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Abstract

In this paper we study the effects of a change in an exogenous variable (the fixed cost or a
parameter in the demand function) on the output and the number of active firms in a Symmetric
Cournot Equilibrium with Free Entry (SCEFE). The results obtained here are different from those
obtained in the Cournot model with a given number of firms. In particular, an increase in demand
might yield a decrease in the output of the industry. We also show that any observation on prices,
profits and number of firms is compatible with the assumption that the market is in a SCEFE. If
fixed costs can be observed, there is a loose relationship between the profit rate and the number of
active firms. This result is used as a warning against the use of the profit rate as a measure of an
anticompetitive position and against the Structure–Conduct–Performance paradigm.
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1 . Introduction

A large number of papers have analyzed comparative static under imperfect
competition. In the case of the Cournot model with a given number of firms the list
includes McManus (1962, 1964), Frank (1965), Ruffin (1971), Okuguchi (1973), Seade
(1980), Szidarovsky and Yakowitz (1982), Dixit (1986), Quirmbach (1988) and
Corchon (1994). All these papers assume a strong concavity condition which implies
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that the best reply of any firm is a decreasing function of the output of other firms. The
latter property has been called by Bulow et al. (1985) strategic substitution. Comparative
statics in the case of strategic complementarities (best replies are increasing, like in price
competition with, say, linear demand) was worked out by Lippman et al. (1987), Vives
(1990), Milgrom and Roberts (1990) and Milgrom and Shannon (1992).

The existence of a Cournot equilibrium with free entry was first considered by
Novshek (1980). However, to the best of our knowledge, no attention has been paid to
the properties of this kind of equilibrium. Our paper attempts to remedy this situation.

In Section 2 we present the model. We assume that all firms are identical, strong
concavity holds for positive output and fixed costs are positive. The only decision for
firms is the quantity of output (zero output corresponds to no entry). The strategic
behavior of a firm is described by a mapping which is continuous except at the
entry–exit point. From this it follows easily that a Symmetric Cournot Equilibrium with
Free Entry (SCEFE in the sequel) exists.

In Section 3 we study comparative statics. We show that a change in the fixed cost has
the effect that intuition suggests: the number of active firms and aggregate output move
in opposite direction of the fixed cost while individual output moves in the same
direction. However, the effect of a change in demand or marginal costs is, in general,
ambiguous. We obtain definitive predictions only when an additional and very restrictive
assumption holds (namely Assumption 6, see the main text). We also provide an example
in which an increase in demand decreases the number of active firms and aggregate
output. Thus, our main conclusion in this part of the paper is that there is an important
difference between the Cournot model with and without entry. In the latter, under strong
concavity, aggregate output changes monotonically with marginal costs or with the
parameters of the demand function (see, e.g., Corchon, 1994), Proposition 6). In the case
of free entry, strong concavity is not enough to yield definitive predictions on aggregate
output.

In Section 4 we study the observational implications of our model both at individual
and market level. Firstly, we assume that the behavior of the representative firm can be
perfectly observed (i.e., it can be replicated in a laboratory). This behavior relates the
aggregate output of the competitors of the representative firm (denoted byQ) and the
output of the representative firm (denoted byq). We derive necessary and sufficient
conditions for a set of data onq and Q to be rationalized as the behavior of a profit
maximizing firm. These conditions are: (1) for strictly positive values ofq, q must be
strictly decreasing onQ with slope larger than minus one; (2) there is an unique value of
Q (say y) for which q is either zero or positive; (3) forQ larger thany, q is always zero.
Secondly we consider market behavior. Suppose that an observation of market price,
profits and number of firms can be obtained from an experiment or from a real market
(notice that in this case, profits are observable). The question is: What tripleshprice,
profits, number of active firmsjcan be generated as SCEFE? In order to tie our hands as
tight as possible we assume strong restrictions on the form of both demand (assumed to
be of unit elasticity) and marginal cost (assumed to be constant). However, despite such
strong restrictions, any triplehprice, profits, number of active firmsjcan be generated as
SCEFE. If fixed costs are also observable, there is a loose relationship between the
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1 ˜number of active firms and the (extraordinary) profit rate. In particular ifp are observed
˜ ˜profits, k the observed fixed cost andn is the observed number of active firms, it must

be that

p̃ 1 2
] ] ], 1 .2˜ ññk

This implies that with 20 active firms (a number of firms that many economist would
consider large), the upper bound on the profit rate is, approximately, 10%, larger than

