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Abstract

In an industry where firms compete via supply functions, the set of equilibrium outcomes is
large. If decreasing supply functions are ruled out, this set is reduced significantly, but remains
large. Specifically, the set of prices that can be sustained by supply function equilibria is the
interval between the competitive price and the Cournot price. In sharp contrast, when
the number of firms is above a threshold we identify (e.g., three if demand is linear), only the
Cournot outcome can be sustained by a coalition-proof supply function equilibrium.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

We study an oligopoly where firms compete via supply functions. In this setting,
each firm chooses a supply function. The supply functions of all firms are then
aggregated to form the market supply which, together with the market demand,
determine the market clearing price and the production of each firm. This model of
competition describes many markets more realistically than the Cournot or the
Bertrand models. In markets for government procurement contracts, or in the
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recently deregulated electricity markets, for example, that the strategies of the firms
are supply functions is a feature of the institutional setting.

A shortcoming of this model is that the set of outcomes that can be sustained by
supply function equilibria (SFE henceforth) is very large see, e.g., Grossman [7],
Hart [8]. Klemperer and Meyer [10] have studied the consequences of introducing
demand uncertainty into the model, and have shown that if uncertainty is
unbounded there is a unique equilibrium. Unfortunately, in many markets demand
uncertainty plays a small role.

We study a version of the model where the strategies of the firms are restricted to
non decreasing supply functions. This restriction seems reasonable and may add
realism to the model: in many markets firms may not be able to commit to a
decreasing supply schedule; in others, decreasing supply functions are explicitly ruled
out by design. It turns out that restricting the strategy spaces significantly reduces the
set of equilibria the monopoly price, for example, can no longer be sustained by
SFE. Nevertheless, the set of equilibrium outcomes remains large. Specifically, the
set of prices that can be sustained by SFE is the interval between the competitive
price and the Cournot price. Further, the prices in this interval can be sustained by
SFE leading to symmetric outcomes as well as by SFE leading to asymmetric ones.
(The Cournot price is the unique exception: every SFE leading to this price yields the
Cournot outcome.)

Next, we consider a setting where firms can communicate prior to taking an
action, but cannot make binding commitments, and we study whether accounting for
the opportunities of coordinated action that communication brings about provides a
basis for determining which outcomes may arise. In non cooperative environments
where players can communicate, equilibria are not viable unless they are
invulnerable to improving deviations by any coalition of players. In other words,
viable equilibria must be “coalition proof”. A number of papers in the literature
have studied which equilibria are coalition proof in a variety of oligopolistic
environments under either Bertrand or Cournot competition see, e.g., [4,13]. We
study the set of outcomes that can be sustained by coalition proof equilibria in our
framework, and we find that the multiplicity of equilibrium outcomes disappears.

We introduce the notion of coalition proof supply function equilibrium (CPSFE
henceforth), which is just an adaptation to our framework of Bernheim et al. [3]
notion of coalition proof Nash equilibrium. A CPSFE is a profile of supply
functions that is invulnerable to improving and self enforcing deviations by any
coalition of firms. A deviation is self enforcing if there is no further self enforcing
improving deviation available to a proper subcoalition of the deviating coalition.
Note that deviations which are not self enforcing are meaningless as they are
vulnerable to further self enforcing improving deviations by proper subcoalitions.
(Aumann [1] introduced an alternative notion of coalition proof equilibrium, strong
Nash equilibrium, which requires that a strategy profile be invulnerable to all
improving coalitional deviations, self enforcing or not. This notion of equilibrium is
so strong, however, that many games have no such equilibria.)

Since there are games for which a coalition proof Nash equilibrium does not exist

(see [3]), we begin by studying whether the existence of a CPSFE is guaranteed in our
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framework. Indeed, we show that the Cournot outcome can be sustained by a
CPSFE, and hence that in our framework a CPSFE always exists. Further, we
identify conditions on the curvature of the demand and cost functions that guarantee
that if the number of firms is above a threshold, the Cournot outcome is the unique
CPSFE outcome. (If the market demand is a linear function, this result arises when
there are three or more firms in the industry.)

Our proofs of unicity of a CPSFE outcome are based purely on Pareto dominance
arguments: It turns out that when the number of firms in the industry is above a
threshold, the Cournot outcome is Pareto superior to every other SFE outcome; i.e.,
the profits of every firm at the Cournot outcome are greater than at every other SFE
outcome. Thus, since the Cournot outcome can be sustained by a CPSFE, every SFE
leading to an outcome other than the Cournot outcome is upset by a self enforcing
deviation of the grand coalition leading to the Cournot outcome.

In proving that the Cournot outcome is Pareto superior to every other SFE outcome,
the class of SFE in which all but perhaps one firm supply inelastically the same fixed
amount, and the remaining firm maximizes on the residual demand, plays an important
role. (The set of outcomes sustained by SFE in this class can be easily characterized.) We
show that for every SFE, there is a SFE in this class such that the profits (and outputs)
of the firms using an inelastic supply function are greater or equal to those of the firm
with the greatest profit (and output) in the original SFE. (This result indirectly
establishes that SFE outcomes cannot be very asymmetric.) It turns out that if the
number of firms is above a threshold, then the Cournot outcome (which can be
sustained by a SFE in this class) is Pareto superior to every other outcome sustained by
SFE in this class, and is therefore Pareto superior to every other SFE outcome.

It is worth noting that in the general context of non cooperative games coalition
proof Nash equilibrium outcomes need not be Pareto optimal within the class of
equilibrium outcomes. In our framework, however, the unique CPSFE outcome (i.e.,
the Cournot outcome) is the unique Pareto optimal outcome within the class of SFE
outcomes. As a consequence, every SFE that leads to an outcome other than the
Cournot outcome is vulnerable to a self enforcing deviation of the grand coalition,
and is therefore very “unstable.” This provides additional support for the Cournot
outcome, since every SFE that leads to a different outcome is easily upset.

An interesting interpretation of our unicity result, parallel to Kreps and Scheinkman
[11], is that the Cournot model provides a “reduced form™ of a “‘structural model”
where firms compete by choosing a supply function, but can communicate prior to
taking an action. As we show, when the coordination opportunities brought about by
the possibility of communication are taken into account, the Cournot model yields
predictions identical to those obtained using the more cumbersome model of
competition via supply functions. (See also [9] on this debate.)

