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1. Introduction 

In their seminal paper (1980), Blanchard and Kahn give the solution of linear differ­

ence models under rational expectations together with the conditions for existence and 

uniqueness. These conditions are usually called Blanchard- Kahn conditions. But they 

are obtained under the crucial assumption that the linear difference model with rational 

expectations may be8:rranged in the Blanchard-Kahn form which is the following one: 

(1) 

Where X is an n-vector of variables predetermined at date t, P is an m-vector of 

variables non predetermined at t and Z is a (n+m)-vector of exogenous variables, E t 

being the mathematical expectation operator conditionally to the information set avail­

able at t. A is a (m+n)-square matrix. Form (1) is very important as it allows to check 

the so-called Blanchard-Kahn saddlepoint conditions: the model has a unique solution 

if and only if the number of eigenvalues of A outside the unit circle is equal to m, the 

number of non-predetermined variables. 

Unfortunately, form (1) is hardly ever directly obtainable on the structural linear 

or linearized rational expectations models, which disables the direct verification of the 

saddlepoint conditions mentioned above. Therefore, an important theoretical question 

turns out to be the following: how to obtain the Blanchard-Kahn form from any lin­

ear(ized) rational expectations models and is it always possible? 1 To answer this 

question, we start our analysis on a reduced form that is always directly obtainable on 

every difference model with rational expectations (see Broze, Gourieroux and Szafarz 

(1989) or Laffargue (1990)): 

(2) 

1 Numerical procedures can be also used to check saddlepoint conditions without an explicit Blanchard­
Kahn form, see Boucekkine and Le Van (1995). However, to find out sorne theoretical foundations for 
their procedure, these authors assume that the models can be transformed into the Blanchard-Kahn 
formo One contribution of our paper is to show that this assumption actually ensures that the considered 

forward-looking models are well specified. 
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where y1 is an nI -vector of lagged variables, y2 is an n2 - vector of non-predetermined� 

variables and y = (y1, y2, y3), y3 being an n3 -vector of "static" variables. vVe set� 

n = nI + n2 + n3' C1 is a nxn1 matrix, C2 is a nxn2 matrix, and Co an n-square� 

matrix. Note that if Co is singular the model does not make sense: we need to ensure� 

existence and uniqueness of contemporaneous variables' solutions given the past and� 

the future. Hereafter, we normalize Co to the identity matrix. Now, the question is to� 

establish if model (2) admits a Blanchard- Kahn form in order to check the Blanchard­�

Kahn conditions of existence and uniqueness of solutions. In this paper, we prove that� 

model (2) may always be transforrned by means of an one-to-one mapping into another� 

form which has one of the three following properties :� 

i) it is degenerated,� 

ii) it is backward,� 

iii) it has a Blanchard-Kahn formo� 

The paper is organized as follows : in section 2 we state and prove the main result� 

in addition to an illustration on three examples of Blanchard-Kahn's paper. Section� 

3 applies the presented algorithm on a Real Business Cycle model and on the german� 

country model of the IMF multicountry model, MULTIMOD. Section 4 concludes.� 

2. The main result� 

Let us consider again model (2). Partition C1 and C2 as follows:� 

C1 = [g~~] 
C13 

Model (2) splits in three systems: 

1 1 CE2 1C11 Yt-1 + Yt + 21 tYt+1 = Zt 

1 2 CE 22C12 Yt-1 + Yt + 22 tYt+1 = Zt 

1 3 CE2 3C13 Yt-1 + Yt + 23 tYt+1 = Zt . 

Obviously, one can eliminate the third system involving y: and just consider the first� 

two systems. For simplicity, we assurne that Zt = 0, or in other words, that the model� 
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is stationary and the variables are in fact the differences between their transitory and 

stationary values. 