2most actual profit rates reported inFortune. Thus the main conclusion of this part of the
paper is that the Cournot model with free entry does not support the view that there is a

˜˜ ˜direct relationship between profitability (p /k ) and concentration (1/n ). This has
important consequences on, at least, three counts:

(a) Antitrust policy. A high profit rate does not necessarily imply lack of competition
and/or collusion among existing firms. This has been pointed out by several authors
(see, e.g., Cabral, 2000, p. 157; and Martin, 1993, pp. 499–507). They have noticed that
profitability might be a poor proxy for the price/marginal cost ratio, which is the right
measure of an anticompetitive position. Our results make this point sharply by showing
that even if information about market conditions is available, the only implication of
(Cournot) competition and free entry is that there is an upper bound on the rate of profit
and that this bound may be very large.

(b) Structure–Conduct–Performance paradigm. According to Bain ‘‘We would
anticipate some complex relationship of, at least, three variables, profit rate, degree of
seller concentration and conditions of entry’’ (Bain, 1956, p. 191). If entry conditions
are summarized by fixed costs, this relationship is precisely the inequality above. Our
theoretical result could provide a possible explanation of why the relationship postulated
by Bain is ‘‘weak . . . often . . . not statistically significant’’ (Carlton and Perloff, 1990, p.
375).

(c) Entry and rates of profit. There are persistent differences in the rate of profits
across industries. Moreover, high profit rates often decline slowly in highly concentrated
industries (see, e.g., Carlton and Perloff, 1990, pp. 372, 381). Again, our result, provides
a possible explanation of this fact, because it shows that free entry is compatible with
different profit rates, even if the functional form of demand and cost functions is the
same in all markets.

2 . The model

In this section we present our main definitions and some basic results. There are
countably many identical potential firms. Letn be the number of active firms,q be the

1Recall that these are extraordinary profits, i e , profits net of opportunity costs
2Profit rates reported in the magazineFortune usually vary between 4 and 7% Subtracting the interest rate we
obtain the rate of extraordinary profits Thus if the interest rate is assumed to be 4% the rates reported there
correspond to rates of extraordinary profits between 0 and 3%
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output of a representative firm andQ be the aggregate output of the competitors of the
representative firm. Letk be the fixed cost andK the space of all possible fixed costs.
Let b be a parameter in the demand or the variable cost functions (i.e., subsidies,
income, other prices, etc.) andB the set of all possibleb’s. Let B and K be subsets of

2
R . The payoff function of the representative firm, denoted byp :R 3B 3K →R is1 1

such that:

p(q,Q,b,k)5V(q,Q,b)2 k if q . 0
p(q,Q,b,k)5 0 if q 5 0

where V is a twice differentiable function intoR . Partial derivatives ofV will be1

denoted by a subscript, i.e.,V ,V ,V , etc. It is implicit that we are assuming productq Q b

homogeneity since only the sum of outputs of competitors (Q) is payoff relevant.
However, product heterogeneity of a certain kind can be considered as well (see, e.g.,
Yarrow 1985, p. 517).

The best reply correspondence, denoted byR( ), is defined as follows:

R(Q,b,k)5 arg maxp(q,Q,b,k).
q

And the best reply correspondence under zero fixed costs is,

r(Q,b)5 arg maxV(q,Q,b).
q

The following assumptions will be maintained throughout the paper:
A.1. 0[⁄ K. ;(b,k)[B 3K, max V(q,0,b). k.q

¯ ¯A.2. There isq such that;Q, V(q,Q,b)# 0 if q $ q.
¯ ¯A.3. There isQ such that;q, V(q,Q,b)#0 if Q $ Q.

