
A General Learning CO-Evolution Method to Generalize Autonomous
Robot Navigation Behavior

A. Berlanga A. Sanchis P. Isasi J.M. Molina

Universidad Carlos 111, Universidad Carlos 111, Universidad Carlos 111, Universidad Carlos 111,
Avda Universidad, 30, Avda Universidad, 30, Avda Universidad, 30, Avda Universidad, 30,
28911, Madrid, SPAIN 28911, Madrid, SPAIN 2891 1, Madrid, SPAIN 2891 1, Madrid, SPAIN

aberlan C3ia.uc3m.e~ masm @ inf.uc3m.e~ isasi@ia.uc3m.e~ molina@ia.uc3m.es

SCA-LAB, SCA-LAB, SCA-LAB, SCA-LAB,

Abstract- In this paper a new coevolutive method,
called Uniform Coevolution, is introduced, to learn
weights of a neural network controller in autonomous
robots. An evolutionary strategy is used to learn high-
performance reactive behavior for navigation and
collisions avoidance. The coevolutive method allows
evolving the environment, to learn a general behavior
able to solve the problem in different environments.
Using a traditional evolutionary strategy method,
without coevolution, the learning process obtains a
specialized behavior. All the behaviors obtained,
with/without coevolution have been tested in a set of
environments and the capability of generalization is
shown for each learned behavior. A simulator based on
mini-robot Khepera has been used to learn each
behavior. The results show that Uniform Coevolution
obtains better generalized solutions to examples-based
problems.

1 Introduction
A fundamental requirement for autonomous mobile robots
is navigation. This task gets the robot from place to place
with safety and no damage. Approaches based on the
classical paradigms (abstraction, planning, heuristic search,
etc.) were not completely suitable for unpredictable and
dynamic environments. Other approaches consider reaction
as the new paradigm to built intelligent systems. One
classical instance of this kind of architecture is the
subsumption architecture which was proposed by Brooks
(Brooks 1991) and has been successfully implemented on
several robots of MIT and other institutes. The base of the
subsumption architecture is “behavior”. Each behavior
reacts in a situation and the global control is a composition
of behaviors. Different systems, from finite state machines
to fuzzy controllers (Ishikawa 1995), have been used for
the implementation of these behaviors. The rules of these
behaviors could be designed by a human expert, designed
“ad-hoc” for the problem, or learned using different
artificial intelligence techniques.

Machine learning has been applied to shape the
behavior of autonomous agents. Some of these techniques
become inapplicable to the learning reactive behavior
problem because they require more information than the
problem constraints allow. Thus, it would seem reasonable
to use an automatic system that gradually builds up a
control system of an autonomous agent by exploiting the
changing interactions between the environment and the
agent itself. Some approaches use Genetic Algorithms to
evolve fuzzy controllers (Matellh et all 1998), Classifier
Systems to learn controllers (Molina 1998 and Sanchis
1999) or Neural Networks to learn behaviors (Mondada
1993).

The control architecture used to evolve the reaction
(adaptation) is based on a neural network. The neural
network controller has several advantages (Miglino 1995):

Neural Networks, NN, are resistant to noise, those
exist in real environment, and are able to generalize
their ability in new situations.
The primitives manipulated by the Evolutionary
Strategy, ES, are at the lowest level in order to avoid
undesirable choices made by the human designer.
A NN could easily exploit several ways of learning
during its lifetime.

The used of a feed forward network with eight input
units and two output units directly connected to motors
appears in previous works (Miglino 1995) as an efficient
way to learn a behavior: “avoid obstacles” using Genetic
Algorithms. In this work the NN ought to learn more
complex behavior: “navigation”.

In the proposed model, the robot starts without
information about the right associations between
environmental signals and actions responding to those
signals. The number of inputs (robot sensors), the range of
the sensors, the number of outputs (number of robot
motors) and its description is the only previous
information. From the initial situation the robot is able to
learn through experience the optimal associations between
inputs and outputs.