2. Supply function equilibria

In this section we describe the model of competition via supply functions, we

characterize the prices that can be sustained by supply function equilibria, and we
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show that every SFE leading to the Cournot price yields the Cournot outcome.
Further, we show that within the set of SFE outcomes the profit of the industry is
uniquely maximized at the Cournot outcome.

The description of the industry, except for allowing more than two firms, is
identical to that of Klemperer and Meyer [10], and is common in the literature see,
e.g., [4,6,11]. As in these papers, we assume that the demand function is concave and
the cost function is convex. Also we assume, as in [10], that firms’ supply functions
are continuously differentiable.

These assumptions render tractable a complex model. (Note that since strategies
are functions, the analysis of the game describing the industry is difficult.)
Specifically, under these assumptions equilibrium outcomes are solutions to the
system of equations formed by first order conditions for profit maximization and the
market clearing condition. (In a SFE every firm maximizes profits on the “residual”
demand, effectively determining the market clearing price. Thus, if every firm
chooses a convex supply function, then under the above assumptions the profit of
each firm is a concave and differentiable function of the market price.) Of course,
these assumptions also simplify the analysis; they imply, for example, that the
Cournot equilibrium is unique and symmetric, and that the profit of the industry
increases with prices below the monopoly price. These results hold, however, under
weaker assumptions.

In contrast to Klemperer and Meyer [10], we restrict the supply functions that
firms can use to be non decreasing. This restriction is appropriate for the analysis of
industries where firms cannot commit to a decreasing supply schedule, or to those
where decreasing supply functions are ruled out by design, as in many organized
markets. In the Spanish electricity market, for example, decreasing supply functions
are explicitly ruled out see [5, 4.3.1 Simple Bids, p. 9, 4.6.1.6 Verification of the
Contents of Simple Bids, p. 14]. It turns out that restricting supply functions to be
non decreasing significantly reduces the set of prices that can be sustained by SFE.
The monopoly price, in particular, can no longer be sustained by SFE the largest
price that can be sustained by SFE is the Cournot price.

As in the papers mentioned above, symmetry plays an important role in the
analysis. It seems, however, that appropriate versions of Proposition 2.1 and
Theorem 2.2 hold for asymmetric industries, although the proofs will be
considerably more cumbersome.

2.1. The industry

Demand is known to all firms with certainty. Throughout it is assumed that the
demand function D: R, — R, is twice continuously differentiable, strictly decreas
ing, and concave on (0, p), where p >0 satisfies D(p) >0 for p<p, and D(p) = 0 for
p=p. All firms have access to the same technology, and therefore have identical cost
function, C:R—R; we assume that C is twice continuously differentiable, non
decreasing and convex on Ry, and satisfies C'(0)<p, and C(g) = C(0) for ¢<O0.
(Extending the domain of the cost function to include negative quantities is

inconsequential and simplifies our analysis.)
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An industry is therefore described by a triple (D, C,N), indicating the market
demand, D, the cost function, C, and the set of firms, N = {1, ...,n} where n>2. In
what follows, let us be given an industry (D, C, N).

2.2. Competition via supply functions

Firms compete by simultaneously choosing a supply function, i.e., a non
decreasing real valued function on [0, p] that is continuously differentiable on
(0,p). For a profile of supply functions s = (sy, ..., ,), a market clearing price is a
solution to the equation

n
> silp) = D(p). (MC)
i1
Since the market demand is strictly decreasing and the supply function of each firm is
non decreasing, if a market clearing price exists, then it is unique. For each profile of
supply functions s, let p(s) be the market clearing price if it exists, and let p(s) be zero
if a market clearing price does not exist. The profit (payoff) of a firm ie N is given by
m;i(s) = p(s)si(p(s))  C(si(p(s))). (This construction implicitly assumes that when a
market clearing price does not exist the revenue of every firm is zero.)

A supply function equilibrium (SFE) is a (pure strategy) Nash equilibrium of the
game described. Write SFE(D, C, N) for the set of supply function equilibria. In a
SFE each firm maximizes profits on its ‘“residual demand”; that is, if
§eSFE(D,C,N), then p(s) = p solves

max p<D(p) > S}(p)> C<D(p) > S}'(P))7

pell] 1 =%

for each ie N. If pe (0, p), then § satisfies

Wﬂzm@+@m Za@@sc@@ Zm@>ﬂ,
J# I3 j#i

for each ie N. Writing ¢; = $;(p), and using the market clearing condition (MC), this
condition can be written for each ie N as

@+@m Za@w<wmﬂ. (E:)
j#i
Because the demand function is concave and the cost function is convex, if in
addition each §; is a convex function, then satisfying the system of equations formed
by (Ei), ..., (E,) and (MC) is a sufficient condition for a strategy profile § to be a
SFE. Thus, every equilibrium outcome (p,qi, ...,¢,) such that 0<p<p must be a
solution to the system of equations formed by (E;), ..., (E,), and (MC), for some
profile of supply functions s. For seSFE(D,C,N), we denote by
(P(5),q1(s), ..., qu(s)) the associated equilibrium outcome.



2.3. Competitive and Cournot prices

In determining the market prices that can be sustained by SFE the competitive
price and the Cournot price play an important role. In our framework each of these
prices is a solution to a system of equations.

A Cournot outcome (p, i, ...,qy,) is characterized by the system of equations
g+ (P C@)D'p) =0, (C1)
for ie N, and
> a=Dp). (C2)
i1

Eq. (C1) ensures that the output of each firm maximizes its profits given the
aggregate output of its rivals, whereas (C2) ensures that the market clears.

Our assumptions on demand and cost functions imply the existence of a unique
Cournot outcome, which is symmetric (i.e., satisfies g = --- = g,). (The Cournot
equilibrium is unique and symmetric under much weaker assumptions on the
curvature of demand and cost functions; see, e.g., [2].) Given an industry (D, C, N),
we denote by p(D,C,N) and §(D, C,N) the market price and the output of each
firm, respectively, at the Cournot outcome.

A competitive equilibrium (p,q,, ...,q,) satisfies the system of equations
C'(g) =p (@)
for ie N, and
> 4,=D@). (€2)

i1
Our assumptions on demand and cost functions imply the existence of a unique
competitive price, which we denote by p(D, C, N). Clearly

0<p(D,C,N)<p(D,C,N)<p.

