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Abstract. We analyse consistent estimation of the memory parameters of a nonsta-
tionary fractionally cointegrated vector time series. Assuming that the cointegrating
relationship has substantially less memory than the observed series, we show that a multi-
variate Gaussian semi-parametric estimate, based on initial consistent estimates and
possibly tapered observations, is asymptotically normal. The estimates of the memory
parameters can rely either on original (for stationary errors) or on differenced residuals
(for nonstationary errors) assuming only a convergence rate for a preliminary slope
estimate. If this rate is fast enough, semi-parametric memory estimates are not affected by
the use of residuals and retain the same asymptotic distribution as if the true cointegrating
relationship were known. Only local conditions on the spectral densities around zero
frequency for linear processes are assumed. We concentrate on a bivariate system but
discuss multi-variate generalizations and show the performance of the estimates with
simulated and real data.

Keywords. Residual-based estimation; nonstationary time series; multiple time series;
long memory; long range dependence.

1. INTRODUCTION

Since the introduction of the concept of cointegration by Granger (1981) and
Engle and Granger (1987), a vast literature has developed for the analysis of
dynamic relationships among nonstationary time series. For many years, the
theoretical and empirical focus was on the analysis of (integer) integrated time
series but, as proposed initially, the idea of cointegration fits naturally in the
broader field of fractionally integrated processes.
At the same time that the analysis of stationary long range dependent and

fractional processes has progressed in many directions, nonstationary extensions
have arisen a growing interest. Following Hurvich and Ray (1995), we generalize
the terminology of I(d) processes with memory parameter d < 3

2 for time series zt
with covariance stationary increments Dzt (with D ¼ 1)L, where L is the lag
operator). Thus we say that zt is a stationary I(dz) process if it has spectral density
fz(k) satisfying, for 0<Gz<1

fzðkÞ � Gzk
�2dz as k ! 0þ for dz <

1

2
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If zt is nonstationary, but has zero mean stationary increments Dzt which are
I(dz ) 1), dz 2 ½12 ; 32Þ, then we also say that zt is I(dz). We focus on the behaviour of
the relevant spectral density at the origin, parameterized by the memory dz, and
avoid any restriction at other frequencies apart from integrability for covariance
stationarity. Note that this definition covers the traditional I(1) and I(0) paradigm.
However, this is not the only alternative for definition of nonstationary fractional
processes, and, for example, Robinson and Marinucci (2001) and Tanaka (1999)
use truncated fractional difference filters, which result in nonstationary processes
for any value of d.
A time series vector is cointegrated if a non null linear combination of the

components has lower memory than any of them and the order of cointegration,
or reduction of the memory, indicates the strength of the long run relationship
linking the components of the vector. It is often implicit the assumption that the
original series are nonstationary while some linear combinations can be in a
stationary equilibrium, or at least are closer to stationarity. The classical
assumption is that the original series have a unit root, d ¼ 1, and that a linear
combination is weakly dependent with memory d ¼ 0, typically denoted as
CI(1, 0) cointegration. Many inference tools have been designed for the
estimation of the cointegration relationship, once the I(1) hypothesis was not
rejected by standard unit root tests. These include ordinary least squares (OLS),
two step, fully modified, spectral and nonlinear regressions, and maximum
likelihood and canonical correlation procedures. Dolado and Marmol (1998) try
to extend some efficient methods to cover fractional environments.
When no assumption is made about the memory of the series, additional

inference problems come to forth. In this spirit, Robinson and Marinucci (2001)
design narrow band spectral estimates, based on the proposal of Robinson
(1994a) for stationary long memory series. These estimates are consistent for a
wide range of memory values, including stationary ones, and may achieve better
convergence rates than simpler OLS alternatives. However, no definitive answer is
available for inference in a general set up because the asymptotic distributions
depend on unknown parameters.
The main extra difficulty is the determination of the cointegration order. This

entails estimation of the memory d of the original series (and testing that all
series have the same memory) and estimation of the memory d of the
cointegrating relationship. The first problem can be tackled with standard multi
variate parametric and semi parametric methods, taking into account the zero
frequency spectral singularity implied by cointegration. The same procedures
can be implemented without modification using residuals of a fitted regression
model as proposed by Robinson and Marinucci (2001) and Hassler et al. (2002)
using Geweke and Porter Hudak’s (1983) log periodogram regression or
Robinson’s (1995b) local Whittle estimate. Additionally, narrow band
estimates based on nonparametric coherence estimation at low frequencies can
be employed as in Velasco (2002) and coherence evidence on possibly
cointegrating vectors can be obtained using Lobato and Velasco’s (2000)
methods.
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In this paper, we explore univariate residual inference for the memory of the
cointegrating relationship based on the Gaussian semi parametric estimate
optimizing Künsch (1987) and Robinson’s (1995b) local Whittle likelihood. An
alternative approach is the joint estimation of the memory parameters of the
vector series and cointegrating residuals, possibly together with the cointegrating
relationship. This second alternative would fit in the framework of Smith and
Chen’s (1997) semi parametric regression model or in the bivariate ARFIMA
cointegrated system of Dueker and Startz (1998). Then, we pursue this possibility
using the semi parametric multi variate approach of Lobato (1999). The two step
procedure of Lobato (1999) requires initial estimates of the parameter vector with
the semi parametric convergence rate depending on the number of Fourier
frequencies used. This can be achieved by log periodogram regressions for
Gaussian series, as suggested in Hassler et al. (2002), or more efficiently by
Robinson’s (1995b) Gaussian semi parametric estimates for both a component of
the original vector and the regression residuals as we propose here. These initial
memory estimates and the two step procedure require initial slope estimates with
convergence rates as established in Assumption 1.
The residual based estimates are studied under different possibilites,

distinguishing consistency and asymptotic normality, with original and
differenced residuals. To deal with nonstationary vector series, we always
consider differenced regressors; however, we consider both differenced and
original cointegrating residuals, depending on possible knowledge about their
nonstationarity, although we show that original residuals provide consistent
estimates for most cases of practical interest. We may also taper the data as in
Velasco (1999a, b) to avoid unexpected problems due to nonstationary or
noninvertible series. Then, the two step estimates are asymptotically normal
distributed if the cointegration degree d ) d is larger than 1

2, which implies
superconsistency of slope estimates see Assumption 1 and this asymptotic
distribution is the same as if the cointegrating errors were actually observed.
The rest of paper is organized as follows. Section 2 reviews the properties of the

residual periodogram and sets the main assumptions for residual based inference.
This is analysed in Section 3 for differenced residuals and, in Section 4, for
original residuals. In Section 5, the joint estimation procedure is proposed. Then
we report in Section 6 the results of a small simulation exercise and the analysis of
a real data example in Section 7 and conclude. All proofs are postponed to
Sections 9 and 10.

2. RESIDUAL PERIODOGRAM

Let the observable nonstationary series yt be generated by the equation

yt ¼ bxt þ ut t ¼ 1; . . . ; T ð1Þ

where xt � IðdÞ; 12 < d < 3
2 ; ut � IðdÞ; 0Od < d, and let ~bb be a consistent estimate

of b based on T observations of (yt, xt), so the observed residuals are ~uut ¼ yt ~bbxt.
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We base our frequency domain inference for the memory of ut on these residuals
or their differences, obtained through estimates ~bb whose rate of convergence
satisfy Assumption 1:

Assumption 1. Let xt � IðdÞ; d 2 ð12 ; 32Þ; ut � IðdÞ; d 2 ½0; dÞ; as T fi 1,

Case I: ~bb b ¼ OpðT d�dÞ if d þ d > 1 or d ¼ 0; d ¼ 1:
Case II: ~bb b ¼ OpðT d�d log T Þ if d þ d ¼ 1; d > 0:
Case III: ~bb b ¼ OpðT 1�2dÞ if d þ d < 1:

This assumption holds under regularity conditions when ~bb are the OLS estimates;
see, for example, Davidson and de Jong (2000) or Robinson and Marinucci (2001)
with a different definition of nonstationary processes. The narrow band frequency
domain LS estimates of Robinson and Marinucci (2001) also satisfy this
assumption when the bandwidth is chosen appropriately; though, in this case,
we consider a further case in Assumption 1:

Case IV: ~bb b ¼ Opðn1�d�dT d�dÞ if d þ d < 1

and n satisfies n�1 þ nT�1 ! 0:

The bandwidth number, n, defines the band of frequencies where the local
regression is performed, and, since it is allowed to increase arbitrarily slowly with
T, the assumed rate for ~bb is faster than that of Case III and of similar form to
Cases I and II, apart from slow increasing factors. Note that the slower the
increase n, the better.
No substantial difference arises in the following analysis if more than one

regressor is present, all with the same memory d and with regression coefficient
estimates of the same convergence rate.
We set now the regularity conditions for the analysis of the asymptotic

properties of the residual periodogram and semi parametric inference on the
memory parameter of the cointegrating errors. We assume that they hold for
the regressor component xt of the observable cointegrated vector (yt, xt) or for the
unobservable error series ut, so z 2 {x, u}, with memory parameter dz 2 {d, d},
and with the obvious implications on yt. We follow mainly Hassler et al. (2002).
but we do not assume Gaussianity anywhere.