0-7803-6375-2/00/$10.00 02000 IEEE. 769

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

When a system is learning from examples, for testing a
solution is necessary to face it with different situations
(examples set). More over, in many cases, the solutions
should not fit a particular examples set, they have to be
generalized solutions, useful over any possible example.
This problem becomes harder when using evolutionary
methods. An excessive adaptation to the examples set
could abort the generalization capability of a solution. The
evolution of the examples tries only to generate harder
examples for the solutions.

Coevolution refers to the simultaneous evaluation of
several species, where the survival of each specie depends
on one each other. When talking about coevolution in
computational terms, this is refemng to the ability of a
system to improve its performance by means of mutual
adaptation of its different constituents. The final
performance of the system is improved as a consequence of
the incremental adaptation among constituents. These ideas
of coevolution were first explored in evolutionary
computation in some works in the Iterated Prisioner's
Dilemma (Axelrod 1984, Axelrod 1989 and Lindergren
1994). One of the first authors in applying the coevolution
in an optimisation problem was Hillis with his work over
the coevolution of parasites for improving solutions in a
sorting network problem (Hillis 1991). More recently,
m e works for establishing the theoretical basis in
coevolution have been done (Paredis 1996 and Rosin
1997). All these previous works have proven the usefulness
of coevolution to improve the evolutionary computation
techniques from different perspectives.

In this paper, a new method, based on Hillis ideas to use
coevolution ideas to learn generalized autonomous robot
navigation behaviours. Section 2 is related to the
experimental environment and the goals of the work. In
section 3, we outline the general theory of coevolutive
method. The experimental results are shown in Section 4.
The last section contains some concluding remarks.

2 Robot Controller and Experimental

The task faced by the autonomous robot is to reach a goal
in a complex environment while avoiding obstacles found
in its path. Different environments have been used to find
the connections of the NN.

2.1 Evolving Controllers by means of Evolutionary

It has been proven that by means of connections between
Sensors and actuators, a controller is able to solve any
autonomous navigation robotic behavior (Braitenberg
1984). This theoretical approach is based on the possibility
of finding the right connections of a feed-forward NN
without hidden layers for each particular problem, see

Environment

Strategies

Figure 1. The input sensors considered in this approach are
the ambient and proximity sensors, s, of Figure 2. The NN
outputs are the wheel velocities.

The NN architecture is shown in Figure 1.

I

Input Layer Output Layer

Figure 1: Neural Network Architecture.

si: Input of i-sensor
vi Velocity of j -wheel

qx Goal angle
W+ Weight between i-sensor and
j-wheel

Figure 2: Connectiolls between sensors and actuators in
the Braitenberg representation of a Khepera robot.

The velocity of each wheel is calculated by means of a
linear combination of the sensor values, using those
weights (Figures 1 and 2):

s, d: Goal distance

Y j = f (i W , X S i) (1)
i = i

Where wi are searched weights, si are sensor input
values and f is a function for constraining the maximum
velocity values of the wheels.

Weight values depend on problem features. To find
them automatically, an ES is proposed (Berlanga 1999b).
In this approach each individual is composed by a 20
dimensional-real valued vector, representing each one of
the above mentioned weighs and their corresponding
variances. The individual represents one robot behavior
consequence of applying the weights to the equation 1. The
evaluation of behaviors is used as fitness function.

In order to make the problem more realistic no
information about the location of the goal, neither direction
nor distance, has been included in the evaluation function.

Evolution strategies (ES) developed by Rechenberg
(Rechenberg 1973, 1989) and Schwefel (Schwefel 1981),

770

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

have been traditionally used for optimization problems
with real-valued vector representations. As Genetic
Algorithms, GA, (Goldberg 1989) the ES are heuristic
search techniques based on the building block hypothesis.
Unlike GA, however, the search is basically focused in the
gene mutation. This is an adaptive mutation based on the
likely the individual represents the problem solution. The
recombination plays also an important role in the search,
mainly in the adaptive mutation.

