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1 Introduction 

Simulation of stochastic dynamic non-linear models is commonly done now 
in economics, as closed-form solutions for these models are beyond reach. 
Several methods have been proposed and most of them are presented in 
Taylor and Uhlig (1990), applied to stochastic growth models. Other exam
pIes include Zeldes (1989b), who simulates rational expectation models of 
consumption with non-quadratic utility functions, Deaton (1991) who anal
yses the effect of liquidity constraints on consumption and savings, or No
vales (1990) who simulates stochastic equilibrium model of interest rates. 
Two of the most popular methods are probably linearization or value func
tion iterations. The first method is not desirable in non-linear models and 
impossible to implement when the models are non-differentiable, which oc
cur in several economic problems as liquidity constraints or commodity price 
models with competitive storage. The second method uses a recursive fixed
point method to determine the optimal value function of the problem. This 
method requires the discretisation of the state variables, which, in practice, 
limits the problem to one or two state variables. Thus, the study of large 
models or of rich dynamics are beyond the scope of this method, as it would 
require days of CPU time to obtain sorne reasonable accurate solution. 

The purpose of this paper is to present an alternative method of simu
lation for large non-linear models. This method is based on the relaxation 
algorithm using Newton-Raphson iterations 'described by Laffargue (1990) 
and Boucekkine (1995). 1 It has been adapted to stochastic simulations by 
approximating rational expeetation by perfect foresight. The method present 
two main advantages over the value function method. First, when the value 
function method can accommodate for hardly more than two state variables, 
we are able to simulate models with up to six state variables. Second, since 
the value functions depend on the parameter of the model, they have to 
be recalculated each time the parameters vary. This is clearly a drawback 
when the simulations are imbedded in an estimation procedure, as in Lee' 
and Ingram (1991) or in Deaton and Laroque (1995). The method proposed 
here accornmodate changes in the values of the parameters easily. Of course, 
as this method is not an "exaet" method, sorne care has to be taken for 

lThe simulation method is available upon request. The deterministic part has been 
programmed in GAUSS, under the name DYNARE, and is available by anonymous ftp at 
cepremap.msh-paris.fr in repertory /pub/cepremap. 
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its application. The paper present therefore sorne comparisons (when it is 
possible) with value function methods. 

We apply this method to various time non-separable models of consump
tion with liquidity constraints, which are typical1y non-differentiable and 
imply a large number of state variables. We study the implication of habit 
formation and of durability on the allocation between consumption and sav
ings. These issues have been extensively considered separately in economet
ric analysis, to explain the departure between the data and the random walk 
model presented by Hall (1978). 

Flavin (1985) test whether the empirical rejection of the PIH are to be 
attributed to a myopic behavior of the agent- i.e. the marginal propensity to 
consume out of current income is non-zero- or to a capital market failure, gen
erating liquidity constraints. She concludes for the second hypothesis. Many 
other authors, as Hall and Mishkin (1982), Zeldes (1989a), Mariger (1987) 
and Campbell and Mankiw (1989) have shown that a significant part of the 
population (around 15 % to 20%) faces liquidity constraints, which means 
that they are not allowed to borrow. 

To explain the departure between Hall's theory and empirical studies, 
econometicians have also introduced habit persistence. Habit persistence oc
curs when past consumption alter the choice of present consumption directly 
through the subutility function. The subutility function is then not separable 
between current consumption and lagged one consumption. It can be either 
increasing in both current and past consumption or increasing in current 
consumption and decreasing in past consumption. This type of models have 
been tested by Muellbauer (1988). 

Finally, Hayashi (1985) emphasizes the role of the durability of cornmodi
tieso A distinction has to be made between sheer consumption and expen
diture. The utility derived from consumption can be the result of several 
periods of expenditure, or can last for sorne time after the purchase. 