2.4. Results

Proposition 2.1 shows that if s is a SFE that leads to the Cournot price, then the
outcome associated with s is the Cournot outcome. Moreover, in every SFE that
sustains the Cournot outcome, the derivative of the supply function of every firm
vanishes at the Cournot price.

Proposition 2.1. Let (D,C,N) be an industry, and let se SFE(D,C,N). If p(s) =
p(D,C,N), then s;(p) = g(D,C,N), and s(p) = 0 for ieN.

Proof. Let se SFE(D,C,N) be such that p(s) = p(D,C,N) = p. Since pe(0,p), s
satisfies condition (E;) for ie N. We show that s;(p) = g(D,C,N) =g for ieN.
Assume by way of contradiction that there is a firm j such that s;(p)#¢g. Since
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>1 1 si(P) = D(p) = ng, assume without loss of generality that s;(5) = ¢;<g. Then,
because D is decreasing, C is convex, and each s; is non decreasing, we have

0=g+@ C@)DP)>q+@ C(g)DPp)

>q;+ (P C’(%—))(D’(ﬁ) ZS?(P))

i#]

Thus, condition (E;) is not satisfied, which is a contradiction.
We show that ,(p) = 0 for ie N. For ie N and je N\i, (E;) and (C;) imply

0=7+D () c’<q>>:q+<D'<p> Zﬂ@))(p (@)

k#j
Therefore >, ,;5,.(p) = 0, and since 53 >0 for k#/, we have s(p) =0. [

Note that concavity of demand plays no role in the proof of Proposition 2.1.

Next, we study the set of outcomes that can be sustained by SFE. Klemperer and
Meyer [10] have shown that when supply functions are not restricted to be non
decreasing, then every outcome (p,qi,...,q,)€R’, such that D(p) =37 | ¢; and
C'(g;) <p for each ie N can be sustained by a SFE; in particular, the monopoly price
can be sustained by SFE. Restricting supply functions to be non decreasing
significantly reduces this set; in particular, the monopoly price can no longer be
sustained as a SFE.

Write SFE,(D, C,N) for the set of prices that can be sustained by SFE, i..,
peSFE,(D,C,N) if p=p(s) for some se SFE(D,C,N). Theorem 2.2 establishes
that SFE,(D,C,N) is the half open interval containing the prices between the
competitive price and the Cournot price.

Theorem 2.2. SFE,(D,C,N) = (p(D,C,N),p(D,C,N)].

Proof. Write p(D,C,N) = p and p(D,C,N) = p. Let pe(p, p]; we show that there is
§e SFE(D, C, N) such that p(s) = p. Write § = Df), and for ie N let §;(p) = d + dp,
where d and d satisfy

a+dp=4 (2.1)

and
g+ C@)DP) (n 1)d)=0. (2.2)

Note that §(p) = d for ie N. We show that ¢>0, and therefore that each s; is non
decreasing. Since p<p and D is decreasing we have §> g, and since D concave and C
is convex we have

i+ C@)Pp=q+@ C@)DPp) =0,



and therefore

1 q
% = D'(p) + ——— ] =0.
i~ (00 o)
Eq. (2.1) and the definition of § guarantee that p is the market clearing price for
§= (1, ...,5,). Eq. (2.2) ensures that § satisfies E; for ie N. Since each §; is convex,
we have §e SFE(D,C, N).

Let § be such that p(s) = p<p<p. We show that §¢ SFE(D, C,N). Since D is
decreasing, we have D(p) = D(p) > D(p) = 0; hence there is one firm ie N producing
$i(p) = q”,»}DT(p)>O, and since C is convex, (C1) implies that C'(§;) > C’(DT(p)) =p=p.
Since sj/(p”) >0 for je N, and D is decreasing we have

gi + (D,(ﬁ) Z 5;@)) #  C'(G:))>0.
j#i
Thus, condition (E;) is not satisfied. Moreover, if p =0 then we have m;(s) =

C(¢:)< C(0). Hence s¢ SFE(D,C,N).

Finally, let § be such that p>p>0. We show that §¢ SFE(D, C, N). Since D is
strictly decreasing, we have D(p)<D(p). Consequently, at least one firm ieN is
producing §;(p) = ¢§i<qg=g(D,C,N). Thus, since s)(p)=>0, for ieN, and
D'(p)<D'(p) (recall that D is concave), (C1) implies

0=g+D'(p)/p C’(f‘/))>fii+<D’(ﬁ) Z%(ﬁ))(ﬁ C'(d:)-

j#i
Hence condition (E;) is not satisfied, and therefore s¢ SFE(D,C,N). O

Note that both concavity of demand and convexity of cost are used throughout
the proof of Theorem 2.2. Also note that the construction in the proof of Theorem
2.2 establishes that every price between the competitive price and the Cournot price
can be sustained by a symmetric SFE, whose associated outcome is therefore
symmetric (i.e., all firms produce the same quantity). Nevertheless, there are
asymmetric outcomes that can be sustained by SFE (see Example 3.6). It is also
interesting to observe that in the SFE constructed in the proof of the Theorem 2.2,
the parameter & ranges from zero for p = p, to infinity as p approaches p (because
P C'(¢) approaches zero).

The following remark is a direct implication of Theorem 2.2.

Remark 2.3. For each seSFE(D,C,N), we have p(s)e(0,p). Hence every SFE
outcome is a solution to the system of equations (E;), ..., (E,), (MC), for some
profile s of supply functions.

We finish this section by showing in Proposition 2.4 that within the set of
outcomes that can be sustained by SFE, the profit of the industry is uniquely
8



maximized at the Cournot outcome. This result plays an important role in
establishing in Section 3 that the Cournot outcome can be sustained by a CPSFE.

Proposition 2.4. Let (D, C, N) be an industry, and let 5, se SFE(D, C, N) be such that
p() =p(D,C,N)#p($).Then 37} | mi(5)> 30 | mil$).

Proof. Write 5(D, C, N) = p, and for pe(0, p), define
D
1) =ppip) nc(22).

