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Abstract- In this paper a new coevolutive method, 
called Uniform Coevolution, is introduced, to learn 
weights of a neural network controller in autonomous 
robots. An evolutionary strategy is used to learn high- 
performance reactive behavior for navigation and 
collisions avoidance. The coevolutive method allows 
evolving the environment, to learn a general behavior 
able to solve the problem in different environments. 
Using a traditional evolutionary strategy method, 
without coevolution, the learning process obtains a 
specialized behavior. All the behaviors obtained, 
with/without coevolution have been tested in a set of 
environments and the capability of generalization is 
shown for each learned behavior. A simulator based on 
mini-robot Khepera has been used to learn each 
behavior. The results show that Uniform Coevolution 
obtains better generalized solutions to examples-based 
problems. 

1 Introduction 
A fundamental requirement for autonomous mobile robots 
is navigation. This task gets the robot from place to place 
with safety and no damage. Approaches based on the 
classical paradigms (abstraction, planning, heuristic search, 
etc.) were not completely suitable for unpredictable and 
dynamic environments. Other approaches consider reaction 
as the new paradigm to built intelligent systems. One 
classical instance of this kind of architecture is the 
subsumption architecture which was proposed by Brooks 
(Brooks 1991) and has been successfully implemented on 
several robots of MIT and other institutes. The base of the 
subsumption architecture is “behavior”. Each behavior 
reacts in a situation and the global control is a composition 
of behaviors. Different systems, from finite state machines 
to fuzzy controllers (Ishikawa 1995), have been used for 
the implementation of these behaviors. The rules of these 
behaviors could be designed by a human expert, designed 
“ad-hoc” for the problem, or learned using different 
artificial intelligence techniques. 

Machine learning has been applied to shape the 
behavior of autonomous agents. Some of these techniques 
become inapplicable to the learning reactive behavior 
problem because they require more information than the 
problem constraints allow. Thus, it would seem reasonable 
to use an automatic system that gradually builds up a 
control system of an autonomous agent by exploiting the 
changing interactions between the environment and the 
agent itself. Some approaches use Genetic Algorithms to 
evolve fuzzy controllers (Matellh et all 1998), Classifier 
Systems to learn controllers (Molina 1998 and Sanchis 
1999) or Neural Networks to learn behaviors (Mondada 
1993). 

The control architecture used to evolve the reaction 
(adaptation) is based on a neural network. The neural 
network controller has several advantages (Miglino 1995): 

Neural Networks, NN, are resistant to noise, those 
exist in real environment, and are able to generalize 
their ability in new situations. 
The primitives manipulated by the Evolutionary 
Strategy, ES, are at the lowest level in order to avoid 
undesirable choices made by the human designer. 
A NN could easily exploit several ways of learning 
during its lifetime. 

The used of a feed forward network with eight input 
units and two output units directly connected to motors 
appears in previous works (Miglino 1995) as an efficient 
way to learn a behavior: “avoid obstacles” using Genetic 
Algorithms. In this work the NN ought to learn more 
complex behavior: “navigation”. 

In the proposed model, the robot starts without 
information about the right associations between 
environmental signals and actions responding to those 
signals. The number of inputs (robot sensors), the range of 
the sensors, the number of outputs (number of robot 
motors) and its description is the only previous 
information. From the initial situation the robot is able to 
learn through experience the optimal associations between 
inputs and outputs. 
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When a system is learning from examples, for testing a 
solution is necessary to face it with different situations 
(examples set). More over, in many cases, the solutions 
should not fit a particular examples set, they have to be 
generalized solutions, useful over any possible example. 
This problem becomes harder when using evolutionary 
methods. An excessive adaptation to the examples set 
could abort the generalization capability of a solution. The 
evolution of the examples tries only to generate harder 
examples for the solutions. 

