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Abstract. Suppose that a group of individuals owns collectively a technology
which produces a consumption good by means of a (possibly heterogeneous)
input. A sharing rule associates input contributions with a vector of consump-
tions that are technologically feasible. We show that the set of allocations ob-
tained by any continuous sharing rule contains Pareto e‰cient allocations. We
also present a mechanism that implements in Nash equilibrium the Pareto e‰-
cient allocations contained in an arbitrary sharing rule.

1 Introduction

Consider a group of people owning a technology which transforms a possibly
heterogeneous input (labor) into a homogeneous output (consumption). Inputs
are also provided by the owners. Di¤erent proposals on how to distribute the
output can be found in the literature.

In the class of environments in which the input is homogenous, Roemer
and Silvestre (1988) proposed the Proportional Solution and the Equal Benefit
Solution and Mas-Colell (1980) proposed the Constant Returns Equivalent
Solution. Several characterizations of these solutions are provided in Moulin
(1990), Moulin and Roemer (1989), and Maniquet (1996). When heterogenous
inputs are considered, other solutions have been proposed: Equal Sharing,
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Marginal Cost Rule, Aumann-Shapley Prices, Reference Welfare Equivalent
Budget, etc. (see Aumann and Shapley 1974; Billera and Heath 1982; Moulin
1987; Tauman 1988; Pfingsten 1991 and Fleurbaey and Maniquet 1996).

In this paper we focus our attention on contracts that are o¤ered to the
owners of the inputs. We assume that the quantity of inputs is contractible but
preferences are not. These contracts, that we will call Sharing Rules, are a func-
tion that specifies the list of consumptions depending on input contributions.
The sharing rule together with the quantity of inputs determine income distri-
bution inside the firm (the idea of expressing the share of output in terms of
the inputs first appeared in Moulin 1990, p. 445). It is worth to notice that all
solutions mentioned above qualify as Sharing Rules except the constant return
equivalent solution. Our analytical task consists in checking which Sharing
Rules satisfy two basic requirements: E‰ciency and Implementability.

Firstly, we focus attention on those Sharing Rules which are compatible
with Pareto e‰ciency, in the sense that there are allocations which are Pareto
e‰cient and the input-output combination belongs to the sharing rule. We call
those sharing rules E‰cient Sharing Rules. It is well known that the propor-
tional and the equal benefit solutions are E‰cient Sharing Rules. We gener-
alize these results by showing that any continuous sharing rule is an e‰cient
sharing rule in the set of classical economies (continuous and convex prefer-
ences). Our proof is inspired by the proof of Negishi (1960) of the existence of
a Walrasian Equilibrium.

Secondly, we consider the incentive properties of e‰cient sharing rules. A
sharing rule that gives incentives to distort preferences or productivities can
not be regarded as satisfactory. Roemer (1988), Gevers (1986) and Maniquet
and Fleurbaey (1996) showed respectively that the proportional, the equal
benefit and the reference welfare equivalent budget e‰cient sharing rules are
Nash implementable,1 i.e. there is a mechanism whose Nash equilibrium
strategies generate the desired allocations. Suh (1995) introduced a mechanism
that implements the proportional solution in Nash, undominated Nash and
Strong equilibria. Shin and Suh (1997) provide a simple mechanism which
doubly implements a class of solutions in Nash and strong equilibrium. In this
paper we provide a simple mechanism that implements in Nash equilibrium
every e‰cient sharing rule in the set of classical economies when there are at
least three individuals.2 We assume that the planner knows the sharing rule
but not the preferences of the agents that determine the set of Pareto e‰cient
allocations for each economy. Our procedure has the advantage over Shin and
Suh’s that our conditions on the solutions to be implemented are easy to check
and they include economies with heterogeneous inputs, but the disadvantage
that we only implement in Nash equilibrium.

In our mechanism, people are arranged in a circle and each agent proposes

1 Implementation in dominant strategies is usually impossible. However see Schmei
dler and Tauman (1989) for a case in which it is possible.
2 We consider adverse selection problems only. See Holmstrom (1982) for problems of
moral hazard.
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the amount of input supplied by him and the agent next to him. Three cases are
then identified:

First, when the amount of input proposed by each agent coincides with the
amount suggested by his monitor. In this case the mechanism distributes the
output according to the sharing rule.