Since I1 is concave (because D and C are concave), and

)=o)+ 00)(p ¢(°2))

_pp) 20 Do)

we have IT'(p) >0 for 0<p<p. Therefore I1(p)>II(p) for 0<p<p.
Let 5,§e SFE(D, C,N) be such that p(5) = p#p = p(§). Then p>p by Theorem

2.2. Further, ¢;(5) = g(D,C,N) = DT(‘”) by Proposition 2.1, and since C is convex, we
have

>0,

n n

> m(s) =1(p)>1(5)> Z (Bai()  Clail$)) = mls),

il il

which establishes Proposition 2.4. [

The following remark, which a direct implication of Proposition 2.4, establishes
that the Cournot outcome is not Pareto dominated by any other SFE outcome.

Remark 2.5. Let (D, C,N) be an industry, and let 5e SFE(D, C,N) be such that
p(35) = p(D,C,N). Then there is no §e SFE(D, C, N) satisfying n;(§) > n;(5) for all
ieN.

3. Coalition-proof supply function equilibria

In this section we introduce the notion of coalition proof supply function
equilibrium (CPSFE), and show that in our framework a CPSFE exists. Further,
under appropriate conditions there is a unique CPSFE outcome. Remarkably, this
outcome is the Cournot outcome. In both existence and uniqueness of CPSFE
outcomes, restricting the supply functions of firms to be non decreasing plays an
essential role. We comment on this issue below. We also discuss in Section 3.4 the

robustness of the uniqueness result to cost asymmetries.
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3.1. The notion of CPSFE

In environments where players can freely discuss their strategies but cannot make
binding commitments, viable agreements must be invulnerable to improving
deviations by either individual players or coalitions of players. Thus, in these
environments it is natural to ask which equilibria are “coalition proof.” Indeed, this
question has been studied in a variety of contexts, including political economy, social
choice, and industrial organization e.g., Bernheim and Whinston [4], and Yi [13]
study this issue in a variety of oligopolistic environments.

Several alternative notions of coalition proof equilibrium have been proposed in
the literature. Aumann [1] introduced the notion of strong Nash equilibrium, which
requires that a strategy profile be invulnerable to all improving coalitional
deviations. The notion of strong Nash equilibrium is often too strong. Many games
fail to have equilibria of this kind: in a Prisoner’s Dilemma game, for example, the
unique Nash equilibrium is not strong because it is vulnerable to the deviation where
both players choose the cooperative action; note, however, that this deviation is
meaningless as it is itself vulnerable to a further improving deviation by either player.

We formalize the notion of coalition proof supply function equilibrium (CPSFE
henceforth), which is just an adaptation to our framework of the notion of coalition
proof Nash equilibrium introduced by Bernheim et al. [3]. A CPSFE is a profile of
supply functions that is invulnerable to improving and self enforcing deviations by
any coalition of firms. A deviation is self enforcing if there is no further self
enforcing improving deviation available to a proper subcoalition of the deviating
coalition. Thus, following Bernheim et al. [3] we do not require that a profile of
supply functions be invulnerable to all deviations, but just to those that are
invulnerable to further self enforcing deviations by proper subcoalitions. We begin
by formally defining the notion of CPSFE.

Let (D, C,N) be an industry. We denote by 2V the set of all possible coalitions.
For a strategy profile s and a coalition M €2V, write s, for the profile of supply
functions of the members of M, and write m for the cardinality of the set M. Let s be
a strategy profile and let M €2V, 2<m<n, be a coalition of firms (recall that n>2).
Holding fixed the strategies of the members of the complementary coalition, sy,
the situation the group of firms in M faces can be modeled as that of an “industry”
(Dsp, C, M), where Dy is given for pe R, by

Dp) Y sp) D) Y s(p)>0,
D&,M(p) = ieN\M ieN\M
0 otherwise.

This recursive structure allows us to formalize the notion of CPSFE.

Coalition proof supply function equilibrium: Let (D, C, N) be an industry.

(1) If n =2, a strategy profile s is a coalition proof supply function equilibrium if
seSFE(D,C,N) and there is no §e SFE(D, C, N) satisfying n;($) >m;(s) for every
ieN.

10



(2) Let n>2 and assume that the notion of coalition proof supply function
equilibrium has been defined for industries with fewer than » firms.

(i) A strategy profile s is self enforcing if se SFE(D, C, N), and if for all M2V,
2<m<n, sy is a coalition proof supply function equilibrium of the industry
(Dsm, C, M).

(i1) A strategy profile s is a coalition proof supply function equilibrium if it is self
enforcing and if there is no self enforcing strategy profile § such that 7;(s) > n;(s) for
every ieN.

The definition of CPSFE applies to industries with no fewer than two firms. Note
that a CPSFE is a SFE, and therefore it is invulnerable to deviations by a single firm.
Given an industry (D, C,N), write CPSFE(D, C,N) for the set of supply function
equilibria.

3.2. Existence of CPSFE

Since there are no general results on the existence of coalition proof Nash
equilibrium, we begin by establishing in Theorem 3.1 that every industry has a
CPSFE. (Moreno and Wooders [12] provide conditions on the set of iteratively
undominated strategies that guarantee existence of a coalition proof Nash
equilibrium. In our framework, iterated elimination of strictly dominated strategies
will not take us very far.)

Theorem 3.1. Every industry has a coalition proof supply function equilibrium.

Theorem 3.1 is a direct implication of Proposition 3.2 below, which establishes
that the Cournot outcome can be sustained by a CPSFE. The proof of Proposition
3.2 relies on the recursive structure of Cournot equilibrium. The argument of the
proof is analogous to that used by Bernheim and Whinston [4] to establish that in an
industry (as the one described here) where firms compete a la Cournot, the unique
equilibrium is a coalition proof Nash equilibrium. Since in our context we have
multiplicity of equilibria, our proof relies on the fact that the Cournot outcome is on
the Pareto frontier of the set of SFE outcomes (see Remark 2.5). Thus, restricting the
supply functions of firms to be non decreasing plays an essential role in this
argument. Indeed, if this restriction is removed, then the monopoly outcome where
firms share the market equally arises as a SFE outcome see [10] and therefore the
Cournot outcome is no longer on the Pareto frontier of the set of SFE outcomes.

Proposition 3.2. The Cournot outcome can be sustained by a CPSFE. Moreover, every
SFE that yields the Cournot outcome is a CPSFE.

