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Abstract

We analyse the properties of nonparametric spectral estimates when applied to long memory
and trending nonstationary multiple time series. We show that they estimate consistently a gener-
alized or pseudo-spectral density matrix at frequencies both close and away from the origin and
we obtain the asymptotic distribution of the estimates. Using adequate data tapers this technique
is consistent for observations with any degree of nonstationarity, including polynomial trends.
We propose an estimate of the degree of fractional cointegration for possibly nonstationary se-
ries based on coherence estimates around zero frequency and analyse its finite sample properties
in comparison with residual-based inference. We apply this new semiparametric estimate to an
example vector time series. (©) 2002 Elsevier B.V. All rights reserved.
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1. Introduction

In many empirical studies, it is found that the most relevant property of spectral
density estimates of observed time series is a marked peak at zero frequency. This fea-
ture is often associated with long-range or trending nonstationary behaviours. However
these estimates, usually of nonparametric nature and designed for short-memory series,
are constructed without detrending or explicit account of their long-run properties. This
makes difficult the application of standard inference rules and the interpretation of such
features, well documented otherwise, since the nonstationarity may affect the properties
of spectral estimates.
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To describe low-frequency behaviour it is often assumed that the spectral density
f(2) of an observed covariance stationary sequence satisfies for a positive constant G,

f(2)~ G2 as ) — 0, (1)

where d < % is the parameter that governs the degree of memory of the series, but
f(2) can be smooth outside a neighbourhood of the origin. For d < % the process is
stationary, and (1) allows spectral densities that either diverge, are positive or zero
at 1=0. If dE(O,%) we say that the series exhibits long-memory or long-range
dependence. If d =0 the spectral density is bounded at A =0 and the process is called
short memory or weakly dependent. When d < 0 the spectral density is zero at the
origin and the series displays negative memory or antipersistent behaviour, due in most
cases to overdifferentiation of observed time series. Related properties can be expressed
alternatively in the time domain in terms of the autocovariance sequence and hold for
fractional processes such as ARFIMA. See e.g. Robinson (1994a) or Beran (1994) for
a review of the literature on long-memory or long-range dependent processes.

After integer differencing, many nonstationary series are transformed into (second-
order) stationary ones with spectral density satisfying (1), as is the case of standard
ARFIMA models with d > % Then we consider the transfer function of the difference
operator to define a generalized or pseudo-spectral density (PSD) f(1) with power law
behaviour at the origin as in (1), but adding to d the number of integer differences taken
to achieve stationarity. This PSD, though with similar shape to the spectral density of
the stationary increments for frequencies away from the origin, is not integrable and
cannot represent a decomposition of the (infinite) variance of the nonstationary time
series. However, as suggested by Solo (1992) and Hurvich and Ray (1995), f(4) has
an interpretation as the limit of the expectation of the sample periodogram as occurs for
stationary series. We show in this paper that this PSD is the quantity actually estimated
in practice by smoothed spectral estimates, completing the analysis of estimates of full
and semiparametric long-memory models without assumptions about the degree of the
possible nonstationarity (see Velasco and Robinson, 2000; Velasco, 1999a, b).

We analyse in this paper the properties of standard nonparametric smoothed spec-
tral estimates for both frequencies close and away from the zero-frequency singular-
ity for possibly long-memory and nonstationary or trending series. In a multivariate
context, for estimates based on discrete averages of periodogram ordinates we found
similar asymptotic results as those for stationary set-ups and bounded spectral densi-
ties itemized in, e.g. Hannan (1970, Section V.5) or Brillinger (1975, Section 4.2).
Assuming only local conditions around the frequency of interest we show the con-
sistency and asymptotic normality of the nonparametric estimates for linear processes.
Robinson (1994b) considered periodogram averages around the origin to estimate the
spectral measure. Hidalgo (1996) and Marinucci (2000) analysed the properties of spec-
tral estimators based on autocovariances for stationary and nonstationary long-memory
processes, respectively, under different sets of assumptions, but periodogram-based esti-
mates may be more natural in many contexts as they are often better designed to avoid
leaking from remote frequencies. When the memory is very high, tapering the data
(Tukey, 1967) might be necessary to reduce the bias in the nonparametric estimation
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or to eliminate stochastic and deterministic trends, confirming the desirable resolution
properties of such technique for stationary series found by, e.g. Zhurbenko (1979),
Dahlhaus (1985) or Robinson (1986).

For the analysis of multivariate long-memory or (fractionally) integrated time series,
possibly nonstationary, a key concept is that of cointegration. A vector of time series
with equal memory components is cointegrated if a linear combination of them has
smaller memory, the order of cointegration being this reduction in persistence measured
by the memory parameter. The usual assumption is that the original series have a
unit root, d = 1, and a linear combination is weakly dependent, d = 0, but other
possibilities are also plausible as suggested originally by Granger (1981) and Engle
and Granger (1987). When no assumption is made about the memory of the series, an
additional inference problem is the determination of the cointegration order. This entails
estimation of the memory of the original series (and testing for same memory) and
of the cointegrating errors, mostly through residuals in an estimated regression model.
Using nonparametric estimates of the coherence between two series at frequencies
close to the origin we propose in this paper narrow band estimates of the order of
cointegration in the spirit of Robinson and Marinucci’s (2001) or Marinucci’s (2000)
slope estimates. We discuss inference based of such estimates and compare its finite
sample performance with residual-based semiparametric alternatives.

The paper is organized as follows. We first present in the next section the main
definitions and properties of nonstationary long-memory time series and data taper
sequences. In Section 3 we define the nonparametric estimates of the PSD and find
sufficient conditions for their consistency and asymptotic normality. Section 4 proposes
the new estimate of the cointegration order and in the next two sections its finite sample
properties are analysed, and it is applied to an example vector time series. Proofs are
given in the appendix.

2. Nonstationary time series and data tapers

Following Hurvich and Ray (1995) in a univariate context, we propose a gen-
eral model for possibly nonstationary integrated vector processes with components
{X}, r=1,...,R, each with memory parameter d, > — % We say that the observed
sequence X,;, has memory d, > — % if Uy =4 X,;, D, =|d,. + %j, is stationary with
mean p,, possibly different from zero, and spectral density f;. (1) = g,-(4) behaving
as G, A~ 2d=Dr) around the origin, f% <d,— D, < % Here 4 =1 — L, where L is
the lag operator. However, the definition of long-memory or fractional nonstationary
models in terms of partial sums of stationary long-memory processes we adopt here is
not the only possibility to obtain processes with similar long-run properties. Thus, for
example, Robinson and Marinucci (2001) and Tanaka (1999) use truncated fractional
difference filters that generate nonstationary series for any value of d.

Define the PSD of X,, as

Fr) = 11— exp(iA)| 2P gor(A) ~ Grpd ™2 as 1 — 07, )



0 < G, < c0. When 2d, > 1, f,(2) is not integrable in [ —7, 7] and it is not a spectral
density. We assume that g,.(1) is the spectral density of a stationary process, but
not necessarily ARMA, and it can be zero or unbounded at frequencies A0, but
integrable for second-order stationarity. Note that if u,#0 the observed time series
has a deterministic component and if D, > 1 this is a polynomial trend.

Similarly, we define the (pseudo) cross-spectral density of a pair of series
(X, X)) as

Fol2) = (1 = exp(i2)) (1 = exp(—i4)) P gis(2) ~ Grod ™ as 7 — 07,

0 < |Gys| < 00, where g,5(4) is the cross-spectral density of (U, Uy ), and if |G,s| =0
we account for zero coherence between U, and U, at zero frequency. See Lobato
(1997) for a discussion on multivariate long-memory semiparametric models.

The basic statistic for our frequency domain analysis is the tapered discrete Fourier
transform (DFT). The DFT of X,, for a deterministic taper sequence %, and n obser-
vations t=1,...,n and » =1,..., R, (4; =2mj/n), is defined as

n -2
wi(2) = WX, by 1) = (2n > h%) > hiXs exp(i;t),
t=1

t=1

and the (cross) periodogram of X,, and X, is

[rs(/lj) = Wr()“,f )WY(/L/ )’

where the overline indicates complex conjugation. Tapering downweights the obser-
vations and both extremes of the observed data sequence to control leakage from
frequencies where nonstationarity is suspected in the observed time series.

The usual DFT is obtained setting 4, = 1, t =1,...,n, while the cosine or Hanning
taper is given by h,= %(1 —cos[2nt/n]). For sample size n=4N, where N is an integer,
the weights A¥ of the Parzen window are

2{1 = |2t — m)/n|}, 1 <t<Nor3N <t<4N,
1 —6[{(2t — n)/n}* — |(2t = n)/n]’], N <t <3N.

Zhurbenko (1979) used a class of data tapers {#%} suggested by Kolmogorov, indexed
by the order p =1,2,..., assuming N = n/p integer. For p =3, Zhurbenko’s weights
are similar to the cosine window, and when p =4, h? are very close to h", sharing
similar asymptotic properties. If p =2, Zhurbenko taper is equal to Barlett’s triangular
window and when p =1 they are constant.

We denote as 15(4;) = w,(A;)wy(4;) the (cross) periodogram with a taper of order
p according with the following definition:

Definition. A sequence of positive data tapers {h,}] symmetric around |n/2] is of
order p if

(i) max, s, =1, and lim,_o, (1/n) Y}, h? =B for some 0 < B < oo.



(ii) For N =n/p (which we assume integer),

“ ..y a(A) (sin[ni/2p] 4
2 e} = (aiiar )

3)

where a(Z) is a complex function, whose modulus is bounded and bounded away
from zero, with p — 1 derivatives, all bounded in modulus as n increases for
A€ —m, ).

The higher the order, the more dramatic is the effect of tapering, being possible to
deal with series with arbitrary high memory if enough tapering is applied, i.e. if p is
sufficiently large (Velasco, 1999a). The raw DFT weights, the identity, are of order
p =1, and from now on when p =1 we will imply the usual DFT, without tapering.

The effect on tapering can be illustrated by the following properties. Thus, summa-
tion by parts yields for a differentiable taper which vanishes at the boundaries, with
derivative A,

w Xrt,hn)») ~ 1

WA 2) + S )
— exp(il) n

explaining, if the term multiplied by 1/n is negligible, how a sufficiently smooth ta-
per (i.e. of sufficiently high order p) can deal with arbitrarily high levels of mem-
ory d, justifying definition (2). In fact, from Hurvich and Ray (1995) and Velasco
(1999a), we obtain in Theorems 1 and 2 (to follow) Solo’s (1992) inversion calcula-
tion for nonstationary f,(4),

n -1 T
E[Irfu‘,fp)](znZh?) / D4 = Zip) P fir(A) A0 — i), 4)
t=1

—T

as n — oo, where Dy(4) = >/ | h exp{iit}. Then, the tapered periodogram is
asymptotically unbiased for the PSD of nonstationary series at Fourier frequencies 4;,
j#0 (modN).

Furthermore, tapers of order p allow inference for time series with polynomial trends
of orders up to p — 1 without need of identification or estimation because for a data
taper of order p, the DFT is invariant to these trends,

w(t' iy 25) =0, £=0,1,...,p— L. (5)

See Lobato and Velasco (2000) for an application of this property.

We now review in a multivariate context some results obtained in Robinson (1995a)
and Velasco (1999a) for the (tapered) DFT of possibly nonstationary time series. Here
we are only concerned with positive Fourier frequencies 0 < A; < 7, since we can anal-
yse negative ones by complex conjugation and symmetry. The regularity conditions on
the behaviour of g,,(4) around the frequency v of interest, 0 < v < 7, are summarized
in Section 3. The case v=0 is of interest for the analysis of the persistence properties
of the observed vector series, including cointegration properties.
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We first analyse the covariance matrix of the raw w,(4;) with no tapering. Define

0(2) = wr (W) i ().