2.2 Environment
In this work, a simulator based on an autonomous robot
named Khepera (Mondada 1993) is used. The mini-robot
Khepera is a commercial robot developed at LAM1 (EPFL,
Laussanne, Switzerland). The robot characteristics are: 5.5
cm of diameter in circular shape, 3 cm of height and 70 gr
of weight. The sensory inputs come in from eight infra-red
proximity sensors. These sensors are composed of two
devices: an IR emitter and a receiver. The emitter and the
receiver are independent, then it is possible to use the
receiver to measure the reflected light (with the emitter
active) or to measure the environmental light (without
emission). The reflected light measurement can give some
information about the obstacles. In fact, this measure is not
only a function of the distance to an object in front of the
emitter but also the environmental light and the object
nature (color and texture). So the value of distance is
modified by the measure of the ambient light and the
object nature, the light used is constant and all the
obstacles used have the same color and texture. The robot
has two wheels controlled by two independent DC motors
with incremental encoder that allow any type of
movement. Each wheel velocity could be read by a
speedometer.

Using the ambient sensors it is possible to measure the
distance and the angle to a light source. The distribution of
the amount of light coming into the eight sensors is used to
evaluate the distance and the angle to the source, see figure
3. The amount of light received in the sensor depends on
the distance of the light source. The response curve of each
real sensor is described by a sigmoidal function
(Mondadal993).

Figure 3: Sensors considered in the real robot.

II
Find Position

Figure 4: (a) SimDAI Simulator (Example of one
simulated environment). (b) Example of a real
experimental environment.

Experiments take a long time of continuous functioning
of the hardware. In order to prove the different
configurations of the controllers, a simulator developed in
a previous work (Sommaruga 1996) has been used, the
SimDAI one. In the simulator, the characteristics of the
turtle robot model (McKerrow 1991) and the physical
restrictions of the Khepera robot have been considered.
SimDAI is a working prototype of a mobile robot
simulation environment for experimenting with robot
navigation and control algorithms. Each mobile robot is
completely independent, can navigate and interacts with
other robots in a 2-D simulated world of obstacles, which
is separately monitored. This simulator has been used in
many other works (Isasi 1997, Matell& 1998, Molina
1998, Sanchis 1999). The simulation world consists of a
rectangular map of user defined dimensions where
particular objects are located. In this world it is possible to
define a final position for the robot. In this case the robot is
represented with thrm proximity sensors and two special
sensors to measure the distance and the angle to the goal
(figure 4 (a) and (3)).

3 Uniform Coevolution
The uniform coevolution method, CoevU, is based on that
proposed and developed by Hillis, (Hillis 1991). In
coevolutive dynamics not only the population of solutions
but also the training environment evolve. In this case, they
compete in a called “Arms Race” dynamic. The
environment is formed by codified evaluation examples, on
which genetic operators will also be applied.

The CoevU faces two systems, the solutions system and
the seeds blocks system. The solutions system is
constituted by the population of neural nets. Each solution
is associated to a set of seeds, called “block seeds” (BS), of

77 1

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

size m. Applying the incremental mutation operator
(Berlanga 1999a), each seed gives rise to a set of
environment examples of size n. In this way a controller is
evaluated in m x n environment examples. The definition
of the autonomous navigation problem is the robot starting
position which is defined by x,y coordinates and direction
of the robot movement.

An evolutionary strategy will be applied on the
solutions set, see figure 5. The evolution of the seeds block
system is performed by the uniform crossover and mutation
as it is used in canonic genetic algorithms (Goldberd
1989).

The sequence to calculate the global fitness value of a
member of the solution system,f,,, is the following:

Calculate the specific fitness value,fj, of a controller

Apply equations 2, 3, 4, S,.and 6 to obtain the fitness

Finally, equation 7 calculates the global fitness value

on its associated environments set.

value of the seeds block, Bf.

f,, used by the GA reproduction operator.

.

..
Figure 5: Evolutive process of Uniform Coevolution.

Where F,, is the worst fitness value that can be reach in
the evalutation of a solution over an environment.

Where f- is the worst fitness value reached in an
example of a seed block for a generation, and fmjn the best.

Figure 6 shows the landscape of the function
corresponding to parameter w.

Figure 6 Graph of the shape of selection pressure
control, w>

were K is a constant experimentally obtained and op is
the standard deviation of the Bf values.