Coevolution refers to the simultaneous evaluation of 
several species, where the survival of each specie depends 
on one each other. When talking about coevolution in 
computational terms, this is refemng to the ability of a 
system to improve its performance by means of mutual 
adaptation of its different constituents. The final 
performance of the system is improved as a consequence of 
the incremental adaptation among constituents. These ideas 
of coevolution were first explored in evolutionary 
computation in some works in the Iterated Prisioner's 
Dilemma (Axelrod 1984, Axelrod 1989 and Lindergren 
1994). One of the first authors in applying the coevolution 
in an optimisation problem was Hillis with his work over 
the coevolution of parasites for improving solutions in a 
sorting network problem (Hillis 1991). More recently, 
m e  works for establishing the theoretical basis in 
coevolution have been done (Paredis 1996 and Rosin 
1997). All these previous works have proven the usefulness 
of coevolution to improve the evolutionary computation 
techniques from different perspectives. 

In this paper, a new method, based on Hillis ideas to use 
coevolution ideas to learn generalized autonomous robot 
navigation behaviours. Section 2 is related to the 
experimental environment and the goals of the work. In 
section 3, we outline the general theory of coevolutive 
method. The experimental results are shown in Section 4. 
The last section contains some concluding remarks. 

2 Robot Controller and Experimental 

The task faced by the autonomous robot is to reach a goal 
in a complex environment while avoiding obstacles found 
in its path. Different environments have been used to find 
the connections of the NN. 

2.1 Evolving Controllers by means of Evolutionary 

It has been proven that by means of connections between 
Sensors and actuators, a controller is able to solve any 
autonomous navigation robotic behavior (Braitenberg 
1984). This theoretical approach is based on the possibility 
of finding the right connections of a feed-forward NN 
without hidden layers for each particular problem, see 

Environment 

Strategies 

Figure 1. The input sensors considered in this approach are 
the ambient and proximity sensors, s, of Figure 2. The NN 
outputs are the wheel velocities. 

The NN architecture is shown in Figure 1. 

I 

Input Layer Output Layer 

Figure 1: Neural Network Architecture. 

si: Input of i-sensor 
vi Velocity of j  -wheel 

qx Goal angle 
W+ Weight between i-sensor and 
j-wheel 

Figure 2: Connectiolls between sensors and actuators in 
the Braitenberg representation of a Khepera robot. 

The velocity of each wheel is calculated by means of a 
linear combination of the sensor values, using those 
weights (Figures 1 and 2): 

s, d: Goal distance 

Y j = f (  i W , X S i )  (1) 
i = i  

Where wi are searched weights, si are sensor input 
values and f is a function for constraining the maximum 
velocity values of the wheels. 

Weight values depend on problem features. To find 
them automatically, an ES is proposed (Berlanga 1999b). 
In this approach each individual is composed by a 20 
dimensional-real valued vector, representing each one of 
the above mentioned weighs and their corresponding 
variances. The individual represents one robot behavior 
consequence of applying the weights to the equation 1. The 
evaluation of behaviors is used as fitness function. 

In order to make the problem more realistic no 
information about the location of the goal, neither direction 
nor distance, has been included in the evaluation function. 

Evolution strategies (ES) developed by Rechenberg 
(Rechenberg 1973, 1989) and Schwefel (Schwefel 1981), 
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have been traditionally used for optimization problems 
with real-valued vector representations. As Genetic 
Algorithms, GA, (Goldberg 1989) the ES are heuristic 
search techniques based on the building block hypothesis. 
Unlike GA, however, the search is basically focused in the 
gene mutation. This is an adaptive mutation based on the 
likely the individual represents the problem solution. The 
recombination plays also an important role in the search, 
mainly in the adaptive mutation. 

2.2 Environment 
In this work, a simulator based on an autonomous robot 
named Khepera (Mondada 1993) is used. The mini-robot 
Khepera is a commercial robot developed at LAM1 (EPFL, 
Laussanne, Switzerland). The robot characteristics are: 5.5 
cm of diameter in circular shape, 3 cm of height and 70 gr 
of weight. The sensory inputs come in from eight infra-red 
proximity sensors. These sensors are composed of two 
devices: an IR emitter and a receiver. The emitter and the 
receiver are independent, then it is possible to use the 
receiver to measure the reflected light (with the emitter 
active) or to measure the environmental light (without 
emission). The reflected light measurement can give some 
information about the obstacles. In fact, this measure is not 
only a function of the distance to an object in front of the 
emitter but also the environmental light and the object 
nature (color and texture). So the value of distance is 
modified by the measure of the ambient light and the 
object nature, the light used is constant and all the 
obstacles used have the same color and texture. The robot 
has two wheels controlled by two independent DC motors 
with incremental encoder that allow any type of 
movement. Each wheel velocity could be read by a 
speedometer. 

