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1 Introduction 

The modelling of time heterogeneity, such as the simultaneous presence of goods and assets 

of different ages, remains one of the most difficult issues in both theoretical and empirical 

economics. Clearly a treatment of time heterogeneity is desirable in order to improve 

the realism of models, as most real-world economic systems involve such heterogeneity. 

Moreover, in certain e1ementary cases, diversifying the time structure of goods and assets 

can become a key economic decision. To illustrate this point, we address the issue of capital 

replacement decisions, a topic developed by Solow et al (1966): In a growing economy, 

due to exogeneous technological progress, a key task is to ensure that old machines are 

efficiently replaced by new machines. In this type of model, referred to as a vintage capital 

growth mode1, the replacement decisions consist of determining the optimal age structure 

for the produetive capital, since technological progress is continuously incorporated into 

new machines. In short, the replacement decisions correspond to determining the optimal 

time heterogeneity of the machines currently in use. 

The original continuous time modelling of this problem included a number of technical 

difficulties that led to the decline of this approach in the late seventies and early eighties. 

(See Malcomson (1975) for a discussion of the difficulties1 .) However, at the beginning of 

this decade, research on this class of models was resumed. This was due to the fact that 

observations of many national economies revealed clear inconsistencies with the standard 

neoclassical homogeneous capital growth model. A detailed analysis of these inconsistencies 

can be found in Cooley et al (1994). These inconsistencies motivated a number of papers 

aimed at modelling and analyzing the replacement decisions problem mentioned aboye. 

This paper is intended to be a technical contribution to this discussion. 

One way to overcome the technical difficulties that arise in the analysis of the optimal 

replacement strategy is simply to exogenize the latter problem, as in the case of Benhabib 

and Rustichini (1991) who consider sorne typical replacement rules within a partíal equi­

librium setting. Of course, in such frameworks, the replacement decisions are no longer 

endogenous as they should be, but this approach represents a worthwhile step towards a 

complete treatment of the problem. Moreover, it provides the first insight into the richer 

dynamics of vintage capital growth models compared to those of the standard neoclassical 

model. More precisely, the exogeneous replacement rules used by Benhabib and Rustichini 

give rise to differential-difference equations with a constant lag (or span) that can be solved 

using the Laplace transform approach of Bellman and Cooke (1963). 

lSorne of the difficulties have recently been solved by Van Hilten (1991). 

2 



In this papel', we argue that the replacement decisions problem can be completely 

analyzed, at least numerical1y, using general differential-difference equations with flexible 

endogenous lags. We show that the vintage capital growth model of Solow et al (1966) 

(hereafter SVCM) can be transformed into a system of differential-difference equations of 

the form 

y'(t) = F[t,y(t),y(t - T(t,y(t)))] (1) 

where t is the time index, y(t) is the vector of endogenous variables, F(·) is an appropriately 

dimensioned vector function, and T(') is a real-valued function. In the case studied here, 

T(') is positive and corresponds to the lag. The resulting differential system is cal1ed a delay 

differential equation (DDE) system. Note that in equation (1), the lag is not only time­

dependent, it is state-dependent in the sense that it depends on the endogenous variables 

y(t). Indeed, when the replacement decisions are endogenous, as in the SVCM2
, the lags 

are strongly relatedto the endogenous replacement decisions for sorne elementary reasons 

that we wil1 indicate latero Unfortunately, the Laplace transform approach is not very 

useful either for solving 01' for investigating the stability properties of non-constant lag 

DDEs. 

Indeed, any analytical solution seems impossible in the case of a general state-dependent 

DDE. Even calculating the numerical solution is far from being trivial. In this papel', we 

use sorne recent developments in computational mathematics to provide a basic numerical 

framework for solving models in the form of equation (1)3, The numerical code that we 

use is based on the work of Baker and Paul (1993-a, 1993-b). The numerical methods for 

DDEs are an obvious extension of the methods for solving ordinary differential equations 

(ODEs), namely linear multistep and Runge-Kutta methods, except that state-dependent 

lags may require special numerical treatment. 