Factors o and a in equations 4 and 5 smooth the fitness
landscape. These factors are called “selection pressure
control” (Berlanga 1999a). At the beginning of the
evolution, see equation 8 and Figure 7, good behaviors
within a block contribute with a higher weight in the
fitness value of the seed block.

772

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

fJ’ FMz4x

a=O

As the process carries on, bad behavior weight
increases, until equilibrium is reached. At the end of the
evolution, to calculate the fitness value of seeds block, bad
behaviors have the highest weight, as it is shown in
equation (9) and Figure 7.

fJ! FSO

a=1

W f

(9)

0.2 0.4 0.6 0.8 1 .o
B

Figure 7: Values of the w: in different evolutive instants.

In order to generate training examples from a seed, a
new operator, called incremental mutation operator is
introduced.

Thus, the fmt example is generated from the seed, the
second example is generated from the first one and so on.
The incremental mutation operator establishes a distance
among different training examples, see equation 8.
Learning process starts using similar examples, in order to
avoid the disorientation-searching problem. As it proceeds,
the difficulty of the example increases, that is, the
examples are more and more different.

Figure 8 shows the incremental mutation function of
equation 10. Parameter c determines the maximum
distance between two examples when the fitness value is
the optimum.

E

.

.

.

.

.

.

.

Figure 8: Graph of the mutation distance.

4 Experimental Results
Two different kinds of experiments have been performed.
In both cases, an Evolutionary Strategy is used, (p+A)-ES,
p=6, AA, in order to find the network connections
weights. Experiments differ in the way they are evaluated
on the learning environments. One of the experiments,
which will be referred as fixed, is trained in the same
environment during all the evolutive process; that is,
starting and goal positions, as well as the obstacle
configuration are constant. On the other hand, those
experiments that use the uniform coevolution algorithm,
coevU, evolve the robot starting position and orientation,
while they keep the goal position and obstacles
configuration fixed.

4.1 Measure of the controllers fitness
To obtain a controller fitness value, the simulation has

been run for a period of 2000 cycles. Simultaneously, a log
of its behavior is recorded. The measures that will be taken
into account to calculate the fitness value are the
following:

Number of cycles necessary to reach the goal, T. If the

Length of the robot’s trajectory, L.
Number of collisions, C.
Number of cycles in which the robot stayed in the

Euclidean distance between the robot’s starting and

Euclidean distance between the robot’s starting

Equation 11 shows the lineal combination and weights
used to obtain the fitness value of a controller, obtained
from the measurements of its behavior.

goal is not reached the value is 2000.

same position, S.

final position, Do.

position and the goal position, 4.

773

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

The direction of the learning process is to minimize the
fitness value. For the f i e d experiment the fitness function
is the base measurement used to apply the selection
operator. For the coevU experiment, this is the value
applied in equations 4, 5, and 8 to calculate the block
fitness value. In these experiments, constant K in equation
7 has an experimental value of 0.25.

4.2 Generalization capabilities of fixed experiments

Figure 9 shows the training environments. Five runs with
200 generations in each one were performed over each
environment .

D I
U

I -
I -

L ..

I -
111 I

9 j ...

Figure 9 Evaluation environments.

The obtained validation values for the fixed
experiments are shown in Figure 10. Each graph represents
the fitness value obtained by the best controller that has
been trained in an environment and evaluated in the rest.
The first graph corresponds to the fitness value obtained in
environment 1, the second graph to that obtained in
environment 2, etc. The shadow column represents the
fitness of the best controller in the environment in which
the controller has been evolved.

BictIndmdudofWoddl B#sthbm&d O f Woildl

1 I

08 0.8

0.6 0.6

0.2 U
n

0.4 4 4

I
I 1 3 4 J 6 7 8 9 IO 1 2 3 4 J 6 7 8 9 IO

Best Indnidual of Worid3 Best Indnidd of Wmld4

1.4 I

0.8 0.8

0.6 0.6

0.4 0.4

oa oa
0 0

I I

48 0.8

06 46

0,d 44

02 oa
0 n

1 2 3 4 S 6 7 8 9 10 I 2 3 4 5 6 7 8 9 10

BenIndi~&al ofWmld7 BCslh~rbUlDfWodd8

" "
1 2 3 a s 6 7 a 9 1 0 1 2 3 4 5 6 7 8 9 IO

BrrtIndivldvdofWodd9 Bert Indmdval CSWodd 10

I 2 3 4 S 6 7 8 9 IO 1 2 3 4 5 6 7 8 9 10

Figure 1 0 Fitness of the best solution obtained in a
world and tested in all the other worlds.