Assumption 2. When dz 2 ð 1
2 ;

1
2Þ; the spectral density fzðkÞ satisfies for

0 < c £ 2; 0 < Gz < 1,

fzðkÞ ¼ Gzk
�2dzð1þ OðkcÞÞ as k ! 0þ

and when dz 2 ½12 ; 32Þ, Dzt is zero mean and its spectral density fDz(k) satisfies

fDzðkÞ ¼ Gzk
�2ðdz�1Þð1þ OðkcÞÞ as k ! 0þ:
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Assumption 2 strengthens the definition of I(d) process imposing a rate on the
approximation of fz(k) by Gzk

)2dz, while the next assumption imposes the
differentiability of the spectral density, both conditions focusing only on low
frequencies. We exclude nonstationary processes with drift, though certain
tapering schemes allow the consistent estimation of memory parameters
independently of this (Velasco, 1999a, b).

Assumption 3. For vt ¼ zt; 0Odz < 1
2 ; or for vt ¼ Dzt; 1

2Odz < 3
2 ; fv(k) is

differentiable in a neighbourhood ð0; eÞ of the origin, and

d

dk
fvðkÞ

���� ���� ¼ OðfvðkÞk�1Þ as k ! 0þ:

This assumption holds for standard parametric models, including possibly
nonstationary (dz P 0.5) fractional ARIMAs. For simplicity, we assume that the
parameter c in Assumption 2 is common to xt and ut, while for yt this parameter is
then min{c, d ) d}, where 2(d ) d) will be implicitly assumed to be larger than 1
for the asymptotic normality of our semi parametric estimates; see Theorems 2
and 4 6.

2.1. Periodogram of differenced residuals

Denote the possibly tapered cross periodogram of two sequences at, bt,
t ¼ 1,. . .,T, as

IabðkÞ ¼ waðkÞwbðkÞ

waðkÞ ¼ 2p
XT
t 1

h2t

 !�1=2XT
t 1

htat expðitkÞ

where the overline indicates complex conjugation and ht is a taper sequence,
0 6 ht 6 1,t ¼ 1,. . .,T. The periodogram is the basic static for our memory
estimates. In this sub section, we only consider the non tapered case, ht ” 1, but
discuss related results in next sections when appropriate tapering is applied.
We first explore basic quantities for the analysis of estimates based on D~uut,

appropriate when ut is nonstationary, d>0.5. Set the Fourier frequencies
kj ¼ 2pj/T . Frequency domain inference on d based on increments of residuals
depends on the differenced residual periodogram,

ID~uuD~uuðkjÞ ¼ IDuDuðkjÞ ð~bb bÞfIDuDxðkjÞ þ IDxDuðkjÞg þ ð~bb bÞ2IDxDxðkjÞ

and on the normalized difference with respect to the true errors periodogram,
defined as
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r
j :¼
ID~uuD~uuðkjÞ IDuDuðkjÞ

gDuðkjÞ
¼ ð~bb bÞ IDuDxðkjÞ þ IDxDuðkjÞ

gDuðkjÞ
þ ð~bb bÞ2 IDxDxðkjÞ

gDuðkjÞ

with

gzðkÞ :¼ Gzk
�2dz � fzðkÞ as k ! 0þ:

We can bound this error using

jr
j jO2j~bb bj 1IDuDxðkjÞj
gDuðkjÞ

þ ð~bb bÞ2 IDxDxðkjÞ
gDuðkjÞ

ð2Þ

together with Assumption 1 about ~bb b and the next lemma on the properties of
the periodogram, taken from Robinson (1995a).

Lemma 1. If Assumptions 2 and 3 hold and dz 2 ð 1
2 ;

1
2Þ, for j ¼ 1,. . .,m,

m/T fi 0 as T fi 1,

E½IzzðkjÞ� ¼ fzðkjÞf1þ O½j�1 logðjþ 1Þ�g ¼ Oðk�2dzj Þ:

Note that we can apply this lemma to the increments of nonstationary series with
dz 2 (0.5, 1.5), which are the series typically involved when we use D~uut. Also, we
can use Cauchy inequality to bound the contribution of cross periodograms
obtaining, for example, that

EjIDuDxðkjÞjOE½IDuDuðkjÞ�1=2E½IDxDxðkjÞ�1=2 ¼ Oðk2�d�d
j Þ

when d 2 (0.5, d).

2.2. Periodogram of original residuals

When using original residuals ~uut, we are led to the analysis of

I~uu~uuðkjÞ ¼ IuuðkjÞ ð~bb bÞ½IuxðkjÞ þ IxuðkjÞ� þ ð~bb bÞ2IxxðkjÞ

and defining

rj :¼
I~uu~uuðkjÞ IuuðkjÞ

guðkjÞ

we can bound the effect of slope estimation on the residual periodogram with

jrjjO2j~bb bj 1IuxðkjÞj
guðkjÞ

þ ð~bb bÞ2 IxxðkjÞ
guðkjÞ

: ð3Þ

This effect depends directly on the convergence rate of ~bb b so, for original
residuals, it depends on the values of d and d, and also on whether d+d<1 or not,
and on whether d<1 or not (Assumption 1). Now, similar results to Lemma 1
hold for the original residuals periodogram, even in some nonstationary
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situations. From Velasco (1999a) and Hurvich and Ray (1995, Theorem 1), we
obtain Lemma 2:

Lemma 2. If Assumptions 2 and 3 hold and dz 2 ð 1
2 ;

3
2Þ, for j ¼ 1,. . .,m,

m/T fi 0 as T fi 1,

E½IzzðkjÞ� ¼ fzfðkjÞð1þO½j�1 þ j2ðdz�1Þ� logðjþ 1Þg ¼ Oðk�2dzj Þ 0:5 < dz < 1

¼ Oðk�2dzj j2ðdz�1ÞÞ 1Odz < 1:5:

This lemma shows that the periodogram is asymptotically unbiased for fz at
frequencies close to the origin as long as dz < 1 but, when dz P 1 and dz 6 )0.5,
this property no longer holds and we may require tapering to control this bias and
the magnitude of rj or r
j .

3. GAUSSIAN SEMI-PARAMETRIC ESTIMATE WITH DIFFERENCED RESIDUALS

We analyse inference on d, based on the differenced residuals D~uut, which we may
expect to have memory close to d ) 1, so only nonstationary errors ut (d>0.5)
could be considered in principle to avoid non invertibility problems. Consider the
semi parametric estimate of Robinson (1995b), proposed initially by Künsch
(1987), based on a local Gaussian Whittle likelihood on the frequency domain,

Q
ðd;GuÞ ¼
1

m

Xm
j 1

logGuk
�2ðd�1Þ
j þ ID~uuD~uuðkjÞ

Guk
�2ðd�1Þ
j

" #

with 1/m+m/T fi 0 as T fi 1, where the constant Gu can be concentrated out.
For m ¼ T, this is approximately minus twice the log likelihood, up to constants,
of the data under Gaussianity, but this assumption is not required for our
analysis. We calculate the periodogram ID~uuD~uuðkjÞ using the differenced residuals
D~uut. Then, following the discussion in Robinson (1995b), we defineed
d
 ¼ gd 1d 1þ 1

where gd 1d 1 ¼ argmin
d2H

R

D~uuðdÞ

and

R

D~uuðdÞ ¼ log ~GG


D~uuðdÞ 2ðd 1Þ 1
m

Xm
1

log kj

~GG

D~uuðdÞ ¼

1

m

Xm
1

k2ðd�1Þj ID~uuD~uuðkjÞ
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and the true value do 2 H ¼ [�1,�2], 0.5<�1,�2<d<1.5. Denote by d any
admissible value of the parameter. For the analysis of the asymptotic properties of
~dd
, we take the following assumptions from Robinson (1995b):

Assumption 4. For vt ¼ ut, 0Od < 1
2, or for vt ¼ Dut, 12Od < 3

2,

ut ¼
X1
j 0

aj�t�j
X1
j 0

a2j < 1

where

E½�tjF t�1� ¼ 0 E½�2t jF t�1� ¼ 1 a:s:; t ¼ 0;�1; . . .

in which F t is the r field of events generated by �t, s 6 t, and there exists a
random variable �, such that E�2<1 and for all g>0 and some C>0,
P(|�t|>g) 6 CP(|�| > g).

