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Abstract We analyze existence of equilibrium in a one-dimensional model of
endogenous party platforms and more than two parties. The platforms proposed
by parties depend on their membership composition. The policy implemented
is a function of the different proposals and the vote distribution among such
proposals. It is shown that if voters are sincere there is always an equilibrium
regardless of the number of parties. In the case of strategic voting behavior,
existence of equilibrium can be shown provided a subadditivity condition on
the outcome function holds.

1 Introduction

In recent years there have been a number of papers in political economy dealing
with the issue of endogenous platform formation. The main idea of this liter-
ature consists in recognizing that to understand the way parties choose their
platforms one should analyze both the “external” politics of the parties as
well as the “internal” politics. The “external politics” refers to the connection
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between the political platform adopted by a party and the response of the
voters to it. The “internal politics” refers to the connection between the party’s
membership and its platform. These two sides of the party’s political problem
can be solved simultaneously, for instance, by assuming that, at equilibrium, the
proposal put forward by the party, which depends on its membership, should
be preferred by all its members to any of the policies proposed by the other
parties. An early paper using this idea in a political competition framework
to define an equilibrium concept that renders the party ideology endogenous
was Baron (1993). This equilibrium concept is closely related to the one used
in the “voting with one’s feet” models originally developed in the context of
local public goods (see Caplin and Nalebuff 1997 for an abstract framework
that encompasses both the party formation and local public finance applica-
tions). Ortuño-Ortín and Roemer (1998) use the same equilibrium concept in
an example in the one-dimensional policy space. Roemer (1999) deals with a
two-dimensional policy space problem but the nature of the “external” policy
equilibrium differs from those standard in the literature. In a closely related line
of research, papers such as Aldrich (1983), Gerber and Ortuño-Ortín (1998),
and Poutvaara (2003) have considered the interrelationship between partisan
policy platforms and political activism.

Gomberg, Marhuenda and Ortuño-Ortín (2004) (henceforth, GMO)
consider a general model of two parties competing in a multidimensional policy
space. Party platforms depend on the composition of the parties’ member-
ship (interpreted as its internal primary electorate), whereas party member-
ship depends on the proposed party platforms. Individuals vote strategically
and the overall social outcome is taken to be a weighted average of party
platforms and overall equilibrium is obtained when no group of voters can
shift the social outcome in its favor by switching parties (external equilibrium)
and the party platforms are consistent with their electorate (internal equilib-
rium). They show that existence of overall equilibrium with distinct platforms
(“pluralistic equilibrium”) in the two-party case depends on the odd-even
dimensionality of the policy space. This result follows from the theoretical devel-
opment of Caplin and Nalebuff (1997) and Gomberg (2004), which showed
that conditions necessary to ensure existence of pluralistic equilibria in two-
jurisdiction (including two-party) models are sensitive to the parity of pol-
icy space dimension. The apparently paradoxical result is somewhat clarified
by the example in Gomberg (2005), which suggests a more complex inter-
action between the number of parties and the dimensionality of the policy
space.

This paper takes up the GMO framework and studies the issue of pluralistic
equilibrium existence in the case of more than two parties. However, we restrict
the analysis to the one-dimensional policy space. In common with the above-
cited papers, the number of available “shell” parties is exogenously given. Thus,
we do not deal with a model of endogenous number of parties. This assumption
renders the approach here different from the one in Levy (2004) and from the
popular models of “citizen-candidates” (Osborne and Slivinski 1996 and Besley
and Coate 1997) in which candidates are endogenously determined.
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Nonetheless, the number of parties that in equilibrium have non-negligible
membership is endogenous in our model. In particular, we are interested in
establishing conditions for existence of equilibria in which all available par-
ties receive a strictly positive mass of votes. It turns out that such existence
results crucially depend on the specifics of the model of interparty (“external”)
competition. Namely, the results depend on the nature of the voters’ behavior
(whether the voting is sincere or strategic) and on the manner in which voting
results are aggregated into the final policy choice by the society (i.e., on whether
the political system is favoring smaller or larger parties).

In the more straightforward case of sincere voting, where all agents vote for
the party with the most appealing platform irrespective of the impact on final
policy, we show that overall pluralistic equilibrium exists for any number of
parties under fairly standard assumptions. It should be noted that formally this
result is closely related to a string of sorting equilibrium existence results in
local public goods economies dating back to Westhoff (1977).

If voting behavior is strategic (as in GMO), the results crucially depend
on the nature of the electoral system. We study two cases here depending on
either the superadditive or subadditive nature of such relation between vote
share and the influence on the outcome policy. In the superadditive case, a single
party receiving the same vote share as the sum of the vote shares received by two
parties obtains a greater weight than the sum of the weights of those two parties.
This superadditivity assumption is related to the “economies of party size” ana-
lyzed in Osborne and Tourky (2004). In this case, and for the one-dimensional
policy space, Gerber and Ortuño-Ortín (1998) show that whatever the profile of
party platforms there can be no “external” voting equilibrium with more than
two parties receiving a strictly positive vote share. Thus, and following on the
suggestion in Osborne and Tourky (2004), we consider the subadditive case (i.e.,
the case where two separate parties together are more powerful than a single
“merged” party). For this case, we provide general conditions for existence of
voting equilibrium with three parties receiving a positive vote share. Thus, our
results can be viewed as providing one formalization to the so-called Duverger’s
Hypothesis, that claims that multiparty systems are favored by the proportional
representation systems. We proceed to adapt the proof of existence of overall
equilibrium in the sincere case to deal with the strategic behavior.

The rest of the paper is organized as follows. Section 2 introduces a gen-
eral spatial model of multiparty interaction along the lines of GMO. Section 3
presents the proof of equilibrium existence of equilibrium in a voting game with
exogenous party platforms. Section 4 defines an overall multiparty pluralistic
equilibrium, Sect. 5 provides a proof of its existence in the sincere voting case,
while Sect. 6 extends the existence result to the strategic voting case.

2 The general model

The model in this section is based on GMO. The society has to implement a
vector of policies x ∈ Z, where Z is a non-empty compact and convex subset
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of R. We denote by A the set of types of agents. Each agent α ∈ A has Euclidean
preferences represented by the utility function

u(x, α) = −|x − α|, x ∈ A

We can, therefore, identify an agent with his ideal vector in A. We assume
that the set of agents A is a compact and convex non-singleton subset of Z and
so, without loss of generality, we will take A = Z = [0, 1].

The distribution of agents is described by a nowhere vanishing, continuous
density function f . We let F denote the associated distribution function. The
measure of a Lebesgue measurable subset B of A according to this density is
denoted by μ(B).

There are m ≥ 2 parties. Individuals are free to join any of the parties, result-
ing in a population partition C = {C1, . . . , Cm} of A, consisting of non-empty,
(Lebesgue) measurable subsets. The policy proposed by party i = 1, . . . , m is
denoted by Pi(C) and is determined as follows

Assumption 2.1 There is a mapping P that assigns to each partition {C1, . . . , Cm}
of A the policies P(C) = (P1(C), . . . , Pm(C)) proposed by the parties. The map-
ping P satisfies that, Pi(C) ∈ Ci for each i = 1, . . . , m.

Thus, P is an exogenous mapping that assigns to each subset B ⊂ A, the
policy of party B. One may interpret P as a profile of party statutes that estab-
lish the manner in which preferences of party memberships aggregate into a
platform. Typical examples of a Pi would be the median-voter and mean-voter
rules, which tell each party i to choose the feasible (Pi(C) ∈ Ci) policy that is
the best for, respectively, its median or mean member.1 Furthermore, we shall
assume that the policy chosen by each party enjoys the support of a minimum
fraction of the total population in that party. Formally,

Assumption 2.2 There is a δ > 0 such that if C = {C1, . . . , Cm} is a partition of
A consisting of measurable subsets with μ(Ci) > 0, then for all i = 1, . . . , m and
y ∈ Ci, we have

μ({α ∈ Ci : u(Pi(C), α) ≥ u(y, α)})
μ(Ci)

≥ δ

This assumption says that the proposal of a party should obtain a minimum
support among its members.