2A.4 V ,0 on the interior ofR 3B.Q 1
2A.5 V ,V , 0 on the interior ofR 3B.qq qQ 1

These assumptions describe several properties of the payoff function. A.1 postulates a
positive fixed cost, which can be covered in case of a monopoly. Under A.2 no firm will

¯ ¯produce an output larger thanq sincep(q,Q,b,K), 0,;q $ q. A.3 implies that if the
¯output of the competitors exceedQ, the representative firm cannot make positive

payoffs. In the case in which payoffs are profits, A.4 is equivalent to say that the demand
function is strictly decreasing. Finally A.5 implies three things: (a)q andQ are strategic
substitutes (since dR/dQ 5 2V /V ,0 wheneverR is differentiable). (b) The bestqQ qq

reply function is a contraction (sinceudR/dQu,1). (c)V is strictly concave onq. In the
case in which payoffs are profits, A.5 implies a standard assumption in the literature on
Cournot equilibrium (see e.g., Hahn, 1962; and Friedman, 1982, p. 496, Assumption 3),
namely

qp 1 p , 0 and p 2C ,0,qq
QQ Q Q

wherep is the inverse demand function andC is the cost function of the representative
firm. The strong concavity condition mentioned before corresponds to the above
assumption in the case of a general payoff function. We now present the main definition
of the paper.
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Definition 1. A Symmetric Cournot Equilibrium with Free Entry (SCEFE) for (b,k) is a
* *pair (n , q ) [ N 3 R such that:1

* * *(i) q [R((n 21)q ,b, k).
* *(ii) 0 [R(n q ,b, k).

There are three aspects of our definition that are worthwhile discussing: first, in a
SCEFE, entry and output setting are simultaneous. If entry and output setting are
sequential, the notion of equilibrium would be that of Symmetric Subgame Perfect

˜Cournot Equilibrium (SSPCE). Lopez-Cunat (1997) has shown that under assumptions
similar to ours, the set of SSPCE is contained in the set of SCEFE and thus results
similar to ours can be obtained in the sequential model. Second, we disregard mixed
strategies. This is not the place to discuss the relative merits of mixed and pure
strategies: we just notice that the interpretation of mixed strategies is, sometimes,
troublesome and that the bulk of industrial organization has ignored mixed strategies.
Thus, given that this is the first paper studying comparative statics of SCEFE, it appears
that concentrating on pure strategy equilibria is a conservative but sound research
strategy. See Cabral (1997) for an interesting paper on entry and mixed strategies.
Finally we concentrate on symmetric equilibria in the sense that the output of active
firms is identical (however, notice that in a SCEFE there are inactive firms). It is easy to
see that there are no asymmetric equilibria. Letx be aggregate output. For any two firms
with strictly positive output, sayq and q we must haveV (q ,x2 q ,b,k)5V (q ,x2i j q i i q j

q ,b,k). Because≠V /≠q 5V 2V , 0 this impliesq 5 q .j q qq qQ i j

The existence of a SCEFE can be easily established.

Theorem 1. There is a SCEFE for all (b,k)[B 3K.

Proof. It follows from well-known arguments, see e.g., Proposition 4.8 in Corchon
(1996), appendix to Chapter 4.h

3 . Comparative statics

In this section we present our results on comparative statics. Let

E(b,k)5 h(n,q) /(n,q) is a SCEFE for (b,k)j.

E(b,k) can contain more than one element, even though, as we remarked before, the
Cournot equilibrium for givenn is unique. Given this lack of uniqueness we have two
options. The first is to work with sets of equilibria. The second is to make a selection on
the set of SCEFE such that equilibrium becomes unique. The first option has the
advantage of being more comprehensive but it yields lengthy proofs. The second option
has the advantage of being simpler and to yield analogous results to the first option. In
this paper we follow the second route. Readers interested in the first option should
consult Corchon and Fradera (1996) where we prove similar results to those presented
here for the case where SCEFE may be a set.
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3Among all SCEFE we will select the equilibrium with the largest number of firms. In
4this equilibrium aggregate output is maximal among all SCEFE. The reason for

choosing this selection is discussed in the final section. Abusing notation, the SCEFE
with the largest number of firms will be denoted by SCEFE as before. Lete(b,k) be the
selection ofE(b,k) such that the number of firms is the largest. We first study the effect
of changes ink.