Proof. Let (D,C,N) be an industry, and let se SFE(D, C,N) be such that p(s) =
p(D,C,N) =pand ¢;(s) = g(D,C,N) = g for ie N. (The existence of a SFE leading
to the Cournot outcome is guaranteed by Theorem 2.2 and Proposition 2.1.) We
show by induction on the number of firms that se CPSFE(D, C,N).

11



If n =2, then se CPSFE(D, C, N) follows from Remark 2.5. Let n>2, and assume
that se CPSFE(D, C,K) whenever 2<k<n. We show that se CPSFE(D,C,N).
Note that for M e2" such that 2<m<k the Cournot outcome of the industry
(Dspr, C, M) is also (p,q,...,q); hence the induction hypothesis implies
Sy € CPSFE(Dg p, C, M). Since se SFE(D,C,N), s is self enforcing. Moreover,
since any other self enforcing strategy § is a member of SFE(D,C,N),
se CPSFE(D, C,N) follows from Remark 2.5. O

3.3. Uniqueness of CPSFE outcomes

Next, we establish conditions under which the Cournot outcome is the unique
CPSFE outcome. We show that when the number of firms in the industry is above a
threshold, the Cournot outcome is Pareto superior to every other SFE outcome (i.e.,
the profits of every firm at the Cournot outcome are greater than at every other SFE
outcome). Thus, any CPSFE leading to the Cournot outcome, which exist by
Proposition 3.2, is a self enforcing and improving deviation of the grand coalition to
every SFE leading to an outcome other than the Cournot outcome. Hence the
Cournot outcome is the unique CPSFE outcome.

In proving that the Cournot outcome is Pareto superior to every other SFE
outcome, a particular class of SFE plays an important role. In this class all but
perhaps one firm supply inelastically the same fixed amount, and the remaining firm
maximizes on the residual demand. (The Cournot outcome, in particular, can be
sustained by a SFE in this class.) The SFE outcomes in this class are solutions to a
simple system of equations, and can be parametrized by the slope of the supply
function of the firm maximizing on the residual demand, evaluated at the market
clearing price.

We show that for every SFE, §, one can find a SFE in this class, §, for which the
profits of the firms using an inelastic supply function (say firms 1 ton 1) are greater
or equal to those obtained by the firm with the greatest profits in the original SFE
(e, m($) = - = my_1(§) =max{n(5), ..., m,(5)}). This key result is established in
Proposition 3.3. As a direct consequence of this result, when the Cournot outcome is
Pareto superior to every other outcome in this class, it is in fact Pareto superior to
every other SFE outcome, and is therefore the unique CPSFE outcome (Proposition
3.4).

Let (D,C,N) be an industry. Consider the outcomes that can be sustained by
seSFE(D, C,N) for which there is je N such that s;(p) = ve R, for each ie N\{}
and pel0,p]. Writing p(s) =u, and s;(u) =w, we can obtain these outcomes

(u, v, w)eRi as solutions to a system of equations (E(«)) given by

w= Du)u C'(w)), (Eo..1)
v="( D'w)u C()), (Eo.2)
(n Dv+w=D(u), (Ea.3)
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for «eRy. (In system (E(a)), the parameter o is the slope of the supply function of
firm j, the firm using an elastic supply, evaluated at the market clearing price.)
System (E(x)) implicitly defines a function (u(x),v(e),w(e)) on [0, c0) that is
continuously differentiable on (0, o0). (In the proof of Proposition 3.3, given in the
appendix, we show that fixing the production of a firm with the greatest production
in an arbitrary SFE, veR,, system (E(«)) has a unique solution, (u(v), w(v),a(v)).
Moreover, o’ >0, and therefore the function « is invertible.) Define the function 7 on
[0, 0) by

n(o) = u(o)v(a)  C(v(a)).

Note that 7 is continuously differentiable on (0, o).

For 0>0 denote by SFE,(D,C,N) the set of SFE of the form described above.
Every se SFE,(D, C,N) leads to an outcome given by p(s) = u(x), g:(s) = v(a) for
ie N\{,j}, and ¢;(s) = w(«). The function n(x) provides the profits of the firms using
an inelastic supply. Note that for a = 0 system (E(x)) reduces to Egs. (C1) and (C2),
and therefore the outcome associated with every se SFEy(D, C, N) is the Cournot
outcome. Hence #(0) = p(D,C,N)g(D,C,N) C(g(D,C,N)).

Proposition 3.3 establishes the key result mentioned above. Its proof involves
tedious calculations, and it is relegated to the appendix. In the proof we use the
assumption that the cost function is thrice continuously differentiable and that its
third derivative is non negative. As shown in the proof, an implication of this
assumption is that SFE are not “very asymmetric”, a condition that guarantees the
existence of an equilibrium in the class described above that satisfies certain
properties. This assumption is also needed in Proposition 3.4 (whose proof appeals
to Proposition 3.3), and is satisfied under the conditions imposed in Theorems 3.5
and 3.7 (which proofs appeal to Proposition 3.4).

Proposition 3.3. Let (D,C,N) be an industry such that C is thrice continuously
differentiable and satisfies C"(q)=0 for ¢>0. If SeSFE(D,C,N) is such that

p(§)#p(D,C,N), then there is o>0 satisfying n(o) =max{m(5), ..., n,(5)}.

Proposition 3.4 establishes that if the function 7 of an industry (D, C, N) reaches a
maximum at « = 0, then the Cournot outcome is the unique CPSFE outcome. This
fact is a straightforward implication of Propositions 3.2 and 3.3.

Proposition 3.4. Let (D,C,N) be an industry such that C is thrice continuously

differentiable and satisfies C"'(q) =0 for ¢>0. If n(0) >n () for all x€(0, ), then
(0(5):q1(5), -, qn(s)) = (B(D, C,N),4(D, C,N), ....4(D, C,N))

for all se CPSFE(D, C,N).

Proof. Denote 5(D,C,N)=p and g(D,C,N)=g. Let se SFE(D,C,N) be such

that (p(s),qi(s), ..., qu(s)) # (P, G, ..., q). We show that s¢ CPSFE(D,C,N).