Second, when there are, at most, two consecutive agents whose proposals
di¤er from what was proposed for them. Then, the agent with the lowest index
(the dissident) has the right to choose an allocation in a certain budget set that
is only profitable if he has deviated from a non e‰cient allocation. Since a
deviation can only happen if the monitor of the dissident has tried to fool the
mechanism, the monitor is severely fined: he gets zero consumption and has to
contribute with the maximum amount of labor. All other agents obtain some
arbitrary bundle.

Third, for any other message it is not possible to identify the dissident. In
this case, the mechanism divides the agents into two groups: the ones that con-
sume but do not work, and the ones that work but do not consume. Notice that,
contrarily to what happens in the canonical mechanism, agents do not play in-
teger games.

Our construction avoids some of the criticism made by Jackson (1992) to
canonical mechanisms, since the strategy sets are compact.

2 The model and the main results

There is one consumption good produced from a vector of possibly hetero-
genous inputs using a publicly owned technology.

There are n individuals indexed by i. Let N ¼ f1; . . . ; ng. They are endowed
with l A Rþ, units of input.3 Each individual consumption set is defined by:

X ¼ fðxi; liÞ : xi A Rþ; li A ½0; l �g
where xi is agent i ’s consumption and li is input contribution. Each agent has
preferences defined on X, that can be represented by a utility function

ui : X ! R

The utility function is assumed to be di¤erentiable, concave, strictly increasing
in xi and strictly decreasing in li. Thus

arg min
ðxi; ;liÞ AX

uiðxi; liÞ ¼ ð0; lÞ Ei A N:

The technology is represented by a production function

f : Rn
þ ! Rþ

The function f is continuous, increasing in each component, concave, contin-
uously di¤erentiable in each component and with f ð0; . . . ; 0Þ ¼ 0.

3 When inputs are heterogenous, we assume that inputs are normalized so that the
quantity held by each agent is the same.
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We define the feasible set, denoted by X as follows

X ¼ ðx1; l1; . . . : ; xn; lnÞ A Xn :
X
i AN

xi a f ðl1; . . . ; lnÞ
( )

A feasible allocation is denoted by ðx; lÞ A X where x ¼ ðx1; : : ; xnÞ and l ¼
ðl1; . . . ; lnÞ.

We assume that X is fixed and utility functions vary. Thus, an economy,
denoted by u ¼ ðu1; . . . ; unÞ, is a list of utility functions satisfying the assump-
tions listed above. The set of admissible economies is denoted by E.

The Pareto e‰cient solution jE : E ! X associates to each economy in the
domain the set of Pareto e‰cient allocations for this economy. Formally,

jEðuÞ ¼ ðx; lÞ A X : 6 bðx 0; l 0Þ A X=uhðx 0
h; l

0
hÞb uhðxh; lhÞ Eh A N

and ujðx 0
j ; l

0
j Þ > ujðxj ; ljÞ for at least one j A N

� �
:

A Sharing Rule is a contract that specifies the consumptions as a function of
input contributions. Formally, a sharing rule P ¼ ðP1; . . . ;PnÞ is a collection
of functions such that Pi : ½0; l �n ! Rþ Ei A N with

P
i AN

PiðlÞ ¼ f ðlÞ El A
½0; l �n.

Each Pi yields the consumption of i as a function of l. Moreover, P dis-
tributes the total output. Some examples of solutions that can be expressed as
sharing rules are the following:

The Proportional Solution in which the sharing rule is:

PiðlÞ ¼
f ðlÞP

i AN

li
li Ei A N; ð1Þ

where the amount of output consumed by an agent is proportional to the
amount of input that he contributes.

The Equal Benefit Solution, in which the sharing rule is:

PiðlÞ ¼
qf ðlÞ
qli

li þ
1

n
f ðlÞ �

X
i AN

qf ðlÞ
qli

li

� �" #
Ei A N; ð2Þ

where each agent consumes according to the budget constraint in the Walra-
sian equilibrium with equal profits. Clearly, other rules of profit distribution
also qualify as sharing rules.

