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Summary. We study the Mas-Colell bargaining set of an exchange economy
with differential information and a continuum of traders. We established the
equivalence of the private bargaining set and the set of Radner competitive equi-
librium allocations. As for the weak fine bargaining set, we show that it contains
the set of competitive equilibrium allocations of an associated symmetric in-
formation economy in which each trader has the “joint information” of all the
traders in the original economy, but unlike the weak fine core and the set of fine
value allocations, it may also contain allocations which are not competitive in
the associated economy.
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1 Introduction

There is a large literature studying the cooperative foundations of competitive
equilibria. In this literature the core is introduced as a solution concept that, with-
out appealing to an specific institutional framework, identifies the allocations that
may result from a multilateral bargaining situation in which traders discuss alter-
native mutually beneficial trades. A difficulty of the core as a solution concept is
that when a coalition threats to break an agreement it does not take into account
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how other coalitions may react to this threat; i.e., coalitional objections to a pro-
posed allocation are not required to be robust to possible counterobjections. To
address this issue, Aumann and Maschler (1964) introduce the notion of bargain-
ing set for cooperative games with finitely many players. In the definition of the
bargaining set, coalitional objections to a proposed agrement that admit coun-
terobjections are disregarded; that is, when demanding improvements, coalitions
must take account of the reactions of other coalitions—for a discussion of this
issue (see Maschler, 1976, 1992). Mas-Colell (1989) introduces a new notion of
bargaining set and shows that in a complete information exchange economy with
a continuum of traders it coincides with the set of competitive allocations. [The
equivalence of the core, the set of value allocations and the set of competitive
equilibrium allocations in this context was established by Aumann (1964, 1975).]

Radner (1968, 1982) introduces a model of exchange economy with differ-
ential information in which every trader is characterized by a state dependent
utility function, a random initial endowment, an information partition, and a
prior belief. In this framework, traders arrange contingent contracts for trading
commodities before they obtain any information about the realized state of na-
ture. Radner (1968) extends the notion of Arrow-Debreu competitive equilibrium
to this model. In the definition of competitive equilibrium (in the sense of Rad-
ner), the information of an agent places a restriction on his feasible trades (i.e.,
his budget set): better information allows for more contingent trades (i.e., en-
larges the agent’s budget set). Thus, a Radner competitive equilibrium rewards
the information advantage of a trader.

In this paper we study the relation of the Mas-Colell bargaining set and the
set of competitive allocations of an economy with differential information and
a continuum of traders. Our aim is not only to determine whether there are
equivalence results similar to those found for complete information economies,
but also to explore whether the bargaining set discriminates between traders with
differential information.

In the context of exchange economies with differential information and
finitely many traders, Yannelis (1991) introduces the concept of private core,
and proves that it is non-empty. Krasa and Yannelis (1994) introduce the no-
tion of private value allocation, and discuss examples where the private value
rewards the information advantage of a trader. In this approach, the traders of
a coalition use only their private information (i.e., there is no information ex-
change). Einy, Moreno and Shitovitz (1998) show that in a Radner type economy
with a continuum of traders the private core coincides with the set of Radner
competitive equilibrium allocations, and Einy and Shitovitz (1998) establish the
analogous result for the set of private value allocations. Thus, as pointed out by
Koutsougeras and Yannelis (1993) and Krasa and Yannelis (1994), the private
core and private value reward the information advantage of a trader.

Our findings in the present paper confirm these results: we introduce the
notion of Mas-Colell private bargaining set, and we show that in a Radner type
economy with a continuum of traders this set coincides with the set of Radner
competitive allocations. Our proof that the Mas-Colell private bargaining set
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coincides with the set of Radner competitive equilibrium allocations is along
the lines of the proof of Mas-Colell (1989), although the details of some of the
arguments require more involved constructions because we must deal with the
measurability restrictions imposed by the traders differential information, and
also with the possibility that competitive prices may not be strictly positive.