Proposition 2.1 implies p(s)#p; hence by Proposition 3.3 there is o> 0 satisfying
n(o) Zmax{m(s), ..., m,(s)}. Let 5e CPSFE(D,C,N) be such that p(5) =p and

13



qi(5) = g for ie N. (The existence of 5 is guaranteed by Proposition 3.2.) Then we
have

7i(3) = 7(0) >n(a) =max{m;(s), ..., m,(5)} =7 (s),

for all ieN. Moreover, since 5€¢ CPSFE(D,C,N), § is self enforcing. Hence
s¢ CPSFE(D,C,N). 0O

Next, we establish conditions under which in a linear industry the assumptions of
Proposition 3.4 hold. A linear industry is described by a linear demand function,
(.e., D(p) =a bp, for pe0,9], where a,hbeR,), and a linear cost function (i.e.,
C(q) = cq, for g=0, where ceR,). Our assumption that C'(0)<p amounts to
assuming ¢ <{. Thus, a linear industry is described by the parameters a, b, ¢, and n.
Theorem 3.5 establishes that if there are three or more firms in a linear industry the
Cournot outcome is the unique CPSFE outcome. We obtain this result by directly
calculating the function #, and appealing to Proposition 3.4.

Theorem 3.5. Let (D, C,N) be a linear industry. If n=3, then
(P(s),q1(s), .-, qu(s)) = (B(D, C,N),4(D, C, N), ....q(D, C,N))
for all se CPSFE(D, C,N).

Proof. Let (D,C,N) be a linear industry such that n>3, and let @, b, and ¢ be the
parameters describing the demand and cost functions. The solution to system (E(x))
yields
a+b)(a be)?
O CRY) I

((n Do+ (n+1)b)

Hence n'(2)<0 on (0,00), and therefore 7(0)>mn(a) for o€ (0, c0). Thus, the
conclusion of Theorem 3.5 follows from Proposition 3.4. [

Note that in an industry where there are only two firms the Stackelberg outcomes
are in the Pareto frontier of the set of SFE outcomes, and are therefore CPSFE
outcomes. By Theorem 3.5, however, in a linear industry the presence of three or
more firms reduces the set of CPSFE outcomes to just the Cournot outcome.
Theorem 3.7 below establishes that in fact this conclusion extends to every industry
(D,C,N) with a quadratic cost function and linear demand. Nevertheless, as
Example 3.6 shows, there are industries with three firms for which outcomes other
than the Cournot outcome can be sustained by CPSFE.

Example 3.6. Consider the industry where D(p) = 1  p? for pe[0, 1], C(¢) = 0 for

geR, and N = {1,2,3}. From the solution to system (E(x)) one can compute the
function = to obtain

7o) = g5 (2 +7) @) (z+%(\/(a2 +7) oc)).
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This function is uniquely maximized at «* = 1. Let se SFE|(D, C, N). In this SFE,
3

two of the firms produce % and the remaining firm produces 2. We show
se CPSFE(D, C,N). Since n(})>n(x) for «>0, by Proposition 3.3 s is Pareto
superior to every other SFE outcome. Hence the coalition of all three firms does not
have a self enforcing and improving deviation. In addition, the two firms producing%
are in fact at the Cournot outcome of the “‘residual industry” (fixing the production
of the remaining firm to be %), and therefore by Proposition 3.2 this coalition does
not have an improving self enforcing deviation either. Nor does a coalition formed
by a firm producing % and the firm producing % have an improving self enforcing
deviation, since these productions correspond to a Stackelberg outcome of their
residual industry. Hence s is a CPSFE.

Let D and C be the demand and cost functions of an industry. Denote by n* the
smallest integer such that

D'(p) +D"(p)p C'(q))

D(p)(1 D'(p)C"(q))
Under appropriate conditions on the functions D and C, n* provides a threshold for
the number of firms which guarantees that if n>n*, then the Cournot outcome is the
unique outcome that can be sustained by a CPSFE. Note that under our

assumptions of demand and cost n* > 2. Further, if demand is linear, then n* = 3.
Also note that for the industry in Example 3.6 we have

25+ 25
w2y PRy
2p
Indeed, in this industry =(0) > n(e) for >0 whenever there are four or more firms
(and therefore by Proposition 3.4 the Cournot outcome is the unique outcome that
can be sustained by a CPSFE).

Theorem 3.7 establishes more general conditions than those of Theorem 3.5 under
which the Cournot outcome is the unique CPSFE outcome.

n=2+

Theorem 3.7. Let (D,C,N) be an industry. If

(1) C"(q) =0 for g>0, D" (p)<0 for pe(0,p), and n=n*, or
2) C"(q) =0 for ¢g>0, D"(p) =0 for pe(0,p), and n=3 = n*,

then
(p(s)7q1(s), "-7qn(s)) = (ﬁ(Dv CﬁN)vqu)v C7N)7 ---7‘7(D7 CaN))
for all se CPSFE(D, C,N).

The following lemma provides alternative conditions that ensure that the function
7 has a unique maximum on o = 0. These conditions are useful in the proof of

Theorem 3.7. The proof of this lemma is given in the appendix.
15



Lemma 3.8. Let (D, C,N) be an industry. Assume that for each o.€ (0, o) either

1) n=n* and 22>0, or
1 ,

o =

2 (n Do (n 2)D'(u) 2>0
Then 7(0) > () for a>0.

With these results in hand we can now prove Theorem 3.7.

Proof of Theorem 3.7. We show that under either of the assumptions of Theorem 3.7
condition (1) of Lemma 3.8 is satisfied, and therefore that 7(0) > n(e) for «>0. The
conclusion of Theorem 3.7 then follows from Proposition 3.4.

Suppose that (1) of Theorem 3.7 holds. Implicit differentiation of (E(«).1) yields

ow / " !
5= D) D'u)(u Cw),

and therefore
o _
ou?

Suppose that (2) of Theorem 3.7 holds. Then again differentiating (E(x).1) we get
ow D' (u)

ou 1 C"(w)D'(u)
and therefore

&w
% o, 0
ou? 0

Checking conditions (1) and (2) of Lemma 3.8 directly allows us to establish that
the Cournot outcome is the unique CPSFE outcome for a quadratic industry
(Example 3.9), and for an industry where the cost function is quadratic and the
demand is a polynomial of third order (Example 3.10). These examples are outside
the scope of Theorem 3.7.

2D"(u) D" (u)(u C'(w))=0.