From now on, we consider model (3): 

Y; = PI EtY;+I 
(3) 

{ 
Yt = P2 EtY;+I 

Matrices Pi and Qi, i = 1,2, are trivial1y computed from the submatrices of C i defined 

in the partition aboye. In particular, PI, being equal to -C22 , is a square n2-matrix and 

P2 a (nIxn2) matrix. Before stating our main result, we mention the following lemma 

which will be used later. 

Lemma 

Let A be a square n-matrix with rank m, m < n. There exists an invertible square 

matrix M, a square m-matrix P, an mx(n - m) matrix Q such that: 

with rank (P, Q) = m. 

Proof see e.g. Hom and Johnson(1985). 

vVe are now able to state and prove the main result of the paper. We develop a 

reduction algorithm allowing to get the Blanchard-Kahn form from form (3). 

2.1. The reduction algorithm 

The fol1owing proposition states the main result of the paper, the reduction algorithm 

being exposed in the proof of the proposition: 

Proposition� 

There exists an one-to-one linear mapping T : r¡ = T [~~ ]� 
which transforms model (3) in another one which has one of the three following prop­

erties : 

i) it is degenerated, 
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ii) it is backward,� 

iii) it has a Blanchard-Kahn formo� 

Proof Obviously, if PI is invertible, the Blanchard-Kalm form is immediate: 

We assume that rank PI = m < n2, which is indeed the most frequent case in practice.� 

From our lemma, there exists matrices M, R l , R2 such that� 

where R l is a square m-matrix. System (3) becomes 

M yl = [~1 ~2] M EtYF+l + M Ql yLl 

{ 
y: = (P2 M-l) M E tYF+l + Q2 yLl 

Set Wt = (wLwD = My¡' with w2, wl respectively m and (n2 - m) vectors. We� 

have:� 

W l - Q2 y1t - 1 t-l 

y: = SI EtW¡+1 + S2 E tw:+ l + Q2 Y:-l� 

where the matrices Q~, Qi, SI, S2 are trivially computed from Ql, P2 and M.� 

Replacing E t w:+ l by Qi y:, we get:� 

(4) 

Wl - Q2 ylt - 1 t-l 

'Ve have, at this step, two cases:� 

i) I - S2 Qi is not invertible : the system is degenerated.� 
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ii) 1 - S2 Qi is invertible. We obtain: 

(5) 

W 1 _ Q2 y1
t - 1 t-l 

The matrices R~, k = 1 to 4, are trivially obtained from the matrices of system (4).� 

In particular, R~ is a square m-matrix. It is to be noted here that the intermediate� 

variables w: are residual in the sense that they can be computed residually once the� 

dynamic system corresponding to the first two equations of system (5) is solved. So the� 

dynamic properties of system (5) are entirely determined by its first two equations and� 

we can omit variables w}. In this sense, our algorithm is a reduction one as it allows to� 

locate and eliminate the superfluous dynamics or the so-called redundancies.� 

Now, define 

(6) r¡t 
1

= Yt 
1 

The first two equations of system (5) yield the compact form (3): 

I 1+ Ql r¡t-l 

I 1+ Q2 r¡t-l 

with p¡ = R~, the dimension of p¡ being smaller than the dimension of PI, the� 

corresponding matrix in the initial form (3). If p¡ is invertible, we obtain a Blanchard­�

Kahn formo If not, we conduct another reduction step exactly as before. This algorithm� 

must stop at 
, 

sorne step i, because:� 

i) either the model is degenerated, 

ii) or p?) = 0, and in that case we have: 

Q( i) 1 
r¡t = 1 r¡t-lL

2 
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If I - pii) Qii) is invertible, the model is backward. If not, it is degenerated. 

iii) P1(i) is invertible, and we get a Blanchard-Kahn formo 

The proof is now complete 

Q.E.D. 

2.2. Sorne theoretical illustrations 

Example 1: Example D of Blanchard-Kahn's paper 

Yi = Ct + I t 

Ct = Q: (Yt + EtYi+1), Q: > O 

I t = f3 (EtYt+1 - Et- 1Yi), f3 > O. 