Theorem 1 (p = 1). Under Assumptions 1 and 4, (4" for v=0), d,e(f%,l), r=
I,...,R, u =0, for sequences of positive integers j = j(n) and k = k(n) such that
0<k<j<n/2, Al — vE[0,n] as n — oo and defining y; =" ~'k%~log(1+),

(a) E[v,(2))0(A)] = Hys(2;) +O(~ log(1 + /) +7;,7),
(b) E[v,(Z;)vs(2)] = O(j~" log(1 + /) +7;./):
(¢) E[v(2))i5(Z4)), E[vr(2;)vs(2 )] = Ok~ og(1 + /) + k).

H,s (/) is the coherence at frequency A between U, and Uy and 7;; bounds the
nonstationarity bias due to the nonintegrability of f,(1) for d, = 0.5. For values d, > 1
the periodogram is not unbiased for the PSD (1), though its expectation is finite for
d < 1.5 (see Hurvich and Ray, 1995). Tapering helps to control this bias using (3) to
deal with nonstationary series and deterministic trends. However, the full advantage of
the tapering only shows up when we assume further smoothness conditions on f(1).
Denote by f=1,2 the number of derivatives of f(/) around v and set the normalized
tapered Fourier transform v! (1) = wl(1)/ j,I,l-/ 2(/l).

Theorem 2 (p > 2). Under Assumptions 1, 4, 6 (4 and 6 for v=0), d, > — %, a
data taper of order p=2,3,..., with either

(i) ur=us =0 and p > max{d,,d;};
(i) p = max{D,,D;} + 1 any w, u;

or sequences of positive integers k=k(n) and j=j(n), and n = j—k, 1<k<j<n/(2p),
q p J=J n=J J -P
Ljps hp — VE[0, ] as n — o0, 9k = jU PRSP log(1 + ),

(a) E[0] (AipWI(p)] = Hys(ip) + O~ + 7)),

(b) E[ﬂ(%‘p)ﬁ(ifp)] =077+ 7

(©) E[v}(2p)0f Gap) ) E[v} (Ajp)os Guap)] = Ok =7 + k= 'y~ P{logn}p—2) + 07
+ k)

In part (c) the logn factor only appears when p = 2 but not otherwise. Thus, the
tapered periodogram (with a taper of order p) is unbiased at Fourier frequencies Z;,
for any d, < p if u, =0, (i), or with some extra tapering if there are deterministic
polynomial trends in time (x. #0 in (ii)).

3. Nonparametric estimates of the PSD matrix

We analyse in this section the properties of traditional nonparametric kernel spectral
estimates at frequencies v, 0 < v < 7, fixed in the asymptotics, and at frequencies in a
6



degenerating band around the origin with v — 0 as the sample size increases, as when
e.g. v=2; with j increasing slowly.

We define the following class of statistics, based on a discrete average of the (pos-
sibly tapered) periodogram ordinates Z5(4;) at the Fourier frequencies closest to the
frequency of interest v:

AM 2n \
S )= 2B Karv = iy M)
J

where Kj(x) = MK(Mx) and K(x) integrates to 1 and is of compact support inside
[—m,7]. M is a bandwidth number which increases with the sample size in the asymp-
totics. The summation in j runs for all the Z;, in the support of Ky, including O(nM ~')
Fourier frequencies (that is, j = v,v £ 1,...,v £ [n/2Mp], if the support of K is ex-
actly [ — m, ], where 4,, is the closest frequency to v for each n, v integer). When

the series is not stationary, the frequency domain estimates jiiu are not necessarily
asymptotically equivalent to estimates constructed in terms of the sample (cross) auto-
covariances, since our analysis depends crucially on the properties of the periodogram
at Fourier frequencies (Theorems 1 and 2).

We need the following regularity conditions for the asymptotic analysis of the prop-

erties of £ (v).

Assumption 1. For d, > — 1, r,s=1,...,R,

Grs(2) = G A~ r=dFDrtDs(] 4 (1)) as A — 0F,

for some 0 < G, < 00 and 0 < |G| < 00, r#s.

Assumption 2. U; = p + >°7°) Aj€,—; with 377 [|Aj[|* < oo, where || - || denotes
the supremum norm and €, satisfies as. E(&|J,—1) = 0; E(€€)|3,1) = 2,
2 = 1y E(€(D)Ep(D)ED)|Ti=1) = pape With  |uge| < oo for a,b,c = 1,...,R;
E(€,(t)Ep(t)E()Ea(8)|Ti—1) = Uabea> Where |ptgpea| < oo for a,b,c,d=1,...,R and J,_,
is the o-field of events generated by {€,,s <7 —1}.

Assumption 3. The function K is even, has compact support inside [ — 7, 7], satisfies
a Lipschitz condition and

/K(x)dle, IK|}?= | K*(x)dx < oc.

Assumption 4. |g,(4)| > 0 and g,5(1) is boundedly differentiable for 1€ (v —¢,v+¢),
some ¢ >0, r,s=1,...,R.

Assumption 5. A, (1) is boundedly differentiable for 1€ (v — &, v + ¢), some ¢ > 0, r,
s=1,...,R.

Assumption 6. g,,(1) is twice boundedly differentiable for 1€ (v — & v + ¢), some
e>0,r,s=1,...,R.
7



Assumption 1 deals with the possible long memory or nonstationarity of the ob-
served series, while Assumptions 4—6 impose some smoothness on the spectral density
g,s around the frequency of interest. Only Assumptions 1 and 4 are needed for the
analysis of the covariance of the usual DFT in Theorem 1, but Assumption 6 is used
to control smoothing bias and to fully use tapering properties when p > 1 in The-
orem 2. Similar conditions are used for parametric and semiparametric inference on
long-memory processes, imposing here only local conditions around the frequency of
interest, allowing for PSDs with (integrable) poles or zeroes at remote frequencies.

Assumption 2 imposes linearity of the (differenced) stationary zero mean series
U™ =U, - U, = (Uy,...,Up). It was introduced by Robinson (1995b) and
Lobato (1997, 1999) to analyse semiparametric estimates of d for stationary long-memory
processes and it does not restrict the form of f;(1) = g(1) in any way and is only
restrictive in the linearity it imposes. Note that the variance of the components of €, is
set to one for identifiability in Assumption 2. Define A(Z) =>_7, A;eV*, and denote
each of its rows by A,(1) = (4,1(4),...,4,r(1)). Then the spectral density matrix of
€ is fe(1) = (2n)7'Z, so g(A) = (2n) " "A(L)XA*()), with typical element

R R
)= 3 AR D)= 5 DTS A a0
a=1 b=
where * stands for simultaneous transposition and complex conjugation. Denote B,.(1)=
(1—e*) A (), r=1,...,R, 50 fi(2)=(27)"'B.(1)XB?(/). Assumption 5 imposes
smoothness on the components of A (equivalently B) around the frequency of interest,
implying Assumption 4.

Assumption 3 is standard in nonparametric kernel estimation and is satisfied by
many kernels employed in spectral analysis with compact support, like the uniform
and Barlett—Priestley kernels.

The first result of the paper is about the consistency and asymptotic distribution of

the nonparametric estimate ff;](v) for |v| > 0 fixed with n. To centre the asymptotic
distribution in the actual value of f.(v), we need to undersmooth the nonparametric
estimates and use Assumption 6 for bias control. We recall that for complex quantities,
the covariance is defined conjugating the second term in the expectation, so the variance
is defined as the expectation of the squared modulus of the mean-corrected variates
(see e.g. Brillinger (1975, p. 89) for the J-dimensional complex normal distribution,
denoted as N¥, J fixed). Set d. =max,___zd, and for r(i),s(i) € {1,...,R},

Frs(V) = (s -« o frnsen (),

where F' Z(V) is defined accordingly, and
-2

n n—p n 2
D, = nlivnolo <Z hf) Z [Z 12 cos t/lk} .
1 k=0,p,2p,... 1

All theorems are proved in the appendix.

Theorem 3. For |v| > 0 as n — oo under Assumptions 1-5 and
Mn '+ M~ =0 asn— oo, (6)

v



and either

(i) = py =0 and p > max{d,,d,},
(i) p = max{D,, D} + 1, any ., is,

then
N X
frx (V) - frx(v) 4)[7 0.
Further, for v; € (—n,n) — {0}, i =1,...,J, fixed with n, with Assumption 6,
M3n~'logn+Mn—0 asn— oo, (7)

and either

iii) u=0and p=1 an
(iii) n=0 and p=1 and
M~ '3 log?n — 0 as n — oo, (8)
iv) u=0 an >d, an
(iv) p=0and p > d, and
M2 d=PH ogn — 0 as n — . )

(v) p=ldi+ 3]+ 1 and p>1 (any p),

we obtain that
n oM c 2
M{Frs(v) — Frs(W)} =4 N7 (0,27p®, ||K||°Q(v)) as n — oo,

where Q(v) = [a;;(V)], ;;(v) = 3(vi — v;) fiiyr () (Vi) Sy (Vi) + (Vi + v;) friays iy (vi)
f';(f)~v(i)(vi)a r(i)a V(J),S(l),s(]) € {1’ s ’J}

We decided for simplicity not to include the cases v; ==+n (but the standard results
hold, see e.g. Brillinger, 1975, Theorem 7.4.3). A condition like (6) is also minimal for
nonparametric estimation of smooth spectral densities. Tapering allows the consistent
estimation of f* with trending observations without need of initial detrending, (ii), and
without any kind of tapering it is possible to estimate f consistently for nonstationary
but transitory processes with d < 1, (i).

The taper variance inflation factor @, is smaller than 1.05 for Zhurbenko kernels
with p > 1 (®; = 1), implying moderate increments in the asymptotic variance of the
estimates (apart from the p factor due to the reduced number of frequencies used in
ffj). Note that @, = T, where T, is the usual tapering variance correction (see
e.g. Dahlhaus, 1985) if the sum in & in the definition of @, were running for all the
possible values,

n =2
Ty = lim n (Zh?) 2.1
1 1

by Parseval’s identity. The results also hold for the cosine bell taper with .= 7. = %
when —% <d, < %, 1 =0, considering all possible frequencies, like if p =1 (see the
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discussion in Velasco, 1999b). Notice that spectral estimates at different frequencies are
asymptotically independent for |v;| > 0 as in the weak dependence case with bounded
spectral density.

When considering estimation in a degenerating band of zero frequency we need to
adapt our assumptions:

Assumption 4'. g,,(1) is differentiable for 1€ (0,¢), some ¢ >0, r,s=1,...,R, and

% Grs(A) = O™ =dADFD=1y g5 ) 0F,

Assumption 5. A,(1) is differentiable for A€ (0,¢), some ¢ >0, r=1,...,R, and

dAc{y) =0U Y AD]) as 21— 0"

Assumption 6'. ¢,,(1) is twice differentiable for 1€ (0,¢), some ¢ >0, r,s = 1,...,R,
with
2

% Grs(2) = O(A~ =8Py a5 ) 5 0F,

The corresponding result for these frequencies is stated as

Theorem 4. For |v| — 0 as n — oo under Assumptions 1-3, 4, 5', (6),
(VM) + (npv) ™ ogn + (n[v)? =P logn — 0 as n — oo (10)
and either (1) or (ii) of Theorem 3 then,

fu)
1)

If we further take Assumption 6,

1 —,0.