We compute deterministic and stochastic simulations of intertemporal op
timizing consumption saving models. Given an exogenous stochastic process 
for the labor income, we numerically derive the optimal path for consump
tion and savings under borrowing restriction. We study the effect of time 
non-separable preíerences. We find that durability and habit persistent no
tably distort the results oí Deaton. Even if assets still acts as a buffer against 
good draws oí income, they do not always ensure consumption smoothness. 
When the income process becomes more persistent and. when durability is 
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present, consumption becomes much more noisy than income. On the con
trary, when habit persistence occurs, consumption smoothness increases and 
the asyrnmetry in the consumption time series, noticed by Deaton, tends to 
disappear. 

The layout of this paper is as follows. We first present the intertem
poral model. In the following section, we explain the simulation method 
and we provide accuracy comparisons with value funetion iteration methods. 
Section 4 presents deterministic simulation results. Stochastic simulations 
results are provided in Section 5. Section 6 concludes. 

The Model 

The consumer maximizes his total utility subject to a budget constraint and 
a borrowing restriction, 

u =	 Et [f (3r-t ll (Cr - .::cr-l)] (1) 
r=t 1 a 

s.t.	 at = (1 + r)at-l + Yt - kt 
Ct = kt + (1 - é)kt- 1 

at ;:::: O 

",here (3 < 1 is the rate of time preference, and II(Ct,Ct-l) is the instanta
neous subutility function. The first constraint is the usual budget constraint 
involving real assets at, labor income, Yt, the real interest rate, r, assumed to 
be constant, and expenditure on the good, kt • The second constraints allows 
for durability in the model. Current consumption is a function of current 
and lagged expenditures. The notion of durability is the one introduced by 
Hayashi (1985), and can refer even to non-durable goods. Often, the utility 
of consumption is not only derived at the expenditure date, but can last fore 
more than that 2. 

The last constraint is the liquidity constraint which takes here a simple 
form, butwe could have assumed as well that assets would be superior to 
any fixed limito 

The subutility depends not only on current consumption but also on 
Iagged consumption. The parameters a and é belong to [0, 1[x[O, 1] . The 

2Think of a very good wine, or a holiday, for instance. 
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first parameter is a measure of the importance of lagged consumption for 
the consumero The parameter Ó indicates the durability of the good for the 
agent. The consumer is, in this model, infinitely lived. The only source of 
uncertainty is an exogenous labor income modeled as an AR(l) process 

Yt = PYt-l +(1- p)YLT + ft 

where P is the coefficient of persistence of the income process, YLT is the 
long run value of income and ft is an i.i.d. white noise which is assumed 
normally distributed. V'le have chosen a non quadratic subutility function of 
the eRRA form as 

1-')'Ct
v(Ct) =-1-, 

, is the coefficient of re1ative risk aversion. The consumer have a precau
tionary demand for savings for two reasons. First, there is uncertainty about 
future earnings. Second, he is subject to liquidity constraints and he has to 
save to level out bad draws of income, knowing that borrowing will not be 
permitted. 

Our model embodies four specific models with liquidity constraints, 

1.	 O' = O, Ó = 1, the basic intertemporal optimization model of consump
tion with liquidity constraints, as in Deaton (1991). We call it from 
now on MI, 

2.	 O < O' < 1, Ó = 1, the model with habit persistence (M2 ), studied by 
Muellbauer (1988) and Novales (1990). 

3.	 O' = O, O < Ó < 1, the model with a durable good (M3 ), studied by 
Hayashi (1985). 

4.	 O < O' < 1, O < Ó < 1, the general model with both durability and 
habit formation (M4 ). 

The difference between habit formation and durability depend on the sign of 
the derivative of the utility function. Habit formation is present if 8vd8Ct-l 
is negative, and durability is defined by a positive derivative. In the models 
considered here, M3 has a positive derivative, while the sign of the derivative 
for model M2 depends on the sign of 0'. However, for O' < O, the model has 
essential1y the same structure as M3 , so we restrict O' to be in [0,1 [. 
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Let us now examine the first order condition oí the above programo They 
can be written as 

At =Max [Xt,(1 +r)/,8EtAt+l] 

At = 12Q [11: +(1 - 6 - 0),8-1 11:+1 - ,8-20 (1 - 6)11:+2] (2)
{ 

11: = [kt +(1 - 6 - 0)kt+1- 0(1 - 6)kt+2r"l 

where At is the Lagrange multiplier associated with the budget constraint. 
Xt is the Lagrange multipliers associated with the budget constraint, when 
the borrowing constraint is binding at period t. We are able to calculate it 
by using the budget constraint at period t, t +1, conditionally to at = O. 