These graphs (Figure 10) show that the obtained
controllers are not general, since they are very adapted to
the training environment. Darker bars correspond to the
value obtained in the training environment and in most
cases that is the lowest value. It is also shown, that

774

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

depending on the training environment, solutions are more
or less general. Thus, the controller trained in environment
3 seems to be the most general, while that obtained in
environment 10 is the lowest.

The same information is shown in a different way in
Figure 11. The graphs represent the behavior in a specific
environment of the best solution obtained for each of the
evaluated environments. In environment 1 for the first
graph, in environment 2 for the second graph and so on.

W& I W & l

I 1 3 4 J 6 I 8 9 LO I Z 3 4 3 6 7 8 9 LO

w m 3 W&4

1 : 3 4 5 6 7 8 9 LO

Wald 10

1 I 3 4 J a 7 I 9 10

Figure 11: Fitness of the set of best solutions (one of
each world) in each world.

Graphs in Figure 11 show the capability of
environments to obtain general solutions. For example,
environment 8 gives more general solutions in contrast to
environment 10.

4.3 Uniform Coevolution results
The fixed type experiments have two main problems: the
overadaptation problem and the quality of the solutions
that depends on the training examples set. Thus, the
necessity of an evolutive algorithm to improve the existing
one is justified.

Coevolutive experiments have not been performed in all
the environments since some of these only differ in the
starting position, thus for example 3, 6, 7 and 9 in figure 8
are the same environment.

The fitness values of f i ed , , f i e d , and CoevU,, CoevU,
are related with the evolution in worlds 1 and 3. These two
worlds are the most general ones from Figure 9. In table 1,
the validation of the obtained controllers is shown. These
controllers have been learned in worlds 1 and 3 (of Figure
9) and tested in worlds 1, 3, 5 and 10. For comparing, the
obtained values corresponding to fixed experiments
(section 4.2) in worlds 1 and 3 have also been included.

Table 1: Resume of the fitness value obtained in fixed
experiments and CoevU experiments.

Fixed,
CoevU.

The validation process has been carried out making
lo00 executions over worlds 1 , 3 , 5 and 10. Each execution
has different initial position and orientation of the robot,
randomly generated.

h

Figure 12: Representation of the fitness values compiled
in table 1.

Both Table 1 and Figure 12 compiles the mean of the
fitness value with a 95% confidence interval, over the lo00

775

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

running. The controller denoted through CoevUl shows the
best generalization results, better that any one of the fixed
controllers. Moreover, it also can be seen that CoevUl has
a very specialized behavior in the world 1, comparing with
the results of CoevU3. This last controller shows better
results in the four worlds considered. CoevU3 improves the
fixed controllers in about an 80% and about a 20% over
CoevUI.

5 Conclusions and further work
The experiments prove the possibility of learning general
behaviors in an autonomous robot by means of an ES. The
uniform coevolution method has shown to be able to
improve the generalization of solution in about a 70%. The
process has been applied on a simple NN where the direct
associations between sensors and motors allows to solve a
navigation problem.

It can be also extended to other more complex NN and
to use another evolutionary algorithm.

The learning process can be easily modified in order to
consider new problems that could appear such as:
surrounding an obstacle, or hiding from the light. The
adaptation to new problems does not require too much
effort because of no inclusion of local information about
the problem in the fitness function.

Uniform Coevolution has proven its capability to obtain
better generalized solution in problems examples-based.