M3 togn+ M7 ™*n -0 asn— oo, (11)
and either

(iii) p=0, d. <3 and p=1;
(iv) take (iv) or (v) of Theorem 3 and

M~ 'n(n|v])*“@~Plogn — 0 asn— oo, (12)

we obtain that

W f ()~ )

M ) )2 NE(0,27p®,|[K[)  as n — oo.
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The condition (|v|M)~! + (|[v|n)~'logn — 0 as n — oo in (10) is needed now to
avoid periodogram ordinates too close to the singularity of the PSD at the origin. The
last condition in (10) controls the degree of nonstationarity when d is close to the
degree of tapering applied, p. When v=4;, then j may grow as n®, any 0 < ¢ < I, for
consistency. Condition (11) further restricts the range of low frequencies v for which

we can obtain the asymptotic normality of f ,A: (v), though if v=4; it would be possible
to consider j ~ n%/°*¢ for any & > 0.

The restrictions on the value of d. (i.e. the degree of nonstationarity) depend on
the tapering degree p in a parallel way as was found for semiparametric estimates a
similar environment by Velasco (1999a, b) and by Velasco and Robinson (2000) for
parametric estimates. Thus, for any allowed choice of M, p > d, + % is sufficient for
(12). When p =1 and all v; are fixed, it is possible to find sequences M which lead
to asymptotically normal estimates if d, < %. Weaker conditions on the smoothing
bandwidth M would be sufficient for a central limit theorem if we substitute Fi5(v) by
E[F(v)] or if we employ higher order kernels or estimate higher order bias terms.

Finally, note that the asymptotic variance in Theorem 3 changes the sign of the
frequency when v; = —v; in f)si)(v;) with respect to Brillinger (1975, Theorem and
Corollary 7.4.3), otherwise when v;=v; and considering f,.(j)x(j)(—vl):fY(J-),,(j)(vl) we
would obtain a contradiction. However, this is correctly stated in his equation (7.2.14),
but not in the second line of (7.2.13).

All standard results for linear and nonlinear functions of the PSD (real and imaginary
parts, modulus, coherency, phase, transfer function) can be deduced from Theorems 3
and 4. See e.g. Hannan (1970, Section V.5). These spectral estimates can be used for
long memory estimation (Hassler, 1993; Chen et al., 1994; Reisen, 1994) and for effi-
cient Hannan’s (1963) regression for long-memory and nonstationary series (Robinson
and Hidalgo, 1998; Marinucci, 2000), apart from nonparametric descriptive analysis. In
the next section we take this further and analyse the behaviour of coherence measures
for cointegrated series, and estimate a semiparametric model for them.

4. Spectral analysis of cointegrated time series

We will denote a time series whose stationary increments have spectral density
satisfying Assumption 1 as integrated of order d,, /(d,), generalizing the usual /(0)
and /(1) terminology (see Engle and Granger, 1987). The parameter d, determines the
main long-run properties of /(d,) processes. Let the observable bivariate time series
(Y:,X;) be I(d) (i.e. dy =dx =d >0 in Assumption 1) and satisfy

Y, =bX,+ 7 (13)

for some b#0, where the cointegrating error Z, is I(d — a), 0 < o < d, and may

be correlated with X; at some frequencies (all u = 0). If such Z;, exists with o >0

we say that the pair (Y;,X;) is cointegrated because a linear combination of them is

less nonstationary and can be interpreted as a long-run relationship where the Z, are

departures from equilibrium. Often this set-up is only sensible if the errors Z; are
11



transitory, i.e. if d — o < 1 so shocks do not have a permanent effect on the long-run

equilibrium. The main inference issues in cointegrated systems are the estimation of

the long-run relationship » and of the memory of the series involved, d and d — a.
We strengthen Assumption 1 and suppose that the PSD matrix f of X; and Z satisfies

Go Gt

f()y=1"2
G A* G

) (14+0(2%) asi—0"

for some constants |G| < 00, a,b € {x,z}, where the matrix G = {G,;} is Hermitian
and nonsingular.

The memory d of the observables can be estimated directly from either X, or Y,
e.g. using the semiparametric estimates of Robinson (1995a, b). However, Z; is not
observed in order to estimate d — o or a. The regression model (13) can be estimated
(for example using spectral estimates as in Marinucci, 2000) and residuals can be used
instead, but asymptotic properties of estimates of b depend crucially on o (Robinson
and Marinucci, 2001) and the same can be expected for residual-based estimates (see
e.g. Hassler et al., 2001). Here we propose an estimation method for o related to our
previous nonparametric analysis and avoiding intermediate steps.

Define the coherence H,,(X) between two time series a, and b, at frequency A as

Jar(4)
(faa(A) fop (2?7

0 |Ho(1) — H.(0)] = O(JA)?) as 2 — 0%, where |H..(0)]> = |G |*/(G..G,), which
holds, e.g. for certain ARFIMA processes (cf. Assumption 3 of Robinson, 1995a).

Then, employing model (13), and pretending that the series are stationary to calculate
the autocovariances (otherwise, integer difference (13) a sufficient number of times and
then multiply by the unit root transfer functions) the PSD of ¥, is

Hah(;L) =

Fon(2) =B fur(2) + fz(A) + 2bRe fir(2) ~ b Ged ™ as 4 — 0,
and the cross-PSD of X, and Y, satisfies
Fir(2) = b fir(A) + fi(2) ~ DG ™ as . — 0T,

Therefore, X; and Y, have coherence equal to one at zero frequency, H,,(0)=1, and the
PSD matrix of (X;,Y;) is singular at 2 =0. Note that the generalized coherence Hy, (/)
defined in terms of the PSDs for nonstationary series belongs to the interval [0, 1] for
all 1 as in the stationary case, independent of whether the PSDs are unbounded or zero
at some frequencies.

After straightforward manipulations using (13) we can write the square coherence
as

. £ AMP
Ho (W) =1—Z ! )
[y ()] T T T )

(14)
12



Substituting in (14) the approximation of f,, as A — 0,

GZZ GZX 2 R GZ‘( ) "
|Hep (WP =1- (G G G2| > <1 -2 LG : ) PO+ 22
~» py xX

~1— Gyi*

for a real constant 0 < Gy < oo,

Gzz ‘Gz'('z
Gy = 1— -
"G, { GuG-. |’

depending on the (normalized) noise-to-signal ratio and on the coherence at zero be-
tween X, and Z,. Taking logs, we have

log(1 — [Hyy(2)]*) ~ log Gu + 2alog i as A — 0T, (15)

and we may try to estimate o using consistent estimates of |H,,(4)|* at frequencies
Aj in a degenerating band around the origin. Notice that the smaller the o the worse
is the above approximation for |H,(4)| based on the leading terms of the expansion,
1 — GyA%*, but in this case also estimates of b have slower rates of convergence (see
e.g. Robinson and Marinucci, 2001). This approach is valid for both stationary and
nonstationary series (tapering might be used to eliminate some intercept or polynomial
trend in (13) or to cover very nonstationary situations, d > 1) and it is not affected
asymptotically by the endogeneity of the residuals (H.,(4)#0) because of its semi-
parametric nature. However, if X; and Z, are incoherent at zero frequency, H.,(0) =0,
s0 G =0 and Gy = G.,G!, then |H,,(2)]* =1 — GuA* + O(4*) reducing the bias
of the semiparametric model (15). In any case we can consider terms of order A%,
etc. for greater accuracy. For a general R x 1 vector time series similar approximations
should be possible in terms of multiple correlation coefficients based on the coherence
matrix H(4).

Denote by d the least-squares estimate of o based on the regression (15) of
log(1 — |H ., (%)?) on W; =2log /;, for frequencies 4;, j =/,...,m,

1
. N AN .
o= Z j Z W;log(l — |ny(/3i)‘2)
j= j=t

with W =W - W, where W is the sample mean of the W;, and

M
) = o E
Sa (2 )fyy()”j)

We may call this estimate log-coherence regression estimate in parallel to Geweke and
Porter-Hudak’s (1983) log-periodogram regression estimate of the memory parameter
d. As in Robinson (1995a) we introduce a trimming of the very first / coherence

estimates, which may not have very desirable asymptotic properties. The analysis of 4
13



is complicated with respect to the log-periodogram regression estimate of d due to the
nonlinear and nonparametric nature of sample coherences |H,,(4;)|*>. We show first the
consistency of & under conditions similar to those of Theorem 3 and then approximate

its variability for large samples. We can write, W, = Z;’; W,

m 5
. - > L= |Hy ()P

— 1 XY\
OC—OC—Wz ZWllogm‘i‘Am,
= x4

where the bias term is A, = O(m ™! > W,
We obtain then ‘

Gam s SOWS S WG, 40 o((%Y). (16)
=

23)=0((m/n)*) as in Robinson (1995a).

=t

where §; =A4; — B; is the linear part,

PR A O R {0 N S D VA )
T IO = TGPy L) o)

and
1- ‘l—?xy()”jﬂz

C; =log — X1
ST L Gy

— 8y =(logd; — 4; + 1)~ (log B; — B; + 1),

We now analyse the properties of the spectral estimates included in & under some
stronger conditions.

Lemma 1. Under Assumptions 1-3, 4—6' (p=1, u=0) for Gaussian X;,Y,, 0 < o < %,
0<d< %, MM 4 (m =) 4 mn~! — 0 as n — oo, and if for some T =1,

(n2a—1/—20cM + n2(l+a){»—2(l+oz)M—2)10gm +Mr/2nr(29<—0.5)/]—2m logrm -0,

(17)
as n — oo, then a,b€{X,Y},
max (1= [Hey ()Y sl )™\ fan ) = o)
=op(log™" m). (18)

We impose d < % and Gaussianity to simplify proofs and avoid conditions on the
moments of the linear innovations. Note that under (17), condition (10) for the con-

sistency of f,,(v) holds for v=/4;, / < j < m. The implications of the conditions of
Lemma 1 are very strong on the trimming / to obtain the uniform consistency of the
spectral estimates in the frequency band of the log-coherence regression, though in

practical applications this may not be needed as long as zero frequency periodograms
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are avoided. Thus, if / ~ An®, m ~ Bnb, M ~ Cn¢, 0 <a<b<1, 0<c<1, (17)
holds if

max{(1 +a)(1 —a)—c,4a(l —a)+c—1} <0,

which, when e.g. « =0.2 holds for a = 0.6 and ¢ =0.5.

Then under the assumptions of Lemma 1, d—a=o0,(1) as n — oo, because using that
max; |I¥,;| =O(logm) and max; [4; — 1| =o,(log ™" m), max;|B; —1|=0,(log~" m) both
implied by (18), we obtain that max; |§j\ = op(log{1 m) and max; \C’j\ = op(log*1 m).

Now we proceed heuristically. Since the spectral estimates are approximately inde-
pendent if they include periodogram ordinates at non-overlapping frequencies, so are
the coherence estimates, the log-coherence regression estimate would be approximately
normal in large samples. To estimate its variance we can approximate Var[log(l —
\I—AIX},.()%,-)P)] by 4 Var[tanh71(|1:1xy(/1;)\)] using that log(1 —x?)+2tanh ™" (x) =log(1 +
x) — 2log2 asx — 17, so

o2\ 2 . .
Var[4] ~ (Z Wf) 43N
J ok
xCov[tanh ™" (|H ,(4;)]),tanh " (|H ., (24 )])]- (19)

Here the transformation tanh™' is variance stabilizing because I-Ly is a sort of cor-
relation coefficient in the frequency domain, and when I:Ixy is defined using spectral
estimates with uniform weights over 2¢ + 1 Fourier frequencies we can write (see e.g.
Brillinger, 1975, p. 312),

Var[tanh ™' (|H,(2))] & 55— 20
arftanh™" (52D~ 5055 (20)
We can also approximate for |¢| < 2¢:
10 N 2g+1—1|t
Cov[tanh ™' (|H,(%;)|), tanh l(|111xy(ﬂ,+,)|)]mq’iu (21)

2(2q + 12

and if the estimates H xy are evaluated at frequencies sufficiently far apart we can
suppose they are asymptotically uncorrelated. Plugging (20) and (21) in (19) we can
estimate the sampling variance of & for each m and ¢. For tapered series this approx-
imation can be adjusted by @, and p as for f (cf. Theorems 3 and 4).