An interesting question is whether the information advantage of a trader is
rewarded when we account for the possibility that traders in a coalition may com-
municate and share some of their information. These possibilities are captured by
the notion of fine core due to Wilson (1978). Einy, Moreno and Shitovitz (1998)
show that the set of (weak) fine core allocations of a Radner type economy with
a continuum of traders coincides with set of competitive equilibrium allocations
of an associated symmetric information economy in which each trader has the
“joint information” of all the traders in the original economy. Einy, Moreno and
Shitovitz (1999) establish an analogous result for fine value allocations.

These results suggest that when the possibility of sharing information is in-
troduced the information advantage of a trader is worthless. Interestingly, this is
not the case when we use the weak fine bargaining set as the solution concept:
we find that in a Radner type economy with a continuum of traders the weak
fine bargaining set contains the competitive allocations of the associated sym-
metric information economy, albeit it may also contain other allocations where
the traders with an information advantage are more favorably treated. Thus, in
contrast with the weak fine core and the set of weak fine value allocations, the
weak fine bargaining set may reward the information advantage of a trader.

2 The model

We consider a Radner-type exchange econeéfnyvith differential information
(e.g., Radner (1968, 1982)).
The space of traders is a measure space’(), whereT is a set (the set
of traders), X is a o-field of subsets oflf (the set ofcoalitions), and x is a
non-atomic measure off. The commodity space i®,. The space of states of
nature is a finite sef2. The economy extends over two time periodss 0, 1.
Consumption takes place at= 1. At 7 = O there is uncertainty over the state
of nature; in this period traders arrange contracts that may be contingent on the
realized state of nature at = 1. At 7 = 1 traders do not necessarily know
which state of naturey € (2 actually occurred, although they know their own
endowments, and may also have some additional information about the state of
nature. We do not assume, however, that traders know their own utility function.
The information of a tradet € T is described by a partitiod; of (2.
We denote by the field generated byl;. If wg is the true state of nature,
at 7 = 1 tradert observes the member df; which containswy. Every trader
t € T has a probability distributiom; on {2 which represents hiprior beliefs.
The preferences of a tradérc T are represented by siate dependent utility
function, u; : 2 x R, — R such that for every (X) € 2 x R\, the mapping
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(t,x) = u(w,x) is X' x .2 measurable, where is a fixed member of?, and
.7 is theo-field of Borel subsets dR.. If x is a random bundle (i.e., a function
from 2 to R) we denote byh(x) the expected utility of tradert € T from x.
That is
he() = ) ae(w)ue(w, x(@))-
wen

An assignment is a functionx : T x 2 — R\, such that for everw € 2 the
functionx(-,w) is u-integrable oT. There is a fixednitial assignment €; e(t, w)
represents thénitial endowment of tradert € T in the state of nature € (2.
We assume thad(t,w) is in R, for every (tw) € T x 2, and for everyt € T
the functione(t, -) is .A-measurable.

In the rest of the paper, an econorflyis an atomless economy with differ-
ential information as described above. Also we use the following notation: For
two vectorsx = (X1,...,x) andy = (y1,...,¥) in &' we write x > y when
x >y foralll <k <I,x>ywhenx >y andx #y, andx > y when
X > Yk forall 1<k <I.

Let & be an economy. Arivate allocation is an assignment such that
(2.1) for almost allt € T the functionx(t, -) is .%4-measurable, and
(2.2) [ x(t,w)dp < [; e(t,w)dp for all w e 2.

A price systemis a non-zero functiop : 2 — ®\,. Lett € T. Write M, for the
set of all.Z-measurable functions frorf? to R',. For a price systenp, define
the budget set of t by

B(p,t) = {x [x €M and > p) x@) < Y pw)- e(t,w)}.
wen wen
A competitive equilibrium (in the sense of Radner) is a pair, §) wherep is a
price system and is private allocation such that

(2.3) for almost allt € T the functionx(t, -) maximizesh; on B(p,t), and

(24) Zweﬁ p(w) : fT X(t7 w)d/l/ = ngﬂ p(w) . fT e(t7w)dﬂ'

A competitive allocation is a private allocatiorx for which there exists a price
systemp such that (px) is a competitive equilibrium.