The Equal Sharing Solution, in which the sharing rule is:

PiðlÞ ¼
f ðlÞ
n

Ei A N; ð3Þ

where each agent consumes an equal part of the total output.
The Aumann-Shapley prices, in which for a vector of heterogenous input

contributions, the sharing rule is:

PiðlÞ ¼
ð1

0

qf ðtlÞ
qli

dt li Ei A N; ð4Þ
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where each agent consumes proportionally to the contribution of his input to
the total production. When the input is homogenous it coincides with the pro-
portional sharing rule.

Furthermore, the family of methods proposed by Moulin (1987) also qualify
as sharing rules. These sharing rules are:

For each m A Rþ,

PiðlÞ ¼
liP

i AN

li
f ðlÞ if

f ðlÞP
i AN

li
a m

limþ 1

n

�
f ðlÞ � m

X
i AN

li

�
if

f ðlÞP
i AN

li
b m Ei A N: ð5Þ

For each l A ½0; 1�,

PiðlÞ ¼
f ðlÞ
n

þ li �
1

n

X
i AN

li

 !264
0
@1 þ f ðlÞP

i AN

li

1
A
l

� 1

3
75 Ei A N: ð6Þ

For each l A ½0; 1�,

PiðlÞ ¼
ll
iP

i AN

ll
i

f ðlÞ Ei A N: ð7Þ

For each l A ½0; 1Þ,

PiðlÞ ¼ ðl1 l
i þ aÞ1=ð1 lÞ � li Ei A N; ð8Þ

where a is the unique solution to:
P
i AN

ðl1 l
i þ aÞ1=ð1 lÞ ¼

P
i AN

li þ f ðlÞ.

Finally, note that every convex combination of the mentioned solutions, is
also a sharing rule.

We assume that every sharing rule verifies that if li ¼ l, Piðl1; : : l; liþ1; : : lnÞ
> 0. Note that all the mentioned sharing rules satisfy this assumption.

2.1 Pareto e‰ciency and Sharing Rules

In the sequel we will be interested in the intersection between the Pareto e‰-
cient allocations jE and those satisfying a sharing rule P. Those allocations
will be called E‰cient Sharing Rules and are denoted by jPE where:

jPEðu;PÞ ¼ fðx; lÞ A jEðuÞ : xi ¼ PiðlÞ; Ei A Ng:

We now prove that jPEðu;PÞ0q, provided that P is continuous.

Theorem 1. Given u A E and a continuous sharing rule P, then jPEðu;PÞ0q.

Proof. Let a A Dn 1 where Dn 1 ¼
n
a A Rn

þ :
P
i AN

ai ¼ 1
o

.
Consider the problem:

max
ðx;lÞ AX

X
i AN

aiuiðxi; liÞ
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by continuity of ui and compactness of X, there always exists a solution to this
problem, which is by definition Pareto e‰cient.

This maximization defines a correspondence denoted by f, such that

f : Dn 1 ! X

By concavity of u and convexity of X, f is convex valued. By Berge’s maxi-
mum theorem, f is upper hemicontinuous.

We define Di : Rþ  ½0; l �n ! R for each i A N as follows:

Diðxi; lÞ ¼ PiðlÞ � xi:

Fix a feasible allocation ðx̂x; l̂lÞ and consider the following maximization pro-
gram:

max
a ADn 1

X
i AN

aiDiðx̂xi; l̂lÞ

by compactness of Dn 1 and continuity of the objective function on ai, there
always exists a solution to this problem. This maximization defines a corre-
spondence denoted by F, such that

F : X ! Dn 1

where F is convex valued and upper hemicontinuous by Berge’s maximum
Theorem (remember that each Di is continuous on ðxi; liÞ).

Now consider the following mapping

F f : Dn 1 X ! Dn 1 X:

This is an upper hemicontinuous mapping from a compact convex set into it-
self, with non empty and convex values. By Kakutani’s fixed point Theorem,
there exists a fixed point ða�; x�; l�Þ.

Notice that it is impossible to have ðx�
i ; l

�Þ such that Diðx�
i ; l

�Þ < 0 Ei A N

or Diðx�
i ; l

�Þ > 0 Ei A N, because the sharing rules verify that
P
i AN

xi ¼ f ðlÞ.