Given a set of proposals, p = (p1, . . . , pm), individuals shall vote, in a manner
explained below, inducing some population partition C. The corresponding

1 Notice that if Ci is an interval, this amounts to simply choosing the ideal point of, respectively,
the median or mean voter. If Ci is non-convex, though, the rule definitions may be ambiguous. We
shall resolve the ambiguity for the mean-voter rule by always assuming that if there is more than
one point in Ci at the smallest distance from the mean voter, the leftmost of these is chosen. For
the median-voter rule, if there are multiple median points in Ci we shall always take the leftmost of
these. Given the nature of equilibria we shall construct, these tie-breaking assumptions are without
loss of generality.
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vote shares are represented by a vector w(C) ∈ �m−1 = {(x1, . . . , xn) ∈
R

m+ : x1 + · · · + xn = 1}, the m − 1 dimensional simplex. When the under-
lying partition is clear we shall just write w.

The overall policy outcome depends on the manner in which the vote divides
between the parties, as well as on the propositions that are on offer and on
the type of political institution in place. We assume that the relevant political
institutions are fixed so that the policy outcome can be seen as depending exclu-
sively on the proposals and the vote distribution. Thus, there is some outcome
function T : Zm × �m−1 → Z. While, in principle, a general set of outcome
functions may be analyzed, we restrict ourselves to special classes of these. In
particular, in this paper we shall focus on the “convex combination” outcome
functions (see Alesina and Rosenthal 1997 and Ortuño-Ortín 1997).

Assumption 2.3 T(p, w) = ∑m
j=1 gj (w) pj, where g ≡ (g1, . . . , gm) is a continu-

ous function from �m−1 to itself.

The idea behind this assumption is that all parties with electoral represen-
tation have some influence on the policy implemented. Thus, our model, tech-
nically, does not include “winner takes all” models. However, the influence
exerted by minority parties could be arbitrary small, meaning that the winner-
take all model can be arbitrarily well approximated by a sequence of functions T.

The following assumption on the outcome function shall be imposed
throughout.

Assumption 2.4

(1) For every i = 1, . . . , m, the weight gi(w) assigned to party i is strictly
increasing in the vote share wi obtained by that party.

(2) For every party i = 1, . . . , m, we have that gi(w) = 0 whenever wi = 0 and
gi(w) = 1 whenever wi = 1

(3) (anonymity) If wi = wj then gi(w) = gj(w).

In terms of the vote-share impact function g, we shall concentrate on two
general families in this paper: superadditive and subadditive.

Definition 2.5 The function g is superadditive if for any vector of vote share w
with wi ≥ wj for some i �= j and for any ε ∈ [0, wj] we have that gi(w) + gj(w) ≤
gi(w) + gj(w), where wk = wk for all k �= i, j and wi = wi + ε, wj = wj − ε. We
say that g is subadditive if the reverse inequality happens, i.e. if gi(w) + gj(w) >

gi(w) + gj(w).

In words, the superadditivity of g can be interpreted as implying the polit-
ical system favoring large parties, while the subadditivity of g indicates a bias
towards small parties.

Under the assumption of Euclidean preferences, given the policy proposals
represented by p and the voting pattern represented by w, the payoff enjoyed
by an individual of type α is given by u(T(p, w); α) = −|α −T(p, w)|. Regarding
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the way agents decide their vote, two alternatives are considered in this paper,

(1) Agents vote sincerely.
(2) Agents vote strategically.

When agents behave sincerely, they vote for their most preferred proposal.
Assuming the party platforms are distinct, we may reorder parties so that
p1 < p2 < · · · < pm. Thus, taking the convention that a0 = 0, am = 1, the set of
voters who favor the proposal of party i = 1, . . . , m is

Ci(p) = [ai−1, ai] (2.1)

where ai = pi+pi+1
2 .

In the strategic case, agents care about the outcome T(p, w). Thus, it might
happen that some agents do not vote for their most preferred policy. Since
any agent in a continuum is negligible, in order for the strategic voting to be
non-trivial, as in GMO, we choose an equilibrium concept that involves the pos-
sibility of coalitional deviations [in this, we follow such papers as Alesina and
Rosenthal (1997) and Gerber and Ortuño-Ortín (1998)]. Thus, given a vector
of proposals p, the Strong Nash equilibrium (SNE) of Aumann (1959) requires
that the associated population partition C is such that no coalition of positive
measure of agents wants to deviate and vote in a way different from the one
prescribed by the equilibrium strategy. That is, any voting deviation changes the
outcome T(p, w) in a direction such that some of the members in the deviation
coalition end up worse off.

3 Existence of equilibrium in the voting game with strategic voters

In the case of sincere voting behavior, existence of equilibrium in the voting
game is automatic. Each agent votes for the closest proposal to his most pre-
ferred policy, and the corresponding population partition is given by Eq. 2.1
in the previous section. Notice that, in this case, agents do not care about the
outcome T(p, w(C)) and, consequently, the voting equilibrium does not depend
on our assumption on the type of additivity of the function g.

The case of strategic voting behavior is more complicated and, moreover,
existence of equilibrium depends on the nature of the function g. In a more
general model, Gerber and Ortuño-Ortín (1998) show that if g is superaddi-
tive2 and the policy space is one-dimensional, there is no equilibrium for which
more than two parties receive a vote share of (strictly) positive measure. A
similar result is provided, in a different but related environment, by Osborne
and Tourky (2004). They show that, if there exist economies of party size, there
is no equilibrium with more than two parties. The idea behind these results is
very intuitive. Consider an equilibrium with three parties, each of them obtain-
ing a positive vote share. Let the policy proposals be p1 < p2 < p3. Say that

2 Their definition of superadditivity is weaker than the one adopted in this paper.
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the outcome T(p, w(C)) is such that p2 < T(p, w(C)) < p3. Superadditivity of
g implies that if some (positive mass) of agents voting for p2 deviate and vote
for p1 instead, the outcome would move toward the left. It is not difficult to
show that there always exists such a set of agents among the voters of p2 whose
ideal policies are to the left of T(p, w(C)). Those agents improve by deviating
from the original strategy and voting for p1 instead. Thus, there is no three-
(or more) party equilibrium when the policy space is one-dimensional and g is
superadditive.

This negative result seems to be quite robust and Osborne and Tourky (2004)
suggest that existence of equilibrium with more than two parties can only be
explained if the dimension of the policy space is higher than one and/or there
are diseconomies of party size (in our environment this is an interpretation of
subadditivity of g).

This paper does not explore whether increasing the dimensionality of the pol-
icy space solves the equilibrium existence problem or not.3 In this section, and
following the suggestion in Osborne and Tourky (2004), we study the possible
existence of voting equilibrium in the case of subadditivity of g in the one-
dimensional policy space with more than two parties. For simplicity, we will
restrict our analysis to the case of three parties, even though, the same ideas
could be applied to any number of parties and similar results could be obtained.
Considering the general case, however, would have substantially complicated
the analysis below without providing additional intuitions, so we will state the
results and provide the proofs only for the three-party case.

Assumption 3.1 There are three parties, agents vote strategically and the func-
tion g is subadditive.

