−�pj(a))+B∗

s(b)(−�pk(b)):
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Therefore, using Lemma A.4(A), the diCerentiability of B(�), the compact support of
K and approximating sums by integrals, with the same method as in the proof of
Lemma 7 in Velasco and Robinson (2000),

p
4nMH 2

∑
a

∑
j(a)

∑
b

∑
k(b)

GaGb Trace[+Ha′
pj(a)+H

b
pk(b)]

(
n−1∑
t=1

h2t cos tp�j(a)−k(b)

)2

= 2�5p‖K‖22
∑
a

∑
b

GaGb7(!a − !b)fr(a)r(b)(!a)fs(a)s(b)(−!a) + o(1);

and

p
4nMH 2

∑
a

∑
j(a)

∑
b

∑
k(b)

GaGb Trace[+Ha′
pj(a)+H

b∗
pk(b)]

(
n−1∑
t=1

h2t cos tp�j(a)+k(b)

)2

= o(1);

since the frequencies covered by KM (!a − �pj(a))KM (!b − �pk(b)) are such that j(a) +
k(b)¿ (!a + !b)n=2�p − n=Mp¿Cn; mod n, if �¿!a; !b ¿ 0 and n and M are big
enough, so H−2(

∑
h2t cos tp�j(a)+k(b))2 = O(|j(a) + k(b)|−2p) from Lemma A.4(A).

The second term (A.6) is op(1) because it has zero mean and variance equal to

2
n∑

t=2

h2t

n∑
u=2

h2u

min{t−1;u−1}∑
s

∑
r �=s

h2s h
2
r Trace[@

′
t−s+@t−r+(@′

u−s+@u−r)∗]

= 2
n∑

t=2

h4t
∑
s

∑
r �=s

h2s h
2
r Trace[@

′
t−s+@t−r+@′

t−r+@t−s] (A.11)

+ 4
n∑

t=3

h2t

t−1∑
u=2

h2u

u−1∑
s

u−1∑
r �=s

h2s h
2
r Trace [@

′
t−s+@t−r+@′

u−r+@u−s]; (A.12)

since the weights {ht} are symmetric around �n=2�. By summation by parts we 8nd
that ‖@t‖=O(M 1=2n−1=2t−1); t ¡n=2; ‖@t‖= ‖@n−t‖, so (A.11) is

O


 n∑

t=2

∑
s

∑
r �=s

‖@t−r‖2‖@t−s‖2

= O


M 2n−2

n∑
t=2

∑
s

∑
r �=s

|t − r|−2|t − s|−2




= O(M 2n−1) = o(1);

and, following Robinson (1995b, p. 1646), (A.2) has absolute value bounded by

C
n∑

t=3

t−1∑
u=2


u−1∑

s

‖@t−r‖2
u−1∑
r �=s

‖@u−r‖2

6C

(
n∑
1

‖@t‖2
)(

n∑
t=3

t−1∑
u=2

t−1∑
r=t−u+1

‖@r‖2
)
;

32



since maxt |ht |6 1, and using the same arguments as in that reference the last bracketed
factor is

n−2∑
j=1

j(n− j − 1)‖@j‖26 2n
[n=2]∑
1

j‖@j‖2 = O(M log n);

and
∑n

1 ‖@t‖2 = O(M 2n−1) so (A.6) is Op([n−1M 3 log n]1=2) = op(1) with (7).
Finally, it remains to show that Lindeberg’s conditions holds,

n∑
1

E[ztztI(|zt |¿J)] =
n∑
1

E[|zt |2I(|zt |¿J)] → 0 for all J¿ 0:

Proceeding as in Robinson (1995b), we check the suBcient condition
∑n

1 E|zt |4 → 0
as n → ∞. Following his arguments we have also in our case

n∑
1

E|zt |46C
n∑
1

(
n∑
1

‖@t−s‖4
)

+ C
n∑
1

t−1∑
1

t−1∑
1

‖@t−s‖2‖@t−r‖2

= O(n−1M 2) = o(1);

using the previous bound for ‖@t−s‖, completing the proof of the theorem.