This papel' is organized as fol1ows: In Section 2 we state more precisely the numerical 

problem that we address. Section 3 reviews the main principIes under1ying the solution 

techniques needed to solve state-dependent DDEs, using simple examples to illustrate the 

arguments. Section 4 presents an application of these numerical techniques to an extended 

version of the SVCM. Final1y, we conclude by mentioning a crucial unresolved numerical 

issue that we hope will open a new and promising area of computational economics. 

2For a more recent contribution, see Caballero and Hammour (1994). 
3The solution technique can also be applied to neutral equations, where the differential-difference equa­

tions depend on delayed derivative terms. 
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2 Basic Concepts and Solution Methods 

In this seetion, we introduce sorne techniques for solving DDEs, starting with the constant 

lag case. Consider the fol1owing scalar constant lag DDE: 

y'(t) = y(t - 7) t 2: O, (2) 

where 7 > O. Note that the essential difference between ODEs and DDEs is that the 

usual initial condition y(O) required by an ODE is no longer sufficient to be able to solve 

a DDE, such as equation (2). Instead we need an initial funetion yo(t) specified over the 

interval [-7, O] to be able to solve equation (2). Given a continuous initial funetion, it is 

easy to find an analytical expression for the continuous solution of (2) using e1ementary 

integration. For example, if yo(t) = a where a is a constant, then y'(t) = a on [0,7] yielding 

y(t) = (t + l)a on this interval, since y(O) = Yo(O) = a. We can extend the range of the 

solution in this way for as long as we please, on any interval of the form [k7, (k + 1)7] for 

integer k > O. This technique is cal1ed the method of steps in computational mathematics. 

The points {O, 7, 27, ...} are cal1ed the meshpoínts associated with the method of steps. 

We now apply the method of steps to a more general equation that cannot be solved 

analytical1y. The method of solving the fol1owing example clearly demonstrates the con­

neetion between ODE and DDE solvers, a conneetion that we will exploit latero Consider 

the scalar equation 

y'(t) = G[y(t),y(t - 7)] t 2: O, (3) 

where both 7 > O and y(t) = yo(t) on [-7, O] are given, and G(-) is any real-valued 

funetion. Unlike equation (2), it is obvious that in general we cannot solve equation (3) 

analytical1y for y(t) on the interval [0,7]. To do so would require the integration of the 

funetion G[y(t),Yo(t - 7)], 01' equivalently the solution of the ODE 

y'(t) = G[y(t), Yo(t - 7)], 

which typical1y does not have an analytical solution. Therefore an ODE solver is used 

to solve equation (3) numerical1y on the interval [0,7], and this approach results in the 

fol1owing method of steps algorithm (MSA). The MSA can be described as fol1ows: 

1. Given yo(t), determine y(t) on the interval [0,7] by solving the ODE 

y'(t) = G[y(t),yo(t - 7)]. 

Denote the solution of this ODE by Yl(t). 
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2.	 For each k ~ 2, given Yk-l (t), determine y(t) on the interval [(k - l)r, kr] by solving 

the ODE 

y'(t) = G[y(t)'Yk-l(t - r)].
 

Denote the solution of this ODE by Yk(t).
 

Thus the solution of equation (3) is given by Yk(t) for t E [(k - l)r, kr] for integer k ~ 1. 

REMARK 1: Particular attention should be paid to the connection between ODE and DDE 

solvers. At each step of the MSA, we use an ODE solver to obtain the numerical solution. 

There are two main classes of numerical method for solving ODEs: Runge-Kutta methods 

and linear multistep methods. Both of them are based on quadrature techniques, and 

usually only produce a discrete solution, so that computing the "continuous time" solution 

requires interpolation. ODE solvers are now included in a wide variety of software packages 

(for example, MATLAB), and as such this part of the algorithm can be easily implemented. 

REMARK 2: The MSA can be extended to systems of DDEs without any difficulty, since 

solving systems of ODEs does not involve any further theoretical 01' practical difficulties. 

However, it is unlikely that all the variables in the system of DDEs are delayed4 • For a 

non-delayed variable yM(t), say, according to ODE theory, only an initial condition yM(O) 

is needed in order to be able to calculate the solution. 