Theorem 2. Let (n ,q )5 e(b,k ) and (n ,q )5 e(b,k ), with k , k . Then, n $ n ,1 1 1 2 2 2 1 2 1 2

q # q , n q $ n q .1 2 1 1 2 2

ˆProof. Let Q(k) be the value of which a firm is indifferent between producing a positive
output and not producing at all (see Theorem 4 below for a formal proof of the existence

ˆ ˆ ˆof Q(k)). It is clear that if k , k , Q(k ). Q(k ). Other than this, the best reply1 2 1 2

correspondence if the fixed cost werek and the best reply correspondence if the fixed1

cost werek are identical because fixed costs only matter in determining if the output is2

positive or zero.
The SCEFE with maximal number of firms when the fixed cost isk is characterized1

by the following:

q [R(q (n 21),b,k ).1 1 1 1

q [⁄ R(q(n 1 v),b,k ) ;q [R , ;v 5 0,1, . . .1 1 1

Now, we have two cases. Ifq [R(q (n 2 1),b,k ), q [⁄ R(q(n 1 v),b,k ) ;q [1 1 1 2 1 2

R ,;v50,1,. . . . Thus, e(b,k )5 e(b,k ) and the result follows.1 1 2

If q [⁄ R(q (n 2 1),b,k ) then it must be thatn , n . SinceR is decreasing inQ,1 1 1 2 2 1

q , q . Since 0.dR/dQ . 2 1, n q . n q . h1 2 1 1 2 2

Theorem 2 says that a decrease in the value of the fixed cost, increases (weakly) the
equilibrium number of firms, decreases (weakly) the output of the representative firm
and increases (weakly) aggregate output. This agrees with our intuition and with the
results obtained in the Cournot model with a given number of firms (see the Refs. given
in Section 1).

Let us now turn our attention to the effects of a change inb. This change may have
ambiguous effects because it affects simultaneously the level of aggregate output at
which no additional firm is willing to enter and the behavior of active firms via marginal
profits. The following assumption establishes conditions on these effects that yield
unambiguous results.

3It is easy to show that under A 1–5 such a selection exists
4 i i i 1 0 i i iProof: Let (q ,Q ,n ) i 50,1 be two SCEFE withn . n Since Q 5 (n 2 1)R(Q ),i5 0,1 we obtain that

1 1 0 0 1 0Q /R(Q ).Q /R(Q ) which, given that dR/dQ , 0, implies Q .Q On the other hand, dR/dQ . 21
1 0 1 0 1 0 1 0 0 1implies thatR(Q )2R(Q ) /Q 2Q . 21 Given thatQ .Q , we obtain thatR(Q ).R(Q )1Q 2Q

i i 1 0which, given thatq 5R(Q ),i50,1, implies thatx . x
6



  

V Vqb qQ 2] ](A.6)V . 0,V $ 0. Moreover # in the interior ofR 3B.b qb 1V Vb Q

A.6 says two things: (1)b affects positively to both payoffs and marginal payoffs; (2)
the effect on marginal profits of a change inb relative to the effect ofb on profits cannot
be larger than the effect on marginal profits of a change inQ relative to the effect ofQ
on profits.

In order to understand A.6, let us assume that payoffs are profits, the inverse demand
2function is p 5 e 2 aq 2 aQ and the variable cost function iscq 1 dq /2. Thus, letting

a ; e 2 c andb ; a 1 d /2,

d 2]V5 (e 2 aq 2 aQ)q 2 cq 2 q 5 (a 2bq 2 aQ)q.2

It is easy to see that A.6 holds in the case where the parameterb is a, but it does not
hold whenb is b.

We now show that under A.6 an increase inb increases the SCEFE values ofn and
n 3 q.

Theorem 3. Let (n ,q )5 e(b ,k) and (n ,q )5 e(b ,k) with b . b . If A.6 holds,1 1 1 2 2 2 1 2

(i) n 5 n implies n q $ n q .1 2 1 1 2 2

(ii) n ± n implies n . n , and n q . n q .1 2 1 2 1 1 2 2

Proof. (i) In this case the result follows from the fact that our model is identical to the
Cournot model with a given number of firms (see, e.g., Corchon, 1994, Proposition 6).

(ii) Recall that r(Q,b) is the best reply correspondence under zero fixed costs. Let
˜ ˜˜Q(b,k)5MaxhQ [R:V(r(Q,b),Q,b)5 kj, andq(b,k)5 r(Q(b,k),b). Notice, that if we fix

˜ ˆb, Q(b,k) equalsQ(k) as defined in the proof of Theorem 2.