Proof of Theorem 4. For |!| → 0 as n → ∞ we only stress the main diCerences with
respect to the proof of Theorem 3. First notice that since (|!M |)−1 → 0 as n → ∞;
we have that for all �j ∈ [!− �=M; !+ �=M ]:

inf
[!−�=M;!+�=M ]

�j = ![1 + O((!M)−1] = ![1 + o(1)] ∼ ! as n → ∞; (A.13)

and frr(�j) ∼ frr(!). Then all results are valid if we normalize all the quantities by
[frr(!)fss(!)]1=2 since; using the diCerentiability of Br and frr; for �j ∈ [!−�=M; !+�=M ];

max
�j

|f−1
rr (!)− f−1

rr (�j)|=O(f−1
rr (!)(|!|M)−1) = o(f−1

rr (!));

applying the mean value theorem.
Therefore, when no tapering is applied, the left-hand side of (A.1) is

Op([frr(!)fss(!)]1=2[(n|!|)d∗−1 + (n|!|)−1=2](log n)1=2) = op([frr(!)fss(!)]1=2);

as the summation is running for integers j between !n=(2�p)±n=(2M). When tapering
is applied, (A.2) is

Op([frr(!)fss(!)]1=2[|n!|d∗−p(log n)1=2 + |n!|−1=2]) = op([frr(!)fss(!)]1=2);

using (6) and (10). Finally, the left-hand side of (A.4) is

frs(!) + O([frr(!)fss(!)]1=2[n−1M + (|!|M)−1]) = frs(!) + o([frr(!)fss(!)]1=2);
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while the bound for the variance of f̂
j;M
rs (!) follows as for 8xed ! due to the normal-

ization by frs(!).
For the analysis of the asymptotic distribution for positive ! → 0 as n → ∞, we

8rst obtain for p= 1 that

[frr(!)fss(!)]−1=2(nM−1)1=2|f̂M
rs (!)− f̂

j;M
rs (!)|

=Op




|n!|d∗−1 log1=2 n+ |n!|−1=2 log1=2 n

+(nM−1)1=2[|n!|2(d∗−1) log n+ |n!|−3=4

+ |n!|(d∗−2)=2 log3=2 n+ |n!|d∗−5=4 log1=2 n]




=Op((nM−1)1=2|n!|d∗−5=4 log1=2 n) + op(1) = op(1);

using (7), (11) and d∗ ¡ 3
4 . When we apply tapering, p¿ 1, we 8nd that

[frr(!)fss(!)]−1=2(M−1n)1=2|f̂M
rs (!)− f̂

j;M
rs (!)|

=Op((nM−1)1=2[|n!|−1=2 + |n!|d∗−p log1=2 n]) + op(1);

which is op(1) by (12). Finally, with Assumption 6:

E[f̂
j;M
rs (!)] =

2�p
n

∑
j

KM (!− �jp)frs(�jp)

+O([frr(!)fss(!)]1=2[n−1M + n−1|!|−1])

=frs(!) + O([frr(!)fss(!)]1=2[n−1M + |!M |−2]);

where the error term is o([frr(!)fss(!)]1=2(Mn−1)1=2) using (7) and (11), and the theo-
rem follows as for 8xed !.

Lemma A.1. Under (6) for |!|¿ 0 or (10) for |!| → 0 and (i) or (ii) of Theorem 3;
for �jp ∈ [!− �(1=M); !+ �(1=M)]; p¿ 1;

f−1
rs (!)|Irs(�jp)− Br(�jp)Ij(�jp)B∗

s (�jp)|=Op(e
1=2
p;ds

+ e1=2p;dr
);

where ep;dr is the error term in the part (a) of Theorem 1 or 2; for each p; depending
on the values of dr; & = 1.