Solving the equilibrium condition, one gets: 

Define X t = EtYi+1' 

If Q: = 1, the model is degenerated. 

If Q: =1- 1, then we get the system 

Yi = (~~!) EtYt+1 -~ Et- 1Yi 

and X t = EtYt+1. 

Since (~~:) =1- O, we have a Blanchard-Kahn formo 

Example 2: Example B of Blanchard-Kahn's paper 

The considered model is: Yt + Q: Yt-2 + f3 EtYt+2 = O, with f3 =1- O. First, we find out 

the reduced form ti la Broze, Gourieroux and Szafarz (1989). 

Define Zt = (Yt,EtYt+1) and z¡ = (Zt,Zt-1)' We obtain: 

A z; + B Z;_l +C EtZ;+l = O 

where A= [~ ~],I heing the identitymatrix oí dimension 2, B= [~I (~O ~) J 

and e = [ ( ~1O ~) ~ J 
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Since f3 =1= o, C is invertible. Therefore, there exists a Blanchard-Kahn formo 

Example 3: Example C in Blanchard-Kahn's paper 

Consider the model: Yt - a Et-1Yt. Define Zt = (Yt, EtYt+d.� 

We have Zt + B Zt-l + C EtZt+1 = Owith:� 

B = [~ ~a ] , and· C= [ ~1 ~ ] .� 

[O-1]One can check that C = M-1 [~ ~] M with M = 1 O .� 

Define TJt = M Zt = (TJL TJn. One obtains:� 

If a = 1, the model is degenerated. If not, it is backward. 

3. N umerical applications 

In this section, we provide two applications on two nonlinear forward-Iooking economic 

models in order to show how to use our theoretical analysis for local stability assessment. 

First, we show how our reduction algorithm can be advantageously used in the context of 

the traditional Real Business Cycles (RBC) analysis methodology. Then, an application 

is provided on a medium-scale model, the german model of the IMF country model 

MULTIMOD (46 equations per period) in order to test our algorithm when the number 

of equations is relatively high. AIso, the latter application shows how useful can be the 

algorithm in the analysis of the models used for economic policy design, in which (local) 

saddlepoint stability is a minimal requirement. 

3.1. Application on an RBC model 

As an RBC example, we use a simple model with indivisible labour and a "depreci­

ation in use" assumption (as in Greenwood-Hercowitz-Huffman (1988)). vVe consíder a 

perfeetly competitive economy with indivisible labour in which individuals have identi­

cal preferences and are covered by a full unemployment insurance. At any date t, each 

7 

~- ~~~~~~~_·~--------------r-'-------------



individual maximizes the utility function: 

E t L
(Xl 

(Js [log(ct+s) - B (1 - nt+s)] 
s=o 

where Ct and nt represent consumption and labour at date t (the total time endowment 

has been normalized to 1.). {J (O < (J < 1) is the time preference parameter. The 

productive capital stóck at date t (kt-d is predetermined but can be used with a 

variable intensity Ut > O. The production function of the representative firm at each 

date t = O, 1,2, ... is Cobb-Douglas: 

(1) 

where Yt is the output level at date t and nt is the labour input. A t is the exogenous 

total productivity variable. 

To compute the competitive al1ocation in the aboye described economy, it is sufficient 

to analyse the central planner's decision problem. At each date t, he chooses Ct, nt, Ut 

and k t in order to maximize the utility function subject to the macroeconomic ressource 

constraint: 

Ct + kt - (1 - 8
-

u t 
</> 

) kt - 1 = Yt (2) 

and given the technology (1). The parameter 8 (O < 8 < 1) is a depreciation constant. 

The parameter 4> (4) > O) refiects the sensitivity of the depreciation rate to the capital 

utilization rate Ut. The first-order conditions of this maximization program are: 

- -1 YtB - Ct Q- (3) 
nt 

C;l = E t [{J C~l ((1 -Q) Y~~l + 1- 8Ut+1 ) ] (4) 

84>ut- 1 =(l-Q)~ (5)
k t - 1 

From no\\' on, we will refer to model (M) as the system of equations (1) to (5). 