In the long run, it can be easily checked that consumption equals YLT, the 
long run value oí income. The Euler equations show non-linearity and non
differentiability, due to the Max and the expectation operators. It is then 
not possible to derive closed-íorm decision rules íor optimal consumption and 
savings. We thereíore solve numerically the optimal paths. 

The Simulation Method 
A quick look at the strueture oí Euler equation (2) is sufficient to capture the 
difficulties oí simulating our models. First, all models Mi i = 1, .. ,4 are non 
differentiable, due to the inequality constraint appearing in the general opti
mization problem (1). Moreover, beginning with model M2 , the consumption 
variable exhibits a dynamic oí order greater than 2 (it is equal to 6 in the case 
oí model M4 !), a íeature inherent to time non separable preíerences. The 
combination oí non-differentiability and high dynamics order makes highly 
problematic the implementation oí"exact" stochastic simulation methods (in 
the sense oí Taylor and Uhlig (1990)). Whereas it is possible to solve the first 
order dynamics model MI with an arbitrary accuracy -see Deaton (1991), this 
seems quite impossible to solve in the case oí model M4 , íor íeasibility consid
erations. Fixed point methods on discretized Euler equations appear, indeed, 
especially adapted to first order dynamics models, completed by stationary 
first order Markovian specification íor the innovation terms. If the dynamics 
order oí a considered model is higher, the latter numerical íramework could 
be questioned. Especially, when the dynamics order is equal to 6, as íor 
model M4 , this setting seems somewhat intraetable, even when searching íor 
time independent solutions. In this case, and regardless the special difficulty 
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of setting explicit mathematical proofs for fixed-point methods convergence 
on such models, computing the stationary solutions by these methods on dis
cretized state spaces will involve a huge numerical cost, and it seems really 
difficult to control efficiently the precision of the solutions. 

Given the latter remark, we use directly an approximation solution method 
for all models, to give a unified numerical framework. There are two main 
simulation methods. A first approach consists in linearizing the model (or 
equivalently in adopting a linear quadratic setting as in Christiano (1990) 
or Reator'. (1993)). This device is not possible in the presence of non differ
entiabilities. The other strategy uses non linear deterministic solvers within 
a Monte Carlo experiment, as in Gagnon (1990) and Boucekkine (1995). 
We implement this device to deal with nondifferentiabilities. The following 
subsectioll gives sorne elements of this method. Subsection (3.2) studies its 
numerical precision on model MI, comparing it with the "exact" method 
suggested by Deaton (1991). 

3.1 The Stochastic Experiment 

The stochastic simulation method is in line with the usual Monte Carlo 
experiments conducted in economics and in econometrics. First, we focus on 
the law of motion of the exogenous labor income, that is 

Yt = PYt-l + (1 - p)YLT + ft (3) 

for t ~ 1. Instead of introducing an ad-hoc Markovian stationary distri
bution for the innovation term ft, we adopt the following perfect foresight 
approximation. 

fl "-+ N(O, 0-
2 

) (PF A) 

ft = O Vt> 1 

Once we assume the perfect foresight approximation,the model becomes de
terministic and can therefore be solved by any deterministic algorithm. 