Note that since? is a finite set there is a finite familyiI; }i; of partitions
of {2 such that for allt € T there is 1< i < n with II; = II;. We assume that
forall 1 <i <n,the setTi = {t € T | Iy = II; } is measurable, and(T;) > 0.
For all 1<i < n we denote by% the field generated byr; .

Throughout the paper we assume that fortadl T andw € 2 the function
u;(w, -) is strictly increasing and continuous &. (A functionu : ®, — R is
grictly increasing if for all x,y € ®,, x >y implies u(x) > u(y). )

Einy, Moreno and Shitovitz (1998) have shown that if the utility functions
of the traders are continuous and strictly increasing, and if every commaodity is
present in the market (i.efrr e(t,w)dp > 0 for all w € £2), then a competitive



equilibrium (in the sense of Radner) exists when the economy is irreducible
(see Theorem A in Einy, Moreno and Shitovitz, 1998). Since in our model the
initial endowments of the traders are #,,, the economies we consider here
are irreducible (see Proposition 3.1 in Einy, Moreno and Shitovitz, 1998), and
therefore always have a competitive equilibrium.

3 The private bargaining set

In this section we introduce the notion of (Mas-Colell) private bargaining set,
and show that it coincides with the set of (Radner) competitive allocations. We
begin by extending to our model the definition of private core due to Yannelis
(1991).

Let & be an economy, and letbe a private allocation. Arivate objection
to x is a pair (Sy) such that

3.1 u(S) >0,

(3.2) y(t, ) is .Z%-measurable for almost dle S,
(3.3) [sy(t,w)dp < [ge&t,w) forall w e L2,

(3.4) he(y(t, ) > h(x(t,-)) for almost allt € S, and

(3.5) u({t € S| he(y(t,-)) > he(x(t,))}) > 0.

An assignmenk is a private core allocation of & if it has no private objection.
The private core of & is the set of all private core allocations &f.

In defining the core, usually the inequalities (3.4) are strict, and (3.5) is
omitted. Since in our framework the utility functions of the traders are continuous
and strictly increasing in every state of nature, these alternative definitions of the
core are equivalent.

Let & be an economy, let be a private allocation and let (§) be a private
objection tox. A private counterobjection to (S,y) is a pair (Q z) such that

(3.6) u(Q) > 0,

(3.7) z(t, -) is .-measurable for almost dlle Q,

(3.8) fQ z(t, w)dp < fQ et,w) for all w € 02,

(3.9) he(z(t, -)) > h(y(t,-)) for almost allt € Q N'S, and
(3.20) he(z(t, -)) > hy(x(t,-)) for almost allt € Q\S.

A private objection ta, (S,y), is justified if it has no private counterobjection.
The (Mas-Colell) private bargaining set is the set of private allocations which
have no justified private objection. Note that the private core of an ecorddmy
is a subset of the private bargaining set®f

Theorem A. The private bargaining set of an economy ¢ coincides with the set
of Radner competitive allocations of ¢ .
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Einy, Moreno and Shitovitz (1998) have established that the set of Radner
competitive equilibrium allocations of an econortfy as defined here coincides
with the private core of¢. Since the private core is a subset of the private
bargaining set, in order to prove Theorem A it suffices to show that every private
bargaining set allocation of is a competitive allocation of". Our proof of
this result is along the lines of the proof of Theorem 1 in Mas-Colell (1989),
although the details of some of the arguments require more involved constructions
because we must deal with the measurability restrictions imposed by the traders
differential information, and also with the possibility that competitive prices may
not be strictly positive. (In spite of the fact that traders utility functions are strictly
increasing, in an economy with differential information we cannot guarantee that
competitive prices are strictly positive.) In establishing this result, the notion of
competitive objection will be useful.