Let p = {p1, p2, p3} be the parties’s proposals. We analyze the case in which
these proposals are distinct and w.l.o.g. we assume that 0 ≤ p1 < p2 < p3 ≤ 1.
Each agent in Z has to vote for one element of p. Thus, the strategy space for each
agent α ∈ Z is Eα = p. We define E = ∏

α∈Z Eα . Clearly, an element e ∈ E spec-
ifies the way each agent votes. Thus, the vector p and the chosen strategy profile
e determine a voting partition C = (C1, C2, C3) of Z. It might be convenient to
write such partition as C(e), a function of the strategies chosen by the agents.
The outcome function is T(p, w(C(e))), and clearly p1 ≤ T(p, w(C(e))) ≤ p3.
Thus, we can define a voting game by � = (Z, f , E, u, g, T), and our equilibrium
concept is the Aumann (1959) SNE.

Definition 3.2 A strategy profile e ∈ E is a strong Nash equilibrium (SNE) of the
voting game � if there exists no (measurable subset) D ⊆ Z and no other strategy
profile e′ ∈ E such that e′

x = ex, for every x /∈ D and u(T(p, w(C(e′))); α) >

u(T(p, w(C(e))); α), for every α ∈ D.

To simplify some of the proofs we restrict our analysis to a particular family
of subadditive functions g:

3 However, it is worth mentioning that Gomberg (2005) provides an example of non-existence for
a three party case for any dimension of the policy space.
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Assumption 3.3 The function g is given by

gi(w) = h(wi)

h(w1) + h(w2) + h(w3)

where the function h is continuously differentiable when wi > 0, increasing and
strictly concave, h(0) = 0, h(1) = 1, and h′(0) = ∞.

An important example of such subadditive functions is given by h(x) = xγ ,
0 < γ < 1.

Let the strategy profile e∗ ∈ E be a SNE. We shall show existence of SNE such
that all party memberships are intervals. Thus, we can identify the partition4

C(e∗) by the numbers, a1 and a2, 0 ≤ a1 ≤ a2 ≤ 1 such that C1(e∗) = [0, a1],
C2(e∗) = [a1, a2] and C3(e∗) = [a2, 1]. Thus, for instance, the case in which party
2 gets no votes can be represented by a1 = a2.

Since individual deviations from the equilibrium strategy e∗ do not change
the outcome policy T(p, w(C(e∗))), we only need to analyze deviations by coali-
tions of positive measure.

The following lemma provides conditions that have to be satisfied by any
strong Nash equilibrium with interval memberships in a three-party voting game
with the outcome policy function satisfying the above conditions. In words, it
states that the equilibrium policy outcome must coincide with the ideal policy
of either the rightmost or the leftmost member of the centrist party (otherwise,
there would always exist a sufficiently small subcoalition of voters with ideal
points between the policy outcome and the membership partition point that
could shift the outcome in their direction by switching parties). In addition, it
requires that the ratio of the distances between the policy oucome and the policy
proposals of one of the “extremist” and the centrist parties must be inversely
related to the ratio of the rate with which these parties’ influence grows with
their vote share.

Lemma 3.4 Let Assumptions 3.1 and 3.3 hold. Then, the strategy profile e∗ is a
SNE iff either of the following conditions hold.
(1) If T(p, w(C(e∗))) ≥ p2, then T(p, w(C(e∗))) = a2 and

T(p, w(C(e∗))) − p1

T(p, w(C(e∗))) − p2
= h′(w2)

h′(w1)
(3.1)

(2) If T(p, w(C(e∗))) ≤ p2, then T(p, w(C(e∗))) = a1 and

T(p, w(C(e∗))) − p3

T(p, w(C(e∗))) − p2
= h′(w2)

h′(w3)
(3.2)

4 Note, that C(e∗) defined in this way is not a partition of Z in the usual, strict meaning of this
word, since the elements of C(e∗) intersect at the end points of the interval. However, since this
intersections consist exactly of one point and, hence, have measure zero, we may ignore them.
Alternatively, we might define the sets Ci(e∗) using half-open intervals. Nevertheless, for simplicity
of notation, we shall use the above definition with closed intervals.
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Proof We show first that if e∗ is a SNE, then either T(p, w(C(e∗))) = a1
or T(p, w(C(e∗))) = a2. Let e∗ be a SNE and suppose, for example, that
T(p, w(C(e∗))) > a2 (the proof in cases T(p, w(C(e∗))) < a1 and
a1 < T(p, w(C(e∗))) < a2) is similar). Since T(p, w(C(e∗))) is a convex combina-
tion of p1, p2 and p3 we know that T(p, w(C(e∗))) ≤ p3 and it is straightforward
to see that in equilibrium T(p, w(C(e∗))) < p3.

Let 0 < k < T(p, w(C(e∗))) − a2 and let D be the interval (a2, a2 + k). Since
the density f is strictly positive, D has positive measure. We shall show for some
0 < k < T(p, w(C(e∗))) − a2, the above set of agents, D, can deviate from the
strategy profile e∗ and be better off.

Consider the strategy profile e′ ∈ E such that e′
α = e∗

a, ∀α /∈ D and e′
α =

{p1}, ∀α ∈ D. Since the function T(p, w(C(e))) is continuous we can always
make the set D small enough so that |T(p, w(C(e∗))) − T(p, w(C(e

′
)))| < k. In

this case, if T(p, w(C(e∗))) > T(p, w(C(e
′
))) all the agents in the deviating coa-

lition D would be better off under the strategy profile s′. Thus, it only remains
to be proven that indeed

T(p, w(C(e∗))) > T(p, w(C(e
′
))) for k small enough (3.3)

Recall that

T(p, w(C(e∗))) = p1
h(w1)

h(w1) + h(w2) + h(w3)
+ p2

h(w2)

h(w1) + h(w2) + h(w3)

+ p3
h(w3)

h(w1) + h(w2) + h(w3)

It is convenient to write I(w) = T(p, w), where w = (w1, w2, w3). A sufficient
condition for condition 3.3 to hold true is

dI(w1 + ε, w2, w3 − ε)

dε
|ε=0 < 0 (3.4)

Taking the derivative and rearranging terms, inequality 3.4 can be written as

h′(w3)(I(w1, w2, w3) − p3) − h′(w1)(I(w1, w2, w3) − p1) < 0 (3.5)

Since h′ > 0 and I(w1, w2, w3) < p3 and I(w1, w2, w3) > p1, inequality 3.5
holds and, for k > 0 small enough, the coalition D may profit by deviating to
strategy e∗.

Next, we prove necessity for the case T(p, w(C(e∗))) ≥ p2. The proof of the
other alternative is analogous. Thus, from now until the end of the proof of
Lemma 3.4, we assume that

T(p, w(C(e∗))) ≥ p2

First of all, remark that, since a1 ≤ p2 ≤ a2 then, from the above argument,
we must have that T(p, w(C(e∗))) = a2.
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Necessity of 3.1: Let Ci, i = 1, 2, 3, be the coalition of agents voting for
the proposal pi, and wi the corresponding vote share when agents follow the
strategy profile e∗. Here we check the conditions needed to guarantee that:

(A) no coalition of agents in C1 wants to deviate from e∗ and vote for proposal
p2 and

(B) no coalition of agents in C2 wants to deviate from e∗ and vote for
proposal p1.