6 Bibliography

Axelrod, R. (1984) “The Evolution of Cooperation”, Basic
Books, New York.
Axelrod,R. (1989) “Evolution of Strategies in the Iterated
Prisioner’s Dilemma”. Davies ed. of Genetics Algorithms
and Simulated Annealing, 32-41, Morgan-Kaufman.
Berlanga A., Isasi P., Sanchis A., Molina J. M. (1999a)
“Distance Modulation Competitive Coevolution method to
find initial configuration independent cellular automata
rules” in IEEE Intemational Conference on Systems, Man
and Cybernetics. 607-612, Japan.
Berlanga, A., Sanchis, A., Isasi, P., Molina, J.M. (1999b)
“Neural Networks Robot Controller Trained with
Evolution Strategies”, Proc. of 1999 Congress on
Evolutionary Computation, CEC99.
Braitenberg V. (1984) “Vehicles: experiments on synthetic
psychology”. MIT Press Cambridge, Massachusets.
Brooks R. A. (1991) “Intelligence without Representation”.
Artificial Intelligence, 47, 139-159.
Goldberg D., (1989) “Genetic Algorithms in Search,
Optimization and Machine Learning”, Addison-Wesley,
New York.
Hillis, W.D. (1991) “CO-evolving parasites improve
simulated evolution as an optimization procedure”. In C.G.

Langton, editor, Artificial Life 11, 313-324, Reading, MA,
Santa Fe Institute, Addison Wesley.
Ishikawa S. (1995) “A Method of Autonomous Mobile
Robot Navigation by using Fuzzy Control”. Advanced

Isasi P., Berlanga A., Molina J. M., Sanchis A., (1997)
“Robot Controller against Environment, a Competitive
Evolution”, Special Session on Evolution Computation,
15th MACS World Congress 1997 on Scientific
Computation, Modelling and Applied Mathematics,

Lindergren, K, Nordahl, M.G. (1994) “Artificial Food
Webs”, Artificial Life III, 73-103, Addison-Wesley.
Matelliin V., Femhdez C., Molina J.M. (1998) “Genetic
Learning of Fuzzy Reactive Controllers”, Robotics and
Autonomous Systems, 25, (1-2), 33-41.
McKerrow P.J. (1991) “Introduction to robotics”, Addison-
Wesley Publishing Company Inc.
Miglino O., Hautop H., Nolti S. (1995) “Evolving Mobile
Robots in Simulated and Real Environment”. Artificial
Life 2: 417-434.
Molina, J.M., Sanchis, A., Berlanga, A. And Isasi, P.
(1998) “An Enhanced Classifier System for Autonomous
Robot Navigation in Dynamic Environments”. Intelligent
Automation and Soft Computing. Autosoft Press, in Press.
Mondada F. and Franzi P.I. (1993) “Mobile Robot
Miniaturization: A Tool for Investigation in Control
Algorithms”. Proceedings of the Second Intemational
Conference on Fuzzy Systems. San Francisco, USA.
Paredis, J. (1996) “Coevolutionary Computation”,
Artificial Life, 2,355-375, Addison-Wesley.
Rechenberg, I. (1973) “Evolutionsstrategie: Optimierung
Technischer Systeme nach Prinzipien der Biologischen
Evolution”. Frommann-Holzboog, Stuttgart.
Rechenberg I., (1989) “Evolution strategy: Nature’s Way
of Optimization”. In H. W. Bergmann, editor,
“Optimization: Methods and Applications, Possibilities and
Limitations”, Lecture Notes in Engineering, 106-26,
Springer, Bonn.
Rosin, C.D., Belew, R.K. (1997), “New Methods for
Competitive Coevolution”, Evolutionary Computation, 5,l-
29.
Sanchis, A., Molina, J.M., Isasi, P. And Segovia, J. (1999)
“RTCS: a Reactive with Tags Classifier System”, Journal
of Intelligent and Robotic Systems, in press.
Schwefel, H. P. (1981) “Numerical Optimization of
Computer Models”. New York: John Wiley 8z Sons.
Sommaruga L., Merino I., Matellh V and Molina J.
(1996) “A Distributed Simulator for Intelligent
Autonomous Robots”, Fourth Intemational Symposium on
Intelligent Robotic Systems-SIRS96, Lisboa (Portugal)

Robotics, vol. 9, NO. 1,29-52.

(Gemany).

776

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:21 from IEEE Xplore. Restrictions apply.