Assumption 5. In a neighbourhood ð0; eÞ of the origin,

aðkÞ ¼
X1
j 0

eijkaj

is differentiable and

d

dk
aðkÞ

���� ���� ¼ O
jaðkÞj

k

	 

as k ! 0þ

Assumption 5 implies Assumption 3, since fvðkÞ ¼ |a(k)|2/(2p). This assumption is
standard in the parametric literature, as well as the linear process Assumption 4
(Giraitis and Surgailis, 1990; Hosoya, 1997); it is only used for the asymptotic
distribution, but is not necessary for consistency of estimates. For the derivation
of the asymptotic distribution of estimates, we also need finite fourth moments,
while the restriction of constant conditional innovations variances could be
relaxed by assuming boundedness of the eighth moment as in Robinson and
Henry (1999):

Assumption 6. Assumption 4 holds and also

E½�3t jF t�1� ¼ l3 a:s: ½�4t jF t�1� ¼ l4 a:s: t ¼ 0;�1; . . .

for finite constants l3 and l4.

We now present our first result, indicating the implications for the particular
choice of m as a power of T, which is usually considered in practical applications
because the choice of m does not depend in this case on conditions established in
terms of the unknown d and do. We stress log T consistency, because estimates of
d may be used for studentization of other estimates, like those of b, whose
convergence rate depends of d (Robinson, 1994a).
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Theorem 1. Under Assumptions 1 4, with do 2 ð12 ; dÞ, and as T fi 1

mdo�d log2 T þ mT�1 ! 0 ð4Þ

then

log T ð~dd
 doÞ !p 0:

If m � CTa, as T fi 1, then (4) holds for any a 2 (0, 1). Note that, under the
conditions of Theorem 1, d+do>1 holds, so only Case I of Assumption 1 applies.
We now give sufficient conditions for the asymptotic normality of ~dd
 when the

cointegrating residuals have noticeably less memory than the observed series,
d do > 1

2, so the estimate
~bb used for residual calculation has a faster convergence

rate than T1/2. Now do 2 H ¼ ½r1;r2�; 12 < r1 < r2 < d 1
2 < 1.

Theorem 2. Under Assumptions 1 6 with do 2 ð12 ; d 1
2Þ; and as T fi 1

m�1 þ m1þ2cT�2c log2 m! 0 ð5Þ

then

m1=2ð ed
d
 doÞ!
d
Nð0; 14Þ:

Thus the asymptotic distribution of ~dd
 remains the same as if Dut where actually
observed when residuals satisfying Assumption 1 are used instead. If m � CTa,
then (5) holds if 0<a<2c/(1+2c).

Tapering. Using tapered differenced residuals in the periodogram calculation,
we conjecture that it should be possible to estimate d consistently when Dut is non
invertible, 0 6 do 6 0.5, though possibly restricting the allowed set of values of d
and do when d+do 6 1 as in Theorems 3 and 4 (because of Cases II and III in
Assumption 1). Then, we could complete the consistency analysis of ~dd
 for
0 6 do < d < 1.5 and the asymptotic distribution for 0 6 do < d ) 0.5 < 1
using differenced residuals and the full cosine bell taper

ht ¼
1

2
1 cos

2pt
T

	 

if we strengthen Assumption 3 for ut with Assumption 7:

Assumption 7. Assumption 3 holds and the derivative f 0vðkÞ, satisfies for some
a>0 and |l|<k/2,

jf 0vðk þ lÞ f 0vðkÞj ¼ Oðjf 0vðkÞjk�ajljaÞ as k ! 0þ:

This condition generalizes ‘higher order bias’ assumptions used by Robinson
(1994b) and Giraitis et al. (1997) for semi parametric estimation of the memory of
long memory stationary series, and by Velasco (1999a, b), for nonstationary
series. As a result of tapering, the asymptotic variance of the memory estimate is
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multiplied by the factor U ¼ 35/18 for the cosine taper, and other tapers would
lead to similar results (Hurvich and Chen, 2000).

4. GAUSSIAN SEMI-PARAMETRIC ESTIMATE WITH ORIGINAL RESIDUALS

We now consider the semi parametric estimate of d based on the minimization of
the low frequency local likelihood

Qðd;GuÞ ¼
1

m

Xm
j 1

logGuk
�2d
j þ ID~uuD~uuðkjÞ

Guk
�2d
j

( )

for the original residuals, euut. A priori, this alternative approach is more
appropriate than the one based on differenced residuals if the cointegrating
errors ut have memory do 6 0.5, when differencing may lead to non invertibility.
However, we show now that it can also be used consistently for moderate
nonstationary errors.
Let for do 2 H ¼ [�1,�2], )0.5 < �1 < �2 < min{1, d},

~dd ¼ argmin
d2H

R~uuðdÞ

where

R~uuðdÞ ¼ log ~GG~uuðdÞ 2d
1

m

Xm
1

log kj

~GG~uuðdÞ ¼
1

m

Xm
1

k2dj I~uu~uuðkjÞ:

The next theorem gives sufficient conditions for the consistency of ~dd

Theorem 3. Under Assumptions 1 4 with do 2 [0,1), do<d, and for some � > 0,
as T fi 1,

mdo�d logmþ m��1=ð4eÞ
n o

nT þ mdo�d þ mdo�1 þ m��1
h i

log2 T þ mT�1 ! 0; ð6Þ

where

nT ¼
log2 T when do þ d ¼ 1; do > 0
T 1�do�d when do þ d < 1
0 otherwise

8<:
then log T ð~dd doÞ !p 0.

If m � CTa, then (6) holds if

max 0;
1 do d
d do

; 4eð1 do dÞ
� �

< a < 1:
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Notice that, when d+do P 1, we can choose a arbitrarily close to 0 (including the
CI(1, 0) case) but that, otherwise, it could be not possible to choose a < 1 (or m
such that mT)1 fi 0) for some combination of values of d and do, since (6)
requires

d þ do > 1
1

4e
� 0:91

Thus our results do not cover cointegrating regressions with mildly nonstationary
data (d close to 0.5) and nearly weakly dependent residuals (do close to 0), which
are globally stationary, do+d<1, such as CI(0, d), for any 0.5 < d 6 0.82. If
narrow band LS estimates are employed, Corollary 1 covers all posible situations
for all a 2 (0,1):

Corollary 1. Using a sequence n growing arbitrarily slowly with T in Case IV of
Assumption 1, the conclusions of Theorem 3 hold replacing (6) by (4).

For the asymptotic normality of edd, we need to assume the same conditions on
d ) do as when using differenced residuals, to ensure a fast enough convergence
rate for ebb, but we are not able to cover nonstationary errors with 0.5 6 do < 0.75
as is possible for observed data (Velasco, 1999b). Set do 2 H ¼ [�1,�2],
)0.5<�1<�2<0.5.

Theorem 4. Under Assumptions 1 6, with do 2 ½0; 12Þ; d do > 1
2, and for some

�>0, as T fi 1,

mdo�dþ1=2 logmþ m��1=ð4eÞ
n o

nT þ m�1 þ m1þ2cT�2c log2m! 0 ð7Þ

then

m1=2ð~dd doÞ!
d
N 0;

1

4

	 

:

If m � CT a then (7) holds if

max 0;
1 do d
d do 0:5

; 4eð1 do dÞ
� �

< a <
2c

1þ 2c
:

When d+do P 1, we can choose a arbitrarily close to 0 again and therefore
some a>0 satisfying (7) exist for any value of c but, when d+do<1, required
choice of a (or m in general) may not be possible. Thus, for c ¼ 2, it is always
possible to choose a < 4

5 so m satisfies (7) when

9d þ do > 7 and d þ do > 1
1

5e

and both hold when, for example, d>1)1/5e � 0.93. In this case, the use of
narrow band LS instead of OLS estimates, allows asymptotic inference based on ~dd
when d+do<1 for all cases, avoiding further restrictions beyond stationarity of
errors, do 2 ½0; 12Þ, and superconsistency, d do > 1

2:
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Corollary 2. Using a sequence n growing arbitrarily slowly with T in Case IV of
Assumption 1, the conclusions of Theorem 4 hold replacing (7) by (5).

Tapering. To deal with nonstationary but undifferenced residuals, it can be
shown that, with tapered residuals, ~dd is consistent up to do < d < 1.5, and also
asymptotically normal for any do < d ) 0.5 < 1, under the same conditions of
Theorems 3 and 4 (together with Assumption 7), just adjusting the asymptotic
variance as for observed data (Velasco, 1999b, Thms 5 and 6).

Corollary 3. For tapered residuals, if additionally Assumption 7 is satisfied,
Theorem 3 holds for do 2 ½0; 32Þ and Theorem 4 holds when do 2 ½0; 1Þ; d do > 1

2,
increasing the asymptotic variance by a factor U ¼ 35/18.