We deal with case A) first. Consider a coalition D = [0, k] ⊂ C1 of size ε

that deviates from e∗ and votes for p2. We choose D so that ε is small enough
and, by continuity, the new outcome T(p, w(C(e))) is as close as needed to
T(p, w(C(e∗))) and T(p, w(C(e))) /∈ D. Let us write T(p, w(C(e∗))) ≡
I(w1, w2, w3). We need to check that for “small” ε

I(w1, w2, w3) ≤ I(w1 − ε, w2 + ε, w3) (3.6)

If inequality 3.6 holds all the members in D are (weakly) worse off by deviating
from e∗. Thus, a necessary condition for e∗ to be a SNE is that

dI(w1 − ε, w2 + ε, w3)

dε
|ε=0 ≥ 0 (3.7)

We have that

I(w1, w2, w3) = p1
h(w1)

h(w1) + h(w2) + h(w3)
+ p2

h(w2)

h(w1) + h(w2) + h(w3)

+ p3
h(w3)

h(w1) + h(w2) + h(w3)

Taking the derivative and arranging terms we can write Eq. 3.7 as

h′(w1)(T(p, w(C(e∗))) − p1) − h′(w2)(T(p, w(C(e∗))) − p2) ≥ 0 (3.8)

Thus, inequality 3.8 is a necessary condition for a SNE.
Next we deal with case (B). Consider a coalition D = [a1, k] ⊂ C2 of size ε

that deviates from e∗ and vote for p1. We choose D so that ε is small enough
and, by continuity, the new outcome T(p, w(C(e))) is as close as needed to
T(p, w(C(e∗))) and T(p, w(C(e))) /∈ D. We need to check that for “small” ε

I(w1, w2, w3) ≤ I(w1 + ε, w2 − ε, w3) (3.9)

If equality 3.9 holds all the members in D are (weakly) worse off by deviating
from e∗. Thus, a necessary condition for e∗ to be a SNE is that

dI(w1 + ε, w2 − ε, w3)

dε
|ε=0 ≥ 0 (3.10)
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Taking the derivative and arranging terms we can write Eq. 3.10 as

h′(w1)(T(p, w(C(e∗))) − p1) − h′(w2)(T(p, w(C(e∗))) − p2) ≤ 0 (3.11)

Thus, inequalities 3.11 and 3.8 have both to be satisfied. Hence, equality 3.1 in
the statement of the Lemma has to hold.

Sufficiency of 3.1: The argument in the previous part of the proof shows that,
if Equation 3.1 holds, no “small” coalition of C1 wants to deviate and vote for
p2 and no “small” coalition in C2 wants to deviate and vote for p1. It remains to
be proved that there are no additional profitable deviations from the strategy
profile e∗. We first note that:

(i) No coalition formed by agents on different sides of T(p, w(C(e∗)) can
deviate from e∗ so that all of its members would be better off.

(ii) Say that coalition D ⊂ Ci deviates from e∗ and some of its members vote
for pj and the remaining members vote for pk, i �= j, k and j �= k. Say
that such deviation “moves” T(p, w(C(e)) in the direction to make all
members of D better off. Then, it is easy to show that there is a devi-
ating coalition D′ ⊆ D that can also achieve an improvement for all its
members by voting either to pj or to pk. Therefore, if we can show that
coalitional deviations to a single party are impossible, we will have also
shown the same about deviations in favor of different parties.

(iii) If no “small” subcoalition of C1 (respectively, C2) wants to deviate and
vote for p2 (respectively, p1) then no subcoalition of any size of C1
(respectively, C2) wants to deviate and vote for p2 (respectively, p1).
Thus, the necessary conditions analyzed in the first part of the proof
also apply for coalition deviations of any size. To see it, consider the
case of a deviation by a coalition of agents D ⊂ C1. Let ε be the size
of such coalition. We have already proven that for ε > 0 small enough
I(w1 − ε, w2 + ε, w3) > I(w1, w2, w3). We need to show now that such
inequality holds for any size ε. Suppose not. So, for some ε′ we have
I(w1 − ε′, w2 + ε′, w3) < I(w1, w2, w3). Since, I(w1 − ε, w2 + ε, w3) is
continuous in ε and

dI(w1 − ε, w2 + ε, w3)

dε
|ε=0 > 0

there must exist a coalition of size ε < ε′ such that I(w1 −ε, w2 +ε, w3) =
I(w1, w2, w3) and

dI(w1 − ε, w2 + ε, w3)

dε
|ε=ε ≤ 0

We saw in part (1) that this inequality can be written as

I(w1 − ε, w2 + ε, w3) − p1

I(w1 − ε, w2 + ε, w3) − p2
≤ h′(w2 + ε)

h′(w1 − ε)
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But, this inequality together with

I(w1 − ε, w2 + ε, w3) − p1

I(w1 − ε, w2 + ε, w3) − p2
= I(w1, w2, w3) − p1

I(w1, w2, w3) − p2
= h′(w2)

h′(w1)

implies that

h′(w2)

h′(w1)
≤ h′(w2 + ε)

h′(w1 − ε)

which contradicts the strict concavity of h.

The same argument works to show that it is enough to check deviations of
“small” coalitions of agents. Thus, it is sufficient to analyze the possibility of the
following kinds of deviations by (arbitrarily small-size) coalitions:

(a) agents in C1 that deviate and vote for p3
(b) agents in C2 that deviate and vote for p3
(c) agents in C1 ∪ C2 that deviate and vote for p3
(d) agents in C3 that deviate and vote for p1
(e) agents in C3 that deviate and vote for p2

We start with case (a). If there is an (arbitrarily-small) coalition D ∈ C1 that
by voting for proposal p3 improves the utility of all its members, then it must
be that I(w1 − ε, w2, w3 + ε) < I(w1, w2, w3). Taking the derivative with respect
to ε evaluated at ε = 0, and rearranging terms, the previous inequality implies
(I(w1, w2, w3) − p1)h′(w1) ≤ (I(w1, w2, w3) − p3)h′(w3). Since I(w1, w2, w3) =
a2 ∈ (p1, p3), we have I(w1, w2, w3) > p1 and I(w1, w2, w3) < p3, and
h′ > 0. Hence, the last inequality cannot hold true. The argument in case (d) is
symmetric.

Almost the same argument works for cases (b) and (e). Indeed if such a coali-
tional deviation in (b) were possible it must have been that I(w1, w2−ε, w3+ε) <

I(w1, w2, w3) (since moving the outcome rightwards of a2 would make everyone
in C2 worse off) and (I(w1, w2, w3) − p2)h′(w2) ≤ (I(w1, w2, w3) − p3)h′(w3),
which by the same logic can be seen to be impossible since I(w1, w2, w3) =
a2 ∈ (p2, p3). A similar argument applies to case (c) as well (all agents in any
subcoalition of C1 ∪ C2 can be better off only if the outcome moves to the left).

As mentioned above, the proof of the sufficiency of condition 3.2 is similar
and we omit it. ��

It follows from the previous Proposition that in any SNE, the outcome policy
has to coincide with the ideal policy for an agent “indifferent” between two of
the proposals.

We next state the main result of this section

Lemma 3.5 Let Assumptions 3.1 and 3.3 hold. Then, there exists a SNE.

Proof Take an arbitrary number a ∈ [p2, p3]. Consider the following strategy
profile ea ∈ E. All the agents α > a play the strategy ea

α = {p3}. The agents

12



α ≤ a are divided in two groups. The first group consists of all agents with types
in [0, sa) and the second group is given by the set of agents with types in [sa, a].
Any agent α ∈ [0, sa) plays the strategy ea

α = {p1}, and any agent α ∈ [sa, a] plays
the strategy ea

α = {p2}. Let w1(a) ≡ F(sa) (respectively, w2(a) ≡ F(a) − F(sa))
be the mass of agents in the first group (respectively, the mass of agents in the
second group). The number sa is given by the solution to

a − p1

a − p2
= h′(w2(a))

h′(w1(a))
= h′(F(a) − F(sa))

h′(F(sa))
(3.12)

(Notice that Eq. 3.12 looks similar to the first equation in 3.1). Next we show
that sa is well defined and Eq. 3.12 always has a solution. Since a > p2 > p1 the
first term in Eq. 3.12 is a (finite) positive number. And, since the functions h′
and F are continuous, so is

h′(F(a) − F(sa))

h′(F(sa))

When sa approaches 0, the term h′(F(sa)) approaches ∞ and

h′(F(a) − F(sa))

h′(F(sa))

approaches 0. When sa approaches a, we have that

h′(F(a) − F(sa))

h′(F(sa))

approaches infinity. By continuity of h′(F(a)−F(sa))
h′(F(sa))

, it follows that there is a solu-
tion, 0 < sa < a to Eq. 3.12.

