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Abstract- The increasing use of auctions has led to a
growing interest in the subject. A recent method used
for carrying out examinations on auctions has been the
design of computational simulations. The aim of this
paper is to develop a genetic algorithm to find bidders'
optimal strategies for a specific dynamic multi-unit
auction, The algorithm provides the bidding strategy
(defined as the action to be taken under different
auction conditions) that maximizes the bidder's
payoff. The algorithm is tested under several
experimental environments, number of bidders and
quantity of lots auctioned. The results suggest that the
approach leads to strategies that outperform canonical
strategies

1 Introduction

Nowadays auctions have been extensively used as selling
mechanism in different markets around the world. The
items or lots auctioned range from the wide variety of
things being offered on Internet market-places like eBay;
to the government auctions of spectrum rights
(Klemperer, 1999), treasury bill, electricity, emissions
permits; or the auctions of art, financial assets,
agricultural goods, etc. As a result of these activities,
auction theory and experimental examinations of these
theories are of growing interest. It is very difficult to list
the numerous papers on auctions but some references
could be: McAfee and Mc Millan (1987); Laffont (1997);
Kagel and Roth (1995); Klemperer (2000a); Klemperer
(200b); Krishna (2002); Klemperer (2003); Milgrom
(2004); etc.
A recent method used for analysing strategies on

auctions is by means of systems of Artificial Adaptive
Agents (AAA). The analysis of these systems gives us
new approaches to the understanding of the economic and
social behaviour of auctions. In this way, the use of
machine learning systems could help in the finding of
optimal strategies or in the evaluation, from different
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points of view, of the auction itself with respect to other
possible auctions. In this context, Genetic Algorithms
(GAs) are a good learning method. The first works using a
genetic metaphor as computing systems were done by
Fraser (1957) and Bremermann (1962). Afterwards, the
GAs was formally introduced by Holland (1975) as a
computational paradigm. The GAs have been applied to
describe the learning behaviour of agents in various
economics models (Miller, 1986; Arifovic, 1994; Dawid
and Kopel, 1998; Arifovic, 1995; Arifovic, 1996; Arifovic
and Gencay, 2000; Dawid, 1996; Axelrod, 1987; Miller,
1996; Routledge, 1995; etc).

Moreover, during the last years, GAs are being used in
researches that include auctions. For instance Andreoni
and Miller (1995) created and analysed a GA model to
capture the bidding patterns evident among human
subjects in experimental auctions. These authors
compared the different results for first and second price
auctions formats. Dawid (1999) modelled a two-
population GA to study the learning behaviour of buyers
and sellers in a sealed bid double auction. Numnonda and
Annakkage (1999) proposed the application of a GA to
solve the optimal power dispatch problem for a multi-
node electricity auction market to maximise the total
participants' benefit at all nodes in the system. Wen and
David (2001) addressed the problem of building optimal
bidding strategies for competitive suppliers in a day-ahead
energy market using a GA method. Anthony and Jennings
(2002, 2003) employed a GA model to search for
effective strategies with multiple auctions formats
(English, Dutch and Vickrey). Cliff (2003) described the
use of a GA to find optimal parameter-values for trading
agents that operate in virtual online auction "e-
marketplaces", where the rules of those marketplaces are
also under simultaneous control of the GA.

In this paper we are going to focus on a particular
specification of a multiple-object ascending-clock auction
develop by Ausubel (1997, 2004), which is usually
refereed as the Ausubel auction. In this auction, with
private values and diminishing marginal utilities, Sincere
Bidding (SB) by every bidder constitutes an equilibrium.
Some other authors have studied this auction format
(Bikhchandani and Ostroy, 2005) and it has been
frequently compare with other multi-unit auctions
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(Manelli, Sefton & Wilner, 2000; Kagel, Kinross &
Levin, 2004; Kagel, Ye & Pevnitska, 2004; Sunnevag,
2001.

The present paper reports a computational experiment
comparing bidders' payoff for the Ausubel auction with
dropout information. Our aim is to use GAs to find
whether a canonical behaviour, SB, can be outperformed,
form the bidder point of view, in some specific
conditions. The work also tries to find out whether better
strategies can be achieved automatically, by means of
GAs.