At this time, we have to deal with the usual problems related to the 
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resolution of structural1y infinite time support equations 

at = (1 +r )at-l +Yt - kt� 
kt = Ct +(1 - b)Ct-l� 
At = Max [Xt , (1 + r),8-1EtAt+l] (DP)� 

At = 120 [11: + (1 - b - 0),8-1 11:+1 - ,8-20 (1 ...:. b)II:+2]� 
11: = [kt + (1 - b - 0)kt+1 - 0(1 - b)kt+2r-r 

Computing the exogenous sequence (Yt)t>l with assumption (PFA) requires 
the initialization of the law of motion (3), i.e. a value for Yo. The prob
lem (DP) is structural1y under-determined. To solve it, we approximate it 
by a finite time two boundary system. As usual, (see Fisher (1992) and 
Boucekkine (1995)), this is done by initializing the time lagged variables (Le. 
by assigning a value for Co, ao, ko, ... ) and by fixing the forward variables at 
their corresponding deterministic long run values at a conveniently chosen 
period T, cal1ed the solution time horizon. The model is then solved over 
the periods t=1,2, ... ,T, with two boundary values mentioned above. 

The solution of the model (DP) depends thus on the choice of the initial 
values. Hereafter, we denote it by DP(Yo, ao, Co, ko, ... ). It is straightforward 
to show that the deterministic long run values of the model are: 

YLT
ks = YLT (4)

Cs = 2 - b 

Of course, for each draw of <:11 the solution time horizon T must be chosen 
such that these long run values are reached within the selected horizon; other
wise, the finite time approximation will generate important numerical errors. 
We solve the two boundary values deterministic system with the relaxation 
algorithm described by Laffargue (1990) using control parameter specified by 
Boucekkine (1995). 

To generate a pseudo sample (Cl' C2, ... , CN) for consumption we use the 
fol1owing device: 

i) Set Yo =YLT, ao = as, Co = Cs and ko = kll , where the variable indexed 
by s are the value at the steady state. Draw <:1 from N(0,0'2) and assume 

p(PFA). Set yP = Yl = YLT +<:1. Store y • 

ii) Solve the deterministic problem DP(YLT, all , CIl , kll , ... ). Hereafter de
note by (aj, cj, kj) the solution values at t = 1 for the endogenous variables. 
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Set Cl = ci. This value constitute the first value of our consumption pseudo
sample series. Set c'P =ci, a'P =ai and k'P = ki. Store c'P, a'P and k'P, in order 
to initialize the process at next step. 

iii) Draw a new fl from N(O,u2) and assume (PFA). Solve the determinis
tic problem DP(y'P,a'P,c'P,k'P, ... ). Set Ch = ci, 1 < h:::; H, with H the length 
of the pseudo-sample. Store Ch, . Set y'P = Yl = py'P +(1- p)yLT +fl, c'P = ci, 
a'P = ai and k'P = ki. Store y'P, c'P, a'P and k'P. 

iv) Repeat step iii) until having reached the desired length for the con
sumption pseudo- samples H. . 

As one can observe, the stochastic generator consists in replicating in a 
usual way an approximate stationary consumption rule. For a given draw 
fl, determining the life-time labor income profile under (PFA) and given the 
initial values of the predetermined variables, the consumption decision rule 
is computed as the solution at the first period of the corresponding deter
ministic problem. The approach clearly underestimates future uncertainty. 
The subsequent important question concerns the magnitude of the generated 
bias. In the following section, we show that the induced departure from 
the rational expectations hypothesis can be controlled through an adequate 
choice of the innovation variance. 

3.2 Checking the accuracy 

To perform stochastic simulations, the method requires equating future in
novations to their mean for each replication. This might introduce sorne 
departures from the "exact" simulation path. However, if the standard devi
ation of the income shocks is not to big, the model is only slightly non-linear 
and our method would then give a good estimate of the exact solution. In 
order to check the accuracy, we compare the results with an alternative simu
lation method involving value function iterations, as in Deaton (1991). This 
method can be considered as an "exact" method, since the approximation 
error can be made as small as one want, by increasing the number of points 
on the grid. However, computationally, this method is limited by the size of 
the state space. These simulations can only reasonably be performed for one 
or two state variables, that is for the simplest model we present here (Md. 
The method require solving the functional equation formed by the first order 
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condition (using the notation oí Deaton (1991)) 

p(x,y) =Max(.-\(x),((x,y)) 
((x,y) = {3 fp[(l + r) (x - .-\-lp(X,y)) + py +YLT(1- p) + E, (5) 

py +YLT(l- p) + E]dF(E) 

where .-\(x) = u'-l(X) and p(x,y) = .-\(J(x,y)) is the marginal utility oí 
money. 