REMARK 3: Another important issue is the propagation of derivative discontinuities in 

the solution. A quick look at the solution YI(t) of equation (2) at the first meshpoint 

t = O is sufficient to demonstrate one of the most significant features of DDEs: Namely 

that sorne derivatives of the solution are discontinuous at the meshpoints. These derivative 

discontinuities can propagate forward in time in the solution, the exact propagation being 

dependent on the system of DDEs. Fortunately this issue is not the most complicated one 

in the solution of DDEs, as there already exists sufficient theory allowing the problem of 

derivative discontinuities to be addressed quite easily. (See, for example, Willé and Baker 

(1992).) 

REMARK 4: In many economic applications, the system of DDEs is obtained by differ­

entiating the structural equations of the model valid for, say, t ~ O and from the initial 

functions valid for t < O. In the specification of the model, y(O) is not usually given ex­

plicitly (unlike in equations (2) and (3)), although it can be determined from the original 

system of structural equations by putting t = O. Thus, before solving the resulting system 

of DDEs, we have to compute y(O) from the structural equations. This is always possible 

4See , for example, our economic application in Section 4. 
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as the mode1s yielding DDEs are typical1y backward-looking. Hereafter we assume that 

y(O) has already been calculated from the structural equations. 

Note that even if an analytical solution could be obtained using the MSA, it would not 

be particularly useful for studying the stability of the DDE. However the Laplace transform 

approach developed by Bel1man and Cooke (1963), in which solutions are expressed as sums 

of exponential terms, does permit a better investigation of the stability. Benhabib and 

Rustichini (1991) applied this approach to vintage capital growth models with exogenous 

replacement rules. However, as we have already stated, this approach is only possible when 

the lags are constant, which means that it is not applicable to state-dependent DDEs. 

In faet, even the MSA as introduced earlier has problems when a lag is either time­

varying state-independent or state-dependent. To illustrate this point, consider a time­

varying state-independent DDEs 

y'(t) = y( - sin(t)) t?:: O, (4) 

where yo(t) = 1 for t :::; O. The lag funetion is r(t) = t +sin(t), and is clearly time-varying. 

We cannot apply the MSA to solve the DDE immediate1y, because the meshpoints are not 

direct1y available as before. If the lag was state-dependent, then there would be no way to 

determine the meshpoints of the MSA without solving the DDE first!6 

'vVe address the question of the availability of the meshpoints when DDEs are time­

varying andjor state-dependent in the next section. We modify the MSA in such a way 

that we avoid the latter difficu1ty, taking advantage of recent developments related to this 

topic. 

N umerical Solution 

In this section, we address the problem of the unavailability of meshpoints. We motivate 

our discussion using two simple examples to illustrate the arguments. More theoretical 

details can be found in Baker and Paul (1993-a, 1993-b). 

5Note that the interval on which the initial function yo(t) rnust be defined, in order to allow the DDE 

to be solved, is [rnint~o{t - r(.)}, O]. Thus for a general tirne-varying state-independent DDE the length 

of this interval rnay not be irnrnediately obvious, and in the case of a state-dependent DDE it cannot be 

deterrnined until the solution is known! 
6 A less irnrnediate barrier to the application of the MSA is the possibility of a vanishing lag. i.e., 

When the lag r(t) tends to zero for sorne adrnissible value of t, t~ sayo In this case, the lengths of the 

solution intervals in the MSA also tend to zero, so that the MSA fails to progress beyond t". This problern 

has recently been addressed in the case of continuous explicit Runge-Kutta rnethods by Baker and Paul 

(1993-a), who use a predictor-corrector approach. 
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The only way to solve the problem of the unavailability of meshpoints is to decompose 

each step of the MSA as fol1ows: 

1. Given the initial function, solve the DDE on an unknown interva1. 

2. Determine the interval on which the computed solution is valido 

In the original MSA, given the meshpoints, we solved the DDE interval by interva1. Here, 

this approach is reversed. 