Let I(a) ≡ T(p, w(C(ea))) be the outcome policy when all agents follow the
strategy profile ea. Notice that I(a) is continuous on the interval (p2, p3).

If we can find some a∗ ∈ [p2, p3] such that I(a∗) = a∗, then, the strategy pro-
file ea∗

is a SNE, because: (i) equality 3.12 is equivalent to the second equality
in the statement of Lemma 3.4 and, (ii) the first equality in the statement of
Lemma 3.4 also holds since a2 = a∗ = T(p, w(C(ea∗

))). There are three cases to
analyze:

(a) Consider first the case that I(p2) > p2. Since, I(a) ≤ p3 for every a ∈
[p2, p3] and I is decreasing in a (because w3(a) = 1 − F(a) is decreasing in
a), a standard continuity argument shows that there is some a∗ ∈ [p2, p3]
such that I(a∗) = a∗.

(b) Consider now the possibility that I(p2) < p2. In this case, since I is decreas-
ing, we also have that I(a′) < p2 for every a′ ∈ [p2, a]. Consider now the
function Î(a) that is defined in a similar way to I(a) but changing the coali-
tions on each side of a. Namely, all the agents α < a play the strategy

13



êa
α = {p1}. The agents α > a are divided in two groups. The first group

consists of all agents in [a, sa) and the second group is given by [sa, 1].
Agents in the first group vote for p2 and agents in the second group vote
for p3. Now we have w2(a) ≡ F(sa) − F(a) and w3(a) ≡ 1 − F(sa). The
number sa is given by the solution to

a − p2

a − p3
= h′(w3(a))

h′(w2(a))

One can easily show that

lim
a→p2

I(a) = Î(p2)

Thus, Î(p2) < p2 and we have a “symmetric” situation to the one faced in case
a). Thus, the same continuity argument can be used here to prove that there
exists a ≤ p2 such that Î(a) = a and the corresponding strategy profile êa is a
SNE.

(c) Otherwise, we have that

lim
a→p2

I(a) = p2

It is clear that in this case there is a SNE consisting on everybody on [0, p2]
voting for p1 and everybody on [p2, 1] voting for p3. Notice that the conditions
on Lemma 3.4 are satisfied since

a − p1

a − p2
= ∞,

h′(w2(a))

h′(w1(a))
= ∞

and the outcome is T(p, w(C(e))) = a1 = a2 = p2. ��
Remark 3.6 Notice that the previous Lemma does not rule out the possibility
that in all SNE only two parties receive a positive mass of vote. However, if
w2 = 0, i.e. the second party receives no positive measure of votes, then we
must have that h′(w2) = +∞. And, in order for Eqs. 3.1 and 3.2 to hold, we
must have that

T(p, w(C(e∗))) = p2 = a1 = a2 (3.13)

An example might help to clarify this possibility.

Example 3.7 Consider the proposals p1 = 0, p2 = 1/2 and p3 = 1. Suppose
that the distribution of agents on Z = [0, 1] is uniform. It is not difficult to
show that C1 = [0, 1/2), C2 = {∅} and C3 = [1/2, 1], correspond to a SNE
such that T(p, w(C(e∗))) = 1/2. Consider any coalition of agents D ⊂ C1.
They can deviate from e∗ by voting either to p2 or to p3. If they vote for
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p3 the weight of such policy increases and policy p2 reduces its weight. Thus,
the outcome T(p, w(C(e′))) clearly moves to the right of T(p, w(C(e∗))), and
all the agents in D are worse off. If they vote for p2 the argument is a little
bit more involved. As in the proof of Lemma 3.4 it is convenient to write
T(p, w(C(e))) ≡ I(w1, w2, w3), where w2 = 0. We want to show that the deriv-

ative dI(w1−ε,0+ε,w3)

dε

∣
∣
ε=0 ≥ 0. One can easily show that such inequality holds

iff p2h′(w2) ≥ I(w1, w2, w3)(h′(w2) − h′(w1)). And since p2 = I(w1, w2, w3) and
h′ ≥ 0 the inequality holds.

Remark 3.8 The proof of Lemma 3.5 shows that, given any proposal profile
p = (p1, p2, p3) with p1 ≤ p2 ≤ p3, it is possible to construct a SNE voter
partition C(p) = (C1(p), C2(p), C3(p)) so that the Ci(p)’s are intervals, whose
end points vary continuously with p.

4 Definition of multiparty equilibrium

As stated above, the objective of this paper is to analyze the issue of existence
of an overall equilibrium where the membership of parties, their policy plat-
forms, as well as the voting behavior of agents are endogenous. To do this we
first establish conditions ensuring that the outcome of the voting game obtained
when party platforms are exogenously fixed is well-defined. These conditions,
of course, depend on whether voters behave sincerely or strategically. Once we
understand the conditions guaranteeing existence of equilibrium in the voting
game we can tackle the problem of existence of an overall equilibrium with
endogenous party platforms.

The way the game is modeled is based on the idea that the internal and the
external politics of parties are interrelated, in the sense that party membership
determines policy platforms and policy platforms serve to attract citizens to
parties. Assuming that party membership coincides with party electorate (an
assumption that may be relaxed) we can say that equilibrium obtains when the
voting partition resulting from a policy profile on offer induces the same policy
profile.

It is easy to construct equilibria with parties being identical in their policy
positions. In this case any voting pattern corresponds trivially to an equilibrium
of the voting game, and, therefore, we are free to chose a population parti-
tion to support the identical party positions. Given the apparent “pluralism” of
positions on policy issues observed in most political systems, it is, however, of
interest to study existence of equilibria with non-identical parties.

Definition 4.1 Given an outcome function T and a party policy mapping P, we
say that (p∗, C∗) is a multi-party equilibrium if:

(i) p∗ = P(C∗)
(ii) C∗ is an equilibrium of the voting game induced by p∗.

If, furthermore, the equilibrium party proposals are distinct (pj∗ �= pk∗ for j,
k = 1, . . . , m, j �= k) such equilibrium is called pluralistic.
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Given a multi-party equilibrium(p∗, C∗), the associated policy outcome is
T∗ = T(p∗, w(C∗)).

5 Existence of multi-party equilibrium with sincere voters

Let p = (p1, . . . , pm) ∈ Z be the policies proposed by the parties. In the follow-
ing, it will be convenient to use the following notation

ai(p) =

⎧
⎪⎨

⎪⎩

pi+pi+1
2 if i = 1, . . . , m − 1,

0 if i = 0
1 if i = m.

(5.1)

and also p0 = 0, pm+1 = 1. We also let

a(p) = (a0(p), . . . , am(p))

Recall that for each i = 1, . . . , m, the set Ci(p) consists of those agents that vote
for proposal pi. In the case in which agents vote sincerely, we have that, with
the convention above,

Ci(p) = [
ai−1(p), ai(p)

]

Let X be set of possible m parties and let Y be the set of possible m policies.
We may identify these sets with

X = {a = (a1, . . . , am−1) ∈ Zm−1 : a1 < a2 < · · · < am−1}
Y = {p = (p1, . . . , pm) ∈ Zm : p1 < p2 < · · · < pm}

An element a ∈ X can be identified with a partition C = (C1, . . . , Cm) of
Z into intervals in the obvious way. That is, Ci = [ai−1, ai], for i = 1, . . . , m.
Abusing the notation, we will write P(a) = P(C), whenever C and a are related
in such a manner. Note that, since ai−1 < Pi(a1, . . . , am−1) < ai, for each
i = 1, . . . , m − 1, we have that P : X → Y and C : Y → X. In this context, an
equilibrium corresponds to a fixed point of the mapping ϕ = P ◦ C : Y → Y.
Thus, to prove the existence of equilibrium, it is enough that we restrict our-
selves to parties given by intervals.