Comparing with the semi parametric alternative of running a residual based
log periodogram regression (Hassler et al., 2002), there are certain similarities
and differences. On the one hand, log periodogram regressions also have the
upper limit do < d ) 0.5 < 1 for the asymptotic normality of estimates of d,
because the convergence rate of ~bb in Assumption 1. This limitation is
independent of the specific method employed, or whether this is carried out
with or without tapering, with original or differenced residuals. Similarly, the
conditions

1 d do
d do

< 1

for consistency and

1 d do
d do 0:5

<
2c

2c þ 1

for asymptotic normality are required when original residuals are used in the log
periodogram regression.
On the other hand, a consistent residual log periodogram regression further

requires d ) do > 0.5 (while Gaussian estimates only need d ) do > 0), though
this restriction can be avoided, at least in part, by use of pooled log periodograms.
Furthermore, the analysis of residual log periodogram regressions is highly
complicated for non Gaussian series and requires a trimming of the very first
periodogram ordinates.

5. JOINT ESTIMATION OF MEMORY PARAMETERS

To test joint hypothesis on the parameter vector h ¼ (d, d)¢ or to increase the
efficiency of our previous estimates, of interest is the joint estimation of the
parameter vector h, building on initial slope estimates satisfying Assumption 1. A
particular interesting hypothesis to be tested is that of d d > 1

2, an assumption in
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Theorems 2 and 4. In this section, we analyse the estimation of (d, d) using the
procedure proposed by Lobato (1999) for multi variate observed time series,
extending Robinson’s (1995b) univariate method. This is a two step procedure
based on a local multiple Gaussian likelihood and requires initial estimates of the
parameters with the same semi parametric rate of convergence, e.g. those of
Theorems 2 or 4.
Another possibility not studied here is a two step Gaussian semiparametric

estimate of the full parameter vector h ¼ (d, d, b)¢, based on the same local
likelihood around zero frequency. This approach is similar to the Smith and Chen
(1997) semi parametric Gaussian estimation of the memory parameter and
regression coefficients for deterministic regressors observed with long memory
errors. Alternatively, Dueker and Startz (1998) proposed a full parametric vector
ARFIMA model, where the series acting as the dependent variable is replaced by
the unobserved cointegrated errors, and, if nonstationary, the original series can
be replaced by its differences. However, none of these references provide
justification for valid inference.
Different inputs (i.e. combinations of original and differenced series) can be

used in the estimation. We first concentrate on original residuals and assume now
that Assumptions 2 and 3 hold also for the cross spectral density of ut,
d < 0.5 (Dut, 0.5 6 d < 1.5), and Dxt for the same c > 0 so, 0 < c 6 2,

fðkÞ ¼ fuuðkÞ fuDxðkÞ
fDxuðkÞ fDxDxðkÞ

	 

¼ K�1GK�1ð1þ OðkcÞÞ

as k fi 0+, where K ¼ K(h) ¼ diag{kd, kd)1} and

G ¼ Gu Gux
Gxu Gx

	 

is real, nonsingular and symmetric (Lobato, 1997). We work directly with Dxt
since d > 0.5. We could consider estimation for d P 0.5 working with original
residuals ut and applying tapering. If it is known that d > 0.5, we can
alternatively substitute ut by Dut and d by d ) 1 in K as we analyse in Theorem
6 below.
Define the periodogram matrix of ð~uut;DxtÞ as

IðkjÞ ¼ Iðkj; bÞ ¼ wðkjÞw
ðkjÞ

where the * superscript indicates simultaneous transposition and complex con
jugation and

wðkjÞ ¼ ð2pT Þ�1
XT
t 1

yt ~bbxt
Dxt

	 

expðikjtÞ ¼ wyðkjÞ ~bbwxðkjÞ

wDxðkjÞ

	 

:

We take the following assumptions from Lobato (1999), where vt ¼ (ut, Dxt)¢,
d < 0.5, which are vector extensions of Assumptions 4 6, and imply
Assumption 3.
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Assumption 8.

vt ¼ l þ
X1
j 0

Ajet�j
X1
j 0

kAjk2 < 1

where i i denotes the supremum norm and et satisfies

EðetjF t�1Þ ¼ 0

Eðete0tjF t�1Þ ¼ I2

EðeaðtÞebðtÞecðtÞjF t�1Þ ¼ labc jlabcj < 1 for a; b; c ¼ 1; 2

EðeaðtÞebðtÞecðtÞedðtÞjF t�1Þ ¼ labcd jlabcd j < 1 for a; b; c; d ¼ 1; 2

where F t)1 is the r field of events generated by {es, s 6 t ) 1}.

Assumption 9. As k fi 0+

dAaðkÞ
dk

¼ Oðk�1jjAaðkÞjjÞ

for a ¼ 1, 2, where Aa(k) is the a th row of

AðkÞ ¼
X1
j 0

Aj expðijkÞ:

We consider the local multi variate Whittle likelihood

QðG; d; dÞ ¼ 1

m

Xm
j 1

flog jK�1
j GK�1

j j þ tr½ðK�1
j GK�1

j Þ�1Re½IðkjÞ��g

with 1/m+m/T fi 0 as T fi 1, where Kj ¼ Kjðd; dÞ ¼ diagfkd
j ; k

d�1
j g. We can

concentrate out the matrix G in Q, setting

ĜGðd; dÞ ¼ 1

m

Xm
j 1

KjRe½IðkjÞ�Kj

while the concentrating likelihood is

Lðd; dÞ ¼ 2ðd þ d 1Þ 1
m

Xm
j 1

log kj þ log jĜGðd; dÞj:

We suppose, for simplicity, that m1/2 consistent estimates ~dd and ~dd of do and do,
and a Tdo)do consistent estimate ~bb of bo are available, so we suppose (if we wish to
use the non tapered univariate estimates of previous sections) that only Cases I
and II of Assumption 1 can hold, though some combinations do+do<1 may
allow consistent estimation under further assumptions (see Theorem 4) or with
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improved regression estimates (see Corollary 2). The two step estimate of the
parameter vector h is

ĥh ¼ ~hh L00
hhð~hhÞ

� ��1
L0

hð~hhÞ

where ~hh ¼ ð~dd; ~ddÞ0 and

L00
hhðhÞ ¼

@2LðhÞ
@h@h0

L0
hðhÞ ¼

@LðhÞ
@h

:

Setting ho and Go for the true values, we obtain the following result using the
previous arguments and Lobato (1999).

Theorem 5. Under Assumptions 1 (Cases I and II), 8, 9, 0Odo <
minf12 ; do 1

2g; do þ do > 1, and for g ¼ min{c, do do},

m�1 þ m1þ2gT�2g log2 m! 0 as T ! 1 ð8Þ

then

m
p

ðĥh hoÞ!
d Nð0;E�1Þ;

where E ¼ 2ðI þGo �G�1
o Þ and � is the Hadamard product.

The unknown constants in E can be estimated consistently as, for example, in
Lobato and Velasco (2000). Again, the estimates of the memory parameters (d, d)
retain the same convergence rate and asymptotic distribution as if b were known.
The condition (8) provides a symmetric set up generalizing (5) to account for the
regularity parameter of yt in terms of c and the cointegration order, do)do, since in
applications we cannot distinguish yt from xt in model (1).
Alternatively, if it is known that do>0.5, we could calculate the (tapered)

periodogram matrix

IDðkjÞ ¼ wDðkjÞwDðkjÞ


of the differenced residuals and regressors, ðD~uut;DxtÞ0, using

wDðkjÞ ¼ ð2pT Þ�1
XT
t 1

ht
Dðyt ~bbxtÞ

Dxt

	 

expðikjtÞ ¼ wDyðkjÞ ~bbwDxðkjÞ

wDxðkjÞ

	 

In this case, we set in Assumptions 8 and 9 that vt ¼ (Dut, Dxt)¢ and substitute K
by

KD ¼ KDðhÞ ¼ diagfkd�1; kd�1g:

The concentrating likelihood is now
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Dðd; d; bÞ ¼ 2ðd þ d 2Þ 1
m

Xm
j 1

log kj þ log jĜGDðd; d; bÞj

with

ĜGDðd; d; bÞ ¼ 1

m

Xm
j 1

KD
j Re½IDðkjÞ�KD

j

and KD
j ¼ diagfkd�1

j ; kd�1j g, and the properties of the two step estimate of the
parameter vector h, chDhD ¼ ~hh D00

hhð~hhÞ
� ��1

D0
hð~hhÞ

are given in Theorem 6.