Obviously the model is nonlinear, however Blanchard-Kahn conditions (and so the 

Blanchard-Kahn form) are still required to check local1y for saddlepoint conditions (see 
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e.g. Woodford (1986)). As RBC authors study the small fiuctuations around (deter­

ministic) steady states, saddlepoint conditions are checked on the linearized versions 

of the models around their steady states. A quick look at model (M) is sufficient to 

conclude that this structural models includes many redundancies: for example equation 

(5) can be used to eliminate variable Ut. In fact, model (M) can be reduced easily to 

a system of two equations with one forward variable and one predetermined variable. 

RBC authors do eliminate "manually" these redundancies to get the Blanchard-Kahn 

form, which is used ultimately to derive the solutions paths of the (linearized) models 

(see e.g King, Plosser et Rebelo (1988)). Qne can guess therefore how useful may reveal 

our reduction algorithm in the context of this methodology. 

To demonstrate that, we first apply our algorithm on a linearized structural model 

(M). The model is calibrated in order to obtain a steady-state equilibrium consistent 

with a list of stylized facts or available estimations for the US economy: a = 0.64, 

(3 = 0.992, ;5 = 0.02, </> = 1.44 and B = 2.5. Linearizing the model (M) around the 

computed steady state gives directly the reduced form of Broze-Gourieroux-Szafarz. 

Applying our reduction algorithm on this form 2, we get the following results: 

i) Among the initial three forward-looking variables (e, y and u), two are redundant.3 

ii) Qne reduction step is needed to eliminate the redundant forward variables, the 

obtained Blanchard-Kahn transition matrix (i.e matrix A is form (1)) being: 

1.0081589 -0.00310276 ] 

[ -0.79435342 1.0023509 

which gives the following eigenvalues: 1.0549854, 0.95552436. The saddlepoint con­

ditions are locally checked. 

To check the goodness of our results, we have conducted another experimento By a 

series of elementary but tedious substitutions, we have eliminated the rédundancies of 

2 The reduction algorithm has been written in Gauss and is available upon request. To test the 

singularity of a matrix, we use the rank test included in Gauss. 

3 The term redundancies has to be taken in a wide sense. By the statement:" two variables are 
redundant", we mean that, given the strueture of the linearized model, the three forward variables may 

be substituted by a single linear combination of these variables. 
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model (M) and obtained a nonlinear model (M') without redundancies. Of course, as 

we have two redundant forward variables, form (M') is not unique. We check that the 

results regarding the eigenvalues values 4 are independent of the choice of the variables 

to be eliminated. As an example, if we eliminate variables e and u (in addition to the 

static variable n), and apply the reduction algorithm on the corresponding (linearized) 

model (M'), we get the following results: 

i) Of course, no reductlon is needed and we obtain directly the transition matrix: 

1.0199607 0.00256780] 

[ 0.87890622 0.99054937 

ii) The corresponding eigenvalues are: 1.0549855, 0.95552459. 

The comparison between the eigenvalues values obtained on the redundant model (M) 

using our reduction algorithm and those obtained directly on the non-redundant model 

(M') is highly meaningful regarding to the accuracy of our algorithm. We also check the 

tractability of the algorithm when the models under consideration include a relatively 

high number of variables, as it is reported in the following section. 

3.2. Application on a medium scale model 

For the purpose mentioned just above, we have also applied our reduction algorithm on 

a stationary version of the german country model of MULTIMOD (referred to as Multigr 

hereafter), the IMF multicountry model. A detailed exposition of the specification of 

this model can be found in Masson et alii (1990). The stationarization is taken from 

Loufir and Malgrange (1995) who also computed the long mn of this whole multi­

country model. Multigr includes 46 equations and shares the same characteristics as the 

other industrial country models of MULTIMOD, namely a Mundell-Fleming structure. 