Proof. We write for |!|¿ 0; following Robinson (1995b); proof of Theorem 1; sup-
pressing in the notation the frequency �jp;

Irs − BrIjB∗
s =wr Nws − Brwjwj∗B∗

s

= 1
2{(wr − Brwj)( Nws + wj∗B∗

s ) + (wr + Brwj)( Nws − wj∗B∗
s )}:
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Then E|Irs−BIjB∗
s |= 1

2E[|(wr−Brwj)( Nws+wj∗B∗
s )|]+ 1

2E[|(wr+Brwj)( Nws−wj∗B∗
s )|];

where

E[|(wr − Brwj)( Nws + wj∗B∗
s )|]

6E[|wr − Brwj‖ Nws + wj∗B∗
s |]

6 (EIr − BrEwj Nwr − Ewr NwjB∗
r + BrEwjwj∗B∗

r )
1=2

×(EIs + BsEwj Nws + Ewswj∗B∗
s + BsEwjwj∗B∗

s )
1=2;

and since BrE[wjwj∗]Br =frr; and from the proof of Theorem 1 in Velasco (1999a) it
follows that BrE[wj Nwr]=Br(1=2�)+B∗

r +O(�−2dr
j ep;dr )=frr+O(�−2dr

j ep;dr ); E[wr Nwj∗]
B∗
r = Br(1=2�)+B∗

r + O(�−2dr
j ep;dr ) = frr + O(�−2dr

j ep;dr ); this completes the proof
for |!|¿ 0. When |!| → 0 as n → ∞ the argument follows using (A.3) because
(|!|M)−1 → 0 as n → ∞ from (10).

Lemma A.2. Under the assumptions of Theorem 3 (|!|¿ 0) or Theorem 4 (|!|→ 0);
p= 1;

2�
n

∑
j

KM (!− �j)[Irs(�j)− Br(�j)Ij(�j)B∗
s (�j)] = op((n=M)−1=2): (A.14)

Proof. Using the second moments of the periodogram as in the argument in p. 1648 of
Robinson (1995b) and in Velasco (1999b); da ∈ (− 1

2 ; 1); we have with KMj=KM (!−�j)
that the expectation of the square of the left-hand side of (A.14) is

∑
j

(
2�KMj

n

)2
E[(wr(�j)ws(�j)− Br(�j)wj(�j)wj∗(�j)B∗

s (�j))(wr(�j)ws(�j)

−Br(�j)wj(�j)wj∗(�j)B∗
s (�j))

∗]

+
∑
j

∑
k �=j

2�KMj

n
2�KMk

n
E[(wr(�j)ws(�j)− Br(�j)wj(�j)wj∗(�j)

×B∗
s (�j))(wr(�k)ws(�k)− Br(�k)wj(�k)wj∗(�k)B∗

s (�k))
∗]:

Then; using the same procedure as in Robinson (1995b; proof of Theorem 2); calculat-
ing the expectations in terms of the second moments and fourth cumulants; we obtain
with Theorem 1 above and Lemma A.3; that the left-hand side of (A.14) is

Op


Mn−1


∑

j

{j−1 + j2(d∗−1)} log n+
∑
j

∑
k¿j

{j−2 + j4(d∗−1)} log2 n


1=2



+Op


Mn−1

[∑
j

{j−3=2 + j3(d∗−1) + n−1=2(j−1 + j2(d∗−1))}
]1=2

log n



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+Op

(
Mn−1

[∑
j

∑
k¿j

{j−3=2 + (jk)2(d∗−1) log2 n

+ n−1kd∗−1 log3 n+ n−1=2((jk)−1=2 + (jk)d∗−1)log n}
]1=2 )

=Op(M 1=2n−1=2[nd∗−1 log1=2 n+ n−1=2 log1=2 n

+ n2d∗−3=2M−1=2 log n+M−1=2n−1=2 log n

+ n−3=4 + (n3(d∗−1)=2 + nd∗−5=4 + n−3=4) log n

+M−1=2n−1=4 +M−1=2n(d∗−1)=2 log3=2 n

+M−1=2(nd∗−3=4 + n−1=4) log1=2 n]);

which is op(M 1=2n−1=2) with (8).