We can apply this strategy, for example, to equation (4): Given that yo(t) = 1 for 

t :s 0, it fol1ows that y(t) = t + 1 on an unknown interval [ao = 0, al]' To compute the 

unknown meshpoint al, we have to find the interval [0, a¡] on which the computed solution 

y(t) = t+1 is valido This can be done quite natural1y by analogy with the constant lag case 

(2). In the latter case, the meshpoint ak+l is obtained from the meshpoint ak by adding T 

to ak. This strategy (used in the MSA) yields the value of al by solving 

which for equation (4) means solving - sin(a¡) = O. We have chosen this example to 

illustrate a further difficu1ty, namely that there can be a problem with non-uniqueness of 

values for the meshpoint. In the case of equation (4), al = br for any non-zero integer k. 

However the non-uniqueness problem is quite easily solved. If al = 2r. then y(t) = t + 1 

on [0,2r.], but -sin(t) > °for t E [r.,2r.] so that y'(t) = y(-sin(t)) = -sin(t) + 1. Thus 

y(t) = cos(t) + t + 2 on [r.,2r.], which leads to a contradiction. The only value of al that 

does not lead to a contradiction is al = r., so the correct meshpoint value is the smal1est 

one. This is quite a general result in practice, and usual1y only the smal1est meshpoint 

value is the correct Dne. It is possible that in sorne degenerate cases, that we do not discuss 

here, a larger meshpoint value is more convenient, but this does not present any problem 

as the selection criterion is clear: Pick the largest meshpoint value a, say, such that the 

derivative of the solution is consistent with the DDE over the whole interval [0, a]. Thus 

the non-uniqueness problem is relatively easy to solve when it does arise. 

The same approach can be used to solve state-dependent DDEs. In this case the lag 

functions can depend on solution values from the current interva17 
, thus the length of the 

current interval may depend on the solution for the current interva1. Therefore we need to 

solve the state-dependent DDE before we can determine the meshpoint. To illustrate this 

point, consider the simple state-dependent DDE 

y'(t) = y(y(t)), yo(t) = 2, y(ü) = -1, (5) 

7By "current interval" , we mean the interval that is currently being solved. 
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where the lag r(t, y(t)) = t - y(t). As before, we compute the solution y(t) on the interval 

[ao = 0, ad and then calculate al' Substituting the initial funetion into the DDE, on the 

first interval [0,a1] we have that y'(O) = y(-l) = 2 and obtain the ODE 

y'(t) =2, 

so that y(t) = 2t - 1 on [0, a¡J. Having obtained y(t), it remains to determine the interval 

on which the solution is valido Using the same strategy as before, we compute the value of 

al by solving 

al - r(a1,y(ad) = ao = 0, 

ensurmg that we use the correet expression for the solution in r(.). Substituting the 

computed solution y(t) = 2t -1 into r(.), we get 

(2a1 - 1) = 0, 

so that al = ~. Hence, for equation (5), y(t) = 2t - 1 for t E [0, ~]. We can repeat 

this process at each stage of the MSA, allowing the range of the solution to be extended 

indefinitely. 

Thus the only additional difficulty involved in solving DDEs with time-varying and/or 

state-dependent lags is the computation of the meshpoints. The most general DDE that 

\ve consider here can be expressed in the form of equation (1), 

y'(t) = F[t, y(t), y(t - r(t, y(t)))]. 

Computing the meshpoint ak+1, given the previously computed solution y(t) = Yi+1 (t) on 

[ai, ai+d for i = O, ... ,k, involves solving the equation 

(6) 

for the meshpoint ai that yields the smallest value for ak+1 > ak. This is clearly a non­

trivial task due to the possible non-linearity of both r(·) and y(t). Further difficulties can 

arise from the faet that, in general, the solution can only be computed numerically. In 

praetice, for the DDEs that arise in economic modelling, the non-uniqueness of meshpoints 

problem is less complicated than suggested by equation (6), because the lag funetions used 

are generally monotonic8 . 

HO\vever, since numerical methods for solving DDEs involve a number of numerical tools 

(quadrature-based techniques for solving the ODEs, interpolation methods for providing 

8The lag functions are linear with respect to the endogenous variables in vintage capital growth models. 
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a continuous solution and evaluating the delayed solution values, and non-linear equation 

solvers for determining the meshpoints), the question of controlling the stability and nu­

merical accuracy of the solution arises. The necessary analysis has already been performed 

for continuous explicit Runge-Kutta methods by Baker and Paul (1993-a, 1993-b). 