Q̃(b,k)
]]Thus, if (n,q)5 e(b,k), thenn 5Max n [N:n # 1 1 .H J
q̃(b,k)

V VV V qQ qbb b˜ ˜] ] ] ]Then,Q 5 2 . 0 andq 5 2 # 0 (by A.6). Hence,n . n .S Db b 1 2V V V VQ qq Q b

Now we show thatn q . n q . We have 2 1, r , 0 and r $ 0. Assume (n 21 1 2 2 Q b 1

1)q # (n 21)q . Sincen . n , it has to be thatq , q . But1 2 2 1 2 1 2

q 5 r((n 2 1)q ,b )$ r((n 2 1)q ,b )$ r((n 2 1)q ,b )5 q1 1 1 1 2 2 1 2 2 2 2

which is a contradiction. Hence, (n 2 1)q . (n 2 1)q . Now we have1 1 2 2

n q 5 (n 21)q 1 r((n 2 1)q ,b ). (n 2 1)q 1 r((n 2 1)q ,b )1 1 1 1 1 1 1 2 2 2 2 1

$ (n 21)q 1 r((n 2 1)q ,b )5 n q . h2 2 2 2 2 2 2

We now present a counterexample to Theorem 3 when A.6 does not hold.
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Example. Let V5 (a 2bq 2 aQ)q, as in the example given after A.6. The best reply
function of the representative firm whenk is zero is

(a 2 aQ)
]]]q 5 .2b

Let a, b and a be functions ofb. It is easy to compute that,

a 2 ]˜ ] ]Q(b,k)5 2 bk.œa a

Let a9, b9 and a9 be the values ofa, b and a after the change inb. This change is
chosen to be such that (see Fig. 1):

1. The slope of the best reply function remains constant, i.e.,a /b 5 a9 /b9.
] ]˜2. Q(b,k) remains constant, i.e.,a /a 2 2/a bk 5a9 /a922/a9 b9k.œ œ

3. R(0,b,k) increases, i.e.,a /b ,a9 /b9.

We will show that such a change is possible: given that, from 1 above,b95 a9b /a, 3
and 2 above are equivalent to

]]
a9a aa9 2a9 kba9]
] ]] ] ]],a95 2 bk 12 .œ œa a a a

Fig 1
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The interval in whicha9 lies is non-empty if and only ifa . a9. Thus, choosea . a9, a9
belonging to the above interval andb95 a9b /a ( ,b ).

In Fig. 1 we picture SCEFE before and after the change inb. The SCEFE with the
maximum number of firms is located in the intersection of the best reply correspondence
with the line representing the higher number of firms (e.g.,n or n 2 1, etc.). We see that
the best reply correspondence after the change inb lies upwards the best reply
correspondence before the change inb. However, the SCEFE after the change is such
that the number of firms decreases. What about aggregate outputq 1Q? First notice that
q 1Q can be measured in Fig. 1: Given any point (q9,Q9) all points located on the 458
line passing through (q9,Q9) (the dotted lines in Fig. 1) are such that aggregate output is
identical. At any point located to the left of this line aggregate output is less than
q91Q9. We see in Fig. 1 that ifR(0,b,k) and R(0,b9,k) are sufficiently close, the
intersection ofR( ,b9,k) with the linen 21 is such that aggregate output in the SCEFE
relative tob9 is smaller than the aggregate output in the SCEFE relative tob. h

The intuition behind this example is that if demand shifts out but is also made more
elastic, this intensifies competition in such a way that fewer firms find entry profitable
and, as a result of fewer firms, industry supply is reduced in spite of larger demand.

Finally, we check which part of A.6 does not hold. Notice that in the example above,
R( ) shifts upwards. Since dq/db 5 2V /V .0, it must be thatV .0. Also, sinceqb qq qb

Q̃ 5 2V /V 5 0 it must be thatV 5 0. However, the example could have beenb b Q b
˜constructed ifQ increases just a little bit (see Fig. 1) and in this case,V . 0. However,b

the last part of A6 is violated because ifV /V #V /V , easy calculations show thatqb b qQ Q

b9$b, contradicting thatb9,b.

4 . Observable regularities

In this section we will be concerned with the following question. Suppose that some
variables (e.g., price, profits, output, etc.) are observable. Does the notion of a SCEFE
restrict in any way these observations? In other words, is any observation of these
variables compatible with the hypothesis of the model? We will first assume that we
have observations aboutq andQ. The question is: Is any set of observations onq andQ
compatible with the hypothesis that these observations are on the best reply corre-
spondence of the representative firm? In order to answer this question let us introduce
the following concept.