Lemma A.3. Under Assumptions 1;2; 4′; 5′; p=1; d=max{da; db}¡ 1; j=1; 2 : : : ; n=2;

E|Iab(�j)− Ba(�j)Ij(�j)B∗
b (�j)|2

=O(faa(�j)fbb(�j)[(j−1 + j2(d−1))log n

+ j−3=2 + j3(d−1) + n−1=2(j−1 + j2(d−1) log n)]);

and for j¡k;

E[Iab(�j)− Ba(�j)Ij(�j)B∗
b (�j)][Iab(�k)− Ba(�k)Ij(�k)B∗

b (�k)]

=O

(
|fab(�j)fab(�k)|

[j−2 log2 n+ j4(d−1) log2 n+ j−3=2 + (jk)2(d−1) log2 n

+n−1kd−1 log3 n+ n−1=2((jk)−1=2 + (jk)d−1)log n]

)
:

Proof. It follows from Lobato (1999) multivariate treatment; adapting Robinson (1995b;
Theorem 2); and Velasco (1999b; Lemmas 1–3) for d¿ 0:5.

The following lemma is Lemma 8 of Velasco and Robinson (2000) and Lemma 7
of Velasco (1999b).

Lemma A.4. If the sequence {hj} is a data taper of order p as de6ned previously;

(A) (
∑n

t=1 h2t )
−1|∑n

t=1 h2t cos t�j|=O(|j|−p); 0¡ |j|¡n=2;
(B)

∑n−1
t=1 h2t

∑n−t
s=1 h2s+t cos

2 s�j = 1
4(
∑n

t=1 h2t )
2 + O(n2|j|−2p + n); 0¡ |j|¡n=2;

(C)
∑n−1

t=1 h2t
∑n−t

s=1 h2s+t cos s�j =
1
2(
∑n

t=1 h2t cos t�j)
2 + O(n); 0¡ |j|¡n.

36



Proof of Lemma 1. We do the proof for f̂
M
yy(�j); for the cross-spectral estimate it

follows similarly. Denote Dj = f−1
yy (�j)[1− |Hxy(�j)|2]−1;

max
‘6j6m

Dj|f̂M
yy(�j)− fyy(�j)|6 max

‘6j6m
Dj|f̂M

yy(�j)− E[f̂
M
yy(�j)]| (A.15)

+ max
‘6j6m

Dj|E[f̂M
yy(�j)]− fyy(�j)|: (A.16)

First (A.16) is

O
(

max
‘6j6m

�−2;
j

[
M
n

+ �−2
j M−2

])
=O(n2;−1‘−2;M + n2(1+;)‘−2(1+;)M−2):

Now we have that the right-hand side of (A.15) is; C¿ 1;

max
‘6j6m

∣∣∣∣∣[1− |Hxy(�j)|2]−1 2�
n

∑
r

KM (�r − �j)f−1
yy (�j)[Iyy(�r)− E[Iyy(�r)]]

∣∣∣∣∣
6

(
max

‘6j6m
[1− |Hxy(�j)|2]−C

∣∣∣∣∣2�n
∑
r

MM
r;j[Iyy(�r)− E[Iyy(�r)]]

∣∣∣∣∣
C)1=C

;

where MM
r;j = KM (�r − �j)f−1

yy (�j); and maxj maxr |Mr;jfyy(�r)| = O(M) for r in the
compact support of KM (�r − �j) for each �j. Thus; the supremum inside the brackets
is less than or equal to

C
m∑
j=‘

�−2;C
j

∣∣∣∣∣2�n
∑
r

MM
r;j[Iyy(�r)− E[Iyy(�r)]]

∣∣∣∣∣
C

6C
(
M
n

)C=2
n2;C

m∑
j=‘

j−2;C

∣∣∣∣∣ 2�√
Mn

∑
r

MM
r;j[Iyy(�r)− E[Iyy(�r)]]

∣∣∣∣∣
C

=Op

((
M
n

)C=2
n2;C‘1−2;C

)
;

taking expectations; C¿1=(2;); since the standardized quantity (Mn)−1=2∑
r M

M
r;j[Iyy(�r)

−E[Iyy(�r)]] has zero mean and bounded variance and moments of any order for any
j and d¡ 0:75; since higher order moments depend only on second-order properties;
i.e. fyy(�); by Gaussianity.
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