The next assumption requires the continuity of P, when restricted to this set

Assumption 5.1 The mapping P : X → Y is continuous.

Clearly, C : Y → X is continuous, and hence so is the mapping ϕ : X → X.
Now, we are ready to state our existence Theorem for the case in which agents
vote sincerely. The following result guarantees not only that there is an equi-
librium, but also that the policies proposed by the parties are different. For
the case of sincere voting, this entails that, in equilibrium each party receives a
positive amount of votes.
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Theorem 5.2 Under Assumptions 2.1, 2.2 and 5.1 there exists a pluralistic
equilibrium.

Proof We first state a preliminary result. It is a direct consequence of Assump-
tion 2.2 and it guarantees that the policies are uniformly bounded away from
the boundary of the proposing party.

Lemma 5.3 There is some η > 0 such that for every a = (a1, . . . , am−1) ∈ X and
every i = 0, . . . , m, we have that

min
{
Pi(a) − ai−1, ai − Pi(a))

} ≥ η
(
F(ai) − F(ai−1)

)

��
Proof Suppose the lemma does not hold. Then, there is some i = 0, . . . , m and
a sequence an = (an

1, . . . , an
m−1) ∈ X such that for each n = 1, 2, . . . we have that

min{Pi(an) − an
i−1, an

i − Pi(an)} ≤ F(an
i ) − F(an

i−1)

n
≤ 1

n

Let us use the shorter the notation pn
i = Pi(an). By compactness and

taking subsequences if necessary, we may assume that {an
i−1}∞n=1 converges to,

say ai−1 ∈ [0, 1]. By taking further subsequences, if needed, we may also assume
that, either

pn
i − an

i−1 ≤ F(an
i ) − F(an

i−1)

n
for all n = 1, 2, . . .

or else,

an
i − pn

i ≤ F(an
i ) − F(an

i−1)

n
for all n = 1, 2, . . .

Let us suppose that the first case holds, the alternative case being com-
pletely analogous. First, note that the sequence pn

i also converges to ai−1 By
Assumption 2.2, we must have that for any y ∈ Cn

i = [an
i−1, an

i ],

μ
({α ∈ Cn

i : u(pn
i , α) ≥ u(y, α)}) ≥ δμ

(
Cn

i
) = δ

(
F(an

i ) − F(an
i−1)

)
(5.2)

We claim that this implies the inequality

F(pn
i ) − F(an

i−1) ≥ δ
(
F(an

i ) − F(an
i−1)

)
(5.3)

Otherwise, suppose

F(pn
i ) − F(an

i−1) + ε ≤ δ
(
F(an

i ) − F(an
i−1)

)
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for some ε > 0. Then, for every y ∈ (pn
i , an

i ) we have that

μ
({

α ∈ Cn
i : u(pn

i , α) ≥ u(y, α)
}) = F

(
pn

i + y
2

)

− F
(
an

i−1

)

And, since F is continuous, by taking y close enough to pn
i we have that

μ
({

α ∈ Cn
i : u(pn

i , α) ≥ u(y, α)
})

< F(pn
i ) − F(an

i−1) + ε ≤ δ
(
F(an

i ) − F(an
i−1)

)

which contradicts Eq. 5.2. Hence, Eq. 5.3 holds and we have that

pn
i − an

i−1 <
F(an

i ) − F(an
i−1)

n
≤ F(pn

i ) − F(an
i−1)

nδ

So,

F(pn
i ) − F(an

i−1)

pn
i − an

i−1
≥ nδ

Taking limits as n → ∞, we obtain that f (ai−1+) = F ′(ai−1+) = +∞, which
contradicts that f is continuous and the lemma is proved. ��

Let ε > 0 “small enough” (ε will be determined later) and consider the
domain


 = {
(p1, . . . , pm) ∈ Y : |pi − pj| ≥ ε for all 0 ≤ i < j ≤ m + 1

}

Recall that p0 = 0, pm+1 = 1. Of course, 
 depends on ε. Nevertheless, to avoid
cluttering the notation we will not write this dependency explicitly.

The function ϕ maps 
 into Y. We shall construct a new “truncated” mapping
ϕ̄ = (ϕ̄1, . . . , ϕ̄m) defined by

ϕ̄i(p) =

⎧
⎪⎨

⎪⎩

ai−1(p) + ε
2 if ai−1(p) ≤ ϕi(p) ≤ ai−1(p) + ε

2
ϕi(p) if ai−1(p) + ε

2 ≤ ϕi(p) ≤ ai(p) − ε
2

ai(p) − ε
2 if ai(p) − ε

2 ≤ ϕi(p) ≤ ai(p)

where, for i = 1, . . . , m − 1, the term ai(p), defined in Equation 5.1, is the ideal
policy of the voter sincerely indifferent between pi and pi+1. Again, we will not
write explicitly the dependency of ϕ̄ on ε.

The mapping ϕ̄ : 
 → 
 is a continuous mapping defined on a compact, sim-
ply connected subset of R

m, that agrees with ϕ whenever ϕ’s image is inside 
.
By Brouwer’s Fixed Point Theorem, there is some p∗ ∈ Y such that ϕ̄(p∗) = p∗.

Without loss of generality, we may assume that η, as determined in Lemma 5.3,
is less than 1. To finish the proof of Theorem 5.2, it is enough to show that
ϕ̄(p∗) = ϕ(p∗) if ε is small enough. This is basically the content of the next
Lemma. It states that fixed points of the map ϕ̄ cannot be “too close”.
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Let

N = min

{

1, min
x∈A

f (x)

}

and note that 0 < N ≤ 1.

Lemma 5.4 Suppose ε > 0 is such that

ε

2Nm−1ηm−1
<

1
m

(5.4)

and suppose p ∈ 
 satisfies ϕ̄(p) = p. Then, ϕ̄(p) = ϕ(p).

Proof Let ε > 0 and suppose p ∈ 
 verifies ϕ̄(p) = p. By assumption, pi+1−pi ≥
ε for every i = 1, . . . , m. Hence,

ai(p) + ε

2
≤ pi+1 ≤ ai+1(p) − ε

2

for every i = 1, . . . , m.
We divide the sets of indices {1, . . . , m} into two sets,

M1 = {k = 1, . . . , m : pk = ϕ̄k(p) = ϕk(p)}
M2 = {

j = 1, . . . , m : pj = ϕ̄j(p) �= ϕj(p)
}

Suppose now that ϕ̄(p) �= ϕ(p). That is, M2 �= ∅. Then, for those indices j ∈ M2,
we have that one of the inequalities

aj−1(p) + ε

2
≤ ϕj(p) ≤ aj(p) − ε

2

does not hold. In either case, it follows that

min{ϕj(p) − aj−1(p), aj(p) − ϕj(p))} ≤ ε

2

and, from Lemma 5.3, we see that (shortening the notation to aj = aj(p)),

η
(
F(aj) − F(aj−1)

) ≤ ε

2

On the other hand,

F(aj) − F(aj−1) =
aj∫

aj−1

f (t) dt ≥ N(aj − aj−1)
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so,

aj − aj−1 ≤ ε

2ηN
(5.5)

Let us now consider an index 1 ≤ k ≤ m such that pk = ϕ̄k(p) = ϕk(p) and
suppose that the interval Ck(p) = [

ak−1(p), ak(p)
]

is adjacent to an interval for
which we have a bound as in equation 5.5. For the sake of concreteness, let us
consider the case in which k = i + 1 with

ai − ai−1 ≤ α(i)

for some α(i) > 0. We remark that,

pi+1 − ai = ai − pi ≤ ai − ai−1 ≤ α(i)