Theorem 6. Under Assumptions 1, 8, 9, 12Odo < do 1
2 < 1, and (8),

m
p

ðchDhD hoÞ!
d
Nð0;E�1Þ:

For checking the condition d d > 1
2, required for all our asymptotic distribution

analysis, we can use the previous results by means of the t statistic based on the
estimates of the memory parameters,

smðrÞ ¼
m

p
d̂d d̂d r
� �

ðð 1; 1ÞÊE�1ð 1; 1Þ0Þ1=2

where ÊE is an appropriate consistent estimate of E. Thus, under the assumptions
of Theorem 5 or 6 and the null hypothesis that d d ¼ ro; smðroÞ!

d
Nð0; 1Þ for

any ro > 1
2. Therefore, if in applications sm(0.5) > )za, where

Pr(N(0,1) > za) ¼ a, we can hope that our sufficient conditions for Gaussian
semi parametric inference on (d, d) hold as we can not reject the null hypothesis at
the a significance level for some ro small enough. However, no power analysis or
feasible testing for the null of no cointegration (d ) d ¼ 0) can be deduced from
our results, since for 0 6 d ) d ¼ r 6 0.5 the asymptotic distribution of sm(r)
depends on that of ~bb.
Tapering could permit to cross the lower boundary for do, but always keeping

d ) do > 0.5 for root m consistency and asymptotic normality. These procedures
could cover more general situations, e.g. models with several regressors xkt,
k ¼ 1,. . .,N, of the same memory d ¼ dk as yt, defining a local likelihood Q(G, d,
d) in terms of the vector (ut, Dx1t,. . ., DxNt), where

ut ¼ yt b1x1t � � � bNxNt

is replaced by residuals. If, on the other hand, different memory levels dk are
allowed, further complications may arise, since at least two of the original N+)1
variables should share a maximal memory parameter and d<min dk. In any case,
the choice of the dependent variable yt among the available series can be guided
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by maximizing the value of the local likelihood Q or QD. We illustrate some of
these issues in Section 7 with a real data example.

6. SIMULATION WORK

We perform a limited Monte Carlo analysis of some of the procedures suggested
in this paper. We simulate I(1) cointegrated bivariate time series, with I(0) errors
and estimate the two memory parameters with the following methods, residuals
based on initial OLS estimates of b:

1 Gaussian semi parametric estimate ~dd, based on Dxt.
2 Residual Gaussian semi parametric estimate ~dd, based on original OLS resi

duals ~uut.
3 Gaussian joint two step semi parametric estimate ðd̂d; d̂dÞ, based on ð~uut; DxtÞ.

We simulate time series with two sample sizes, T ¼ 192, 384, and use bandwidth
numbers m ¼ 25, 50 and m ¼ 40, 80 respectively. We try non tapered and tapered
series with the cosine bell and Zhurbenko taper of order 2, which is given by the
triangular window, so we use sample sizes that are multiples of 6 for simplicity of
computations.
We use two data generating mechanisms, b ¼ 1,

Model 1: Dxt � NID(0, 1) and ut � NID(0, 2), independent.
Model 2: Dxt � NID(0, 1) and (1)0.3L)ut � NID(0, 2), with correlation equal

to 0.3.

The second model incorporates short term effects in the error series and
endogeneity with the regressors. Note that do ) do ¼ 1 and do+do ¼ 1 but we are
in Case I of Assumption 1, and Theorems 4 and 6 apply.
The results are summarized in Tables I (Model 1) and II (Model 2). We do not

report simulation results for the Zhurbenko taper, as they are similar to those
with the cosine taper, but with small variability increments. We also tried to skip
the first l P 1 frequencies in the estimates, but in no case this trimming improved
the results, by contrast to the residual log periodogram estimate (Hassler et al.,
2002). We calculate the bias, standard error and mean square error across 1000
simulations, and give in parenthesis the asymptotic standard error from Theorem
5 for joint estimation of memory parameters (which in Table I coincides with the
values for the individual estimation). These are the main conclusions we can draw
from the simulations:

• Joint estimation of (d, d) is always recommended compared to individual
estimation of d and d (although no differences arise in Table I because xt and
ut are independent).
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• Estimation of d is more difficult than that of d, as expected by the use of
residuals, especially in terms of bias for the second model. In this model, the
bias of ~dd and d̂d seems very sensitive to bandwidth choice.

• The variability is often larger than the asymptotic variance predicted by the
central limit theorems, although, for the first model, the approximation is
reasonable and improves with sample size.

• Tapering always led to more variability as expected but, in this case, gave no
extra bias protection.

7. EMPIRICAL EXAMPLE

We apply in this section the above procedures to three US monetary aggregates
for the years 1978 1999 (264 monthly observations). The data are taken from the
St Louis Federal Reserve Bank for three series, LTD (large denomination time
deposits), M2 and M3. We work with the increment rates of the original series,
m2t, m3t and ltdt, e.g. m2t ¼ D log M2t, see Figure 1. In fact, M2 and LTD are
two of the components of the larger aggregate M3, so we are trying to analyse

TABLE I

Simulation Results for Model 1

Univariate Multi-variate

T m d, d ~dd ~dd ðd̂d d̂dÞ

No taper 192 25 bias 0.0482 0.0136 0.0466 0.0164
sd (0.100) 0.1430 0.1338 0.1388 0.1303
mse 0.0228 0.0181 0.0214 0.0172

50 bias 0.0254 0.0090 0.0247 0.0084
sd (0.071) 0.0919 0.0840 0.0915 0.0837
mse 0.0091 0.0071 0.0090 0.0071

384 40 bias 0.0245 0.0057 0.0248 0.0063
sd (0.079) 0.1006 0.0964 0.1000 0.0952
mse 0.0107 0.0093 0.0106 0.0091

80 bias 0.0124 0.0033 0.0128 0.0030
sd (0.056) 0.0638 0.0630 0.0634 0.0627
mse 0.0043 0.0040 0.0042 0.0039

Cosine taper 192 25 bias 0.0279 0.0233 0.0275 0.0259
sd (0.139) 0.2271 0.2098 0.2225 0.2038
mse 0.0524 0.0446 0.0503 0.0422

50 bias 0.0155 0.0155 0.0153 0.0148
sd (0.110) 0.1412 0.1306 0.1396 0.1294
mse 0.0202 0.0173 0.0197 0.0170

384 40 bias 0.0107 0.0175 0.0105 0.0185
sd (0.099) 0.1506 0.1466 0.1487 0.1442
mse 0.0228 0.0218 0.0222 0.0211

80 bias 0.0123 0.0039 0.0126 0.0039
sd (0.078) 0.0640 0.0640 0.0636 0.0637
mse 0.0042 0.0041 0.0042 0.0041
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indirectly the contribution of the remaining components of M3 (eurodollar
deposits, institutional money market mutual funds, etc.) to the persistence
properties of its growth rate, m3t. For all semi parametric estimates, we take
m ¼ 20 and employ non tapered estimates and non differenced residuals. This
bandwidth choice is not optimally estimated and only made so as to avoid
seasonal frequencies, which may affect the results if included in the objective
functions. Numbers in parenthesis in Tables III and IV are estimated standard
errors for estimates and p values for test statistics.
A preliminary analysis of the memory of the series using a multi variate 2 step

Gaussian estimate (Lobato, 1999) on DXt, where Xt ¼ (ltdt m2t, m3t), procedures
d̂dltd ¼ 0:501 (0.08), d̂dm2 ¼ 0:553 (0.07) and d̂dm3 ¼ 0:548 (0.07), while a Wald test of
equal memory based on these estimates cannot reject the null hypothesis of
common memory dX ¼ dltd ¼ dm2 ¼ dm3 with p value 0.81. In this case, the
common memory estimate is d̂dX ¼ 0:539 (0.06). However, if the series are to be
cointegrated, the spectral density matrix at zero frequency of Xt is singular and we
cannot justify inference based on standard procedures. The generalized squared
coherence at zero frequency for the three series see Lobato and Velasco (2000)
for the bivariate case is estimated close to 0.95 for both unrestricted or restricted
(common dX) models, calling for some caution in the interpretation of these
results.