To solve this problem, the íunction p(., .) is discretized over a two dimen
sional grid. We start with a first guess, Po(.,.) = Max(.-\(x), O). This ié the 
marginal utility oí money at the terminal period, when every thing is spend. 
We update the íunction using 

Pn+I(X,y) = Max(.-\(x),(n(X,y)) 
(n(X, y) = {3 f pn [(1 + r) (x - .-\-Ipn(x, y)) + py +YLT(l - p) + E, (6) 

py +YLT(l - p) + E] dF(E) 

and we stop the iterations when Pn(x,y) is close enough to Pn+I(X,y). 3 The 
calculation oí the conditional expectation require the íunction Pn (., .) to be 
integrated with respect to y. This is done by replacing the continuous process 
by a diserete one, as developed in Tauchen and Hussey (1991), and used in 
Deaton (1991). We used a 50 by 15 grid íor aH the simulations. 

We have períormed both methods íor model MI, with the same set oí 
parameters and the same sequence oí innovations. The persistence oí income 
takes the values O, 0.15 and 0.75. The standard error oí the innovations 
takes the values 3%, 5% and 10%. The value íunction iteration method 
can be considered as the reíerence. The comparison between both meth
ods are displayed in Tables 1 and 2. Table 1 compare point to point both 
consumption trajectories by comparing both stream oí utility generated by 
both simulated consumption paths. We íocus on the relative percentage er
ror, calculated as err = (U(C¡) - U(Cll))/U(C¡) * 100, where 1 reíers to the 
value íunction method and lIto our method. First statistic is the average 
percentage departure between both method, calculated as the mean over the 
sample oí ihe percentage error in absolute values. The second statistic is the 
maximum departure (in absolute value) between both method (maxt lerrtl). 

3The iterations were stopped when the maximum distance between two successive func
tions were less than 0.1% (about 10-8 ). 
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The third line is the standard deviation of the error. Last statistic is the 
concentration of the errors around zero, expressed as the frequency of errors 
less than two standard deviation of the errors. 

Table 1: Evaluating the accuracy 
s.d. p=O p=O.15 p=O.75 

(J = 3% Average departure 0.25 0.31 0.45 
Maximum departure 0.98 1.23 4.29 
Standard deviation 0.33 0.42 0.45 
Prob(lerrl ~ 2 s.d.) 95.4 93.8 92.2 

(J = 5% Average departure 0.48 0.60 0.98 
Maximum departure 2.46 2.80 8.40 
Standard deviation 0.64 0.82 1.63 
Prob(lerrl ~ 2 s.d.) 94.8 95.6 92.8 

(J = 10% Average departure 1.59 1.79 3.29 
Maximum departure 9.28 10.03 17.66 
Standard deviation 2.18 2.45 4.63 
Prob(lerrl ~ 2 s.d.) 93.20 94.39 94.00 

Notes AH fi!gures are in percenta e oí relative (eVlatlOn.g 
Simulations were períormed· with "Y = 2, r=.05, {3 = .95 and 
YLT =100. Statistics on a sample oí 500 periods. 