We can also justify these variance estimates using the linear approximation to 4
given by the first term on the right-hand side of (16). Thus,

Var[$;1{ fu(A) £ () = |Hyy (7))}
= [Hoy (G)[* Varl s () s )]

—2H )N COVL far (i) fay s | fon )1 + Varl| fon (2) P,
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and for uniform weights this is approximately equal to 1/(2¢ + 1) times
[ Hey G2 Fer) Sy O Sy DI + BLZONS3,G)}
= 201 Hey () f) Sy i)l Fey )P
+ 214 Fiy ) er (A + 8L fey ()1

under appropriate conditions on the higher order cumulants of €,, e.g. assuming Gaus-
sianity. Thus for small 4;,

N 2 2
Var[S;]~ —— |H, (1) = . 22
ar[§;] 2q+1| (/)| 2q +1 (22)
Alternatively, we can write that
M M . N ~ R
5 _ Jax G135 (2) [Hey ()1 = |Hay () ~ [Hoy ()1 = [Ho(4)P
T O () 1= [Hyy (4 1= [Hy(GpP 7
and then use the fact that
N 2
VarHny(/lj)‘z] ~ qu |Hry()”j)|2(1 - |I—Ixy(;~j)‘2)2 (23)

(e.g. Brillinger, 1975, p. 309) to obtain again the approximation (22). Similar approx-
imations can be used for the covariances between S; and Si, j#k.

5. Simulation results

In this section we simulate the performance of the estimate & of the cointegration
degree in comparison with semiparametric procedures based on OLS residuals. In par-
ticular, we use the log-periodogram regression estimate (Geweke and Porter-Hudak,
1983; Robinson, 1995a) and an estimate based on a local Gaussian or Whittle likeli-
hood (Kiinsch, 1987; Robinson, 1995b). These estimates are consistent for nonstation-
ary series when d < 1, or d < p if tapering of order p is applied (x=0), see Velasco
(1999a, b). We use the Zhurbenko taper of order p =2, which is valid for d < 1.5 for
memory estimation with any u.

We have simulated cointegrated Gaussian series (X;, Y;) of lengths n =128 and 256
according to (13) with three pairs of cointegration values, CI(1,0) (= 1), CI(1.3,
0.9) (¢ =04), and CI(1.1,0.4) (x = 0.7). All the observed series are nonstationary
while the residuals are weakly dependent, nonstationary but mean reverting and sta-
tionary long memory, respectively. The X, series are all ARFIMA(0,d,0), while Z, are
ARFIMA(2,d—a,0) with autoregressive coefficients ¢, =0.34 and ¢,=—0.9, guarantee-
ing that the PSDs of Z, shows a peak at A=47/9 (Models 1-3), or ARFIMA(1,d—«¢,0),
(Models 1’-3") with ¢;=0.3 and 0.6. The innovations are zero mean Gaussian indepen-
dent sequences 7, 1, with standard deviations (sd’s) ox =1, g7 =2, respectively, and
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correlation 0.5. Nonstationary series are obtained by integration of series with memory
parameter d — 1. Similar data generation processes have been used previously in the
CI(0, 1) case by Robinson and Marinucci (2001).

The bandwidths were m=6, 12, 18 for n=128 and m=12,24,36 for n=256 while for
coherence estimation we used uniform weights ¢ =1,2. The estimates & are calculated
from the original data and from tapered data with Zhurbenko taper of order p = 2.
Note that if no taper is used f M is not consistent for our simulated series (dy = 1).
We also construct estimates d, based on the increments (4X;, AY;). For AR(1) series
we only report the estimates based on nontapered series with N = 256.

For comparison purposes we consider alternative estimates of o based on OLS resid-
uals. Notice that for these series the OLS estimate satisfies l;—b:Op(n*“) (cases II, IV
and III, respectively, of Robinson and Marinucci, 2001). We consider two semipara-
metric estimation procedures with the same bandwidths as for d: the log-periodogram
regression (&) and the local Gaussian semiparametric estimate (dg). These estimates
are implemented with three different input series. We first estimate d starting with X
and with the OLS residuals Z, we estimate the order dz of integration of Z;, and set
the estimate of « as d — d}. We also substitute X; by 4X; and Z, by AZ, and finally
we only differentiate the observed series but work with the original residuals, adapting
the estimates of o accordingly. Note that some of these estimates are not consistent
for the models considered, but that some systematic biases may cancel out.

We report the mean, sd and mean square error (mse) of the estimates across 500
replications. We also give in parentheses the approximations of the sd’s of d based on
(19) for both values of ¢ and each m, taking into account the tapering applied.

The main conclusions for the ARFIMA(2,d,0) cointegrating series are as follows
(see Tables 1-3 for N =256 and 128 and Models 1-3, respectively). Coherence-based
estimates with ¢ = 1 perform slightly better than those with ¢ = 2, except for Model
2 where the situation is reversed, though the improvement in the sd is smaller than
that predicted by (19). The estimates d, based on (stationary) increments work uni-
formly much worse than those with original data, except for Model 2, where the
similar performance is explained in terms of the nonstationarity of the cointegrating
residuals, so the differenced residuals are invertible, in contrast with the other two
cases.

The variance approximation (19) gives a good indication of the sample variability
of 4 for both n and ¢ and all m, though it underestimates the sample variance for
the smallest values of m, especially for n = 128. With tapering the variance increment
is only slightly overestimated by (19) for large m, but the bias performance is more
erratic than without tapering, leading to larger mse for all estimates considered. For
the sample sizes considered the best results were attained for the largest values of m,
both in terms of sample bias and sd.

Coherence estimates have similar properties than residual-based estimates for Models
1 and 3 but do not achieve results close to the best performances of log-periodogram
and Gaussian estimates for Model 2. Among the alternatives to construct these resid-
ual estimates, the uniformly best is to use differenced data and original residuals,
though, as expected, the second one using both differenced data and residuals works

better for Model 2, while using both original data and residuals seems to have no
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Table 1

Model 1, 2= 1, CI(1,0), ¢; =034, ¢y = —0.9

pm g=2 g=1 X,Z, AX,, AZ, A%, 2,
g 64 4 ¢4 4 dg G dg 4L dg
n =256
1 12 Mean 1.167 0335 0976 0282 0980 0.683 0249 0.175 1.000 0.890
sd (029) (0.24) 0321 0369 0297 0354 0341 0266 0405 0245 0337 0.267
mse 0.131 0578 0.089 0.637 0.117 0.171 0729 0741 0.114 0.083
24 Mean 1122 0481 1.011 0411 1025 0743 0423 0299 1.019 0.849
sd (0.19) (0.16) 0205 0313 0.196 0306 0213 0.169 0334 0226 0.199 0.169
mse 0.057 0368 0.038 0441 0.046 0.094 0444 0.543 0.040 0.051
36 Mean 1.087 0524 1009 0465 1.077 0.828 0.550 0404 1.048 0.882
sd (0.15) (0.13) 0.159 0266 0.156 0270 0.172 0.138 0303 0220 0.153 0.133
mse 0.033 0297 0.025 0359 0.035 0.049 0294 0404 0.026 0.032
2 12 Mean 1074 0870 0965 0856 1.027 0708 0.937 0.630 0955 0.653
sd (047) (0.42) 0482 0460 0466 0433 0.644 0518 0.629 0488 0.634 0.500
mse 0238 0229 0219 0208 0416 0353 0399 0375 0404 0370
24 Mean 1.048 0919 0979 0907 1.036 0.742 0977 0.686 0.991 0.700
sd (029) (0.26) 0284 0294 0278 0270 0338 0273 0340 0258 0329 0.257
mse 0.083 0.093 0.077 0082 0.115 0.141 0116 0.165 0.108 0.156
36 Mean 0984 0.890 0942 0.888 1.070 0.822 1.029 0.780 1.037 0.785
sd (022) (020) 0211 0219 0211 0208 0252 0214 0257 0204 0251 0.203
mse 0.045 0.060 0.048 0.056 0.069 0.077 0.067 0.090 0.064 0.087
n=128
1 6 Mean 1.141 0305 0869 0221 0995 0.686 0461 0411 1.042 0.955
sd (037) (035) 0537 0467 0468 0452 0466 0336 0546 0296 0471 0.324
mse 0309 0701 0236 0812 0217 0212 0588 0434 0224 0.107
12 Mean 1172 0419 0979 0345 1.004 0.697 0352 0249 0994 0.849
sd (0.29) (0.24) 0331 0372 0295 0365 0361 0268 0434 0279 0333 0.262
mse 0.139 0476 0.088 0562 0.130 0.164 0.608 0.642 0.111 0.092
18 Mean 1.126 0461 0985 0394 1.059 0.784 0483 0356 1.039 0.876
sd (023) (0.19) 0246 0314 0230 0320 0268 0211 0370 0255 0245 0.202
mse 0.076 0389 0.053 0469 0.075 0.091 0404 0480 0.062 0.056
2 6 Mean 1.056 0817 0.807 0658 1.024 0740 0.966 0.675 0977 0.691
sd (0.60) (0.68) 0.592 0548 0.749 0.718 0954 0476 0.878 0461 0.878 0.468
mse 0354 0334 0.598 0.633 0912 0294 0771 0318 0772 0315
12 Mean 1.045 0.846 0942 0822 1.020 0.726 0927 0.642 0974 0.681
sd (047) (0.42) 0461 0462 0440 0431 0.634 0492 0599 0475 0.608 0.483
mse 0215 0237 0.197 0218 0402 0318 0364 0354 0370 0335
18 Mean 0975 0817 0910 0813 1.083 0784 0998 0715 1.029 0.740
sd (036) (032) 0308 0310 0311 0302 0441 0360 0427 0346 0430 0.349
mse 0.096 0.130 0.105 0.126 0201 0.177 0.182 0201 0.186 0.190

advantage in any case. Gaussian semiparametric estimates have less variability than
log-periodogram ones, but are in general more biased. Here again tapering increases