The remainder of the article is structured in the
following manner.
A definition of the auction model selected and the

equilibrium bidding strategies are given in section 2. In
section 3 we described the experimental environment, the
fundamentals of the bidding algorithm and the auction
conditions that affect its performance. Section 4 evaluates
the experimental results in several environments by
comparing the bidders' payoff with the GA and SB
strategy. We also address the question of what is the
optimal bidding strategy that the GA propose that
outperforms SB. To that end we have analysed deeply the
bidders behaviour in six different experiments. In section
5 we present our conclusions and future work.

2 The Ausubel Auction format

In multiple-object environments, where individual
bidders may demand more than one homogeneous items,
the seller must choose among a wide variety of auction
formats. This paper focuses on a particular specification
of rules for what might be referred generically as an
"ascending-clock auction". In the standard ascending-
clock auction, where demands are required to be non
incremental in price, the auctioneer employs a price
"clock" stars at zero (or at a low price) and increases
continuously thereafter. For each price, p, each bidder i
simultaneously indicates the quantity qi(p) he desires.
When the price p * is reached, such that aggregate demand
no longer exceeds supply, or until the exogenous ending
time is reached, whichever occurs sooner, the auction is
over. Each bidder i is then assigned the quantity qi(p*)
and is charged a unit price ofp*.

The description of the alternative ascending-bid
auction developed by Ausubel (1997, 2004) coincides
with this auction format where bidders choose what price
to drop out of the bidding, with dropping out being
irrevocable. What is not specified however are the
payments owed to each of the winners. As we have
mentioned, when the auction is over each bidder i is
assigned the quantity qi(p*) but is charged the standing
prices at which the respective objects were "clinched".
With M object for sale at a price po, bidder i clinches an
object when the aggregate demand of all other bidders
dropped, at least, from M to M-1 but bidder i still
demands two units or more. In this situation bidder i is
guaranteed at least an object no matter how the auction
proceeds. In this way the auction sequentially implements

the Vickrey rule that each bidder pays the amount of the
kth highest rejected bid, other than his own, for the kth
object won.

There are two variants to the Ausubel auction: with
and without dropout information. In the first one, dropout
prices are announced as they occur, along with
announcements of items earned (or clinched) and prices
paid, as the auction proceeds. In the second one, winners
and prices paid are not announced until the auction has
ended.

For a better understanding of the allocation and
payment rule of this mechanism, table 1 includes an
example of the Ausubel auction where we suppose that
there are four identical objects to sell, M = 4. There are
three bidders, n =3, and their marginal values are given as
follows: Bidder A: vA,l = 40, VA,2= 35, VA,3= 30, VA,4= 20;
Bidder B: VB, = 40, VB,2= 20, VB,3= 15, VB4= 10; Bidder
C: vc, = 25, VC2 = 15, VC,3 = 10, VC, = 5. Theses are
marginal values for a first, second, third and fourth object,
respectively.

Price Quantities Aggregate Clinching process
(p) demanded demand

by bidders (Q')
(gi)

A B C
0 4 4 4 12
5 4 4 3 11
10 4 3 2 9
15 4 2 1 7 A "clinches"
20 3 1 1 5 A "clinches"
25 3 1 0 4 A & B "clinches"

Table 1 :Example of an Ausubel auction process

We assume that each bidder is going to bid according
to their real values (sincere bidding). This means that
bidders demand objects as long as their values are lower
than the standing price. Therefore, at the initial price, p=O,
the aggregate demand is 12, which is bigger than the
available supply, 4, so the auction must proceed further.
The auctioneer begins to continuously increment the clock
and price and bidders submits their demands. The first
important change occurs when the price reaches 15. The
aggregate demand at this price is 7 and the supply is 4.
Bidder A has now mathematically guaranteed himself at
least one object as the aggregate demand of all
competitors other than bidder A has dropped to 3. Bidder
A has clinched winning an object. The auction ends when
the price attains a level of 25 and bidder C drops out of
the auction reducing the aggregate demand to just 4, thus
equating demand with supply. With this last round the
final outcome of the auction is that bidder A wins three
objects for 15, 20 and 25 each and bidder B wins an
object for 25.