Thus, if Diðx�
i ; l

�Þ > 0, then bj A N : Djðx�
j ; l

�Þ < 0 and so a�
j ¼ 0. But this

implies that f will assign ðx�
j ; l

�
j Þ ¼ ð0; lÞ and so Djðx�

j ; l
�Þb 0, a contradic-

tion. Therefore, the fixed point verifies Diðx�
i ; l

�Þ ¼ 0 Ei A N and this implies
that x�

i ¼ PiðlÞ Ei A N. 9

It can be easily checked that under our assumptions all the rules mentioned
before are continuous (for Aumann-Shapley prices, see Mirman and Tauman
1980). Thus, those sharing rules are e‰cient sharing rules.

2.2 Implementation of E‰cient Sharing Rules

A mechanism G is a list fðSiÞi AN ; gg where Si is the strategy space for agent i

and g is the outcome function, mapping each strategy profile into an element
of the feasible set:

g :
Y
i AN

Si ! X

The outcome received by each agent is giðsÞ ¼ ðxi; liÞ.
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Let s i be the list of strategies for all the agents except for i, then, the set of
Nash equilibria of the game ðG ; uÞ is denoted by NEðG ; uÞ.

NEðG ; uÞ ¼
�

s A
Y
i AN

Si : uiðgiðsÞÞb uiðgiðs 0i ; s iÞ Ei A N; Es 0i A SiÞ
�
:

We say that a mechanism implements jPE in Nash equilibrium when it verifies
that:

NEðG ; uÞ0q

jPEðu;PÞ ¼ gðNEðG ; uÞÞ; Eu A E:

For each continuous sharing rule P, let the mechanism GðPÞ be as follows:
The strategy space of agent i is Si ¼ ½0; l �2 HR2

þ.

A strategy for i is a pair, si ¼ ðl i
i ; l

iþ1
i Þ, when i ¼ n we define i þ 1 ¼ 1 and

when i ¼ 1, i � 1 ¼ n. Each individual strategy may be interpreted as a pro-
posed labor allocation for himself l i

i and the individual next to him l iþ1
i . This

is a particular instance of a ‘‘Tweed Ring’’ mechanism.4
The outcome function is divided into three cases which we denote as rules:
Rule 1 (Unanimity). If Ej A N : l j

j ¼ l
j
j 1 then gjðsÞ ¼ ðPjðlÞ; l j

j Þ where
l ¼ ðl1

1 ; . . . ; l
n
n Þ.

Rule 2 (Dissident right). If Ej A N � fig : l j
j ¼ l

j
j 1 and for i : l i

i 0 l i
i 1, or

if Ej A N � fi; i þ 1g : l j
j ¼ l

j
j 1 and for i and i þ 1 : l i

i 0 l i
i 1 and l iþ1

i 0 l iþ1
iþ1 .

Agent i is called the dissident, agent i � 1 is the punished agent and the rest

are denoted by k. Let xi ¼ Piðl 0Þ þ qf ðl 0Þ
qli

ðl i
i � l i

i 1Þ with l 0 ¼ ðl1
1 ; : ; l

i 1
i 1 ;

l i
i 1; l

iþ1
iþ1 ; : ; l

n
n Þ then,

giðsÞ ¼ ðxi; l
i
i Þ; gi 1ðsÞ ¼ ð0; lÞ;

gkðsÞ ¼
�

f ðl1
1 ; : ; l

i 2
i 2 ; l; l

i
i ; : ; l

n
n Þ � xi

n � 2
; lk

k

�
:

And only in the case that from this rule xi > f ðl1
1 ; : ; l

i 2
i 2 ; l; l

i
i ; : ; l

n
n Þ then,

giðsÞ ¼ ð f ðl1
1 ; : ; l

i 2
i 2 ; l; l

i
i ; : ; l

n
n Þ; l i

i Þ; gi 1ðsÞ ¼ ð0; lÞ; gkðsÞ ¼ ð0; lk
k Þ:

Rule 3. It applies when we are not in Rule 1, nor in Rule 2.
Let M ¼ fi A N : si ¼ ð0; 0Þg and let l̂l ¼ ðl̂l1; . . . ; l̂lnÞ where Ei A M, l̂li ¼ 0

and Ej A N � M, l̂lj ¼ max
l

b
;minfbl jþ1

j ; lg
� �

with b > 1, then Ei A M :

giðsÞ ¼
f ðl̂lÞ
aM

; 0

 !
and for Ej A N � M : gjðsÞ ¼ ð0; l̂ljÞ.