The bias is increasing in the size and in the persistence of the shock. 
The average departure is small, even for larger shocks, ranging from 0.25% 
to 3.3%. The concentration of the errors around zero are also quite large, 
around 94%. However, when the income gets persistent and more noisy, ex
treme outliers can appear, as for the case (J = 10%. To give an idea of the 
magnitude of the bias, we have also computed the value funetion iteration 
with a smaller grid, which introduces a bias compared to the large grid. The 
new grid is a 10 by 10 grid, the one used in Deaton (1991). For (J = 3% ando 
p = 0.75, the statistics measuring the departure between the method with 
larger gridand the one with coarser grid are: average departure 0.80%, max
imum departure 3.67%, standard deviation 1.11, and concentration around 
zero 92.6%. For (J = 10% and p = 0.75, the statistics are: average depar
ture 1.17%, maximum departure 5.6%, standard deviation 1.56, and concen
tration around zero 94%. 
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The bias is comparable than the bias introduced by our method. In 
practice, a 50 by 15 grid is burdensome, and one might be tempted to reduce 
its size. In this light, the accuracy of the method proposed in the paper 
seems very satisfactory. 

Table 2 presents the volatility ratio of consumption versus income, de
termined by both methods. The volatility ratio is an important economic 
issue for consumption theory and we shall mainly focus on this statistic in a 
further section. As for the volatility ratio, our simulations perform well. 

For larger models (M2, M3 , and M4 ), we have no other method to compare 
too However, the introduction of habit persistence or of durability does not 
introduce further non-linearities, but increases the state-space. The non
linearity due to the max operator is already present for model MI' We can 
hope, in regard to the result for MI, that the results are satisfactory for the 
other models as well. 4 

To eliminate bias as much as possible, we are keeping the innovation 
shocks small (3%). To our knowledge there is no way to evaluate the bias. 

Table 2: Evaluating the accuracy : Volatility of Consumption 

p=O p=O.15 p=O.75 
Method 1 JI 1 JI 1 JI 
a= 3% 0.85 0.91 0.88 0.94 1.00 1.00 
a=5% 0.79 0.85 0.83 0.89 1.00 1.00 
a = 10% 0.66 0.78 0.71 0.82 0.96 0.97 
Note: 1 : falue functíon íteratlOn met Ilod. 11 : Uur 
method. SimuIations were performed with I = 2, 
r=.05, ¡3 = .95 and YLT = 100. Statistics on a sam
pIe of 500 periods. 

4 Another test of the validity of the method could be the test developped by Den Haan . 
and Marcet (1994). However, this test is better adapted to test one method against another 
than a direct test of the accuracy. 
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4 Simulation Results 

Although liquidity constraints, habit persistence and durability have been ex
tensively tested on data, there have been no theoretic attention on the impli
cations on savings and consumption profiles, except Heaton (1993) who stud
ies the consumption behavior in a continuous-time linear-quadratic model 
with time-non separable preferences. What happens if one introduces in 
a basic model of intertemporal optimization with liquidity constraints, as 
studied by Deaton (1991), habit persistence or durability ? Does habit per
sistence generate the same features of consumption and savings as a model 
with durability ? 

To answer these question, we present in a first time, deterministic sim
ulation, to analyze the response of the model to a change in income. We 
present in a second section stochastic simulat'ions. 

4.1 Deterministic Simulation Results 

\Ve start the analysis of the difi'erent models presented in section 2 by per
forming deterministic simulations. This amounts to perturb the model at 
the first period (the shock is then unanticipated by the agent), and to put to 
zero aH further shocks. The exogenous variable is the income, and we focus 
on positive shocks. As liquidity constraints are imposed, a negative shock on 
income induces only a one to one decrease in consumption and has no efi'ect 
on savings. A positive shock has a lasting efi'eet on both consumption and 
savings, and the duration depends on the nature of the non separabilities in 
the utility function. We focus on the expenditure, rather than on consump
tion. The distinetion is only important for models M3 and M4 , as for the 
other models expenditure and consumption are equal. 

The simulations are carried out for the value of the parameters: 

, = 2 {3 = 0.95 r = 0.05 
Ó = 0.1,0.5.,1 a = 0,0.5,0.9 shock = 3% 

We start with a quick comparison between the four models. The results are 
shown in Figure 1. Model MI exhibits the less persistence. The efi'ects of a 
positive shock on income only last for six periods. AH other models appear 
to be more persistent. Habit persistence alone (M2 ) and habit persistence 
together with durability introduces much more persistence. Note that model 
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M4 is not a model "in between" M2 and M3 • Durability introduces oscilations 
in the consumption path, when habit formation generates smoothness. 