sd’s and mse’s.
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Table 2

Model 2, « = 0.4, CI(1.3,0.9), ¢ =0.34, ¢ =—09

p m g=2 g=1 X1, 7, AX,, AZ, AX:, Z,
2 ay @ d aL i aL aG aL aG
n=256
1 12 Mean 0344 0304 0254 0279 0316 0242 0370 0274 0.465 0.346
sd (0.29) (0.24) 0351 0304 0308 0292 0354 0220 0333 0220 0359 0251
mse 0.126  0.101 0.116 0.100 0.132 0.073 0.112 0.064 0.133 0.066
24  Mean 0336 0317 0276 0299 0285 0.198 0395 0287 0447 0318
sd (0.19) (0.16) 0.206 0.189 0.194 0.188 0220 0.134 0201 0.137 0.220 0.147
mse 0.046 0.043 0.053 0.045 0.062 0.059 0.041 0.032 0.050 0.028
36 Mean 0385 0331 0327 0315 0335 0224 0443 0337 0470 0.353
sd (0.15) (0.13) 0.154 0.141 0.151 0.143 0.170 0.113 0.156 0.116 0.172 0.120
mse 0.024 0.024 0.028 0.028 0.033 0.044 0.026 0.017 0.035 0.017
2 12 Mean 0443 0281 0362 0267 0427 0331 0369 0302 0321 0.242
sd (0.47) (0.42) 0511 0456 0474 0443 0.665 0461 0.634 0.447 0.648 0.459
mse 0263 0222 0226 0214 0443 0217 0402 0210 0.426 0.235
24  Mean 0426 0322 0366 0302 0429 0307 0384 0280 0.358 0.248
sd (0.29) (0.26) 0295 0282 0.285 0271 0323 0234 0313 0221 0325 0229
mse 0.087 0.086 0.082 0.083 0.105 0.064 0.098 0.063 0.107 0.075
36 Mean 0421 0345 0376 0328 0476 0352 0445 0332 0424 0.303
sd (0.22) (0.20) 0218 0212 0216 0209 0248 0.183 0238 0.172 0.243 0.177
mse 0.048 0.048 0.047 0.049 0.067 0.036 0.059 0.034 0.060 0.041
n=128
1 6 Mean 0403 0241 0269 0208 0359 0308 0404 0318 0473 0376
sd (0.37) (0.35) 0.616 0422 0486 0432 0407 0259 0474 0307 0483 0324
mse 0380 0204 0254 0224 0.167 0.075 0224 0.101 0239 0.106
12 Mean 0418 0297 0312 0265 0337 026 0374 0277 0469 0.354
sd (0.29) (0.24) 0337 0295 0.295 0283 0346 0.227 0318 0220 0355 0.264
mse 0.114 0.098 0.095 0.098 0.123 0.071 0.102 0.064 0.131 0.072
18  Mean 0457 0329 0358 0292 0372 0263 0433 0325 0490 0373
sd (0.23) (0.19) 0245 0215 0227 0213 0258 0.169 0247 0.175 0266 0.192
mse 0.064 0.051 0.053 0.057 0.068 0.047 0.062 0.036 0.079 0.038
2 6 Mean 0.434 0252 0271 0.145 0444 0369 0354 0318 0313 0274
sd (0.60) (0.68) 0.650 0.602 0.734 0.724 1335 0461 1.121 0.455 1.140 0.479
mse 0424 0385 0.556 0.589 1.785 0213 1.260 0214 1306 0.245
12 Mean 0476 0308 0390 0278 0440 0332 0377 0304 0334 0253
sd (0.47) (0.42) 0.467 0451 0438 0450 0.627 0431 0585 042 0.619 0445
mse 0.224 0212 0192 0217 0395 0.190 0343 0.186 0.387 0.220
18  Mean 0488 0354 0412 0320 0492 0351 0451 0323 0416 0.286
sd (0.35) (0.31) 0323 0307 0316 0312 0418 0302 0411 0293 0415 0301
mse 0.112 0.097 0.100 0.103 0.183 0.094 0.171 0.092 0.173 0.104

We report the simulation results for the ARFIMA(1,d,0) cointegrating series in
Tables 4—6 for ¢p;=0.3,0.6. Here the estimation is more difficult, since the signal/noise
ratio at low frequencies is smaller than in the previous model. The results for ¢; =0.3
are similar than before, though the best results correspond always to residual-based
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Table 3

Model 3, « = 0.7, CI(1.1,0.4), ¢ =034, ¢ =—09

p m g=2 g=1 X0, 2, AX,, AZ, A%, 2,
g 64 4 ¢4 4 dg G b6 4L dg
n =256
1 12 Mean 0.818 0392 0.663 0351 0715 0502 0402 0287 0.740 0.602
sd (029) (0.24) 0333 0329 0303 0328 0364 0250 0386 0246 0359 0.252
mse 0.125 0203 0.093 0230 0.132 0.101 0238 0231 0.130 0.073
24 Mean 0.773 0434 0.682 0405 0729 0511 0485 0351 0744 0581
sd (0.19) (0.16) 0.199 0237 0.196 0235 0206 0.146 0266 0.179 0201 0.149
mse 0.045 0127 0.039 0.142 0.043 0.057 0.117 0.154 0.042 0.036
36 Mean 0.773 0455 0701 0427 0.776 0.566 0.557 0427 0.766 0.621
sd (0.15) (0.13) 0.160 0.180 0.158 0.191 0.165 0.124 0219 0.164 0.162 0.123
mse 0.031 0.092 0.025 0.I11 0.033 0.033 0068 0.101 0.030 0.021
2 12 Mean 0741 0571 0.635 0544 0728 0512 0.649 0458 0.651 0453
sd (047) (0.42) 0509 0475 0464 0432 0.659 0493 0.649 0480 0.645 0.482
mse 0260 0242 0220 0211 0435 0278 0424 0289 0418 0293
24 Mean 0.701 0.593 0.638 0578 0.727 0.524 0.672 0482 0.671 0478
sd (029) (0.26) 0289 0290 0282 0269 0325 0249 0325 0233 0322 0237
mse 0.083 0.096 0.084 0.087 0.106 0.093 0.107 0.102 0.105 0.105
36 Mean 0.669 0591 0.626 0.582 0.766 0.583 073 0.552 0.726 0.544
sd (022) (020) 0215 0217 0215 0208 0247 0.196 0248 0.186 0245 0.187
mse 0.047 0059 0.052 0057 0.065 0052 0062 0.057 0.061 0.059
n=128
1 6 Mean 0.818 0306 0.596 0244 0.745 0539 048 0396 0.773 0.662
sd (037) (035) 0570 0422 0485 0439 0466 0296 0497 0295 0479 0333
mse 0339 0334 0246 0401 0220 0.113 0296 0.180 0235 0.112
12 Mean 0.841 0381 0.677 0334 0749 0526 0408 0305 0.747 0.606
sd (0.29) (0.24) 0336 0310 0304 0302 0378 0250 0359 0232 0355 0.266
mse 0.133 0.198 0.093 0226 0.145 0.093 0214 0210 0.128 0.080
18 Mean 0.829 0411 0.698 0366 0.793 0.570 0.507 0.384 0.783 0.636
sd (023) (0.19) 0249 0247 0234 0245 0268 0.192 029 0198 0255 0.196
mse 0.079 0.144 0.055 0.172 0.081 0.054 0121 0.139 0072 0.042
2 6 Mean 0.678 0.500 0.499 0361 0.735 0553 0.640 0.500 0.648 0.500
sd (0.60) (0.68) 0.645 0.594 0754 0712 1.072 0474 0.899 0463 0.900 0.479
mse 0417 0393 0.609 0.622 1.151 0247 0812 0254 0813 0.269
12 Mean 0711 0545 0.621 0513 0.756 0.552 0.665 0492 0.678 0.499
sd (047) (0.42) 0464 0454 0446 0437 0.647 0466 0.619 0453 0.634 0472
mse 0215 0230 0205 0226 0422 0239 0384 0248 0402 0.264
18 Mean 0.690 0560 0.622 0.536 0.800 0.577 0.732 0.528 0.739 0.528
sd (035) (032) 0313 0310 0315 0305 0435 0330 0438 0323 0429 0324
mse 0.098 0.115 0.106 0.120 0200 0.124 0.193 0.134 0.186 0.135

estimates: the log-periodogram regression for Models 1 and 3 and Gaussian estimation
for Model 2. In this last case, coherence-based estimates have large biases, usually
growing with m, but the sds in all cases are in line with approximation (19). For
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Table 4
Model 1/, « =1, CI(1,0)

n=256 g=2 g=1 X, 2 AX,, AZ, AXi, Z
m a 02/1 a 02/1 (iL ch, O?L O?G QEL O?G
1=03
1 12 Mean 1.024 0.539 0.877 0.507 0.936 0.683 0.594 0.430 0.924 0.736
sd (0.29) (0.24) 0330 0.346 0.297 0.350 0.361 0.262 0.433 0.287 0.355 0.252
mse 0.109 0.332 0.103 0.366 0.134 0.169 0.353 0.408 0.132 0.133
24 Mean 0.829 0.488 0.778 0.491 0.889 0.694 0.656 0.519 0.866 0.716
sd (0.19) (0.16) 0211 0.215 0.198 0.227 0.214 0.157 0.285 0.207 0.213 0.153
mse 0.074 0.308 0.089 0.311 0.058 0.118 0.200 0.274 0.063 0.104
36 Mean 0.696 0.415 0.682 0.434 0.827 0.690 0.634 0.553 0.791 0.705
sd (0.15) (0.13) 0.175 0.163 0.170 0.177 0.186 0.125 0.219 0.169 0.173 0.122
mse 0.123 0.369 0.130 0.351 0.065 0.112 0.182 0.229 0.074 0.102
¢1=0.6
1 12 Mean 0.837 0.412 0.737 0.429 0.866 0.666 0.621 0.486 0.841 0.696
sd (0.29) (0.24) 0329 0.300 0.298 0.294 0.368 0.259 0.396 0.271 0.353 0.251
mse 0.134 0436 0.158 0.412 0.154 0.178 0.300 0.337 0.150 0.156
24 Mean 0.603 0.321 0.588 0.358 0.754 0.629 0.582 0.524 0.718 0.646
sd (0.19) (0.16) 0213 0.187 0.203 0.190 0.222 0.153 0.256 0.180 0.215 0.153
mse 0203 0.496 0.211 0.448 0.110 0.161 0.241 0.259 0.126 0.149
36 Mean 0.473 0.252 0.485 0.294 0.654 0.576 0.514 0.507 0.614 0.592
sd (0.14) (0.13) 0.172 0.145 0.169 0.151 0.186 0.121 0.192 0.137 0.170 0.120
mse 0.307 0.581 0.294 0.521 0.155 0.195 0.273 0.262 0.178 0.180

larger ¢; the performance of all estimates deteriorates, especially that of & and d, for
Models 2 and 3.

In conclusion, 4 seems a simple competitive alternative to residual-based estimates,
which may be affected by the combination of memory estimates for observed series
and cointegrating residuals.

6. Empirical example

Dueker and Startz (1998) analysed 120 monthly observations from January 1987 to
December 1996 on 10-year government bond rates from the United States and Canada.
We analyse here the same log series, denoted as X; and Y;, respectively (see Fig. 1).
Standard procedures used by these authors do not reject the hypothesis of a unit root
(d =1) for both series nor the hypothesis of no cointegration, but the visual evidence
is in favour of a long-run relationship, probably different from the CI(1,0) paradigm.