4 The Solow Vintage Capital Growth Model 

For an economic application of our algorithm, we consider a general formulation of the 

vintage capital growth model of Solow et al (1966). The structural equations of the model 

for t ~ °are: 

y(t) ¡t i(z)dz, (7)
t-T(t) 

l(t) ¡t i(z)exp{-¡(z)z}dz, (8)
t-T(t) 

i(t) sy(t), (9) 

where y(t) is production, l(t) is labour demand, i(t) is investment and is specified for t < O, 

and T(t) is the age of the oldest machine still in use at time t. The parameter s E (0,1) 

and represents the saving rateo 

The age strueture of the technology is represented by equations (7) and (8), the pro­

duction and labour demand respeetively. vVhilst in use, each machine of generation t is 

assumed to require exp{ -¡(t)t} workers to operate it - its labotir reqtiirement. In the 

fol1owing discussion, we restrict our attention to the case in which l(t) = 1 for al1 t, that 

is to say the labour supply is inelastic and constant over time. Equation (9) represents 

the equilibrium in the goods market, under the crucial assumption that distinguishes the 

Solow growth model from the standard Ramsey model, namely that a fixed proportion of 

income is saved and invested in new machines. 

The time-dependent funetion ¡(t) represents the technological progress. We assume 

that ¡(t)t is increasing with respect to time t. This refiects the fact that new machines are 

always more productive than old machines, in the sense that older machines require more 

workers to produce the same quantity of goods. 

By differentiating the system9 (7)-(9), and after sorne elementary substitutions, for 

9In the SVCM, the differentiability of the solution derives from a preliminary assumption on the initial 

investment profile, caBed the "no-holes" hypothesis, which states that the initial investment profile io(t) 

is strictly positive from a given time t* < O. 
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t ~ owe obtain 

y'(t) ­ sy(t) (1 - R(t)) , 

i(t)
T'(t) 1 - i(t _ T(t)) x R(t), 

i'(t) - sy'(t), 

where 
R( ) exp{ -,(t)t} 

t = exp{-,(t-T(t))(t-T(t))} 
The initial conditions y(O), T(O) and i(O) are obtained from (7)-(9) by putting t = O. Since 

it is assumed that ,(t)t is increasing, the produetion y(t) and investment i(t) have a trend 

component. Note that the rate of growth depends on the requirements ratio R(t). Le., The 

ratio of the labour requirement of new machines to the labour requirement of the machines 

that they are replacing. 

As Solow et al showed, if ,(t) is constant (¡(t) = , > O) and s > " then the economy 

converges to a balanced growth path. Le., As t goes to infinity, T(t) -+ T* == -log(1 ­

,/s)/, and y(t) -+ y*exp{,t}, where y* == l/sT*. An important point to note is that ayer 

the balanced growth path produetion is growing at the rate , since the requirements ratio 

is simply expbT*}. 

\Ve address two numerical issues in this papel': 

1. How do the initial conditions affect the short-term dynamics of the economyl0? 

2. Is the convergence result for the SVCM robust to slight moc1ifications of the 

specification of the technological progress?
 

"Ve use our numerical code to investigate these two issuesll .
 

1. Some insight into the short-term dynamics 01 the model12 
• 

Figure 1 gives T(t) and the detrended production fj(t) = y(t) exp{ -,t} when the initial 

investment profile is exponential: io(t) = kexpbt} for k > O. In this case it is easy to 

show that T(O) = l/k from the struetural equations. Moreover, we can also show that the 

investment i(t) typical1y jumps at t = O, since limt .....o- i(t) = k is general1y different from 

i(O) = k(1 -exp{-,/ k}) . 
1 - exp{ -,T*} 

10As reported by Solow et al: "Since the initial capital profile is to a large extent arbitrary, we can not 

hope to characterize the solution (of this system) fully." 
llSee the Appendix for details of the numerical codeo The program is written in FORTRAN 77, and is 

available on request. 
12We use the parameter values reported by Christiano and Eichenballm (1992), namely s = 0.27 and 