Using the ambient sensors it is possible to measure the 
distance and the angle to a light source. The distribution of 
the amount of light coming into the eight sensors is used to 
evaluate the distance and the angle to the source, see figure 
3. The amount of light received in the sensor depends on 
the distance of the light source. The response curve of each 
real sensor is described by a sigmoidal function 
(Mondadal993). 

Figure 3: Sensors considered in the real robot. 

II 
Find Position 

Figure 4: (a) SimDAI Simulator (Example of one 
simulated environment). (b) Example of a real 
experimental environment. 

Experiments take a long time of continuous functioning 
of the hardware. In order to prove the different 
configurations of the controllers, a simulator developed in 
a previous work (Sommaruga 1996) has been used, the 
SimDAI one. In the simulator, the characteristics of the 
turtle robot model (McKerrow 1991) and the physical 
restrictions of the Khepera robot have been considered. 
SimDAI is a working prototype of a mobile robot 
simulation environment for experimenting with robot 
navigation and control algorithms. Each mobile robot is 
completely independent, can navigate and interacts with 
other robots in a 2-D simulated world of obstacles, which 
is separately monitored. This simulator has been used in 
many other works (Isasi 1997, Matell& 1998, Molina 
1998, Sanchis 1999). The simulation world consists of a 
rectangular map of user defined dimensions where 
particular objects are located. In this world it is possible to 
define a final position for the robot. In this case the robot is 
represented with thrm proximity sensors and two special 
sensors to measure the distance and the angle to the goal 
(figure 4 (a) and (3)). 

3 Uniform Coevolution 
The uniform coevolution method, CoevU, is based on that 
proposed and developed by Hillis, (Hillis 1991). In 
coevolutive dynamics not only the population of solutions 
but also the training environment evolve. In this case, they 
compete in a called “Arms Race” dynamic. The 
environment is formed by codified evaluation examples, on 
which genetic operators will also be applied. 

The CoevU faces two systems, the solutions system and 
the seeds blocks system. The solutions system is 
constituted by the population of neural nets. Each solution 
is associated to a set of seeds, called “block seeds” (BS), of 
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size m. Applying the incremental mutation operator 
(Berlanga 1999a), each seed gives rise to a set of 
environment examples of size n. In this way a controller is 
evaluated in m x n environment examples. The definition 
of the autonomous navigation problem is the robot starting 
position which is defined by x,y coordinates and direction 
of the robot movement. 

An evolutionary strategy will be applied on the 
solutions set, see figure 5. The evolution of the seeds block 
system is performed by the uniform crossover and mutation 
as it is used in canonic genetic algorithms ( Goldberd 
1989). 

The sequence to calculate the global fitness value of a 
member of the solution system,f,,, is the following: 

Calculate the specific fitness value,fj, of a controller 

Apply equations 2, 3, 4, S,.and 6 to obtain the fitness 

Finally, equation 7 calculates the global fitness value 

on its associated environments set. 

value of the seeds block, Bf. 

f,, used by the GA reproduction operator. 

. . . . .  

.. . . . . . . ... . . . ... . . . 
Figure 5: Evolutive process of Uniform Coevolution. 

Where F,, is the worst fitness value that can be reach in 
the evalutation of a solution over an environment. 

Where f- is the worst fitness value reached in an 
example of a seed block for a generation, and fmjn the best. 

Figure 6 shows the landscape of the function 
corresponding to parameter w. 

Figure 6 Graph of the shape of selection pressure 
control, w> 

were K is a constant experimentally obtained and op is 
the standard deviation of the Bf values. 