Dueker and Startz (1998) also fit a bivariate ARFIMA model with two orders of in-
tegration, one for the differenced US series 4X; (d) and one for the cointegration error
(d — o). They find that d=0.674 (0.25) and d—o0=02 (0.10), so & =0.474, while a
joint Wald test rejects d =1 and «=1. They also estimate the memory of the observed

residuals with Lobato and Robinson’s (1996) average periodogram semiparametric
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Table 5
Model 2/, « =04, CI(1.3,0.9)

n=256 g=2 g=1 X2y AX,, A7, A%, 2,
m g gy d 64 4 dg A dg 4L dg
1=03
1 12 Mean 0.251 0.153  0.185 0.150 0.265 0.225 0.302 0.269 0.390 0.338
sd (0.29) (0.24) 0.329 0271  0.289 0.250 0.344 0.222 0.308 0.225 0.346 0.253
mse 0.131 0.135  0.130 0.125 0.137 0.080 0.105 0.068 0.120 0.068
24 Mean 0.172 0.134  0.143 0.137 0.183 0.152 0.278 0251 0.327 0.286
sd (0.19) (0.16)  0.205 0.172  0.194 0.168 0.219 0.140 0.187 0.140 0.216 0.154
mse 0.094 0.100  0.104 0.098 0.095 0.081 0.050 0.042 0.052 0.037
36 Mean 0.122 0.108  0.107 0.116 0.133 0.118 0.243 0.234 0.284 0.260
sd (0.15) (0.13)  0.156 0.134  0.152 0.133 0.176 0.113 0.148 0.108 0.170 0.119
mse 0.101 0.103  0.109 0.099 0.102 0.093 0.046 0.039 0.042 0.034
$1=06
1 12 Mean 0.168 0.069  0.122 0.074 0.225 0.207 0.248 0.251 0.339 0.323
sd (0.29) (0.24) 0310 0.251  0.274 0.230 0.335 0.222 0.302 0.223 0.328 0.253
mse 0.150 0.172  0.152 0.159 0.143 0.086 0.114 0.072 0.111 0.070
24 Mean 0.061 0.053  0.050 0.059 0.096 0.102 0.190 0.189 0.254 0.237
sd (0.19) (0.16)  0.192 0.160  0.182 0.157 0.216 0.140 0.175 0.135 0.205 0.150
mse 0.152 0.146  0.155 0.141 0.139 0.108 0.075 0.062 0.063 0.049
36 Mean —0.013 0.029 —0.011 0.039 0.012 0.042 0.128 0.128 0.198 0.178
sd (0.14) (0.13)  0.156 0.125  0.150 0.125 0.181 0.116 0.136 0.101 0.163 0.117
mse 0.195 0.154  0.192 0.146 0.183 0.141 0.092 0.084 0.068 0.063

estimator, obtaining significantly different from zero values of &, ranging from 0.2
to 0.28 for small bandwidths (m < 10 in similar notation to our coherence-based &)
and about 0.4 for larger values of m. This is an alternative procedure to the one justified
by Hassler et al. (2001) and Velasco (2001) for other semiparametric estimates.

We reanalyse this data set first using the techniques summarized in Lobato and
Velasco (2000) using a multivariate generalization of Robinson’s (1995b) Gaussian
semiparametric estimate of the memory d. We use the increments of the original series
without tapering and with a taper of order p =2 and bandwidths m = 6,12,18. A
semiparametric Wald test of equal memory for both bond rates series is performed in
first place, with p-values equal to:

p-value Wald Test m==6 m=12 m=18
p=1(4X,4Y) 0.102 0.131 0.119
p=2X7Y) 0.644 0.211 0.245

and not rejecting the equal memory hypothesis, though by a small margin using
nontapered differenced data, as memory estimates for X are slightly larger than those
22



Table 6

Model 3’, &= 0.7, CI(1.1,0.4)

n=256 qg=2 g=1 X, 724 AX;, AZ, AX.,Z,
m a O?A a O?A 02]_ CZG O?L O?G O?L O?G
¢1 =03
1 12 Mean 0.660 0.354 0.544 0.357 0.663 0.490 0.543 0.424 0.664 0.529
sd (0.29) (0.24) 0.333 0289 0.307 0274 0.370 0.247 0.357 0250 0.356 0.254
mse 0.112 0203 0.119 0.193 0.138 0.105 0.152 0.139 0.128 0.094
24 Mean 0.524 0.305 0.488 0.331 0.598 0.456 0.517 0.440 0.590 0.499
sd (0.19) (0.16) 0.214 0.181 0200 0.183 0.217 0.148 0.223 0.158 0216 0.154
mse 0.077 0.189 0.085 0.170 0.058 0.081 0.083 0.092 0.059 0.064
36 Mean 0.438 0254 0417 0278 0.542 0.433 0.474 0.437 0.526 0.480
sd (0.15) (0.13) 0.172 0.141 0.169 0.141 0.172 0.115 0.170 0.121 0.169 0.119
mse 0.098 0.219 0.108 0.198 0.054 0.085 0.080 0.084 0.059 0.063
$1 =06
1 12 Mean 0.492 0211 0415 0236 0.593 0471 0.467 0.421 0.572 0.510
sd (0.29) (0.24) 0328 0.266 0.303 0253 0.366 0.245 0340 0.243 0351 0.253
mse 0.151 0.309 0.173 0.280 0.146 0.113 0.170 0.137 0.140 0.100
24 Mean 0.346 0.162 0.325 0.189 0.480 0.391 0.407 0.391 0.469 0.438
sd (0.19) (0.16) 0.208 0.169 0.199 0.167 0.213 0.144 0.202 0.149 0207 0.152
mse 0.169 0.317 0.180 0.289 0.094 0.116 0.127 0.118 0.096 0.092
36 Mean 0260 0.121 0.259 0.149 0387 0321 0.334 0.340 0.381 0.371
sd (0.14) (0.13) 0.161 0.133 0.160 0.134 0.164 0.111 0.153 0.113 0.158 0.115
mse 0219 0.353 0220 0322 0.125 0.156 0.157 0.142 0.127 0.121
2.4
2.2
2.0
1.8
T T T T T T T T T T T
1987 1989 1991 1993 1995 1997

Fig. 1. Logarithm of bond rates, US (solid) and Canada (dotted).
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for Y. Then the common memory parameter Gaussian estimates d are:

Common d m==6 m=12 m=18
p=1(4X,4Y) 0.982 (0.09) 1.010 (0.10) 0.990 (0.08)
p=2XY) 0.818 (0.12) 1.146 (0.14) 0.855 (0.12)

These are noticeable larger that ML estimates obtained by Dueker and Startz (1998).
We finally compute zero frequency coherence estimates |H,(0)|* =[Gy |2 (GG y) !
obtained from the previous semiparametric estimation:

|H,,(0)? m=6 m=12 m=18
p=1(X7Y) 0.795 (0.11) 0.752 (0.09) 0.743 (0.07)
p=2(XY) 0.800 (0.15) 0.747 (0.13) 0.759 (0.10)

which are inconclusive of coherence smaller than 1 given the sample size and the
bandwidths employed. Notice that the previous procedures have been only justified
under the hypothesis of no cointegration, i.c. with G being nonsingular.

We now estimate nonparametrically the coherence with \ﬁx},()ﬁ)|2 for g=1,2,3 and
p=1,2. We plot the estimates in Fig. 2 for A,—/¢p=n, where /=|(2¢+1)/2]. Standard
errors can be approximated by (23). In all plots is evident the effect of increasing the
smoothing in nonparametric estimates and it can be observed that |H,,(4)|* & 1—Gu/i**
is a reasonable approximation. In the plots of log(1 — |I—7Xy(/1,-)|2) against 2log 4;, for
j=17,...,30, see Fig. 3, the linear relationship becomes more clear as g increases,
though this is not valid for all the range of frequencies plotted. The OLS estimates of
& obtained from (X, Y) are

Log-coherence & m==6 m=12 m=18
g=1 p=1 0.371 (0.35) 0.292 (0.24) 0.177 (0.19)
p=2 0.574 (0.68) 0.549 (0.42) 0.545 (0.32)
qg=2 p=1 0.650 (0.37) 0.299 (0.29) 0.226 (0.23)
p=2 0.757 (0.64) 0.670 (0.47) 0.665 (0.37)
qg=3 p=1 0.704 (0.51) 0.305 (0.31) 0.299 (0.25)
p=2 1.023 (0.86) 0.681 (0.49) 0.768 (0.39)

As in the simulations, the results with differenced data were not interpretable and

are not reported. For p =1 and m = 18 we are including in the regression the high

coherence points around frequency /s, explaining the low value of & obtained in this
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Fig. 2. Coherence estimates \ﬁxy(/lj)\z of bond rates series, against log-frequency log 4;, j=¢,/+1,...,n/2.
Upper row, no tapering p = 1; lower row, tapering p = 2. Uniform weights: ¢ = 1,2, 3.

case. The estimates for m = 6 are rather unstable due to the small number of points
in the regression. Then, since for nontapered series the estimates were quite uniform
across values of g, we prefer estimates with ¢ =1 and m = 12 which have smallest
standard errors and should be also less biased. This gives & = 0.292 (0.24), which is
lower than the value given by Dueker and Startz (1998), 0.474. However, for tapered
series the estimates are more smoothing dependent, and we obtained from 4= 0.55 for
qg=1to d=0.68 for ¢ =3, more in agreement with that paper.

Finally, we used residual estimation with a multivariate two-step Gaussian semipara-
metric estimate (Lobato, 1999; Lobato and Velasco, 2000), which remains consistent if
o > 0 and has the usual asymptotic distribution if o > 0.5 (Velasco, 2001). We applied
joint estimation between the OLS residual series Z and AX to obtain standard errors
for a=d — dy.

Residual-based & m=26,8 m=12 m=18
p=1 (4X,2) 0.186 (0.29) 0.094 (0.20) 0.068 (0.17)
p=2 (4X,2) 0.159 (0.34) 0.002 (0.37) 0.079 (0.31)
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Fig. 3. Log-coherence estimates log(l — \[-7 xy(4f) |>) of bond rates series against log-frequency

2loglj, j=1¢,¢/ +1,...,n/4. Upper row, no tapering p = 1; lower row, tapering p = 2. Uniform weights:
q=1,2,3.

The residual-based procedure obtained values of & noticeably much smaller than
coherence-based & for all combinations of m and tapering, casting some doubts about
the reliability of linear OLS-based inference for the present data set.
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Appendix

Proof of Theorem 3. We start approximating the cross-periodogram of the observed
vector series by that of the linear innovations, /“7(4;,), times the transfer function,

26




including the unit root filters of the integer differences. Define

N 2n ./ n
£ 0= ZE N K= By M i B i),
J

where the index j runs for |4;, —v| < M~'m.

No tapering [p = 1]. We consider the case with d. = max{d,,d;} E(—%,l), and
U= s =0 and D,,D; =0, 1. Using Lemma 2 below and the arguments of the proof
of Theorem 1 of Robinson (1995b) (see also the proofs of Theorem 2 and Lemma 1
of Velasco (1999b) and Appendix C of Lobato and Velasco (2000)),

N A€, 2 € *
S = 7700 = 2237 Karlv = 2)ln) = B GBI ()]
J

=0p (A,f > Ut +jl’2](1ogn)“2)
J
= Op([nd"_l + n_1/2](10gn)1/2), (A.1)

which is 0,(1) if d. < 1. Notice that for 4, € [v—aM !, v+ M '], max; /lj’l =0(1)
and max j~'=0(n"') as n — oo, and from Assumptions 1 and 4, max; |B,(4;)|, a=r,s,
are bounded if |v| > 0. Now the theorem follows as when p > 1 below, using the exact
orthogonality of the sine and cosine instead of Lemma A.4(A).