TABLE II

Simulation Results for Model 2

Univariate Multi-variate

T m d, d ~dd ~dd ðd̂d d̂dÞ

No taper 192 25 bias 0.0112 0.0136 0.0087 0.0228
sd (0.098) 0.1400 0.1338 0.1353 0.1287
mse 0.0197 0.0181 0.0184 0.0171

50 bias 0.1163 0.0090 0.1105 0.0168
sd (0.069) 0.0905 0.0840 0.0891 0.0830
mse 0.0217 0.0072 0.0201 0.0072

384 40 bias 0.0125 0.0057 0.0101 0.0102
sd (0.077) 0.1007 0.0964 0.0976 0.0932
mse 0.0103 0.0093 0.0096 0.0088

80 bias 0.0858 0.0039 0.0783 0.0119
sd (0.05) 0.0641 0.0640 0.0624 0.0630
mse 0.0115 0.0041 0.0100 0.0041

Cosine taper 192 25 bias 0.0349 0.0233 0.0319 0.0329
sd (0.136) 0.2281 0.2098 0.2200 0.2034
mse 0.0532 0.0446 0.0494 0.0424

50 bias 0.1416 0.0155 0.1352 0.0242
sd (0.096) 0.1417 0.1306 0.1386 0.1285
mse 0.0401 0.0173 0.0375 0.0171

384 40 bias 0.0305 0.0175 0.0270 0.0236
sd (0.108) 0.1504 0.1466 0.1470 0.1420
mse 0.0235 0.0218 0.0223 0.0207

80 bias 0.1039 0.0113 0.0957 0.0204
sd (0.076) 0.0987 0.0981 0.0967 0.0965
mse 0.0205 0.0098 0.0185 0.0097
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In Table III, we report the results of a pairwise investigation of the memory
properties of our series (without model), excluding a series (‘dependent series’) at
each time. The main conclusion about the regressors memory is that perhaps ltdt
is stationary, having slightly less memory than m2t and m3t (the Wald tests have
relatively low p values for the null hypotheses dltd ¼ dm2 or dltd ¼ dm3), but m2t
and m3t are nonstationary and may share the same memory. Therefore, Models 2
and 3 are balanced memory regressions, while Model 1 is unbalanced with more
persistent (and possibly cointegrated) regressors. These conclusions agree with the
zero frequency squared coherence estimates, which are very low for the two pairs
with ltdt included, but give. 0.77 for (m2t, m3t), so m2t seems to be the main long
term contribution to m3t (but perhaps not the only one). Note that, if m2t and m3t

Figure 1. ltdt, m2t and m3t (increment rates computed as the differences of the logarithm of the
original data: LTD, M2 and M3).
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were exactly cointegrated then standard inference is not valid because of the
singularity of their spectral density matrix at zero frequency.
For joint estimation, we may choose restricted (common dX) or unrestricted

(different d) Gaussian estimation. If ltdt is chosen as a regressor, the second option
seems more reasonable, while the first can be more sensible if ltdt is the dependent
variable though, for our data, both lead to similar conclusions in this last case
(Model 1). For all models and the two procedures, we find in Table IV that the
estimated memory of the residuals, d̂du, is always very close to 0.3 with standard
error about 0.11, even for the less interpretable Model 1, probably because, on the
right hand side of the regression model, some components are cancelling out.
Common regressors memory is estimated for all models very close to d̂dX ¼ 0:61
(0.08), which is similar to the values of d̂dm2 and d̂dm3 for Model 1. However for
Models 2 and 3, unrestricted estimation shows that ltdt may have much lower
memory than m2t or m3t, while these two series have very similar memory levels.
The value of the maximized likelihood indicates that Model 3 is to be preferred,
specially for unrestricted estimation, as expected.
The previous evidence leads to the idea that m2t and m3t might be cointegrated

themselves and that their cointegration relationship might be then cointegrated
with ltdt, which would make only a second order long term contribution to m3t.
However, bivariate modelling of (m2t, m3t) is not conclusive about this issue
since, for m3t as dependent variable, we obtain d̂du ¼ 0:566 and d̂dm2 ¼ 0:651 (0.11),

TABLE III

Memory Estimates of Level Series

Regressors memory H0: common dX

Model Dependent var. d̂dX d̂dltd d̂dm2 d̂dm3 Wald test

1 LTD 0.6072 0.5826 0.6352 0.4760
(0.079) (0.088) (0.088) [0.490]

2 M2 0.6252 0.4126 0.6901 3.721
(0.079) (0.109) (0.109) [0.054]

3 M3 0.6261 0.4870 0.6789 1.644
(0.079) (0.112) (0.112) [0.200]

TABLE IV

Memory Estimates of Cointegrated Relationships

Restricted
regression

Unrestricted
regression

Model Dependent variable d̂du d̂dX d̂du d̂dltd d̂dm2 d̂dm3

1 LTD 0.2603 0.6042 0.2785 0.5836 0.6352
(0.112) (0.079) (0.111) (0.087) (0.087)

2 M2 0.2423 0.6152 0.2425 0.4126 0.6991
(0.112) (0.079) (0.111) (0.108) (0.108)

3 M3 0.3090 0.6161 0.3090 0.4770 0.6789
(0.111) (0.079) (0.111) (0.112) (0.112)
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while, for dependent variable m2t, the results are d̂du ¼ 0:169 and d̂dm3 ¼ 0:701
(0.11), with d̂du in little aggrement with d̂dltd.

8. DISCUSSION

We have shown that consistent estimation of the cointegration degree can be based
on residuals obtained by, for example, OLS estimation, covering a wide range of
models and memory levels, and avoiding short memory missspecifications. If the
cointegrating relationship reduces in sufficiently amount the memory of the
observed vector, standard semi parametric asymptotics are valid. The Monte
Carlo experiment performed has shown that, if the sample size is moderate, the
asymptotics approximate reasonably well the finite sample properties of the
estimates. However, further empirical evidence with other sample sizes, bandwidth
numbers and data generating processes is required for the choice of the preferred
estimation strategy.
For general regressor vectors xt, it is necessary to consider conditions on the

minimal and maximal memory components of the vector (generalizing
Assumption 1). The main difficulty is the possibility of several cointegration
relationships among the regressors series which might cause singularities in the
coherence matrix of xt if several memory parameters dx are to be estimated. This
requires yt to have the higher level of memory of the series analysed.
Though the methods proposed in this paper provide confidence intervals for the

parameters of cointegrated systems, it is not straightforward to develop
cointegration Wald tests under the null of no cointegration, since first step
estimates are only available when b „ 0 and d<d. Neither Lagrange
multiplier tests are easy, since the semi parametric model is unindentified for b
when d ¼ d.

9. PROOFS OF SECTION 3

Proof of Theorem 1. From Robinson (1995b), Theorem 1, we set

GðdÞ ¼ Go
1

m

Xm
1

k2ðd�doÞ
j

and H1 ¼ {d:� 6 d < �2}, where � ¼ �1 when do < 1
2 þr1 and

do Pr > do 1
2 otherwise. Then the Theorem follows from Robinson (1997,

Thm 3) if Xm�1
n 1

n
m

� �2ðr�d0Þþ1 1

n2
Xn
j 1

r
j

�����
�����!p 0 ð9Þ

and additionally, for w>0 arbitrarily small
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log2 T
Xm�1
n 1

n
m

� �1�2w 1
n2
Xn
j 1

r
j

�����
�����!p 0 ð10Þ

and

log2 T
m

Xn
j 1

r
j !
p
0: ð11Þ

When do P 1
2þr1, we also need to show that

P ðinfH2
SD~uuðdÞO0Þ ¼ oð1Þ

where H2 ¼ {d:�1 6 d < �} and S
z ðdÞ ¼ R

z ðdÞ R


2ðdoÞ. This follows if

sup
H2

jS
D~uuðdÞ S
DuðdÞj ¼ sup
H2

jR

D~uuðdÞ R


DuðdÞj ¼ opð1Þ

and, from Robinson (1997), it is sufficient to show that

1

m

Xm
j 1

ðaj 1Þr
j !
p
0 ð12Þ

with

aj ¼
j
h

� �2ðr�doÞ
1OjOh

j
h

� �2ðr1�doÞ h < jOm

(

for

h ¼ exp m�1
Xm
1

log j

 !
:

Proof of (9). For a generic positive constant C < 1, the left hand side of (9)
is bounded by

Cm2ðdo�rÞ�1
Xm
j 1

j2ðr�doÞjr
j j for r < do ð13Þ

and by

C
logm
m

Xm
j 1

jr
j j for r ¼ do: ð14Þ

Using (2), the left hand side of (13) is bounded by

Cm2ðdo�rÞ�1 2j~bb bj
Xm
j 1

j2ðr�doÞ jIDuDxðkjÞj
gDuðkjÞ

þ ð~bb bÞ2
Xm
j 1

j2ðr�doÞ IDxDxðkjÞ
gDuðkjÞ

( )

and taking expectations of the summands, this is
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Op m2ðdo�rÞ�1 T do�d
Xm
j 1

j2ðr�doÞkdo�d
j þ T 2ðdo�dÞ

Xm
j 1

j2ðr�doÞk2ðdo�dÞj

( ) !

¼ Op m2ðdo�rÞ�1
Xm
j 1

j2r�do�d þ
Xm
j 1

j2ðr�dÞ

( ) !
¼ Op mðdo�dÞ þ m2ðdo�rÞ�1 log m

� �
¼ opð1Þ

because d+do>1. Now (14) follows similarly.