Factors o and a in equations 4 and 5 smooth the fitness 
landscape. These factors are called “selection pressure 
control” (Berlanga 1999a). At the beginning of the 
evolution, see equation 8 and Figure 7, good behaviors 
within a block contribute with a higher weight in the 
fitness value of the seed block. 
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fJ’ FMz4x 

a=O 

As the process carries on, bad behavior weight 
increases, until equilibrium is reached. At the end of the 
evolution, to calculate the fitness value of seeds block, bad 
behaviors have the highest weight, as it is shown in 
equation (9) and Figure 7. 

fJ! FSO 

a=1 

W f  

(9) 

0.2 0.4 0.6 0.8 1 .o 
B 

Figure 7: Values of the w: in different evolutive instants. 

In order to generate training examples from a seed, a 
new operator, called incremental mutation operator is 
introduced. 

Thus, the fmt example is generated from the seed, the 
second example is generated from the first one and so on. 
The incremental mutation operator establishes a distance 
among different training examples, see equation 8. 
Learning process starts using similar examples, in order to 
avoid the disorientation-searching problem. As it proceeds, 
the difficulty of the example increases, that is, the 
examples are more and more different. 

Figure 8 shows the incremental mutation function of 
equation 10. Parameter c determines the maximum 
distance between two examples when the fitness value is 
the optimum. 

E 

. . . . .  

. . . . .  

. . . . .  

. . . . .  

. . . . . . . .  

. . . . . . . .  

. . . . . . . .  

Figure 8: Graph of the mutation distance. 

4 Experimental Results 
Two different kinds of experiments have been performed. 
In both cases, an Evolutionary Strategy is used, (p+A)-ES, 
p=6, AA, in order to find the network connections 
weights. Experiments differ in the way they are evaluated 
on the learning environments. One of the experiments, 
which will be referred as fixed, is trained in the same 
environment during all the evolutive process; that is, 
starting and goal positions, as well as the obstacle 
configuration are constant. On the other hand, those 
experiments that use the uniform coevolution algorithm, 
coevU, evolve the robot starting position and orientation, 
while they keep the goal position and obstacles 
configuration fixed. 

4.1 Measure of the controllers fitness 
To obtain a controller fitness value, the simulation has 

been run for a period of 2000 cycles. Simultaneously, a log 
of its behavior is recorded. The measures that will be taken 
into account to calculate the fitness value are the 
following: 

Number of cycles necessary to reach the goal, T. If the 

Length of the robot’s trajectory, L. 
Number of collisions, C. 
Number of cycles in which the robot stayed in the 

Euclidean distance between the robot’s starting and 

Euclidean distance between the robot’s starting 

Equation 11  shows the lineal combination and weights 
used to obtain the fitness value of a controller, obtained 
from the measurements of its behavior. 

goal is not reached the value is 2000. 

same position, S. 

final position, Do. 

position and the goal position, 4. 
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The direction of the learning process is to minimize the 
fitness value. For the f i e d  experiment the fitness function 
is the base measurement used to apply the selection 
operator. For the coevU experiment, this is the value 
applied in equations 4, 5, and 8 to calculate the block 
fitness value. In these experiments, constant K in equation 
7 has an experimental value of 0.25. 

4.2 Generalization capabilities of fixed experiments 

Figure 9 shows the training environments. Five runs with 
200 generations in each one were performed over each 
environment . 

D I 
U 

I - 
I -  

L ...................................................... 

I -  
111 I 

9 j  ........................................................... 

Figure 9 Evaluation environments. 

The obtained validation values for the fixed 
experiments are shown in Figure 10. Each graph represents 
the fitness value obtained by the best controller that has 
been trained in an environment and evaluated in the rest. 
The first graph corresponds to the fitness value obtained in 
environment 1, the second graph to that obtained in 
environment 2, etc. The shadow column represents the 
fitness of the best controller in the environment in which 
the controller has been evolved. 

BictIndmdudofWoddl B#sthbm&d O f  Woildl 

1 I 

08 0.8 

0.6 0.6 

0.2 U 
n 

0.4 4 4  

I . . . . . . . . . . .  
I 1  3 4 J 6 7 8 9 IO 1 2  3 4 J 6 7 8 9 IO 

Best Indnidual of Worid3 Best Indnidd of Wmld4 

1.4 I 

0.8 0.8 

0.6 0.6 

0.4 0.4 

oa oa 
0 0 

I I 

48 0.8 

06 46 

0,d 44 

02 oa 
0 n 

1 2  3 4 S 6 7 8 9 10 I 2  3 4 5 6 7 8 9 10 

BenIndi~&al ofWmld7 BCslh~rbUlDfWodd8 

" . .  . . . . . . . .  " 
1 2 3 a s 6 7 a 9 1 0  1 2  3 4 5 6 7 8 9 IO 

BrrtIndivldvdofWodd9 Bert Indmdval CSWodd 10 

I 2  3 4 S 6 7 8 9 IO 1 2  3 4 5 6 7 8 9 10 

Figure 1 0  Fitness of the best solution obtained in a 
world and tested in all the other worlds. 