Tapering [p > 1]. From Theorem 2 and using the same argument as in the proof
of Theorem 3 in Velasco (1999b) or Lemma A.1,

. 2. 2np :
S =70 = TR Ky = 2 UG = BUMT GBI (A2)
J
=0y (AZ DL (logm)"? +j‘/2]>
J
=0,(n*~P(logn)"? + n="?), (A3)

which is o,(1) because p > d..
Now, using the differentiability of f(4) around v and the Lipschitz property of
KM (;)? p> la

B 001= 22 ST Ko = Ay fulgp) = )+ OG- M 4 M), (A4)
J
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where the error is o(1) using (6). For the variance we first obtain for all j,k, and
rr,s, s’ €{l,...,R}, N=2m), "2,

CoV[B, (2 ) (4p)B3 (A1), B (lacp ) (Fep) B3y (p)]

R R R R
SN Brain)Bas(jp)BrreCup)BoraUap) Covily” () I G )]

a=1 b=1 c=1 d=1

N— 2

R
Z ra()“_]'p)Bsb(}“jp)Br’c(}Vkp )Bs’d(ikp)
1 d=1

>

o
Mx
Mkﬂ

=1 ¢

2 2

n

XK XaeXpa Zh,2 cost(Ajp — Akp)

t

n

4

+ § Kabcdhf
t

+ ZaiZeh {Z h? cost(Ajp + 2ap)

t

n 2
=N"2B,(4;,) 2B} G )Bo(— ) EBL(— ) {Z h2 cos t(/;, — ),k,,)}

t

2
+N723r(/ljp)ZB:’(fflkp)Br’(fjvkp)):B;(/ljp)

thz cost(Ajp + Akp)
t

n

R R R R
+N~ 2 Z h Z Z Z Z Bm(;“jp)Bsb(;“jp)Br’c(;%p)Bx’d(jvkp)xabcda

1 a=1 b=1 c=1 d=1

where Kpcq 1s the joint fourth-order cumulant of the a, b, ¢, dth components of €,. Using
~6M .
Lemma A4(A), Var[/ " (v)] is

<2np> ZKM(V — 4jp) Var[B,(4;,)I“?(2;p)B; (2;p)]

2
* (MTI’) Z ZKM(V — Zip) K (v = Jiep)

ik
X CoV[B(Ajp (2 p)B5 (2jp)s B-(aep M (2 p) BY (k)]
,,zo< SRR =)+ DY K (v = Zip)Kn (v = Jap)
J Jok>j

28



X[|j =kl + i+ k|77 +n7"] )

=0 M nMP Y Y {lj = kT [ AT
Jok>j

=0(n"'M)=0(1)

M .
as n — 00, s0 f. (v) — fis(v) —, 0 follows using (6).
For the proof of the central limit theorem we assume for simplicity only positive
frequencies v, > 0 Va. This entails no restriction, since it is always possible to write

for positive v that fA,X(—v) = f,.s(v) = fsr(v) and deduce the variances and covariances
for the conjugate estimates from those with positive argument and reversed indexes.
We follow the same procedure as in the proof of consistency, but employ Lemma A.2
when p =1 instead of Lemma A.l.

No tapering [ p=1]. From Lemma A.2 and (), ||ff:(v)ff':s’M(v)||:op((n/M)*llz).
As in the proof of Theorem 3, with Assumption 6 and for all p,

AEM : _ -
LA ] = fiulv) + OO+ M72),

Tapering [p > 1]. Now (A.3) is op((n/M)_l/z) with (9), if g =0, or with
p—d.>05if u#0.

For the central limit theorem we follow Hall and Heyde (1980, Section 3.2) and
consider in detail only the case p > 1. We have to consider linear combinations of the
estimates, so for any J x 1 vector ¢ we have that g”f::[(v):ﬁ’fﬁ\:’é(\))+op((n/M)*1/2).
Now

&AM o) — ELE 7 o)

J
2n 1 *
=>4 { Tp > " K (va = 2)Bray )T ()B4
a=1 J
- f D Ku(v = 2)Bra () EBly( %) }
J

J
=Y & BN K = 2B IV = E1Bi()
a=1 j
z )4
. s , 2) px
+2 ny i > KntOva = 4)Briay(2))VE Bl (2),
— N Lo
with equivalent notation as before, possibly now with data tapers, V(gl):(z hf)*1 27:1
hihy €€, and v = 3o vy hiho €€} exp{i(t — ¢');}. The first term is negligible
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op((Mn—")2) since ||V(€1) — X|| = 0p(n~"?) with Assumption 2. Then we have

Vit €75 00 = E R =32z + o),

t=1

where
Z p
2= & 54/ T ZKM(Va = Zpj(@))Bra)(Apja))
~ Skt \ Mp I
X " €€ Bl (pia)) explilt — $)pjiar}

1
t—1

= he€ t Z Ar—shs€s
s=1

is a martingale difference sequence

A= th ,/ ZZ@M@) COS 12 pj(a)»

a=1 j(a)

@‘;,j(a) =2&,Ky(vy — /'ij(a))B,’,(a)(ipj(,,))Bs(a)(),pj(a)), and the summation in ]:(a)}'l}llS
from —n/2p to n/2p + 1, with steps of size p, assuming n/2p is integer for simplicity.

. . . M
We estimate first the asymptotic variance of f

ZE[ZtZt|Ft 1]= Zh2 thé Al SN, € (A.5)
n t—1 t—1

+ Y YD hih€ A TA e, (A.6)
t=1 s=1 r#s

The right-hand side of (A.5) is

Z W Z A _ZA €= Z ? Z %, Trace[(€,€, — X)ALZAL] (A7)

+ Z h? Z 2, Trace[ZA/ 3], (A8)

where the right-hand side of (A.7) is o,(1), because it has zero mean and variance,
[ 4r—s|| = O((Mn)~"7),

(Z "2 Z W2, {2 Trace[SALEAZALEAL) + Kapea Trace[ZAgZ/ls]z}>

n—1 n—t
=0 <Z > (Mn)2> =0M 2)=o(1).

t=1 s=1

30



Term (A.8) is, using trigonometric identities (see Velasco (1999b, Lemma 6) for
details),

Z h? Z 2., Trace[Z AL X A,]

n—t

nMH2 Z i Z e
=1

xTrace | X Z &, Z @‘;j(a) COSSApj(a)2 Z & Z @’;}k(b) COS SA pi(b)

a J(a) b k(b)
DI IPNL
a b ja)

n—1 n—t
dsohe 0 IS S cos’ s
XTrace[20;) 2O ) + Z@”pj(a))?@’im(a)] hy hg ., c0S” S2 pj(a)(A9)

t=1 s=1

2nMH2 DD D el Trace[26%,) X600,

a jl@) b kb)y#+j(a)

n—1 n—t

X Z /’lt2 Z thrt{COS(Sp}uj(a)Jrk(b)) + COS(Spﬂuj(a)_k(b))}. (AIO)

t=1 s=1

Using ||@](a)H =O0O(M) and Lemma A.4(B), (A.9) is equal to

4nM SNty Trace[£0%,,, 2600, + 204, 0" . 1+ O(M/n).
a b j(a)

If k(b)) # + j(a), using Lemma A.4(C), (A.10) is

o AZHz D00 D Gl Trace(20,) 200,

a jl@) b kb)y#+j(a)

n—1 2 n—1 2
X (Z /’l? cos tp/l/-(aHk(b)) + <Z ht2 cos lpi_,-(a)k(b)> + O(M/n),

=1 t=1

S0P i
where Trace[Z@pl(a) O] 18

4Ky (Ve — Apja) Kt (Vo — Api(s))Br(a)(Apj(a))
ZB:(b)(/lpk(b))Bs(a)(_)“pj(a))ZBAT(b)(_)ka(b))-
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Therefore, using Lemma A.4(A), the differentiability of B(4), the compact support of
K and approximating sums by integrals, with the same method as in the proof of
Lemma 7 in Velasco and Robinson (2000),

2
n—1
P C b ’
4nMH2§ > éacbTrace[wj,j(a)wgk(b)]<§ h,zcostplg,»(a)k(;,)>

a ja) b k) =1

=270, K (3D 0 " Eald(va — v5) fitaps)(Va) focarsior(—Va) + o(1),
a b

and

2
n—1
p . b )
4nMH2§ E E E gafbTrace[Z@‘;,j(a)Z@gk(b)](E hfcostpk_,»(a)+k(b)>

a jla) b k() t=1
=o(1),

since the frequencies covered by K (ve — Apja))Ku(Vs — Zpkpy) are such that j(a) +

k(b) > (vqg + vp)n/2np — n/Mp > Cn, modn, if © > v,, v, >0 and n and M are big

enough, so H =23 h? costpAjayrap))* = O(|j(a) + k(b)|~%) from Lemma A.4(A).
The second term (A.6) is op(1) because it has zero mean and variance equal to

min{r—lLu—1}

n n
2>y om0 k] Trace[ A XA, X(A,_ 54, )]
=2 u=2

s r#s
=23 Y > kI Trace[A]_ XA, XA XA, ] (A.11)
=2 s r#s
n t—1 u—1 u—1
+ 4> WY RSk Trace[A] XA, EA, XA, ], (A.12)
t=3 =2 s r#s

since the weights {#,} are symmetric around |n/2]|. By summation by parts we find
that || A;|| = OWM " 2n=12¢=1), t < n/2, ||A/]| = || An_i||, 50 (A.11) is

n n
OSSN A Pl al? | = O M2 23N TS e = | e — 572
t=2 s r#s =2 s r#s
= OM*n~ ") =0o(1),

and, following Robinson (1995b, p. 1646), (A.2) has absolute value bounded by

n t—1 1 u—1 n n t—1 t—1
eSS (S S 2 <c(zw) (zz 5 w),
=3 u=2 N r#s 1 t=3 u=2 r=t—u+l
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since max;, |k,| < 1, and using the same arguments as in that reference the last bracketed
factor is

n—2 [n/2]
D == DA <20 jl 4] = O(M logn),
j=1 1

and Y7 [|4,]> = O(M?*n") so (A.6) is Op([n~'M>logn]'?) = 0,(1) with (7).
Finally, it remains to show that Lindeberg’s conditions holds,

n n
> Elzzl (2] > p)] =Y Ellz/1(jz] > p)] — 0 for all p > 0.
1 1

Proceeding as in Robinson (1995b), we check the sufficient condition Y ] Elz|* — 0
as n — oo. Following his arguments we have also in our case

n t—1t—1

S Bl <3 (z |A,s|4> F OSSP A
1 1 1 1

1 1
= O(n~'M?*)=0o(1),

using the previous bound for || 4,—,||, completing the proof of the theorem. [I

Proof of Theorem 4. For |[v| — 0 as n — oo we only stress the main differences with
respect to the proof of Theorem 3. First notice that since ([vM|)™! — 0 as n — oo,
we have that for all 4; € [v — n/M,v + n/M]:

[v_n/g}an/M] Ap=v[1+ O((WM) N =v[14+o0o(1)]~v asn— oo, (A.13)

and f(4;) ~ fx(v). Then all results are valid if we normalize all the quantities by
(") £3s(»)]"? since, using the differentiability of B, and f., for A€ v—n/M,v+r/M],

max £ () = £ ()] = O (i) ™) = o ().

applying the mean value theorem.
Therefore, when no tapering is applied, the left-hand side of (A.1) is

Op([ () fis(MI 2L v " + (m]v)) ™21 (log n)'72) = o[£ () fis(1)]"/2),

as the summation is running for integers j between vn/(2np)£n/(2M). When tapering
is applied, (A.2) is

Op (LA (M) Jos DT[] =2 (log m)'2 + [y ~12]) = 0p([fir (V) £is ()],
using (6) and (10). Finally, the left-hand side of (A.4) is

F5) + O fis P M+ (VM) ™) = £5(0) + oL () (]2,
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while the bound for the variance of f ;’M(v) follows as for fixed v due to the normal-
ization by f(v).

For the analysis of the asymptotic distribution for positive v — 0 as n — oo, we
first obtain for p =1 that

_ i AM ACM
LA™ 22 £ 0) = £ )
\nv|d**1 logl/2 n-+ |nv\*1/2 logl/2 n
=0, +(nM_l)]/2[\nv|2(d*_')logn+ \nv|_3/4

+ [ny|@-=202

log*? n + |nv|4==>*10g"? n]

=0,((nM ") |nv

d-=5/4 1012 ) 4 0p(1) = 0p(1),
using (7), (11) and d, < %. When we apply tapering, p > 1, we find that
_ _ M AGM
LAWY M )2 £, (0) = £, )]

= Op((nM =) [y 71 + |y

4=Plog"? n]) + op(1),

which is o,(1) by (12). Finally, with Assumption 6:
ac, 2 , o\,
U 01 = T8 3 Ky = ) )
J
+ O () fos (NI M+ n= | 7'])
= fis(v) + O (0) fos W12 [0~ M + [vM | 72)),

where the error term is o([ £-(v) fis(v)]V2(Mn—1)/?) using (7) and (11), and the theo-
rem follows as for fixed v. [

Lemma A.1. Under (6) for |v| > 0 or (10) for |v| — 0 and (i) or (ii) of Theorem 3,
Jor dyp €lv—n(1/M),v+ n(1/M)], p =1,

57 OMs(gp) = Br(Agp ) (gp)BE(gp)| = Ol + b)),

where ep, 4, is the error term in the part (a) of Theorem 1 or 2, for each p, depending
on the values of d,, =1.