To be able to define the auction outcome, we first
make a basic specification of the model from the
formulation of Ausubel (1997), we consider all variables
discrete. In each auction the seller offers M number of
indivisible units of a homogeneous good to n number of
bidders, where n. M. Each bidder i obtains a marginal
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value of Vik for the kth unit of the good, for k=1, ..., M.
Thus if bidder i gets qi units of the good for a total
payment of Pi, he obtains a payoff of:

E Vzik -P , for i= 1, ..., n and qi =,...M (1)
k=1

All bidders are assumed to exhibit (weakly)
diminishing marginal values, i.e., Vik > Vik+l > 0, for all
i=l, ..., n and k=l, ..., M-1 which are privately observed
by the respective bidders, making this game of incomplete
information. The estimation of the own value made by
bidder i is not affected by bidderj's valuation. As we will
explain in the next section, bidders marginal values are
generated randomly form an uniform distribution and are
statistically independent of each other for i.#j.

In our model we assume that all bidders have full bid
information. This means that bidders have the complete
history of all bids made by all bidders in the auction. This
specification of the Ausubel auction with dropout
information is sometimes refereed as the Ausubel-Plus
auction (Kagel, Kinross and Levin, 2003).

For any round 1, the aggregate demand by all bidders
is Q = ,q . Hence, the cumulative vector of

quantities Cd clinched at prices up to pl is define by
equation (2)

Cl =max{O,M-,ql.} ,forl=0,... L-1 andi=1.. n (2)

Given the individual quantities clinched at price pl by
setting co = C° defined as follows:

cl = cl;-cl- , for l= 0, ..., L-1 and i =1,...,n (3)

The auction outcome associated with any final history
l=L is define in equations (4) and (5).

* =-CLAllocation: qi = Ci, for i =1,n (4)
L

Payment: Pi =Zp'c'.for i =1,...,n (5)
1=0

Ausubel (2004) demonstrated that in this auction
format with pure private values, SB by every bidder is an
ex post perfect equilibrium yielding to an efficient
outcome. Notwithstanding, SB is not the unique
equilibrium. In the experiment carried out by Kagel,
Kinross and Levin (2004) with independent private
values, behaviour in the Ausubel auction with dropout
information comes significantly closer to SB.

In our model all but one of the bidders have a fixed
bidding strategy: SB. There is only one bidder whose
strategy depends on the process of the auction. This single
bidder evolves according to a GA that learns the best
strategy to implement from one auction to another and
that indicates how the bidder should bid according to its
results.

As price goes up and demanded quantities go down, it
is possible that, for a certain increase of price, the supply
is not covered at the final price (t). In these
circumstances the following rationing rule is introduced.

We turn to the previous price (V-L) and allocate all the
demanded units to the bidders. We then calculate the
excess demand (Q L-1 -M and, beginning with the bidder
who has the highest demanded quantity not clinched
qL-1 -cl- , start to remove one unit from each bidder
until the total demand equals supply. We will not be able
to remove units from bidders that were already clinched in
previous rounds.

3 Designing the GA for the bidding strategy

GAs have been proven to be powerful method to search
non-linear problems for good solutions in many domains
(Mitchell, 1996). The aim of our GA is to find a set of
bidding rules that maximize the payoff of a bidder
according to equation (1). To this end we have defined
several experimental environments for which each bidder
has a different set of values and a specific bidding
strategy.

3.1 Defining the experimental environments
The experiment employs an independent-private-value
framework in which bidders have weakly diminishing
marginal values, are risk neutral and have no budget
constrains. All bidders except one have a fixed strategy
which is SB. Bidders will reduce their demanded
quantities just when the actual price is equal to their real
values. On the other hand, the bids of the bidder who
follows the GA strategy will depend on several actions
that we will define as deviations from the SB strategy.

This behaviour is explored for several environments
that differ in the following variables: the number of lots
auctioned m = 10, 15, 20, 25; the number of bidders n= 4,
6, 8 and the elasticity of the bidders' demand curves. The
elasticity of bidders' demand curve depends on their
valuations of the items which are generated as we
describe below.