Consumption specification is an adaptation ofthe Blanchard model (1985). The demand 

for capital relies on Tobin's q theory. vVealth is the sum of human wealth (ie. the present 

value of all future labor income), non-hmnan wealth (ie. the present value of future 

profits) and the real value of money balances, of government bonds and of net foreign 

4 But obviously not regarding the Blanchard-Kahn transition matrix. 
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assets. Foreign trade in manufactured goods is formalized with conventional export and 

import functions. The real effeetive exchange rate is defined through "the ratio of the 

home country's export price to a foreign price index". The LM curve is described by a 

conventional demand for money balances and a money supply consisting in a reaction 

funetion ofthe short runinterest rate to a nominal money target. The aggregate supply 

side is given by a reduced-form infiation equation summarizing demand and supply in 

the labour market, the áugmented Phillips curve and a mark-up on unit labor costs 

depending on the the degree of capacity utilization. The treatment of the government 

sector is quite conventional, with endogenous taxes to allow for progressive adjustment 

to nominal debt targets. 

Multigr is a good example of macroeconomic models used for economic policy designo 

By "shocking" sorne precise exogenous variables (like public expenditures or money sup­

ply), the users of such models try to evaluate the effects of different economic policies 

on the aggregate variables of the economy (like GDP, unemployment or prices). As the 

magnitudes of the shocks involved in such exercises is in general small, local stability 

assessment is also useful. In the case of forward-looking models as Multigr, this assess­

ment is necessary as the users have to ensure that their economic policy prescriptions 

are derived from unique solution paths of the models under consideration. So saddle­

point conditions have to be checked locally. We expose here sorne of the problems that 

can face the practitioners dealing with this issue. 

i) First, on models like Multigr, even the Broze-Gourieroux-Szafarz reduced form is 

not directly available: many variables exhibit leads and lags greater than one periodo 

For example, the price variable (p) in Multigr appears with alead equal to 5 periods 

in the real long term interest rate equation. Of course, this problem is very easy to 

solve by jusLadding sorne artificial variables 5, but these elementary operations increase 

markedly the dimension of the models. In the case of Multigr, these operations increase 

the dimension of the model from 46 to 62, the number of forward-Iooking variables rising 

from 6 to 13. 

5 For example, the price variable p quoted in the text gives rise to 4 additional forward variables with 

a one-period lead if one has to write down the Broze-Gourieroux-Szafarz formo 
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ii) Once the Broze-Gourieroux-Szafarz form obtained, we can apply our reduction� 

algorithm on the linearized model around its long run 6. However, unlike the RBC� 

model application above, we have faced an additional numerical problem. Depending� 

on the parameters of the rank test to be conducted along the reduction algorithm in� 

order to check for the invertibility of sorne matrices (see our footnote 2), we get quite� 

different results. This test is based on the singular value decomposition. In our initial� 

program, a singular value is considered zero if its modulus is less than or equal to� 

T = 10-10. If we use a more strict bound 7 , exactly T = 10-7 , a value that can be� 

considered even more acceptable from an economic point of view, the results are quite� 

different:� 

v) For T = lO-lOor T = 10-8 , three reduction steps are needed and three forward­�

variables are found redundant. Blanchard-Kahn saddlepoint conditions are checked, the� 

unstable eigenvalues being (in modulus) 8 
: 269098.55,8.1558005,4.7515067,4.7515067,� 

3.1211009, 3.1211009, 1.8892543, 1.5731517, 1.1536862, and 1.0215632.� 

vv) For T = 10-7 
, four reduction steps are needed and four forward variables are� 

found redundant. The Blanchard-Kalm conditions are also checked with the follow­�

ing corresponding unstable eigenvalues (in modulus): 8.1558858,4.7515440,4.7515440,� 