The first period response of expenditures to a positive shock on income is 
highest when durability is present and lowest in presence of habit formation. 

Durability. The results for model M3 are displayed in Figure 2, for dif
ferent values of the coefficient 6. As durability becoines more important, 
consumption shows more persistence, and the response to an income shock 
is higher. Note that Figure 2 presents the results for expenditures and not 
consumption. As consumption is the sum of current and lagged purchases, 
it is smoother. However, sorne wriggles appear when durability is more im
portant. This confirms the earlier result of Heaton (1993). With this specifi
cation, the agent can tolerate a fiuetuating consumption because he actually 
consumes an average of past consumption, which is smoother. 

The savings path shows the inverted features, as consumption and savings 
are closely linked. When durability is important, savings is depressed as 
consumption becomes higher. 

Habit persistence. Model M2 exhibits consumption paths which are smoother 
than model MIl (see Figure 3). With habit persistence, the agent finds disu
tility to vary the level of consumption from one date to another, because 
lagged consumption enters direetly his subutility function. He will therefore 
try to smooth as much as possible his expenditure. As a result, the more 
habit persistence there is, the more savings and the less consumption there 
will be. 

Durability and Habit persistence. When durability and habit persistence 
are both present, the model shows a greater smoothness, which is much 
more than model M2 alone. is not an average of models M2 and M3 • The 
consumption and savings paths take a long time to return to the long run 
value. 

4.2 Stochastic Simulation Results 

The stocha.stic simulations are carried out for different parameter values, 
but for a same sequence of innovations, in order to be able to compare the 
different series. We focus once again on the effect of durability and habit 
persistence, as well as the effect of the persistence of the income process, 

13 

11··· 



measured through the parameter p. We set 

,=2 f3 = 0.95 r = 0.05� 
6 = 0.15,0.75 Q' = 0.15,0.75 p =0.15,0.75� 

s.d. shock =3%� 

We obtain 18 pseudo time-series oí consumption and savings. We try to 
screen the particular characteristics oí each model using several statistics. 
If we first turn to a qualitative description oí the consumption series, we 
find the same results as Deaton (1991) íor model Mil as can be seen in 
Figure 6. The effeet oí liquidity constraints are easy to visualize. The series 
are clearly asymmetric and the downward spikes are much more intense than 
the upward ones. It shows that assets are much more successíul to level 
out good draws oí income than bad ones, sin.ce the consumer is not able to 
borrow against íuture income. The assets show írequent zero-level. When 
the liquidity constraints is binding, consumption equals income íor models 
MI and M 2 • For the other models, the consumption which is a weighted 
íunction oí current and past expenditure, does equal income only if the agent 
experiences two periods oí binding constraints. For the different ranges oí 
the parameters, the ratios oí consumption and income volatility are reported 
in Table 3 we find that most oí the time, consumption is smoother than 
income. The results íor model MI are comparable with those obtained by 
Deaton (1991). Introducing habit persistence make the consumption even 
smoother, a íact that we had aIready noticed in the previous seetion. On the 
contrary, durability produce less smoothness, or even a consumption with 
much more noise than income. As a general rule, smoothness increases when 
the persistence oí the income process or the durability decreases, or when 
habit persistence increases. 

Table 4 report the persistence oí consumption. In the case studied by 
Hall (1978), consumption íollows a unit root, whatever the income process. 
In the case studied here, as liquidity constaints are sometimes bounding, the 
persistence oí consumption is linked to the persistence oí income. Even low 
persistence in the income process can generate high persistence in consump
tion. 