"'( =0.04 so that T* =4.008 and y* =0.924. The corresponding period length is 2.5 years and the solution 

for T* corresponds to almost 10 years. 
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When k = l/T*, the solution is trivial since limt.....o- i( t) = i(O) and the past investment io(t) 

corresponds to the balanced growth path. When k < l/T* (resp. k > l/T*), the economy 

starts with a low (resp. high) stock of machines re1ative to the balanced growth path. We 

can see from Figure 1 that the initial lifetime of capital must be greater (resp. smaller) 

than T* to allow the labour market to clear13 . After a jump in the investment at t = O, 

since limt.....o_ i(t) is smaller (resp. greater) than i(O), the model converges monotonically 

to the balanced growth path. 

2. Robustness 01 convergence properties with respeet to technological progress. 

To investigate this question, we consider a time-dependent technological progress with 

a periodic component that vanishes asymptotically, so that we recover the Solow et al 

specification of the technological progress at the limito We specify the technological progress 

as follows: 
sin(wt)

,(t) = ,+ a where a > Oand w > O,
t 

with , > aw to ensure that ,(t)t is an increasing function. The ratio a/t determines the 

size of the maximum fluctuation in the technological progress with t. In our simulations, 

we chose a small value for a, and consequently the periodic component of the technological 

progress vanishes quickly. However, the periodic component of the requirements ratio does 

not necessarily vanish as t increases, since the requirements ratio is 

expbT(t) + a[sin(w(t - T(t))) - sin(wt)]}. 

Despite the fact that our specification of the technological progress ensures that it con­

verges quickly to the SVCM, we obtain bvo different types of long-term dynamics depending 

on the periodicity parameter14 w. In Figures 2a and 2b, we took io(t) = k exp{,(t)t} for 

t < O with k = l/T*. In Figure 2a, we set the parameter w = 27r /T*, so that sin(wt) has 

periodicity T*. We can see that after an initial adjustment period of length T*, both T(t) 

and y( t) are very close to the long-term solution values T* and y*, respectively. The main 

economic reason for this is that the periodic component of the requirements ratio vanishes 

after a few periods. However, as we can see in Figure 2b, when the periodicity is not a 

multiple of T* (here w = 7r /5, so that the periodicity is 10), the periodic component of the 

requirements ratio never vanishes and so both T(t) and y(t) are periodic with the same 

periodicity of sin(wt). 

In order to show that these findings are robust with respect to the specification of the 

initial investment profile, we ran the same simulations again with w = 27r /T* and w = 7r /5, 

13These arguments are independent of the specification of the initial investment profile.
 

14Por the numerical simulations, we used the values a =0.02, s =0.27 and r =0.04.
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but with the original exponential initial investment profile, io(t) = k exp{ ft}. Figures 3a 

and 3b give the corresponding solutions, respectively. 

5 Conclusion: A Crucial Remaining Issue 

In this papel', we examined techniques for the solution of state-dependent DDEs, using 

simple examples to illustrate the arguments. vVe also provided an economic application as 

an example of the useful insight that can be gained from numerical simulations. However, 

this papel' is designed more to stimulate interest in the field of computational economics 

rather than to provide definitive statements about vintage capital growth models, and in 

particular the SVCM. 

A majar issue still to be resolved is the numerical solution of so-called mixed-DDEs, 

namely DDEs with both endogenous lags and leads. The numerical techniques presented 

in this papel' only permit models with lags to be solved. However they can be easily 

adapted to solve equations that only have leads, so long as the "final 8olution" is specified. 

The solution is computed by making the substitution t --t -8 to obtain a normal DDE. 

This idea was suggested, for example, by Bellman and Cooke (1963), Chapter 3, for fixed­

leads. However, these solution techniques cannot be applied to mixed-DDEs. But, as 

stated by Boucekkine et al (1995), such mixed-delay systems do occur in the general 

formulation of the Ramsey vintage capital growth model. In the SVCM, since investment 

is proportional to produetion, the replacement decisions are only dependent on previously 

calculated quantities. AUhough the general vintage capital growth model should include a 

backward-looking component (representing the history of capital accumulation within the 

economy), it should also include a forward-looking component (representing investment 

decisions which are dependent on future profits, and, in particular, on the life time of these 

machines). 