Proof. We write for |v| > 0, following Robinson (1995b), proof of Theorem 1, sup-
pressing in the notation the frequency 4;,,

Ly — B.IB} = w, W, — B.ww** B
= %{(W, — Bow)(Ws +wB]) + (w, + Bw ) (s — wBY)
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Then E|l,, — BI¢B¥| = %E[|(w, — B,wE)(wy +w*BE)|1+ %E[|(w, + B,we)(ws —w* B[],
where

E[|(w, — Bow ) (W +wBY)|]
< E[|wr — Bw||ws + wB]
< (El, — B.EWW, — Ew B} + B.Ew‘w® B)'/?
X (El, + BEWSw + Ewaw® BY + BEW w B*)12,
and since B,.E[w‘w**]B, = f.., and from the proof of Theorem 1 in Velasco (1999a) it
follows that B,E[ww,]=B,(1/2m)XB; + O(4; *"epq) = fir + 004 e pa,). E[wv"
Bf = B.(1/2m)EB} + O(i; *"epq,) = fir + O(Z; > epq,). this completes the proof

for |v| > 0. When |v] — 0 as n — oo the argument follows using (A.3) because
(Jv|M)~! — 0 as n — oo from (10). O

Lemma A.2. Under the assumptions of Theorem 3 (|v| > 0) or Theorem 4 (|v|—0),
p=1

2
TN Ky = Aplin(y) = BN GBI G = op((/d) ™) (AL14)
J

Proof. Using the second moments of the periodogram as in the argument in p. 1648 of
Robinson (1995b) and in Velasco (1999b), d, € (—%, 1), we have with K=Ky (v—4;)
that the expectation of the square of the left-hand side of (A.14) is

21K\
> (%) ETOw, G (1) = B (W™ () B )Y Oowr (5 )

J
= B, (2w (2w (2B (4))"]
21Ky 27K, o . N
+D 0D T B ()W) = By Gy w (4y)
Jk#j
XB () (e YW5(2a) = By (o)W ()W (2) B (24)) " 1.
Then, using the same procedure as in Robinson (1995b, proof of Theorem 2), calculat-

ing the expectations in terms of the second moments and fourth cumulants, we obtain
with Theorem 1 above and Lemma A.3, that the left-hand side of (A.14) is

1/2

0p (! [0 42 Y logn + 3 ST 4 4 o
J

Jok>j

12

+0, M=) Z{j”/z+j3(d**1)+n*1/2(j*1 Jr1-2(01*71))} logn
J
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+0, (Mnl {Zz{jm + (k2D 1og? n

Jok>j
1/2
+n7 k" og n+ n T2k (k)™ T logn} ] )

= Op(M1 /zn*”z[nd**l logl/2 n+n1? logl/2 n
+ 23212 logn + M1 logn
A (D2 =S = oo
LMV VA 12— 1216632
F M2 A 10! ),
which is o,(M'2n~Y2) with (8). O

Lemma A.3. Under Assumptions 1,2,4',5', p=1, d=max{d,,dp} <1, j=1,2...,n/2,

E|Lp(2)) — BaONIC()B ()
= O0(faa(2) fop(DIGT" + /247 D)logn

+j—s/z Jrj3(d—1) +n—l/z(j—l +j2(d—l)10gn)]),

and for j <k,

E[Lan(2j) — BaCNI (2)By ()1 Uab (7)) — Ba(Za)I (74 ) By (24)]

‘ [~2log?n + 44~V log n + /=32 4 (jk)X~Dlog? n

=0\ (i) S (Al s 1 de :
+n 7'k og® n 4+ nV2((k) TV 4+ (k) Hlogn)

Proof. It follows from Lobato (1999) multivariate treatment, adapting Robinson (1995b,
Theorem 2), and Velasco (1999b, Lemmas 1-3) for d > 0.5. O

The following lemma is Lemma 8 of Velasco and Robinson (2000) and Lemma 7
of Velasco (1999b).

Lemma A4. If the sequence {h;} is a data taper of order p as defined previously,

(A) (Z?:ll R Y0, kg costh;| = O(|j77), 0 < |j| < n/2;

(B) X210y A7 X000 hiyicos”sky = 5 (300, 7+ OGP|j| ™ +m), 0 < [j] <n/2;
n—1 — M " .

(C) S0 B2 h2 cossi; = 100, K2 costi;)? +O(n), 0 < |j| <n.
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Proof of Lemma 1. We do the proof for f (/1) for the cross-spectral estimate it
follows similarly. Denote D; 7];},1(@)[1 - |ny()v)| 1,

M M
max. D)\ 73() = (il < max. Di|7300) = ELf )] (A.15)
+max. DIIELf (i) = finl)] (A.16)
First (A.16) is
/<j<m

0 ( max }7723( |:]K 4 }szM_Q:|) _ O(nZoc—lf—ZyM + n2(1+c{)/—2(1+1)M—2).
n

Now we have that the right-hand side of (A.15) is, 1 > 1,

max
(<j<m

[ — [Hy ()P 2 N Kl = A3 Gl ) = E[lyyur)]]‘

I)l/f
where EY, = Ky (Jr — %)) f,,'(4)), and max; max, |, f;,(4-)] = O(M) for r in the

compact support of Kys(4 — 4;) for each ;. Thus, the supremum inside the brackets
is less than or equal to

Z EM (L, (3) — Ellyy(2,)]]

”

< (/Tax [1— |Hy(A))P1"

m 2 T
C 7 | ST EN ) — Elly ()]
=t r
M /2 e m e _ T
=€ (7) " ;J F Z f/[[yV(/“r) E[1,,(7:)]]

/2
M
:Op <<n) n211/12y1> ,

taking expectations, T > 1/(2a), since the standardized quantity (Mn)~"/? >, Z f”, [£yy(4r)
— E[1,,(4,)]] has zero mean and bounded variance and moments of any order for any
j and d < 0.75, since higher order moments depend only on second-order properties,
ie. f,(4), by Gaussianity. [

References

Beran, J., 1994. Statistics for Long-Memory Processes. Chapman & Hall, London.
Brillinger, D.R., 1975. Time Series. Data Analysis and Theory. Holden-Day, San Francisco.
37



Chen, G., Abraham, B., Peiris, S., 1994. Lag window estimation of the degree of differencing in fractionally
integrated time series models. J. Time Ser. Anal. 15, 473-487.

Dahlhaus, R., 1985. Asymptotic normality of spectral estimates. J. Multivariate Anal. 16, 412-431.

Dueker, M., Startz, R., 1998. Maximum-likelihood estimation of fractional cointegration with an application
to U.S. and Canadian bond rates. Rev. Econom. Statist. 80, 420-426.

Engle, R., Granger, C., 1987. Cointegration and error correction: representation, estimation and testing
Econometrica 55, 251-276.

Geweke, J., Porter-Hudak, S., 1983. The estimation and application of long memory time series models.
J. Time Ser. Anal. 4, 221-238.

Granger, C.W.J., 1981. Some properties of time series data and their use in econometric model specification.
J. Econometrics 16, 121-130.

Hall, P., Heyde, C.C., 1980. Martingale Limit Theory and its Application. Academic Press, New York.

Hannan, E.J., 1963. Regression for time series. In: Rosenblatt, M. (Ed.), Proceedings of the Symposium on
Time Series Analysis. Wiley, New York, pp. 17-37.

Hannan, E.J., 1970. Multiple Time Series. Wiley, New York.

Hassler, U., 1993. Regression of spectral estimators with fractionally integrated time series. J. Time Ser.
Anal. 14, 369-380.

Hassler, U., Marmol, F., Velasco, C., 2001. Residual log-periodogram inference for long run relationships.
Preprint.

Hidalgo, F.J., 1996. Spectral analysis for bivariate long-memory time series. Econometric Theory 12,
773-792.

Hurvich, C.M., Ray, B.K., 1995. Estimation of the memory parameter for nonstationary or noninvertible
fractionally integrated processes. J. Time Ser. Anal. 16, 17-42.

Kiinsch, H.R., 1987. Statistical aspects of self-similar processes. Proceedings of the First World Congress of
the Bernoulli Society. VNU Science Press, Utrech, pp. 67-74.

Lobato, I N., 1997. Consistency of the averaged cross-periodogram in long memory series. J. Time Ser.
Anal. 18, 137-155.

Lobato, LN., 1999. A semiparametric two step estimator in a multivariate long memory model. J.
Econometrics 90, 129-153.

Lobato, I N., Robinson, P.M., 1996. Averaged periodogram estimation of long memory. J. Econometrics 73,
303-324.

Lobato, I.N., Velasco, C., 2000. Long memory in stock market trading volume. J. Bus. Econom. Statist. 18,
410-427.

Marinucci, D., 2000. Spectral regression for cointegrated time series with long-memory innovations. J. Time
Ser. Anal. 21, 685-705.

Reisen, V.A., 1994. Estimation of the fractional difference parameter in the ARIMA(p.d.q) model using the
smoothed periodogram. J. Time Ser. Anal. 15, 335-350.

Robinson, P.M., 1986. On the errors-in-variables problem for time series. J. Multivariate Anal. 19, 240-250.

Robinson, P.M., 1994a. Time series with strong dependence. In: Sims, C.A. (Ed.), Advances in Econometrics.
Sixth World Congress, Vol. I. Cambridge University Press, Cambridge, pp. 47-95.

Robinson, P M., 1994b. Semiparametric analysis of long-memory time series. Ann. Statist. 22, 515-539.

Robinson, P.M., 1995a. Log-periodogram regression of time series with long range dependence. Ann. Statist.
23, 1048-1072.

Robinson, P.M., 1995b. Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23,
1630-1661.

Robinson, P.M., Hidalgo, J., 1998. Time series regression with long range dependence. Ann. Statist. 25,
77-104.

Robinson, P.M., Marinucci, D., 2001. Narrow-band analysis of nonstationary processes. Ann. Statist. 29,
947-986.

Solo, V., 1992. Intrinsic random functions and the paradox of 1/f noise. SIAM J. Appl. Math. 52, 270-291.

Tanaka, K., 1999. The nonstationary fractional unit root. Econometric Theory 15, 549-582.

Tukey, J.W., 1967. An introduction to the calculation of numerical spectrum analysis. In: Harris, B. (Ed.),
Advanced Seminar on Spectral Analysis of Time Series. Wiley, New York, pp. 25-46.

Velasco, C., 1999a. Non-stationary log-periodogram regression. J. Econometrics 91, 325-371.

38



Velasco, C., 1999b. Gaussian semiparametric estimation for non-stationary time series. J. Time Ser. Anal.
20, 87-127.

Velasco, C., 2001. Gaussian semiparametric estimation of fractional cointegration. Preprint.

Velasco, C., Robinson, P.M., 2000. Whittle pseudo-maximum likelihood estimation of non-stationary
fractional time series. J. Amer. Statist. Assoc. 95, 1229-1243.

Zhurbenko, L.G., 1979. On the efficiency of estimates of a spectral density. Scand. J. Statist. 6, 49-56.

39