We report in Table 5 the mean and the volatility oí assets. The average 
level oí assets is most oíten comparable across models íor a same value oí p. 
When the parameter p increases, the average level oí assets and its volatility 
increase as well. 
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We also look at the consumption density functions for different parameter 
values. They allow to characterize the asyrnmetry of the consumption pro
files. All density functions have been estimated by a non parametric method 
using an epanetchikov kernal. Figure 8a display the density functions for 
a persistence of income of p = 0.15 for the four models. The densities are 
asymmetric with a huge peak and a thick left tail. This left tail represents 
the downward peaks observed in Figure 6. The asyrnmetry occurs because 
there is no upward peaks, as the agent saves good draws of income. As the 
perisistence of income increases, the density tends to be more symmetric. 
Durability (model M3 ), gives a fiatter density. 

5 Conclusion 

In the previous sections, we have shown the feasibility of the simulation 
method. Although there is sorne bias, especially when the variance of the 
innovations is large, this method is more adapted than value function itera
tions when the state space is large. Even though the latter method can be 
made arbitrarily exact, in practice and in a reasonable amount of time, the 
bias would not be small when dealing with large models. Moreover, when the 
simulations are imbedded in an estimation framework, the policy functions 
have to be recalculated at each step, slowing down the method, so a smaller 
grid is even more likely to be chosen. 

Starting from the results of Deaton (1991), we show that they can be 
notably distorted when we introduce durability or habit persistence. We 
characterize the consumption and savings paths for each of our four models. 
Durability introduces erratic fiuctuations toward the long run steady state 
and the response to income shocks is higher. The stochastic implication is 
that consumption can be much nosier than income, a fact that contradict 
the PIH. Habit persistence introduces more smoothness in consumption, and 
thus a higher assets level. In term of volatility, consumption is much more 
smoother than income, and the asyrnmetry of the consumption density, no
ticed by Deaton, tends to disappear. 
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Table 3: Consumption-Income Volatility Ratio� 
p 6 Q M4 M3 M2 MI� 

0.15 0.15 0.15 0.93 0.95 0.63 ·0.65� 
0.15 0.15 0.75 0.96 0.95 0.55 0.65� 
0.15 0.75 0.15 0.71 0.72 0.63 0.65� 
0.15 0.75 0.75 - 0.72 0.55 0.65 
0.75 0.15 0.15 - 1.56 0.86 0.87 
0.75 0.15 0.75 - 1.56 - 0.87 
0.75 0.75 0.15 1.06 1.06 0.86 0.87 
0.75� 0.75 0.75 - 1.06 - 0.87 
Notes : M·1 : Liquidity constramts alone. 
M2 : Habit persistence and liquidity con
straints. M3 : Durability and liquidity con
straints. M4 : Durability, habit persistence 
and liquid'ity constraints. 

Table 4: Consumption Persistence� 
p 6 Q M3 M2 MI� 

0.15 0.15 0.15 0.72 0.45 0.38� 
0.15 0.15 0.75 0.72 0.81 0.38� 
0.15 0.75 0.15 0.53 0.45 0.38� 
0.15 0.75 0.75 0.53 0.81 0.38� 
0.75 0.15 0.15 0.94 0.88 0.91� 
0.75 0.15 0.75 0.94 0.91� 
0.75 0.75 0.15 0.91 0.88 0.91� 
0.75 0.75 0.75 0.91 0.91 

Notes : Persistence is defined as the coefi 
cient oí AR( 1) process. 
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Table 5: Mean and Volatility oí Assets x 10-2 

p Ó a Ma M2 M1 

0.15 0.15 0.15 6.6 4.6 6.4 3.6 4.6 3.4 

0.15 0.15 0.75 5.2 4.6 6.4 7.5 6.8 3.4 
0.15 0.75 0.15 3.6 5.1 3.6 4.6 3.4 4.5 
0.15 0.75 0.75 3.6 5.1 7.5 6.8 3.4 4.5 
0.75 0.15 0.15 26.8 34.7 15.6 23.5 14.8 22.8 
0.75 0.15 0.75 26.8 34.7 - - 14.8 22.8 
0.75 0.75 0.15 18.5 26.5 15.6 23.5 14.8 22.8 

0.75 0.75 0.75 18.5 26.5 - - 14.8 22.8 
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