The interpretation of this mechanism is the following:
In Rule 1 each individual is given the share of the total output according to

the sharing rule P.
Rule 2 applies when one individual deviates. Notice that the maximization

problem for the dissident agent is

4 Another example of a ‘‘Tweed Ring’’ mechanism is due to M. Walker (1981).
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max
l i
i A ½0;l �

ui Piðl 0Þ þ qf ðl 0Þ
qli

ðl i
i � l i

i 1Þ; l i
i

� �

considering interior solutions, the first order condition to this problem is a
necessary condition for an e‰cient allocation:

qui=qxi

qui=qli
¼ �1

qf ðl 0Þ=qli
and it is su‰cient if this equality is verified for every agent. Thus, if the an-
nouncement of the rest of agents does not lead to a Pareto e‰cient allocation,
one individual can increase his payo¤ deviating.5 Also, Rule 2 punishes the
individual who did not monitor adequately. The punished individual is given
his worst allocation. If the consumption proposed by the dissident is not fea-
sible, we give him all the output.

In Rule 3, the mechanism divides the agents into two groups: Those an-
nouncing si ¼ ð0; 0Þ who consume and do not work, and those announcing
si 0 ð0; 0Þ who work but do not consume. As we next show, there is always an
agent of this second group that strictly improves by means of a deviation.

Theorem 2. If nb 3, the mechanism GðPÞ implements jPEðu;PÞ in Nash equi-

librium.

Proof. First, let us show that jPEðu;PÞJ gðNEðGðPÞ; uÞÞ Eu A E.
Let ðx; lÞ A jPEðu;PÞ for some u A E and some P, let s A

Q
i AN

Si be

a strategy profile defined by s ¼ ðs1; . . . : ; snÞ and si ¼ ðl i
i ; l

iþ1
i Þ such that

l i
i ¼ l i

i 1 Ei A N. Then, the outcome induced by s is gðsÞ ¼ ðx;lÞ. We verify
that s ANEðGðPÞ;uÞ.

If ðx; lÞ A jEðuÞ is an interior solution, then Ei, l i
i verifies first order opti-

mality conditions:

qui=qxi

qui=qli
¼ �1

qf ðl 0Þ=qli
Ei A N

and so, if one agent deviates, Rule 2 applies and the dissident agent can not
get anything preferred to ðxi; l

i
i Þ. Even if ðx; lÞ A jEðuÞ is a non interior solu-

tion, there is no dissident agent which can get anything preferred to ðxi; l
i
i Þ.

Therefore, s A NEðGðPÞ; uÞ.
Second, let us show that gðNEðGðPÞ; uÞÞJ jPEðu;PÞ Eu A E.
Let s A NEðGðPÞ; uÞ and gðsÞ ¼ ðx; lÞ.

Case 1. When ðx; lÞ is in Rule 1 but ðx; lÞ B jEðuÞ. Then, bðx 0
; l

0 Þ A X such
that at least one agent is better o¤. If this agent deviates, Rule 2 applies. Let
l 0 ¼ ðl1

1 ; : : ; l
i 1
i 1 ; l

i
i 1; l

iþ1
iþ1 ; : : ; l

n
n Þ. The attainable set for this agent is denoted

by Ai, where

5 It can be shown that for non interior solutions, Rule 2 also gives incentives to deviate
from a non e‰cient allocation, since individuals can trade leisure for consumption at a
rate equal to the marginal rate of transformation.
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Ai ¼
�
ðxi; liÞ A X : xi ¼ Piðl 0Þ þ qf ðl 0Þ

qli
ðli � l i

i 1Þ
�
:

Since ðx; lÞ is not e‰cient, there is at least one agent for whom the marginal
rate of substitution is greater (or lower) than the marginal rate of transfor-
mation. Then, announcing a lower (respectively higher) input contribution, he
improves his payo¤. This contradicts that s A NEðGðPÞ; uÞ.