Every bidder has a set of values organized from high to
low that specify the marginal value from the consumption
of each additional unit. In our model we force each bidder
to define his values for at least as many items as the total
supply. Bidders' values are drawn independently and
identical distributed from a uniform distribution with
support [1,200], with new random draws for each
additional unit. For the experiments with elastic demand
curves and po= 10, bidders' values are drawn in the
interval [11,200]. With this requirement, the valuations
are always higher than the starting price of the auction so,
we ensure that the total supply is fully subscribed at the
starting price and the auction do not failed. These values
are generated with two different algorithms which gives
us either elastic or inelastic demand curves.

The set of values that yields elastic demand curves are
generated for every bidder in the following manner. The
algorithm starts with a random number between 1 and 200
which is bidder i valuation for the first unit (vi I). For each
additional unit we reset the upper bound by lowering it at
a fixed rate equal to 200 divided by the total number of
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units auctioned multiplied by two. The values for each
unit are the minimum of a random number generated
under the new bound and the value of the preceding unit.
In the elastic demand curves, the quantities demanded by
the bidders decrease quite quickly as the price goes up.

The bidders' values for the inelastic demand curves are
generated as follows. The algorithm starts just like the
previous computing v,1 which is a random number
between 1 and 200. Once we have the value of the first
unit we generate a random number between 1 and that
value. The value assigned to the next unit would be the
maximum of that random number and the value of the
previous unit divided by two. In the elastic demand
curves, the quantities demanded by the bidders don't
decrease significantly as price goes up.

With these two algorithms we generate the values that
every bidder has for each item to be auctioned, which will
determine the bidding strategy for all participants.

3.2 Bidding strategy
In each auction all bidder are programmed to bid the
equilibrium bidding strategy, i.e. their true value. There is
only one bidder that has to beat his computer rivals by
following the GA bidding strategy. The definition of the
GA strategy that we suggest requires the identification of
actions linked to specific auction conditions. Each action
is defined in terms of deviations (over and underbidding)
from the SB strategy. The demanded quantity according
to the SB strategy of bidder i in the round 1 is represented
by q' . To this end we consider the following four
possible actions to be taken: bid half of the SB quantity
(q'B. /2); bid the SB quantity (qi); bid 50% more of the
SB quantity (q'B * 1.5) or bid twice as much as the SB

quantity (q' ,*2), see table 2. The bidder that evolves
with the GA strategy will bid one of these four actions
according to the auction condition of each round. All
these strategies have an upper bound that is the lowest of
either the number of units being auctioned or,
alternatively, the units demanded in the previous round
(as demand is required to be non increasing). The lower
bound is the number of units that the participant has
already clinched.

Bidding strategy Quantity
demanded

Code

bid half of the SB q 1 /2 00
bid the SB qS 01
bid 50% more of the SB q . * 1.5 10
bid twice as much as the qB *2 11

Table 2: Each bidder considers four possible actions
for each auction condition

Bidders face 61 possible auction conditions. The first
one represents the initial market where no relevant
information is available. To define the others 60 possible
auction conditions we make up a combination of the
potential values of three different indicators. In each
auction the value of theses indicators change form one

round to another. As our auction format has dropout
information, the bidder that follows the GA strategy
constantly calculates theses indicators and select the
appropriate action or bid. These indicators are described
as follows and are represented in table 3.

The first one is the trend of price elasticity of demand
from the competitors (ep,d). This is the evolution of the
competing bidders sensitivity of demand according to
price increases. Formally, the definition of price elasticity
of demand responds to equation (6).

Q1-1 QI-2

Q1-2 (6)
£p,q- 1-1 1-2-p

p1-2
Where p'1 denotes the price at the (l-1) round on which

one or more bidders strictly decreased the quantity
demanded, and Qi-' denotes the sum of the quantities
demanded by bidders 1.. . n at round (1-1). In the same
way, the indexes (1-2) refer to the previous round.