Definition 2. A correspondencef :R →R is said to be admissible if:1 1
o(i) ;Q [ [0,y), somey .0, f is C with positive values and strictly decreasing.

(ii) When Q 5 y, f has two values namely lim f(z) with z [ [0,y) and 0.→ yz

(iii) For Q . y, f(Q)50.
1(iv) ≠f/≠Q . 2 1 wheneverf [C .

The following result shows that, under A.1–5, admissible and best reply corre-
spondences, are equivalent concepts.
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Theorem 4. (a) Under A.1–5, the best reply correspondence R is admissible. (b) Let f
1be an admissible correspondence. There exists a cost function C, which is C in R ,11

and a linear inverse demand function p 5 A2 q 2Q such that

if p(q,Q); (A2 q 2Q)q 2C(q), then f(Q); arg max (A2 q 2Q)q 2C(q).
q[R1

where p, as defined above, fulfills A.1–5.

Proof. Part (a) follows easily (see our comments to A.12 5 above).
(i) R.0 in [0,y) follows from the second part of A.1, and dR/dQ , 0. Notice that

˜y 5 Q(b,k).
(ii) follows from 0[⁄ K, and A.3–4.
(iii) follows from 0[⁄ K, and A.2–3–4.
(iv) follows from 0.V .V .qQ qq

¯Let us now prove part (b). letQ 5 y 1 a,a. 0. Let F be a continuous extension off
o¯ ¯to [0,Q ] with F strictly decreasing andF(Q )5 0. F is invertible. SinceF [C ,

21 o 21 21F [C . Also, F is bounded, and, thus,F is integrable (see Bartle, 1976, pp. 156,
21427). Lett(q) be the primitive ofF (q) for q [ [0, f(0)]. t can be extended toR such1

othat t [C for q . f(0). By choosing appropriately the integration constantt(0)50. Let
2C(q); Aq 2 q 2 t(q)1 k if q . 0 andC(0)50 if q 50,

wherek is a positive number to be determined later on. TakeA such thatC(q).0 and
dC/dq . 0,;q [ [0, f(0)]. Let p 5 A2 q 2Q. Define:

2
p ; p(x)q 2C(q)5 (A2 q 2Q)q 2 Aq 1 q 1 t(q)2 k.

≠p 21]Thus, 5F (q)2Q 5 0.
≠q

21Since F is strictly decreasing, second-order conditions of profit maximization are
21satisfied and thus,F (q)5Q determines a profit maximizing output ifk 5 0. Since

21F is strictly decreasing beyondf(0), outputs greater thanf(0) are never chosen.
21 21Therefore,F (q)5 f (q) and thus,q 5 f(Q). Now let k 5 t( f(y))2 yf(y) with y as

defined in Definition 2, part ii. Thus

p 5 t(q)2Qq 2 k,if q . 0.

If Q 5 y, the firm is indifferent between producing 0 andf(y). Notice that dp /dQ 5

t9 f 92 f 9Q 2 f 5 2 f , 0 and thus payoffs are positive forQ , y. By the same token,
payoffs would be negative if the firm produced a positive output forQ . y. Thus, f is
the best reply correspondence of a firm with payoff functionp. We will show now thatp
fulfills A.1–5.

A.1: Since atQ 5 0, the firm chooses positive output andp is strictly concave onq, k
(as defined above). 0 and max p(q,0).0.q

A.2: It follows from the definition ofp.
A.3: From the definition oft is clear thatp ,0 for q large enough.
A.4: It follows from the previous arguments
A.5: It follows from the definition ofp and F. h
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Next, we will concentrate on the following question. Suppose we have an observation
about prices, profits and number of active firms. Is there any relationship between these
variables, for instance between profits and the number of active firms, were they
generated by a SCEFE? The answer is no, even under strong functional restrictions on
the shape of demand and costs.

2˜ ˜ ˜ ˜Theorem 5. Let (n,p,p )[N3R be an observation of a number of firms (n . 1), a1

price and profits. There is an isoelastic demand function with unit elasticity and a cost
function with constant marginal costs for which the SCEFE with maximal number of

˜ ˜ ˜firms is (n,p,p ).