On the other hand, since ϕi+1(p) = pi+1 and applying again Lemma 5.3 we
see that

pi+1 − ai = ϕi+1(p) − ai ≥ η
(
F(ai+1) − F(ai)

) = η

ai+1∫

ai

f (t) dt ≥ ηN(ai+1 − ai)

Hence,

ai+1 − ai ≤ α(i)
ηN

(5.6)

Now starting from an index j ∈ M2 and repeating successively the previous
argument for the indices k ∈ M2, after at most m − 1 steps, we see that

max{ai+1 − ai : i = 0, . . . , m} ≤ ε

2ηm−1Nm−1

But then,

1 =
m∑

i=0

(
ai+1 − ai

) ≤ m
ε

2ηm−1Nm−1
< 1

a contradiction. From this, Lemma 5.4 follows and, hence Theorem 5.2 is proved.
��

6 Multiparty equilibrium with strategic voters and subadditivity

We now prove an existence result for multiparty equilibria with strategic voters.
For the rest of this section, the setting is the same as in Sect. 3. That is, we
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restrict ourselves to the case of three parties and a weight function given as
in Assumption 3.3. Again, a similar existence result holds for more than three
parties, but in such case the analysis becomes extremely cumbersome. Thus, for
simplicity we restrict ourselves to the three-party case.

In particular, the theses in Lemmas 3.4 and 3.5 apply to our setting. Accord-
ingly, we assume that agents behave strategically as described in Definition 3.2.

The map C : Y → X is now defined by C(p) = (C1(p), C2(p), C3(p)) with
Ci(p) = [ai−1(p), ai(p)] an interval whose end points are given by the functions
ai−1(p), ai(p), defined by Equation 5.1. Hence, They are continuous on the pro-
posals p = (p1, p2, p3) ∈ Y. We adopt the convention that p0 = 0 and p4 = 1.
In case p2 receives no votes, we will assume that C2(p) = {p2}.

As in the previous section, we define ϕ : Y → Y by ϕ = P ◦C . Now, we state
the main result of this section.

Theorem 6.1 Under Assumptions 2.1, 2.2 and 5.1 there exists a multiparty plu-
ralistic equilibrium.

The proof parallels that of Theorem 5.2. We first prove the analogue of
Lemma 5.4.

Lemma 6.2 Let Assumptions 2.1, 2.2 and 5.1 hold. Then, there is some η > 0
such that if for some p ∈ X and i = 0, . . . , 4 we have that pi+1 − pi ≤ η, then

(1) ϕ1(p) > p1 if i = 0.
(2) ϕi(p) < pi and ϕi+1(p) > pi+1 if i = 1, 2.
(3) ϕ3(p) < p3 if i = 3.

Proof Suppose the Lemma does not hold. Then, for each n = 1, 2 . . . we can
find pn = (pn

1, pn
2, pn

3) ∈ X and in ∈ {0, . . . , 4} such that

pn
in+1 − pn

in ≤ 1
n

and either ϕin(p
n) ≥ pn

in or ϕin+1(pn) ≤ pn
in+1.

By a standard compactness argument, we may assume all sequences above
converge. And, since the index in ∈ {0, . . . , 4} takes only finitely many values,
we may assume in is constant for all n = 1, 2 . . .. To fix ideas we assume in = 1
for all n = 1, 2 . . . and ϕin+1(pn) ≤ pn

in+1. The other cases can be handled by a
similar argument.

Hence, w.l.o.g. we may assume that for all n = 1, 2 . . . , the following hold,

pn
2 − pn

1 ≤ 1
n

ϕ2(pn) ≤ pn
2

lim
n→∞ pn

3 = p3 ∈ Z
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Let us denote Ci(pn) = [an
i−1, an

i ]. Since pn
1 < an

1 < pn
2, we must have that the

sequence {an
1}∞n=1 converges to, say a1, and also

lim
n→∞ pn

2 = lim
n→∞ pn

1 = a1 ∈ Z

Again, by taking subsequences, if necessary, we may assume that the sequence
{an

2}∞n=1 converges to some a2 ∈ Z. For concreteness, let us suppose a2 − a1 > 0.
Then, we can find L > 0 and N0 ∈ N, such that for all n ≥ N0 we have that

F(an
2) − F(an

1) ≥ L

By Assumption 2.2, we have, that for every y ∈ [an
2, an

1]

μ
({

α ∈ [
an

2, an
1

]
: u(ϕ2(pn

2), α) ≥ u(y, α)
}) ≥ δ

(
F(an

2) − F(an
1)

)

As in the proof of Lemma 5.3 this implies that

F(ϕ2(pn
2)) − F(an

1) ≥ δ
(
F(an

2) − F(an
1

)

and since, ϕ2(pn) ≤ pn
2,

F(pn
2) − F(an

1) ≥ δ(F(an
2) − F(an

1)) ≥ δL > 0

for all n ≥ N0. But, this contradicts that limn→∞ pn
2 = a1. A completely similar

argument can be used to deal with the case a2 = a1. ��
Proof of Theorem 6. 1 We may proceed now as in section 5. That is we define
the set


 =
{
(p1, p2, p3) ∈ Z3 : |pi+1 − pi| ≥ η for all i = 0, . . . , 3

}

(where η > 0 is determined as in Lemma 6.2). Note that in the set 
, we have
that η ≤ p1 ≤ 1 − 3η, 2η ≤ p2 ≤ 1 − 2η, 3η ≤ p3 ≤ 1 − η.

The truncated map ϕ̄ : 
 → 
 is defined successively as follows:

ϕ̄1(p) =

⎧
⎪⎨

⎪⎩

η if ϕ1(p) ≤ η

1 − 3η if ϕ2(p) ≥ 1 − 3η

ϕ1(p) otherwise

That is, ϕ̄1(p) = min{max{ϕ1(p), η}, 1 − 3η}. It follows that ϕ̄1 is continuous.
Define now,

ϕ̄2(p) =

⎧
⎪⎨

⎪⎩

ϕ̄1(p) + η if ϕ2(p) ≤ ϕ̄1(p) + η

1 2η if ϕ2(p) ≥ 1 − 2η

ϕ2(p) otherwise
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In other words, ϕ̄2(p) = min{max{ϕ̄1(p) + η, ϕ2(p)}, 1 − 2η}. And, since ϕ̄1 is
continuous, so is ϕ̄2. Finally,

ϕ̄3(p) =

⎧
⎪⎨

⎪⎩

ϕ̄2(p) + η if ϕ3(p) ≤ ϕ̄2(p) + η

1 − η if ϕ3(p) ≥ 1 − η

ϕ3(p) otherwise

And, since ϕ̄3(p) = min{max{ϕ̄2(p) + η, ϕ3(p)}, 1 − η}, we see that ϕ̄3 is also
continuous.

Brouwer’s Fixed Point Theorem applies again, so that there exists some
p∗ ∈ 
 such that ϕ̄(p∗) = p∗. Now, we must have that ϕ̄(p∗) = ϕ(p∗) = p∗.
For otherwise, let i0 be the first party such that ϕ̄i0+1(p∗) �= ϕi0+1(p∗). That is,
ϕ̄i0(p

∗) = ϕi0(p
∗) = p∗

i0 for i ≤ i0. Then,

ϕ̄i0+1(p
∗) − ϕ̄i0(p

∗) = p∗
i0+1 − p∗

i0 = η

so, by Lemma 6.2 at least one of the two following inequalities is strict

ϕi0(p
∗) < p∗

i0 or p∗
i0+1 < ϕi0+1(p

∗)

But, in view that ϕ̄i0(p
∗) = ϕi0(p

∗) = p∗
i0 , we must have that ϕi0+1(p∗) −

ϕ̄i0(p
∗) > η. Thus, ϕ̄i0+1(p∗) = ϕi0+1(p∗), which contradicts the definition of i0.