Example 3.9. Consider an industry where D(p) =1  p* for pe[0,1], C(q) = % ¢* for
¢=>0, and N ={1,2,3}. For this industry, the Cournot outcome is the unique
outcome that can be sustained by a CPSFE. We show that (1) of Lemma 3.8 holds;
hence that 7' () <0 for >0, and therefore this result follows from Proposition 3.4.
Let «>0. From (E(x).1) we have
2

w=2u(u w)=2 7 i2u'
Hence
Pw 4

(1 +2u)
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Example 3.10. Consider an industry where D(p) =1(27 p?), for pe[0,3], C(q) =
1q* for ¢>0, and N = {1,2,3}. The Cournot outcome for this industry is p =
2.1977, g = 1.8206. Implicit differentiation of (E(x).1) yields (see the appendix)
Pw . 2p(3 p?
Oy =2 1)
Ou (1+7%)
hence (1) of Lemma 3.8 does not hold. Nonetheless, it is easy to prove that (2) of
Theorem 3.7 holds. Write
1 , ow) 1 , ow
y(o) = 1((11 Da (n 2)D'(u) %) = 7(205 D'(u) %)

n

)

We show 7y() <0. One can compute (0) (see the appendix) to obtain
7(0)=D'(p)(n  n).
As

) . _
1’_"'21’7(1’_‘]) —2.2304,
p*(1+p?)
we have (0) <0. Hence it suffices to show that y’(«) <0. We have

2
Y@= 0 D)+ 0+ G o),

n=3>n"=2+

and since /(o) <0, then D"(u) + %>0 implies 7’ («) <0. Here we have

u

Pw 3
D’ —=2u|ll+——— 0.
(”)+au2 u( +(1+u2)3>>

3.4. Uniqueness and cost asymmetries

In this section we discuss the robustness of the uniqueness result in the context of a
simple linear asymmetric industry with three firms. We show that if marginal costs
are sufficiently asymmetric there are multiple CPSFE outcomes. We also show that
when firms’ costs are nearly symmetric, the Pareto superiority of the Cournot
outcome is preserved. Hence the result that the Cournot outcome is the unique
CPSFE outcome is robust to cost asymmetries. (Actually, we prove that the Cournot
outcome is Pareto superior to every outcome generated by a SFE in the class
SFE,(D, Cy, Cy,C5,{1,2,3}) with a>0, described in Section 3.3. Establishing
uniqueness of CPSFE formally requires showing that Proposition 3.3 holds for this
industry if costs are nearly symmetric. The proof of this result is cumbersome, and
we omit it.)

Consider a linear industry where there are three firms whose cost functions are
Ci(g) =0, and Cy(q) = C3(q) = cq, with 0<¢<4. The demand is given, without loss
of  generality, by D({)=1 p. Consider the SFE equilibrium

SeSFE|(D,Cy,C,,C3,N), given by §i(p) =¢i =%+¢, H(p)=¢ =1 ¢, and §
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satisfies $(p()) = ¢3 = 1L ¢) and $(p(s)) = 1, leading to profits 7 = k(1 + 3¢)?,
and 7, =273 = (1 3¢)®. (It is easy to check that (5,4i,¢a,¢s,d), with p=
{143c) and ¢ =1 are a solution to system (E(a)), suitably modified for this
industry with cost asymmetries this system includes four rather than three
equations; see below.) This equilibrium can be interpreted as one where firm 3
behaves as a Stackelberg follower, and firms 1 and 2, the leaders, compete a la
Cournot.

1
18

At the Cournot outcome of this industry, profits are 7; = %(1 + 2c)2 and 7T, =
3 = %(1 26)2. Thus, 77 @ = l}ﬂ(uc +36¢> 1). Hence for some parameter
values, e.g., ¢ = é, we have 7, 7@;>0; i.e., the Cournot outcome is not Pareto
superior to the outcome generated by the SFE § described above. Indeed, it is easy to
see that if ¢ = % the profile s'is a CPSFE this can be shown by an argument similar
to that used in Example 3.6 above.

For values of ¢ near zero, however, the Cournot outcome is Pareto superior to the
outcome generated by § (i.e., 7; >7; for ie N). Moreover, for values of ¢ near zero the
Cournot outcome is Pareto superior to all the outcomes generated by SFE in the
class SFE,(D, Ci, C5, C3, N) with a>0. To see this, note that in this industry with
cost asymmetries we must consider two types of SFE in the class
SFE,(D, Cy, Cy, C3, N), namely,

(a) those in which firms 1 and 2 (or 1 and 3) act as leaders, competing a la
Cournot, and firm 3 (2) behaves as a follower, and

(b) those where firms 2 and 3 act as leaders, competing 4 la Cournot, and firm 1
behaves as a follower.

For each type of SFE, (a) and (b), by solving the appropriate version of system of
equations (E(x)) we can calculate the profits of the leaders (as a function of «, the
slope of the followers supply) and ¢ (the marginal cost of firms 1 and 2). For the SFE
of type (a) system (E*(2)) is

@ =1+a)p,
@=1+a)p o),
q3:(17 C)7

nt+@ptega=1 p
At these equilibria the profits of the leaders, say firms 1 and 2, are

a B 1 1+ a
(o, ¢) = Z(l +c(2+a€))2 (2+a)2
and
) 1 1 +o
5 (a, ¢) :Z(l 2¢+ac)(1 c(2+oc))(2_:r7a)2.

For values of ¢ near zero both these functions are decreasing in «, and therefore the

Cournot outcome is Pareto superior to the outcomes generated by these equilibria.
18



For the SFE of type (b), solving system (E®(«)) we calculate the profits of the
leaders,

1+a

2
(2¢ 1) 2t ar

1
nlz’(oc, c) = ng(a, c) = 7

Again for values of ¢ near zero this function is decreasing in «, and therefore the
Cournot outcome is Pareto superior to the outcomes generated by these equilibria.
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Appendix

Proof of Proposition 3.3. Let (D, C, N) be an industry such that C"(¢) >0 for ¢>0
and let §eSFE(D,C,N). Write p(D,C,N)=p,q(D,C,N)=g, p(s) =p, and
¢i(5) = Gy, d; = §,(§), and 4; = Yjenyy % for ie N. Assume that p+#p.