Since we are concerned with the evolution of this value
the magnitude that we consider is the ratio of the
mentioned elasticity divided by the same elasticity in
which we consider (1-2) and (1-3) data. These ratios are
classified into five categories: > 1.5; <1.5; =1; <1 and
<0.5.

The second indicator is the percentage of active
bidders (AB%). This is the number of bidders that ask for
at least one unit at that round over the number of bidders
at the beginning of the auction. We have classified this
indicator in three categories: <100%; < 50% and < 25%.

The third indicator is the operating margin of the
strategic bidder (OM). This variable is defined as the ratio
of the total number of units that no one clinched in the
previous round over the number of units demanded by the
bidder using the GA strategy in that previous round. This
indicator is also classified into four categories: > 2; <2;
<1.25 and <l.

____d AB(%)
>1.5 < 100%
<1.5 <50%
= I < 25%

OM
>2
<2
< 1.25

+Initial= 61

< 1 <1
>0.5
Table 3: Bidders face 61 possible auction conditions
made up from the combination of three indicators plus
the initial condition.

3.3 Genetic Algorithm
The encoding of the bidding strategies to the individuals
is a direct process. As we mentioned before, all strategies
consist of a set of 61 integers valued from 0 to 3,
depending on the action to be taken which depends on the
auction conditions. Since the actions can be encoded in 2
bits each strategy could be represented as an array of 122
bits. This includes the SB strategy. Since we define the
action of following the SB strategy as 1 (01), the strategy
of a SB bidder would be represented as a string of 122 bits
(where the value of every odd bit is 0 and 1 otherwise).
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The assessment of a bidding strategy is made by
running an auction twice. In the first run all bidders fulfil
SB. In the second one, we let one bidder (bidder 1) evolve
according to the GA and the others follow SB. Once we
have the allocations and payments for each bidder, we
calculate for both runs the payoff for the strategic bidder
according to equation (1). The GA strategy will success as
higher the payoff for bidder 1 is in the second run rather
than in the first one, no matter what the others bidders
payoff or the sellers revenue.

The search for the best strategy for each environment
was performed using populations of 30 individuals that
evolved for 1,000 generations. The GA used elitism, a
roulette wheel selection mechanism in addition to
mutation and single-point crossover probabilities of 0.9
and 0.01 respectively.

4 Evaluating the bidding strategy

In this section we evaluate the outcome obtained by the
GA strategy. We have run the experiments for all the
environments described in section 2. For each
environment we ran the algorithm 25 times thus letting a
population of 30 individuals evolve for 1,000 generations.
To evaluate the GA strategy we compare the payoff of the
GA bidder with what he would have obtained with the SB
strategy, table 4. The results show that the GA
outperforms the SB strategy in all the experiments except
in one, as the bidders' payoff is always higher with the
GA strategy than with the SB one. This reveals that, at
least in some cases, bidders' payoff can be improved by
using our GA strategy rather the SB one. Moreover, we
compute the differences of the bidders profits with the GA
and SB and averaged across auction within each value of
m. This variable is significantly and positive correlated at
the level of 1% with the number of lots auctions (r=0. 157,
p=0.OOO), what suggests that as m increases the GA has
more chances to beat the SB strategy.

m=10 m-l5 m=20 m=25

Elastic

n=4

n=6

n=8

Inelastic

n=4

n=6

n=8

0.16 1.40 18.98 7.36

1.60 0.32 0.08 0.00

0.24 1.32 0.68 0.64

0.60 0.84 0.64 1.08

0.40 0.40 0.44 0.80

1.36 0.12 0.08 1.60

Table 4: Payoff average difference for SB and GA
bidding strategies

The key point in this research is to find out what is the
bidding strategy of the GA that outperforms the SB. To

this end we have analysed in detail the process of six
different auctions (three of them with elastic demand
curves and the others inelastic) for n=4 and m=15 in
which the GA beats the SB strategy. Appendix A
includes the auction process for one of this examples
Moreover, with this analysis we verify that both, the
auction process simulator and the GA, work properly.