A private objection (Sy) to x is a competitive objection if there is a price
systemp such that for almost all € T

(38.11) ift € Sandz € M, satisfiesh(z) > h(y(t,-)), then}" ., p(w)-z(w) >
Y wen PW) - et,w), and

(3.12) ift € T\S andz € M; satisfiesh;(z) > hi(x(t, -)), then

DwenPW) Z(W) = 3 o PW) - &t w).

Theorem A is a consequence of the following two lemmata.

Lemma 3.1. Every competitive objection (S,y) to a private allocation x is
justified.

Proof. Let (S,y) be competitive objection to an allocation) and letp be the
price system associated with,(§. Assume contrary to our claim that there is a
private counterobjection (Q) to (S,y). Thenh(z(t,-)) > h(y(t,-)) for aimost
allt € QNS, andh(z(t, )) > hi(x(t,-)) for aimost allt € Q\S. Since for all
teTandalw € 2, u(w,-) is strictly increasing ane(t,«) > 0, and since
(S,y) is a competitive objection, for almost dlle Q we have

3 pw) ztw) > Y p) - et,w).

wen wen
This contradicts that for all € £2, fQ z(t,w)dp < fQ e(t,w)dp. O

Lemma 3.2. If x is not a competitive allocation, then there is a competitive ob-
jection to x.

Proof. Throughout the proof we assume without loss of generality &) =
1. Assume thatx is not a competitive allocation. We construct a competitive
objection tox. Define

P =

n
i=

|
pe@)?> D pw =1andd p(w) >0, forall Ae II

1 weN j=1 w€eA



ThenP is a non-empty convex subset of ()¥. Now for p € P andt € T, the
budget seB(p,t) is a compact subset &fl;. Therefore the functiom; attains a
maximum onB(p,t). For allp € P and allt € T let

D(p,t) = {x € M | x maximizesh; on B(p,t)},

and

D(p,1t) if h(D(p,t)) > he(x(t,))

F(p,t)=¢ D@, yu{et,)} if h(D(p,t))=h(x(t,))

{e(t, )} it h(D(p,t)) < he(x(t,)).

Let |
a=1+ g (t,w)dp,
and let
I
K = {x @7 YD %W < a}7
weNn j=1

and

K={X€KZIZXJ(w)=a}.

wen j=1

Note thatK is a non-empty compact convex subset ob ) Write P for the
closure ofP, and define a correspondenge P x T — 2K by

F(p,t)NK if pePandD(p,t)NK #0
op,t)y=4 Kn{xd|deF(p,t), A\>0} if peP andD(p,t)nK =0
B(p,t) NK if peP\P.

For everyp € P define
p)= [ ¢(p,t)dp — [ et,-)dp.

Then for everyp € P, ¥(p) is a non-empty convex subset of the compact convex
setK. The proof thaty) is also upper semicontinuous éhis standardFrom
the definition ofy it is clear that for allp € P we havep - ¢(p) < 0. Therefore
by (1) in Section 5.6 of Debreu (1959), there exipts€ P andz* € (p*)
such thatz* < 0. We show thatp* ¢ P\P. Supposep* € P\P; thenz* ¢

(Jz(B(p*,t)NK)dyu — [; &(t,)du). Therefore

| |
Sy g@=a- L3 [etwdi=1

wen j=1 wen j=1

which contradicte* < 0. Thusp* ¢ 5\P. As z* < 0, we have

2 /T(F(p*,t)m K)du—/Te(t,~)du.



Hence there exists an integrable functfoon T such thaff (t) € F(p*,t) for all
teTandz* = [ f(t)du — [; &t, )dp. Write

S={teT|f(t) e D(p*,1)},
and
CP")={teT |h(D(P 1) > h(Xxt, )}
Sincex is not a competitive allocation, we haydC (p*)) > 0. As C(p*) C S,
u(S) > 0.
Now for all (t,w) € T x 2 let
y(t, w) = (F(O))(w).