Without loss of  generality assume that ¢ =>¢>-->q,; thus
max{m(s), ..., m,(§)} = m1(§). First we show that D(p) (m 1)§;>0. Since
§eSFE(D,C,N), for ie N we have

§i= (A4 DE)F  C@)).
by condition (E;). Hence for ie N we have
g (A4 DP)F C@)+d DE)FE @)
G+ @) C@))+ A DE)C ) C@G)

N

i

Thus, since p maximizes the profits of firm 1 on the residual demand, we have
p=C'(q1), and therefore

D(p) (n 1)41:<q”1+2qz> (n 1)gy

i>1
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=qi+) (& da)p C(q)

i>1
+ (A DP)C@) C4))
=4 D) +m Da A)F )
+ Z(/ii D'(p)(C'(4) C'(4:)
=((n Dar D'P)F C(q))
+ Y (i DTG

i>1
Let p be such that D(5) (n 1)¢) =0, and for ue[p, p] define
() =Dw) (n Dg+Dwm C D) (n 1))
We establish below that the equation
d(u) =0

has a unique solution on [g, p], @. Hence (&, W, &), where

N
-
Q
—~
~
~
=
V
(=]

w=D@) (n g
and
G
i C'(q)
is the unique solution to the system E(«) for v* = ;. Moreover, i>p (because
pa

¢(p)=0 and ¢’ <0). Further w>0, and @>0. To see this note that #=p and §, >¢;
for i>1 imply

&= D'(i) +

And since C is increasing, we have i C'(W)=p C'(¢,) >0, and therefore
w= D@®@ C'(w))>0.
Now, because C’ is increasing, §; =g, =W implies
g G W G W

5= D'(ii - > >0.
=Dt eGy T d @) @ owCE o)

Moreover, it is easy to see that if §; = ¢, = wthen §, = --- = ¢, =gand p =i = p,
which contradicts that p#p. Thus ¢, >w and therefore &> 0.

Let s be a profile of supply functions satisfying for ie N\{n}, Si(p) =4, for
pel0,p], and §,(it) = W, §, () = &. The above construction implies §e SFE;(D, C,N).
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Moreover, p($) = = u(d@)=p = p(s), and
m($) =pE)5i(p(5)  CE(P(3)) =pE)d  ClG1)=rpq  Clg1) =m($),

which establishes the conclusion of Proposition 3.3.
It remains to be shown that ¢(x) = 0 has a unique solution on [p, p]. Since p>p,
0<p C'(41)<p (C'(0), and therefore

o(p)=Dp) . Da+DE)p C(DE) (r 1)41))
—D(H)F C(0)<o.
We show that ¢(p) =>0. Denote § = D(5) (n 1)4;. Then we have
5)=D(p) (n D@ +D'@)F C(g)
= Da@p CG) +ZIA (G) C'(4))
D'(p) (C,(‘j) C'(g)+m DHC(G) Zl Cl(‘ji))'

As noted above p= C'(4;); moreover, because C is a convex function and ¢ > ¢;, we
have C'(¢,)>C'(¢;) for i>1. Hence the first term in the above expression is non
negative; i.e.,

(n DG C@n)+Y A(C(@) C(d))=0
i>1
We show that the second term is also non negative. Since ¢, >¢; for i>1, we have
ii=D/p) > 4=DP) (n 1) =qfori>1.Thus, fori>1 thereis Z;€[0, 1]
such that §; = 4;4; + (1 1;)4. Hence
G+ DG =D@) =gi+> di=q+Y, (hdi+(1 1)J.
i>1 i>1

Thus,
g d=@ 9y, 0 i),

and therefore either > ,_ (1 4;) =1 or §; = 4. This equation together with our
assumption that C"(g) >0 for ¢>0, yields the inequality

(n DC(G) > C)=m DCG) > Clugi+(1  i)g)

i>1 i>1

> (n ) T AC@ 0 e

i>1

—(C@) @Y1 )

i>1
=C(q) (9.
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Hence

i>1

D'(p) (C'((j) C'(g1) + NC'(g) > C'd@)

Therefore ¢(5)=>0.

The Intermediate Value Theorem implies that the equation ¢(u) =0 has a

solution on [f, p]. Moreover, the solution is unique since ¢’ <0.

Proof of Lemma 3.8. Let «>0. From the definition of = we have

7'(2) = o' (2)o(a) + (u(x) C'(v)) (% u' (o) + %)

From (E(x).1) we have
ow  D'(u) D'(u)(u C'(w))

o o
From (E(x).2) we get

ov (u C'(v)

o 1T W D)
and

o o D) D'(u(u C(v)) 0

IO D)
From (E(x).3) we have

i (o) = (G

- <0
D'(u) (n 1)@ %

Ou

Substituting in the expression of n'(a) we have

= (x Do)+ (meen %))
o LI ]

n 1

This establishes the conclusion of Lemma 3.8 under (2).

)
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Note that
o D0 = 2pp) PP D)
o DR DG C@)
J“”(” > D @b '<p>>>
—D(p)n <.

We establish Lemma 3.8 under (1) by showing that y’(x) <0 for e (0, o). We have

Y@= 0 e 20 + SR w)

n 1
2y
= (1 D”(u)u'(oc))+n—11( D’ (u )+(3_2) ' (20).

Since £2¥>0 and #/(2) <0, we have (recall that D is a concave function)

2
Z D" (u )+%) ' () 0.

Hence in order to prove that y'(«) <0 it suffices to show that 1 D" (u)u/(2) >0. As
' (o) <0, (E(x).3) implies

v ow
/ / _ ov / ow

0<D'(w'(0) =(n 1) ((%u (o) +v (oc)) + Em u' ().
Since

ow

(@ <0,
the above inequality implies

ov

2 ' () + v/ () >0.
Since

oy (u Cv)

YO =T o D@y
we have

dv iy (% D' D'uu C®©)Y , ;
8uu(oc)—i—v(oc)—( T+ O D) )u(oc)—i—u(a)

— % D,(u) / /! / !
= (1 eImIP D’(u)))u () + (1 D"(w)u(a))v' () >0.

The first term in the right hand side of the above expression is negative. Hence the
second term must be positive. Since v/(x)>0, we must have 1  D"(u)u'(a)>0.
Therefore 7(2) <0, and since 7(0) <0, we have y(x) <0 for «>0. O
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