��
Remark 6.3 Of course, the above results only guarantees that in equilibrium
there are three different proposals, but cannot exclude the case in which only
two of them obtain a positive measure of votes. We do not have a general result
to ensure existence of more than two positive-measure parties. However, the
following generalized example shows that such equilibria are indeed easy to
construct. In fact, for any population partition into intervals and for any set
of party policy proposals we can find a population distribution such that these
would correspond to an equilibrium! We also illustrate a striking feature of
such equilibria: parties with tiny vote shares in equilibrium actually possess a
significant political power. Of course, this underlines the role of subadditivity
of policy outcome rules.

Example 6.4 (Generalized Example) Consider the case of three parties, with
internal policy mappings Pi(S) being the mean voting rule (the same statement
is possible for the median voter rules). Let the function g satisfy the condition
in Equation 3.3 and h(x) = xγ , 0 < γ < 1. Consider an arbitrary set of numbers
0 < p1 < a1 < p2 < a2 < p3 < 1. There exists a population distribution that
supports an equilibrium such that Pi(S) = pi, S1 = [0, a1] , S2 = [a1, a2] , S3 =[
a2, 1

]
and the policy outcome T equals a1 (or, if one wishes, a2).

Before providing a proof for this claim, we shall make the following observa-
tions. Given any vector of party weights (w1, w2, w3) ∈ �2 such that wi > 0 for
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i = 1, 2, 3, it is always possible to find a continuous non-vanishing probability
density function f such that

∫ a1
0 f (t) dt = w1,

∫ a2
a1

f (t) dt = w2,
∫ 1

a2
f (t) dt = w3.

Furthermore, in addition we can always choose the density function so that
the within-interval means match those in the example: 1

w1

∫ a1
0 tf (t) dt = p1,

1
w2

∫ a2
a1

tf (t) dt = p2, 1
w3

∫ 1
a2

tf (t) dt = w3. Furthermore, the characterization
conditions for the voting game SNE existence in Lemma 3.4 are independent
of the within-party population distribution, but only depend on party weights
wi. Thus, if we find the positive population weights satisfying the conditions of
the Lemma 3.4 for the chosen vector of party policies, the population partition
and the policy outcome T, we shall demonstrate our claim.

To see that this is indeed always possible, consider that if the policy outcome
is T = a1 then by Lemma 3.4 the party weight vector (w1, w2, w3) ∈ �2 must
satisfy the following two conditions:

a1 − p3

a1 − p2
= h′(w2)

h′(w3)
=

(
w3

w2

)1−γ

(6.1)

and

T (p, w) = wγ

1 p1 + wγ

2 p2 + wγ

3 p3

wγ

1 + wγ

2 + wγ

3
= a1 (6.2)

Furthermore, since it has to be on a simplex (the entire population mass is split
between parties)

w1 + w2 + w3 = 1 (6.3)

Consider now 6.2. By multiplying both sides by the denominator and rear-
ranging terms, we get

wγ

1 (a1 − p1) + wγ

2 (a1 − p2) + wγ

3 (a1 − p3) = 0 (6.4)

Dividing now both sides by wγ

2 (a1 − p2) we obtain

(
w1

w2

)γ
(a1 − p1)

(a1 − p2)
+ 1 +

(
w3

w2

)γ
(a1 − p3)

(a1 − p2)
= 0 (6.5)

By substituting 6.1 into 6.5 we obtain

(
w1

w2

)γ
(a1 − p1)

(a1 − p2)
+ 1 +

(
a1 − p3

a1 − p2

) 1
1−γ = 0 (6.6)

We now can express the sufficient conditions for equilibrium in the voting game
from Lemma 3.4 as a system of three linear (in party weights) equations in three
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variables:

w3 −
(

a1 − p3

a1 − p2

) 1
1−γ

w2 = 0

w1 −
((

1 +
(

a1 − p3

a1 − p2

) 1
1−γ

)
p2 − a1

a1 − p1

) 1
γ

w2 = 0

w1 + w2 + w3 = 1 (6.7)

It is clear that this system has a unique solution for every possible profile
0 < p1 < a1 < p2 < a2 < p3 < 1.5 Furthermore, such a solution must satisfy
wi > 0 for i = 1, 2, 3.

Given our observations in the beginning of this demonstration, we have
proven our claim. The result for T = a2 is symmetric.

To provide a numerical illustration for the above generalized example, con-
sider that if γ = 1

2 then a1 = 1
3 , a2 = 2

3 , p1 = 1
6 , p2 = 1

2 , p3 = 5
6 , T = a2 = 2

3
characterizes a multi-party pluralistic equilibrium with three positive-mass par-

ties for any population distribution such that
∫ 1

3
0 f (t) dt = 9

110 ,
∫ 2

3
1
3

f (t) dt = 1
110 ,

∫ 1
2
3

f (t) dt = 100
110 and 110

9

∫ 1
3

0 tf (t) dt = 1
6 , 110

∫ 2
3

1
3

tf (t) dt = 1
2 , and 110

100

∫ 1
2
3

tf (t)

dt = 5
6 (that this does indeed constitute an equilibrium is easy to check directly,

since any shift of population mass from party 3 makes the policy outcome move
to the left of 2

3 and any shift of population mass between or out of the parties
1 and 2 makes the policy outcome shift to the right of 2

3 ). In this example, the
leftist and, especially, the centrist parties get only a small proportion of voters,
but have a far from negligible impact on the policy outcome.

To end this section, we provide an example of non-existence of pluralistic
multiparty equilibrium in which all three parties receive a positive vote share for
a given voter distribution. In particular, if the population distribution is uniform,
equilibria of this type do not exist.

Example 6.5 Suppose that the distribution of agents is uniform on the interval
Z = [0, 1]. There are three parties and the mapping P satisfies that pi = Pi(S)

is the median type of Si, i = 1, 2, 3. The function g satisfies condition in Eq. 3.3
and h(x) = xγ , 0 < γ < 1.

Since Si is an interval in the real line the median type is well defined and
unique. Let wi be the mass of interval Si, i = 1, 2, 3. Suppose that there exists
a multiparty equilibrium under which the three parties receive a positive vote

5 Since both
(

a1−p3
a1−p2

) 1
1−γ > 1 and

((
1 +

(
a1−p3
a1−p2

) 1
1−γ

)
p2−a1
a1−p1

) 1
γ

> 0, the singularity condition

for the left hand side
(

a1−p3
a1−p2

) 1
1−γ +

((
1 +

(
a1−p3
a1−p2

) 1
1−γ

)
p2−a1
a1−p1

) 1
γ = 1 cannot be satisfied.
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share, i.e. 0 < wi < 1, i = 1, 2, 3. Then, it must be true that

p1 = w1

2
, p2 = w1 + w2

2
, p3 = w1 + w2 + w3

2
(6.8)

Furthermore, the necessary conditions in Lemma 3.4 have to be satisfied.
Say that, without loss of generality, the first condition in the Lemma is satisfied,
Thus, we have

T(p, w) = w1 + w2 (6.9)

In this case, Condition (3.1) of the same Lemma requires that

T(p, w) − p1

T(p, w) − p2
= h′(w2)

h′(w1)
(6.10)

Conditions 6.8–6.10 imply

w1 + 2w2

w2
= wγ−1

2

wγ−1
1

that can be written as

w1 = w1−γ

1 wγ

2 − 2w2 (6.11)

We have already seen that concavity of h and inequality 6.10 imply that
w1 > w2. Hence,

w1−γ

1 wγ

2 − 2w2 < w1 − 2w2 (6.12)

but inequality in 6.12 contradicts equality 6.10.
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