Proof of (10). The left hand side of (10) is bounded by

Cm2w�1 log2 T
Xm
j 1

j�2wjr


j j

OCm2w�1 log2 T 2j~bb bj
Xm
j 1

j�2w
jIDuDxðkjÞj
gDuðkjÞ

þ ð~bb bÞ2
Xm
j 1

j�2w
IDxDxðkjÞ
gDuðkjÞ

( )

and this is, by (4), is

Op m2w�1 log2 T T d�d
Xm
j 1

j�2wkdo�d
j þ T 2ðd�dÞ

Xm
j 1

j�2wk2ðdo�dÞj

( ) !

¼ Op m2w�1 log2 T
Xm
j 1

jdo�d�2w þ
Xm
j 1

j2ðdo�dÞ�2w
( ) !

¼ Opðmdo�d log2 T Þ
¼ opð1Þ:

Proof of (11). As d+do>1, the left hand side of (11) is bounded by

log2 T
m

Xm
j 1

jr
j jO
log2 T
m

2j~bb bj
Xm
j 1

jIDuDxðkjÞj
gDuðkjÞ

þ ð~bb bÞ2
Xm
j 1

IDxDxðkjÞ
gDuðkjÞ

( )

¼ Op
log2 T
m

Xm
j 1

jdo�d þ
Xm
j 1

j2ðdo�dÞ
( ) !

¼ Opðmdo�d log2 T Þ
¼ opð1Þ:

Proof of (12). Using (11), the left hand side of (12) is bounded by

1

m

Xm
j 1

ajjr
j j þ opð1Þ
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and as in Robinson (1995b), we can use that h � m/e as T fi 1, and that
aj ¼ O(1), uniformly for j>h, so the first term on the right hand side is bounded
by

Cm2ðdo�rÞ�1j~bb bj
Xm
j 1

j2ðr�doÞkdo�d
j þ Cm2ðdo�rÞ�1j~bb bj2

Xm
j 1

j2ðr�doÞkdo�d
j

and, as d+do > 1 and do < d, using the same argument of the proof of (9),
this is

Op m2ðdo�rÞ�1
Xm
j 1

j2r�do�d þ m2ðdo�rÞ�1
Xm
j 1

j2ðr�dÞ

 !
¼ opð1Þ:

Proof of Theorem 2. Since under the conditions of the Theorem, ~dd
 is
consistent (compare with Theorem 1 without the log2T terms), from Robinson
(1995b, Thm 2), we need to show in first place that

sup
d2H1\Nw

~GG

D~uuðdÞ GðdÞ
GðdÞ

���� ���� ¼ opðlog�6mÞ

where Nw is defined as in Robinson (1995b, p. 1634), and this is implied by,

sup
d2H1\Nw

~GG

D~uuðdÞ ~GG


DuðdÞ
GðdÞ

���� ���� ¼ opðlog�6 mÞ:

This, in turn, follows if

log6 m
Xm�1
n 1

n
m

� �1�2w 1
n2
Xn
j 1

r
j

�����
�����!p 0 ð15Þ

from equation (4.7) in Robinson (1995b). Then, we also need that, for k ¼ 0, 1, 2,

j~FF 

k;DuðdoÞ ~FF 


k;D~uuðdoÞj!
p
0 ð16Þ

where

~FF 

k;zðdÞ ¼

1

m

Xm
j 1

ðlog jÞkkð2d�1Þj IzzðkjÞ

and that

m1=2 dR


DuðdoÞ
dd

dR

D~uuðdoÞ
dd

���� ����!p 0 ð17Þ

where
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dR

z ðdÞ
dd

¼ 2
~HH

z ðdÞ

~GG

z ðdÞ

~HH 

z ðdÞ ¼

1

m

Xm
1

mjk
2ðd�1Þ
j IzzðkjÞ

mj ¼ log j
1

m

Xm
1

log j ¼ OðlogmÞ:

Proof of (15). It holds by the proof of (10) and (11) ignoring the log2T terms.

Proof of (16). The left hand side of (16) is bounded by

Gu
m

Xm
j 1

ðlog jÞkr
j

�����
�����OC

logk m
m

Xm
j 1

jr
j j

¼ opð1Þ

by the proof of (11).

Proof of (17). The left hand side of (17) is bounded by

2m1=2
~HH 


DuðdoÞ
~GG


DuðdoÞ
~HH 


D~uuðdoÞ
~GG


D~uuðdoÞ

�����
�����O 2m1=2 ~GG


DuðdoÞ
�� ���1 ~HH


DuðdoÞ ~HH

D~uuðdoÞ

�� ��
þ 2m1=2

~HH

D~uuðdoÞ

~GG

DuðdoÞ~GG


D~uuðdoÞ

�����
����� ~GG


DuðdoÞ ~GG

D~uuðdoÞ

��� ���:
First, by Robinson (1995b),

~GG

DuðdoÞ ¼ Go þ opð1Þ

and, by (5),

m1=2 ~HH 

DuðdoÞ ~HH 


D~uuðdoÞ
�� ��O m�1=2

Xm
1

jmjjjr
j j ¼ Op m�1=2 logm
Xm
1

jdo�d
 !

¼ opð1Þ:

Similarly

m1=2 ~GG

DuðdoÞ ~GG


D~uuðdoÞ
�� �� ¼ opð1Þ

by the same argument of the proof of (15), and

~HH 

D~uuðdoÞ ¼ Opð1Þ

by Robinson (1995b, p. 1644) and the theorem follows. QED.
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10. PROOFS OF SECTION 4

Proof of Theorem 3. From Theorem 1, the result follows if, do)0.5<�<do,

Xm�1
n 1

n
m

� �2ðr�doÞþ1 1

n2
Xn
j 1

rj

�����
�����!p 0 ð18Þ

for w>0 arbitararily small,

log2 T
Xm�1
n 1

n
m

� �1�2w 1
n2
Xn
j 1

rj

�����
�����!p 0 ð19Þ

and

log2 T
m

Xn
j 1

rj!
p
0 ð20Þ

and finally,

1

m

Xm
n 1

ðaj 1Þrj!
p
0: ð21Þ

Proof of (18). The left hand side of (18) is bounded by

Cm2ðdo�rÞ�1
Xm
j 1

j2ðr�doÞjrjj for r < do ð22Þ

and by

c
logm
m

Xm
j 1

jrjj for r ¼ do: ð23Þ

Using (3), (22) is bounded by

Cm2ðdo�rÞ�1 2j~bb bj
Xm
j 1

j2ðr�doÞ jIuxðkjÞj
guðkjÞ

þ ð~bb bÞ2
Xm
j 1

j2ðr�doÞ IxxðkjÞ
guðkjÞ

( )
ð24Þ

and, if d+do>1 (Case I), (24) is

Op m2ðdo�rÞ�1
Xm
j 1

j2r�do�d þ
Xm
j 1

j2ðr�dÞ

( ) !
¼ Op mdo�d þ m2ðdo�rÞ�1 log m

� �
¼ opð1Þ
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when do<d<1, and is

Op m2ðdo�rÞ�1
Xm
j 1

j2r�do�1 þ
Xm
j 1

j2ðr�dÞ

( ) !
¼ Op mdo�1 þ m2ðdo�rÞ�1 log m

� �
¼ opð1Þ

when d P 1, noting that do<1.
If d+do<1 (Case III), then d<1, so (24) is

Op m2ðdo�rÞ�1 T 1�do�d
Xm
j 1

j2r�do�1 þ T 2ð1�do�dÞ
Xm
j 1

j2ðr�dÞ

( ) !

¼ Op
T 1�do�d ½mdo�d þ m2ðdo�rÞ�1 logmI 2r d doO 1f g�

þT 2ð1�do�dÞ½m2ðdo�dÞ þ m2ðdo�rÞ�1 logmI 2ðr dÞO 1f g�

 !
¼ opð1Þ þ Op T 2ð1�do�dÞ þ m2ðdo�rÞ�1 logmI 2ðr dÞ O 1f g

� �
because of (6). The choice of � is restricted to satisfy 2(do)�))1<)1/(2e), by the
proof of Theorem 1 in Robinson (1995b). Then we can choose � large enough
such that for some �>0, and using (6),

T 2ð1�do�dÞm2ðdo�rÞ�1 log mI 2ðr dÞO 1f g ¼ OðT 2ð1�do�dÞm��1=ð2eÞÞ ¼ oð1Þ:

In case II, (24) is

Opðmdo�d log T þ m2ðdo�rÞ�1 logm log2 T Þ ¼ opð1Þ

with (6) and d<1.
Now we can bound (23) by

Cm�1 logm 2j~bb bj
Xm
j 1

jIuxðkjÞj
guðkjÞ

þ ð~bb bÞ2
Xm
j 1

IxxðkjÞ
guðkjÞ

( )
ð25Þ

and, if d+do>1 (Case I), this is

Op m�1 logm
Xm
j 1

jdo�d þ
Xm
j 1

j2ðr�dÞ

( ) !
¼ Opðmdo�d log mÞ

¼ opð1Þ

when do<d<1, and is

Op m�1 logm
Xm
j 1

jdo�1 þ
Xm
j 1

j2ðdo�1Þ
( ) !