These graphs (Figure 10) show that the obtained 
controllers are not general, since they are very adapted to 
the training environment. Darker bars correspond to the 
value obtained in the training environment and in most 
cases that is the lowest value. It is also shown, that 
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depending on the training environment, solutions are more 
or less general. Thus, the controller trained in environment 
3 seems to be the most general, while that obtained in 
environment 10 is the lowest. 

The same information is shown in a different way in 
Figure 11. The graphs represent the behavior in a specific 
environment of the best solution obtained for each of the 
evaluated environments. In environment 1 for the first 
graph, in environment 2 for the second graph and so on. 

W& I W & l  

I 1  3 4 J 6 I 8  9 LO I Z 3 4 3 6  7 8 9 LO 

w m 3  W&4 

1 : 3 4 5 6 7 8 9 LO 

Wald 10 

1 I 3  4 J a 7 I 9  10 

Figure 11: Fitness of the set of best solutions (one of 
each world) in each world. 

Graphs in Figure 11 show the capability of 
environments to obtain general solutions. For example, 
environment 8 gives more general solutions in contrast to 
environment 10. 

4.3 Uniform Coevolution results 
The fixed type experiments have two main problems: the 
overadaptation problem and the quality of the solutions 
that depends on the training examples set. Thus, the 
necessity of an evolutive algorithm to improve the existing 
one is justified. 

Coevolutive experiments have not been performed in all 
the environments since some of these only differ in the 
starting position, thus for example 3, 6, 7 and 9 in figure 8 
are the same environment. 

The fitness values of f i ed , ,  f i e d ,  and CoevU,, CoevU, 
are related with the evolution in worlds 1 and 3. These two 
worlds are the most general ones from Figure 9. In table 1, 
the validation of the obtained controllers is shown. These 
controllers have been learned in worlds 1 and 3 (of Figure 
9) and tested in worlds 1, 3, 5 and 10. For comparing, the 
obtained values corresponding to fixed experiments 
(section 4.2) in worlds 1 and 3 have also been included. 

Table 1: Resume of the fitness value obtained in fixed 
experiments and CoevU experiments. 

Fixed, 
CoevU. 

The validation process has been carried out making 
lo00 executions over worlds 1 , 3 , 5  and 10. Each execution 
has different initial position and orientation of the robot, 
randomly generated. 

h 

Figure 12: Representation of the fitness values compiled 
in table 1. 

Both Table 1 and Figure 12 compiles the mean of the 
fitness value with a 95% confidence interval, over the lo00 
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running. The controller denoted through CoevUl shows the 
best generalization results, better that any one of the fixed 
controllers. Moreover, it also can be seen that CoevUl has 
a very specialized behavior in the world 1, comparing with 
the results of CoevU3. This last controller shows better 
results in the four worlds considered. CoevU3 improves the 
fixed controllers in about an 80% and about a 20% over 
CoevUI. 

5 Conclusions and further work 
The experiments prove the possibility of learning general 
behaviors in an autonomous robot by means of an ES. The 
uniform coevolution method has shown to be able to 
improve the generalization of solution in about a 70%. The 
process has been applied on a simple NN where the direct 
associations between sensors and motors allows to solve a 
navigation problem. 

It can be also extended to other more complex NN and 
to use another evolutionary algorithm. 

The learning process can be easily modified in order to 
consider new problems that could appear such as: 
surrounding an obstacle, or hiding from the light. The 
adaptation to new problems does not require too much 
effort because of no inclusion of local information about 
the problem in the fitness function. 

Uniform Coevolution has proven its capability to obtain 
better generalized solution in problems examples-based. 
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