Proof. Let x be aggregate output, i.e.,x 5 q 1Q. Let p5A /x be the candidate inverse
demand function and letC 5 cq 1 k (if q . 0) andC 50 (if q 5 0) be the candidatei i

cost function. Given these two functions a necessary and sufficient condition for (p,n,p)
to be a SCEFE with maximal number of firms is that

]
cn A AF G]] ] ]p 5 , n 5E ,p 5 2 k, whereE(w); integer part ofw.2œn 2 1 k n

We will now construct an inverse demand and a cost function, i.e., we will find values of
˜ ˜ ˜the parametersA, k and c such that the SCEFE of this economy is (n,p,p ). Let

2 2 2˜ ˜ ˜ ˜ ˜ ˜ ˜(n 1´) p n p n p(n 2 1)
]]]] ]]] ]]]A5 , k 5 , c 5 ,2 2 ñ˜ ˜e 1 2e n e 12e n

wheree is an arbitrary number in (0,1). The SCEFE for this economy is:

2˜ ˜ ˜ ˜ ˜p(n 2 1) n (n 1´) p
˜ ˜ ˜ ˜]]] ]] ]]]p 5 ? 5 p, p 5 2 k 5p, n 5E fn 1e g5 n.2˜ ˜n (n 2 1) ˜e 1 2e n

Thus, the proposition is proved.h

Suppose now that the fixed costk is also observable. Does the previous result change?
The answer is, not much.

3˜˜ ˜ ˜ ˜Theorem 6. Let (n,p,p,k )[N3R be an observation of a number of firms (n .1), a1
2˜˜ ˜ ˜price, profits and fixed costs, such that p /k ,1/n 12/n. There is an isoelastic demand

curve with unit elasticity and a cost function with constant marginal costs and a fixed
˜ ˜ ˜ ˜costs k for which the SCEFE equilibrium with maximal number of firms is (n,p,p ).
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2 2˜ ˜ ˜ ˜Proof. As before takek5pn /(e 1 2en ). Solving this equation we obtain that
]]]2˜ ˜ ˜pn p 1 22˜ ˜ ]] ] ] ]e 5 2 n 1 n 1 ( .0). Thuse ,1⇔ , 1 .2˜ ˜ ññœ k k

Similar calculations to the one performed in the proof of Theorem 5 show that the
required parameters are:

]]]2 2 2˜ ˜ ˜ ˜ ˜ ˜ ˜(n 1´) p n p(n 2 1) pn2˜ ˜]]]] ]]] ]]A5 , c 5 , e 5 2 n 1 n 1 .2 ˜ ˜n˜e 1 2e n œ k

˜ ˜Notice that because 0,e , 1,Efn 1e g5 n. Thus, the proposition is proved.h

Similar results can be obtained by assuming that the inverse demand is linear. In this
case a similar reasoning to the one used above shows that the bound on the rate of
profits is

˜2n 1 3 1 2
]]]] ] ], less than 1 ,2 2 ñ˜ ˜ ˜n 1 2n 1 1 n

but still substantial:

˜2n 13
˜ ]]]]If n 5 20, . 9%,2˜ ˜n 1 2n 11

not far for the 10% obtained in the isoelastic case.
Summing up, Theorems 5 and 6 make the point that SCEFE predicts very little about

the relationship between concentration and profitability.

5 . Conclusions

In this paper we have studied the properties of the Cournot model with free entry.
Two things are worth noticing:

1. Comparative statics may yield different answers from those obtained in the Cournot
model with a given number of firms. In particular, the shift of a parameter affecting
positively both payoffs and marginal payoffs may decrease aggregate output due to a
fall in the number of active firms.

2. The model studied here does not support the view that high profit rates can only be
sustained by preventing entry or by collusion of existing firms. Even if fixed costs are
observable, the model does not predict a straight relationship between number of
firms and profit rates.

Notice that the facts noticed in Points (1) and (2) cannot occur in perfectly
competitive markets. The fact that we have selected the SCEFE with maximal number of
firms, makes our results stronger because they occur in the allocation which is the
closest that we can get to the perfectly competitive allocation.

12



  

We hope that future research will investigate if Points (1) and (2) above arise in other
models of imperfectly competitive markets with endogenous number of firms, e.g., in
models of product differentiation.
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