¼ Opðmdo�1 log2 mÞ

¼ opð1Þ

when d P 1 (with do<1). In Case II, this is
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Opðm�1 logm log2 T Þ ¼ opð1Þ

If d+do<1 (Case III), then d<1, so (25) is

Op m�1 logm T 1�do�d
Xm
j 1

jdo�d þ T 2ð1�do�dÞ
Xm
j 1

j2ðd0�dÞ
( ) !

¼ OpðT 1�do�dmdo�d logmþ T 2ð1�do�dÞ½m�1 logmþ m2ðdo�dÞ� logmÞ
¼ opð1Þ

because of (6) and because

T 2ð1�do�dÞm�1 logm! 0:

Proof of (19). The left hand side of (19) is bounded by

Cm2w�1 log2 T
Xm
j 1

j�2wjrjj

O m2w�1 log2 T 2j~bb bj
Xm
j 1

j�2w
jIuxðkjÞj
guðkjÞ

þ ð~bb bÞ2
Xm
j 1

j�2w
IxxðkjÞ
guðkjÞ

( )

and, using (6), if d+do>1, d<1, this is

Op m2w�1 log2 T T do�d
Xm
j 1

j�2wkdo�d
j þ T 2ðdo�dÞ

Xm
j 1

j�2wk2ðdo�dÞj

( ) !
¼ Opðlog2 T ½mdo�d þ m2w�1 logmIf2ðdo�dÞ�2wO�1g�Þ
¼ opð1Þ

and, for d P 1, this is

Op m2w�1 log2 T T do�d
Xm
j 1

j�2wkdo�d
j jd�1 þ T 2ðdo�dÞ

Xm
j 1

j�2wk2ðdo�dÞj j2ðd�1Þ
( ) !

¼ Opðlog2 T ½mdo�1 þ m2w�1 logm�Þ
¼ opð1Þ:

In the Case II, this is

Opðlog4 T ½mdo�d þ m2w�1 logm�Þ ¼ opð1Þ

with (6). Finally, if d+do<1 (Case III), this is
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Op m2w�1 log2 T T 1�2d
Xm
j 1

j�2wkdo�d
j þ T 2�4d

Xm
j 1

j�2wk2ðdo�dÞj

( ) !

¼ Op
T 1�do�dmdo�d þ T 1�do�dm2w�1 logmIfdo�d�2wO�1g

þT 2ð1�do�dÞm2ðdo�dÞ þ T 2ð1�do�dÞm2w�1 logmIf2ðdo�d�wÞO�1g

( )
log2 T

 !

and this is op(1) by (6) again.

Proof of (20). For d+do>1 and using (6), the left hand side of (20) is
bounded by

log2 T
m

Xm
j 1

jrjj ¼ Op
log2 T
m

Xm
j 1

jdo�d þ
Xm
j 1

j2ðdo�dÞ
( ) !

¼ Opð½mdo�d þ m�1 logm� log2 T Þ
¼ opð1Þ

when and if d P 1, a bound is

log2 T
m

Xm
j 1

jrjj ¼ Op
log2 T
m

Xm
j 1

jdo�1 þ
Xm
j 1

j2ðdo�1Þ
( ) !

¼ Opð½mdo�1 þ m�1 logm� log2 T Þ
¼ opð1Þ:

In Case II, (20) is

Opð½mdo�d log T þ m�1 logm log2 T � log2 T Þ ¼ opð1Þ

by (6), and when d+do<1, (20) is

Op
log2 T
m

T 1�do�d
Xm
j 1

jdo�d þ T 2ð1�do�dÞ
Xm
j 1

j2ðdo�dÞ
( ) !

¼ Op T 1�do�dmdo�d þ T 2ð1�do�dÞ½m2ðdo�dÞ þ m�1 logmIf2ðdo�dÞO�1g�
n o

log2 T
� �

¼ opð1Þ

because of (6).

Proof of (21). Proceeding as before, the left hand side of (21) is bounded by

1

m

Xm
j 1

ajjrjj þ opð1Þ ¼ Op m2ðdo�rÞ�1
Xm
j 1

j2ðr�doÞjrjj
 !

þ opð1Þ

and, if d+do>1, the first term on the right hand side is
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Op m2ðdo�rÞ�1
Xm
j 1

j2r�d0�d þm2ðdo�rÞ�1
Xm
j 1

j2ðr�dÞ

 !
¼Opðmdo�d þm2ðdo�rÞ�1 logmÞ

¼ opð1Þ

when d < 1, and if d P 1, is

Op m2ðdo�rÞ�1
Xm
j 1

j2r�do�1Þ þm2ðdo�rÞ�1
Xm
j 1

j2ðr�1Þ

 !
¼Opðmdo�1þm2ðdo�rÞ�1 logmÞ

¼ opð1Þ:

A similar bound follows in Case II using (6) and if d+do<1, this is

Op m2ðdo�rÞ�1T 1�do�d
Xm
j 1

j2r�do�d þ m2ðdo�rÞ�1T 2ð1�do�dÞ
Xm
j 1

j2ðr�dÞ

 !
¼ Op

�
T 1�do�dmdo�d þ T 2ð1�do�dÞ½m2ðdo�dÞ þ m2ðdo�rÞ�1 logmIf2ðr�dÞO�1g�

�
which is op(1) by (6) proceeding as in the proof of (18). QED.

Proof of Theorem 4. As in the proof of Theorem 2, we need to show that

log6 m
Xm�1
n 1

n
m

� �1�2w 1
n2
Xn
j 1

rj

�����
�����!p 0: ð26Þ

Then we also need to show that, for k ¼ 0, 1, 2,

~FFk;DuðdoÞ ~FFk;D~uuðdoÞ
�� ��!p 0 ð27Þ

where

~FFk;zðdÞ ¼
1

m

Xm
j 1

ðlog jÞkk2dj IzzðkjÞ

and that

m1=2 dRDuðdoÞ
dd

dRD~uuðdoÞ
dd

���� ����!p 0 ð28Þ

where

dRzðdÞ
dd

¼ 2
~HHzðdÞ
~GGzðdÞ

and

~HHzðdÞ ¼
1

m

Xm
1

mjk
2d
j IzzðkjÞ
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Proof of (26) First, (26) holds by the proof of (19) and (20), with the same
choice of m given by (7).

Proof of (27) The left hand side of (27) is bounded by, for k ¼ 0, 1, 2,

G
m

Xm
j 1

ðlog jÞkrj

�����
�����OC

logk m
m

Xm
j 1

jrjj

¼ opð1Þ

by (7) and the proof of (20).

Proof of (28) The left hand side of (28) is bounded by

2m1=2
~HHuðdoÞ
~GGuðdoÞ

~HH~uuðdoÞ
~GG~uuðdoÞ

���� ����O 2m1=2j~GGuðdoÞj�1j ~HHuðdoÞ ~HH~uuðdoÞj

þ 2m1=2
~HH~uuðdoÞ

~GGuðdoÞ~GG~uuðdoÞ

���� ����j~GGuðdoÞ ~GG~uuðdoÞj:

First,

~GGuðdoÞ ¼ Gþ opð1Þ

from Robinson (1995b) and Velasco (1999b), and

m1=2j ~HHuðdoÞ ~HH~uuðdoÞjO m�1=2
Xm
1

jmjjjrjj

¼ Op m�1=2
Xm
1

jrjj logm
 !

:

Using (7) when d + do P 1, this is

Opðm�1=2½logmþ mdo�dþ1� logmÞ ¼ opð1Þ d < 1; d þ do > 1

Opðm�1=2½logm log2 T þ mdo�dþ1 log T � logmÞ ¼ opð1Þ d < 1; d þ do ¼ 1

Opðm�1=2½logmþ mdo � logmÞ ¼ opð1Þ dP1

while, if d + do 6 1, is

Op m�1=2 T 1�do�dmdo�dþ1 þ T 2ð1�do�dÞ m2ðdo�dÞþ1 þ logmIf2ðdo�dÞO�1g

n oh i
logm

� �
¼ opð1Þ

and the theorem follows from

~HHuðdoÞ ¼ Opð1Þ and m1=2j~GGuðdoÞ ~GG~uuðdoÞj ¼ oopð1Þ:
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