When we compare the GA strategy of bidder 1 respect
to the SB we can observe that at the beginning of the
auction the participant is overbidding. Particularly, in this
example, his action or bid is equal to qB *2 (code 11),
i.e., his is bidding 12 when qi is 6. He continues
overbidding just until he determines the best moment to
underbid and push the auction to rationing. There are two
main facts that affect this decision. i) The demand of the
others competitors (q'2+q'3+q'4) plus what he has already
clinched (d1) is equal to M, equation (7). ii) What he has
already clinched plus the items not sold jet divided by the
number of active bidders (AB) is equal toq' , equation
(8).

Z q'j+Cl =M
j.l

(7)

(8)

When equation (7) holds, this implies that the excess
demand of the auction is equal to bidder i bid minus what
he has already clinch, Q'-M =q'1-d1. Therefore, by
underbidding in the next round, he has a high probability
of pushing the auction to a rationing situation. The
strategic bidder will also calculate the number of items
that he will get if the rationing rule is put into effect in
that round, equation (8). When what he has clinched plus
what he will probably get with the rationing rule is equal
to qSBi , then it would be the moment to underbid.

At that point the best strategy for bidder 1, according
to the GA, is to make his possible minimum bid in the
next round, i. e., q1L = C-L1l. In this example he bids 3
when qSB, is 6, so his action is qsB, *1/2 (code 00), the
participant is underbidding. By doing this, bidder 1 push
the auction to rationing.

In this example, when the auction runs for the first
time, the final allocation of the items according to the
clinching rules is: C%1=5, C2=3, CL3=3 and C'K=4.
Nevertheless, the allocation in the second run when bidder
1 bids according to the GA is: CL1=6, CL2=3, CL3=3 and
C"4=3. As a consequence of the GA strategy, when
rationing rule is applied, bidder I gets one additional units
(the 6th). His personal value for this unit is v],6=20. In the
other hand, bidder 4 has lost his 4h item, which had a
value of: V4,4=27. As we can see, if bidder 1 behaves
according to the GA and this particular rationing rule is
applied, efficiency is no longer guarantee, as the bidder
with the highest valuation is not necessarily the one that
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wins the object.
In the others examples the bidder with the GA strategy

has very similar pattern to what we have seen. He starts
overbidding until the GA finds the optimal round to push
the auction to rationing according to the probability to
force rationing and his final allocation of items respect to
his real valuations. At that moment he underbids by
making the next bid equal to q,L = cf1 (his minimum
possible bid).

With the specific rationing rule assumed, we have
analysed the effect of the GA strategy over all the
participants involve, table 5. In the six examples that
concerns us bidder 1 is always better off by following the
GA bidding strategy rather than the SB. He always win, at
least, the same number of objects and at a lower average
price. In the other hand, the seller is always worst off as
he does sell all the items but at a lower price. Hence his
revenues are lower. The final outcome for the others
participants depends on each specific auction. Sometimes
they do also have higher payoff as the average selling
price of the items is lower. Nevertheless, their payoffs can
also be reduce form the fact that sometimes bidder 1 takes
advantage of the rationing rule.

PayoffGA- PayoffGA- Seller's revenue
Payoff SB Payoff SB i .1 GA- Seller's
bidder 1 revenue SB

Elastic demand curves
Example 1 73 -27 -59
Example 2 20 12 -40
Example 3 6 -10 -1
Inelastic demand curves
Example 4 8 -6 -15
Example 5 11 14 -32
Example 6 9 14 -25

Table 5:Effect of the GA strategy respect to the SB one for all
participants with the SRR

5 Conclusions

This computational experiment is focus on an specific
dynamic ascending multi-unit auction with
implementation of Vickrey pricing, which is referred as
the Ausubel auction. We employ an independent-private-
value framework with dropout information in which
bidders have weakly diminishing marginal values. With
these assumptions, in the Ausubel auction SB by every
bidder constitutes an efficient equilibrium.
We have develop a GA that can be successfully

employed to evolve bidding strategies for this auction
format. The algorithm generates different bidding
strategies or actions to be taken according to the auctions
conditions which are defined by three indicators: tendency
towards elasticity in price demand; the number of bidders
active in the auction with respect to the bidders at the
beginning of the auction; and the number of objects that
have not been clinched with respect to the number of
objects demanded by the GA bidder.