Case 2. ðx; lÞ Comes from Rule 2. The punished individual i � 1 receives
gi 1ðsÞ ¼ ð0; lÞ and let us then show that a deviation in the announcement of
agent i � 1 can increase his payo¤:

When l
j
j ¼ l

j
j 1 Ej A N � fig, then a deviation of agent i � 1 announcing

l
0i
i 1 ¼ l i

i leads to the unanimity rule. In the case that l
0i
i 1 ¼ l, we have

assumed that Pi 1ðl1; : ; l; li; : : ; lnÞ > 0, so that agent i � 1 will increase his
payo¤.
When l

j
j ¼ l

j
j 1 Ej A N � fi; i þ 1g, a deviation of agent i � 1 such that

s 0i 1 ¼ ðl 0i 1
i 1 ; l 0i

i 1Þ where l 0i 1
i 1 0 l i 1

i 2 and l 0i
i 1 0 l i

i , will lead to Rule 3. In
Rule 3 we have that for all l 0i

i 1 0 l, agent i � 1 can increase his payo¤.

We conclude therefore, that there is no Nash equilibrium in Rule 2.

Case 3. ðx; lÞ Comes from Rule 3. Then, a deviation in one of the agents strat-
egy, can move the outcome either to Rule 2 (Case 3.1) or to Rule 3 (Case 3.2).

Case 3.1. We then have that aN � M b 2. Consider a deviation of agent j A
N � M, s 0j ¼ ðl j

j 1; l
jþ1
jþ1 Þ where l

j
j 1 and l

jþ1
jþ1 are respectively part of the equi-

librium strategies of the agents j � 1 and j þ 1. This deviation moves the out-
come to Rule 2, where notice that agent j can not be the punished agent nor
the dissident. Therefore, he obtains the payo¤ ðx 0

j ; l
j
j 1Þ where x 0

j is calculated

according to Rule 2. Let us next show that ujðx 0
j ; l

j
j 1Þ > ujð0; l̂ljÞ, i.e., that

the proposed deviation strictly improves agent j. It is su‰cient to show that

l
j
j 1 < l̂lj :

If j � 1 A N, l j
j 1 ¼ 0 and since l̂lj ¼ max

l

b
;minfbl jþ1

j ; lg
� �

> 0, it is sat-
isfied.
If j � 1 A M � N, l

j
j 1 such that bl

j
j 1 b l, can not be part of an equili-

brium strategy because then minfbl j
j 1; lg ¼ l, and so l̂lj 1 ¼ l. Therefore,

in equilibrium l
j
j 1 <

l

b
. Furthermore, l

j
j 1 such that bl

j
j 1 >

l

b
can neither be

part of an equilibrium strategy because then l̂lj 1 ¼ max
l

b
; bl j

j 1

� �
¼ bl

j
j 1

and agent j � 1 will increase his payo¤ announcing l
j
j 1 a

l

b2
. Since for all

the agents j A M � N the above argument applies, we then have that l̂lj ¼
l

b
,

and so l
j
j 1 < l̂l:j.

Case 3.2. Consider a deviation of agent j A M � N to s 0j ¼ ð0; 0Þ. This devia-
tion, clearly, improves agent j outcome.
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We conclude therefore, that there is no Nash equilibrium in Rule 3. 9

The proposed mechanism satisfies some nice properties: The message space
consists of announcements of input contributions. Furthermore, participants
contribute, in equilibrium, with the amount they announce (a similar property
is called Forthrightness by Saijo et al. 1996).

3 Final comments

In this paper we have shown that any continuous sharing rule is compatible
with e‰ciency and incentives. In this sense, our results suggest the existence
of a large degree of freedom concerning income distribution within the firm,
unless other consideration are introduced. We would like to remark that shirk-
ing by workers is never reported as a concern in studies of cooperatives in
the real world: observers report that workers monitor each other successfully
(see Bonin et al. 1993). This is precisely what happens in our mechanism.

Finally, see Corchón and Puy (1998) for a study of sharing rules yielding
individually rational allocations and sharing rules that arise from voting inside
the firm.
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