We show that (Sy) is a competitive objection t&. As noted aboveu(S) > 0.
Sincez* < 0 andf (t) = e(t, ) for t € T\S, we have

Ly&wﬂuéédtwmh

for all w € 2. By the definition ofy we haveh(y(t,-)) > hi(x(t,-)) for all
t € S, andh(y(t,-)) > h(x(t,-)) forallt € C(p*). If t € S andz € M; satisfies
h(z) > he(y(t, ), thenh (D (p*,t)) < hi(z). Therefore

S pr) - z@) = 3 pw) - et w).

we wenR
Lett € T\S. Then h(D(p*,t)) < hi(x(t,-)). Therefore ifz € M; satisfies
h’[(z) > h'((X(t ))7 thenh’((z) > h'((D (p*7t))7 and thus

D pW) - zw) > Y prw) - et w).

wes wen

This completes the proof that ($) is a competitive objection ta. [

4 The weak fine bargaining set

In this section we introduce the notion of weak fine bargaining set and study its
relation with the set of competitive allocations.
Let & be an economy, and |& € 3. Define

1(S)={i|1<i <nandy(SNT) > 0}.

wheren andT; are defined in Section 2. Weak fine allocation is an assignment
x such that

(4.1) For allt € T, x(t,-) is \/{,.Z-measurable, and
(4.2) [; x(t,w)dp < [Seft,w) for all w € £2.



Let x be a weak fine allocation. Aveak fine objection to x is a pair (Sy) such
that

(4.3) u(S) > 0,

(4.4)y(t,-) is Viel(S) Z-measurable for all € S,
(4.5) [sy(t,w)dp < [get,w) forall w e £2,

(4.6) he(y(t,-)) > h(x(t,-)) for almost allt € S, and

(4.7) p({t € S| he(y(t, ) > he(x(t,))}) > 0.

A weak fine core allocation of & is a weak fine allocatiom which has no weak
fine objection. Theveak fine core of ¢ is the set of all weak fine core allocations
of &.

The weak fine core was introduced in Yannelis (1991), Allen (1991), and
Koutsougeras and Yannelis (1993). In order to define the weak fine bargaining
set we need to introduce the definition of weak fine counterobjection.

Let < be an economy, let be a weak fine allocation, and let,(§ be a
weak fine objection tox. A weak fine counterobjection to (S,y) is a pair (Q 2)
such that

(4.8) (Q) > 0,
(4.9) z(t, ) is V¢ () Zi-measurable for almost ale Q,

(4.10) jQ z(t,w)dp < jQ et,w) for all w € 12,
(4.12) he(z(t, -)) > he(y(t,-)) for almost allt € Q NS, and
(4.12) he(z(t, -)) > he(x(t,-)) for almost allt € Q\S.

A weak fine objection (Sy) to a weak fine allocation is justified if it has not
weak fine counterobjection. The (Mas-Colell) weak fine bargaining set the set
of weak fine allocations which have no justified weak fine objection.

Let & be an economy. Denote by™* the economy obtained frord by
giving to each trader i¥s the joint information of all the traders i#f, i.e., for
alteT, Z#*= Vinzl.%', and leaving the rest of his characteristics unchanged.
Note that in&™* all traders have the same information (i.&.; is an economy
with symmetric information). For eache T, we denote byM;* the set of all
7 *-measurable functions fror? to ®,. Let p : 2 — R be a price system. In
the economy® ™ the budget set of € T with respect top is

B*(p,t) = {x X eM®, Y p) x@) <Y pw)- e(w)}.

weG weG

A competitive equilibrium ofs™* (in the sense of Radner) is now defined as in
Section 2.

Proposition 4.1. Every competitive allocation of & * isin the weak fine bargaining
set of &
9



Proof. It is easy to see that an econondy as defined in Section 2 satisfies
the assumptions of Theorem C in Einy, Moreno and Shitovitz (1998), which
establishes that the set of competitive allocationg¢fcoincides with the weak
fine core ofé&". Since the weak fine core is a subset of the weak fine bargaining
set, Proposition 4.1 readily follows from this resulf]

As the following example shows, the analog of Theorem C in Einy, Moreno
and Shitovitz (1998) for the weak fine bargaining set does not hold: there are
allocations in the weak fine bargaining set that are not competitive allocations of
#*. For the analysis of the example we need some notation and a lemma which
is interesting on its own.