By relating the GA strategy to a specific bidder we
have been able to compare the payoff to what he would
have obtain with SB. We have run the experiments with
two different demand curves: elastic and inelastic. The

experiments were conducted separately for different
numbers of bidders (n=4, 6, 8) and objects auctioned
(m=10, 15, 20, and 25). For each environment we ran the
algorithm 25 times which allowed a population of 30
individuals to evolve for 1,000 generations.

The evaluation of the GA strategy reveals that the
algorithm outperforms the SB strategy as the bidder
payoff is always equal to or higher than with the SB
strategy. To have a better understanding of the behaviour
of the GA bidder we have analysed in depth the auction
process of six examples where the GA beats the SB. In
this analysis we found that the optimal bidding strategy
that the GA propose for bidder 1 is to overbid just until
the GA finds the optimal round to push the auction to
rationing (according to the probability to force rationing
and his final allocation of items respect to his real
valuations). At that point the bidder will underbid by
making his lower possible bid, i.e., what he has already
clinch (q,L = Ct -j). With this performance he maximizes
his payoff. In all the auctions analysed bidder 1 is always
better off, the seller is always worst off and the outcome
of the other participants will depend on each specific
auction.

These results reveal that the implementation of GAs
and the selection of a rationing rule can be a key point in
the final outcome of an Ausubel auction, both in
allocations and payments. Some authors have already
studied the importance of the rationing rule to establish
the existence of an equilibrium in many games, including
auctions, see Jackson, Simon, Swinkels & Zame (2002).
Nevertheless there is not much done about GAs and
auctions, hence it could be an interesting line of future
research.
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iI qIC 2 C2 3 C3 g4 C4
10 28 12 0 6 0 5 0 5 0
12 27 12 0 5 0 5 0 5 0
14 26 12 1 5 0 5 0 4 0
15 25 12 2 4 0 5 0 4 0
16 24 12 3 4 0 4 0 4 0
17 14 3 6 4 3 3 3 4 3
Table 7: Example 1: Auction process with bidder 1

GA strategy
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Apendix A:
An example of an auction process where the GA beats
the SB strategy
Bidders' values for m=15 and n=4

Vi,k: 18291 81 41 3520 1053222 1 1 1

V2,k:100502522 15 12632 1 1 1 1 1 1

V3,k: 100 50 33 17 16 8 4 4 2 1 1 1 1 1 1

V4k: 106 76 44 27 14 7 4 2 1 1 1 1 1 1 1

Auction process with SB strategy: 1st column: current
price (p); 2nd column: aggregate demand (Q'); other
columns: quantities demanded (q,) and cumulative
quantities clinched (C) by Bidder 1 (BI),Bidder 2 (B2),
Bidder 3 (B3) and Bidder 4 (B4) respectively.

iuQIA{ l 1 C1 q2 C2_ q3 C3 q4 C4
10 22 6 0 6 0 5 0 5 0
12 21 6 0 5 0 5 0 5 0
14 20 6 1 5 0 5 0 4 0
15 19 6 2 4 0 5 1 4 0
16 18 6 3 4 1 4 1 4 1
17 17 6 4 4 2 3 1 4 2
20 16 5 4 4 3 3 2 4 3
22 15 5 5 3 3 3 3 4 4
Table 6: Example 1: Auction process with all bidders

SB strategy

Auction result with bidder 1: GA and the others bidders:
SB:

Prices at which bidders clinched each item:

BJ: 14 15 16 16 16 16; B2: 16 16 16; B3: 16 16 16;
B4: 16 16 16

PayoffB]: 357

Auction result with SB:

Prices at which bidders clinched each item:

B]: 14 15 16 17 22; B2: 16 17 20; B3:
16 172022

15 20 22; B4:

PayoffB]: 346

Auction process with GA strategy: I " column: current
price (p); 2nd column: aggregate demand (Q'); other
columns: quantities demanded (qi) and cumulative
quantities clinched (Cl) by Bidder 1 (BI),Bidder 2 (B2),
Bidder 3 (B3) and Bidder 4 (B4) respectively.
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