A mixed-delay model was recent1y analyzed by Caballero and Hammour (1994), under 

the assumption that the solutions are periodic15 . Having assumed that the solutions are 

periodic, they use a multiple-shooting technique to compute the one-period solution path 

and then use a predietor-correetor scheme to extend the solution to the whole real-time 

interval. Although Caballero and Hammour fail to justify their periodicity assumption and 

do not rigorously establish the convergence of their numerical method, their simulations 

are certainly worthwhile as they highlight the extreme difficulty of solving mixed-DDEs. 

However, their periodicity assumption does mean that their approach cannot be used to 

15This assumption is implicitIy "justified" by the fact that the differential-difference model has a forcing 

(exogenous) periodic function, namely the aggregate demando 
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solve general mixed-DDEs. In fact, there exists very little in the mathematical literature 

on thenumerical solution of mixed-DDEs16. 

This situation is the same as the one faced by economists at the beginning of the 

eighties for the numerical solution of non-linear rational expectation models with both 

lags and leads. Their numerical approach consists of simultaneously solving the modelling 

equations on a fixed time interva1. Unfortunately, the solution technique discussed in this 

paper cannot be applied in the same manner. One strategy that appears to be feasible is 

to combine the numerical techniques mentioned in this paper with a predietor-corrector 

strategy. However, this task is far from trivial, and we expect it to stimulate further 

research and debate. 

16Most probably because mixed-DDEs do not occur in the natural world, which motivates most compu­

tational mathematics. 
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Appendix: The N umerical Code 

The numericalcode Used to solve the DDEs in this paper is based on the fifth-order explicit 

Runge-Kutta method of Dormand and Prince (1980). It uses the fifth-degree fifth-order 

Hermite interpolant due to Shampine (1985) to evaluate delayed solution values, and the 

predietor-correetor iteration of Baker and Paul (1993-a, 1993-b) to solve vanishing lag 

DDEs. In addition, it allows the user to track the propagation of derivative discontinuities 

in the solution (see Willé and Baker (1992)) to improve the efficiency and reliability of the 

codeo When the position of a derivative discontinuity depends on one or more solution 

values from the current interval, it extrapolates the solution from the last accepted step 

in order to estimate the position of the discontinuity, and improves this estimate as the 

solution is advanced. 
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FIGURE 1: Solow model with io(t) = kexpbt}. 
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0.94 

FIGURE l(continuation): Solow moclel with io(t) = k exp{¡t}. 
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FIGURE 2A: Extended Solow model with io(t) = kexp{¡(t)t} and w = 21r/T*, 

4.04 ,------,-----,---....,----r------.., 

4.03 

T(t) =Age of oldest machine in use at time t 

t =Time periods 

4.02 

4.01 

o 10 20 

t 

30 40 50 

18
 



FIGURE 2A(continuation): Extended Solow model with io(t) = kexpb(t)t} and w = 27r/T-, 
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FIGURE 2B: Extended SolO\v model with io(t) = kexp{¡(t)t} and w = 1r/5. 

4.1 ...-------r-----.-----r---...,.-----, 
T(t) = Age of oldest machine in use at time t 

t =Time periods 

3.98 

3.940L----I1-0---21-0-.---31-0---41-0---S0 

t 

20 

..._~-~----------,------------:----------



FIGURE 2B(continuation): Extended Solow model with io(t) = kexph(t)t} and w = 71/5. 
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FIGURE 3A: Extended Solow model with io(t) = kexp{¡t} and w = 27r/T*. 
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FIGURE 3A(continuation): Extended Solow model with io(t) = kexp{')'t} and w = 21r/T*. 
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FIGURE 3B: Extended Solow model with io(t) = kexp{¡t} and w = 'Tr/5. 
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FIGURE 3B(continuation): Extended Solo\\' model with io(t) = kexp{¡t} and w = Tr15. 
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