If ¢ is an economy an8 is a coalition withu(S) > 0, we denote bys the
restriction of & to S; that is, #s is an economy for which the space of traders
is (S, Xs, us), whereXs = {Q | Q € ¥, Q C S}, and s is the restriction ofu
to Xs.

Lemma 4.2. Let ¢ be an economy. Assume that (S,y) is a justified weak fine
objection to a weak fine allocation x in & . Then the restriction of y to S x 2 is
a competitive allocation of &g

Proof. Assume by way of contradiction that the restrictpof y to S x (2 is not
competitive in&g. Then by Theorem C of Einy, Moreno and Shitovitz (1998),
is not in the weak fine core ofs. Thereforey has a weak fine objection (Q)

in &s. Let z be an extension of to an assignment i¥. As Q C S, (Q,2) is

a weak fine counterobjection to (§ in & . But this contradicts our assumption
that (Sy) is a weak fine justified objection toin &. O

Example 4.3. Consider an economi in which the commodity space 8.,
and the set of traders is ([8],.72, 1), where.7? is the o-field of Borel subsets
of [0,3] and i is the Lebesgue measure. The space of states of natupe=is
{w1,wz}. All traders have the same utility function, given for &),€ 2 x R
by

U(w,x) =Inx.

The initial assignment is(t,w) = 2, for all (t,w) € T x 2. Let T, =[0,1], T, =
(1,2], and T3 = (2,3]. The information partition of a trader € T, U T is
I, = I, = {2}, and that of the tradersin T3 is II3 = {{w1},{w2}}. The
priors of the traders iy, T, and T are, respectivelygy = (3, 2), o = (3, 1),
andgs = (%., %). We construct a weak fine bargaining set allocatiorofvhich
is not competitive in ™.

Define an assignment: T x 2 — R, by

1 teTy
X(t,w) =¢ 255 teT,
245 teTs,

and
10



255 teT
X(t,wr)) =14 1 teT;
245 teTs.

Thenx is a weak fine allocation iry. We show thatx is in the weak fine
bargaining set o#, but it is not competitive iz *. Assume, by way of contra-
diction, that (Sy) is a justified weak fine objection toin &. Then by Lemma
4.2 the restrictiory of y to S x {2 is a competitive allocation g, Now if
(SN Ts3) =0, then we must have th§ift, w) = e(t,w) for all (t,w) € Sx 2. As
he(eft, 1)) < hi(x(t,-)) for all t € Ty U Ty, this leads to a contradiction. Assume
that u(SN T3) > 0. Let p be a price system such that,{) is a competitive
equilibrium of #&. Thenp(wi) > 0 andp(wz) > 0. Without loss of generality
assume thap(w,) = 1, and denote = p(w1). Then the first order conditions for
utility maximization imply that for almost alt € S,

11+ teT
Jt,w) =9 31+}) teT,
1+ teTs,
and
31+r) teT
Yt wo) =4 3(1+r) teT,
1+r teTs.

Sincep(S) > 0 and (py) is a competitive equilibrium o<, we have
<1+%) @Q+r)< 1—36 < (2.45°.
Therefore for almost alf € SN T3 we have
he(y(t, ") = % In Kl + %) @+ r)} < % In (2.457 = hy(x(t, -)).

As (S N T3) > 0, this contradicts the assumption that, ¢} is a weak fine
objection tox.

The above argument shows that if, in particulais a competitive allocation
of & *, then for almost alt € T3

he(z(t, 1)) < he(x(t, ).

Thereforex is not a competitive allocation of *. Note that the last inequality
implies that the informed traders (i.e., the tradergih are better off inx than
in any competitive allocation of *.
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