3.1211043,3.1211043,1.8892402, 1.5731584,1.1536863, and 1.0215631.� 

Of course, the saddlepoint conditions are checked in both cases. Therefore, the local� 

stability diagnostic is the same. Moreover, the unique relevant difference between the� 

two computed spectra consists in the huge eigenvalue 269098.55 that is obtained in case� 

v) but not in case vv). Probably, an economist will find case vv) more acceptable and� 

consider the other not more than a numerical peculiarity. In any case, as explained in� 

this section, our algorithm is designed to address all the issues related to spectral com­�

putations using simple experimental parameters (essential1y the parameter T) allowing� 

for a clear interpretation.� 

6 \Ve use the long run values derived in Loufir and Malgrange (1995).� 

7 The default bound being 10- 13 in Gauss, version 3.2.13.� 

8 The complete results are available upon request. Also note given the results just below that the� 

linearized model displays complex and conjugate eigenvalues. 
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4. Conclusion 

In this paper, we have presented a reduction algorithm that al1ows: 

i) to conclude if a given linear or linearized rational expectations model admits the 

Blanchard-Kahn form, 

ii) to compute explicitiy this form by the means of a theoretical1y founded reduetion 

algorithm. 

Using two example models, we have also indicated how to take advantage of our 

theoretical analysis in the context of the RBC methodology and in relation with the 

traditional empirical frameworks designed to economic policy evaluations. Of course, 

given the ultimate goal of our analysis, namely saddlepoint stability assessment, and as 

rational expectations models especial1y require the latter assessment, we do think that 

the presented algorithm can be highly useful for economic practitioners. As explained 

in the numerical section of this paper, our algorithm does not require any particular 

computational expertise, and can be used with confidence to investigate the local sta­

bility of medium-large scale models, the numerical control and the interpretability of 

the outcomes of the algorithm being straightforward. 

13 

~-~~-----------------¡-_._----~-------



References 

Blanchard, O.J. (1985), "Debt, Deficits and Finite Horizons", Journal 01 Political 

Economy, 93,223-247. 

Blanchard, O.J. and C.M. Kahn (1980), "The Solution of Linear Difference Models 

Under Rational Expectations", Econometrica, 48, 1305-13013. 

Boucekkine, R and·C.Le Van (1995), " Checking for Saddlepoint Stability: an Easy 

Test", forthcoming in Computational Economics, 9. 

Broze, L., C. Gourieroux and A. Szafarz (1989), Reduced Forms 01 Rational Expecta­

tions M odels, in the Fundamentals of Pure and Applied Mathematics series, Harwood 

Academic Publishers. 

Greenwood, J., Z. Hercowitz and G. Huffman (1988), "Investment, Capacity Utiliza­

tion and the Real Business Cycle", American Economic Review, 78, 402-417. 

Horn, RA. and C.A. Johnson (1985), Matrix Analysis, Cambridge University Press. 

King, RG., C.I. Plosser and S. Rebelo (1988), "Production, Growth and Business 

Cycles: 1. The Basic Neoclassical Model", Journal 01 Monetary Economics, 21, 195­

232. 

Laffargue, J.P. (1990), "Résolution d'un Modele Macroéconomique avec Anticipations 

Rationnelles", Annales d'Economie et Statistique, 17,97-119. 

Loufir, R and P. Malgrange (1995), "Long Run of Macroeconometric Models: The 

Case of MULTIMOD", in Methods and Applications 01 Economic Dynamics, S.Kuipers, 

1.Shonbeek and E.Sterken (Eds.), Chapter 6, North-Holland. 

Masson, P., S. Symansky and G. Meredith (1990), "MULTIMOD Mark II: A Revised 

and Extended Model", Occasional Paper 71, International Monetary Fund. 
. 

\Voodford, M. (1986), " Stationary Sunspot Equilibria: The Case of Small Fluctua­

tions around a Deterministic Steady State", mimeo, University of Chicago. 

14� 

~~~~~-------'----------¡------,----------------------------


