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In this paper we propose an alternative characterization of the central notion of co-
integration, exploiting the relationship between the autocovariance and the cross-
covariance functions of the series. This characterization leads us to propose a new
estimator of the cointegrating parameter based on the instrumental variables (IV)
methodology. The instrument is a delayed regressor obtained from the conditional
bivariate system of nonstationary fractionally integrated processes with a weakly
stationary error correction term. We prove the consistency of this estimator and de-
rive its limiting distribution. We also show that, in the 7(1) case, with a semipara-
metric correction simpler than the one required for the fully modified ordinary least
squares (FM-OLS), our fully modified instrumental variables (FM-1V) estimator
is median-unbiased, a mixture of normals, and asymptotically efficient. As a con-
sequence, standard inference can be conducted with this new FM-IV estimator of
the cointegrating parameter. We show by the use of Monte Carlo simulations that
the small sample gains with the new IV estimator over OLS are remarkable.

1. INTRODUCTION

The concept of cointegration was coined by Granger (1981, 1983) and Engle
and Granger (1987) when the data generating process (DGP) was generated
by integrated processes. The time series x, is integrated of order d, denoted
x, ~ I1(d), if A%, = (1 — B)“x, ~ I(0), where d is an integer number, B is the
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backshift operator, and 7(0) denotes a weakly stationary process. We can ex-
trapolate the concepts of integration and cointegration to the fractional case
where now d is not an integer but a real number. Loosely speaking, we say that
a series x, is fractionally integrated of order d, if A%, ~ I(0), d > —1, with
A =37 T(k— d)B* T'(k + 1)T'(—=d), I'(-) denoting the gamma function.
Correspondingly, two I(d) fractionally integrated of order d processes, x,, y;,
are said to be (fractionally) cointegrated if there exists a real number 8 # 0
such that y, — Bx, ~ I(d*), d* < d.

Phillips and Hansen (1990) and Kitamura and Phillips (1997) developed the
asymptotic properties of instrumental variables (IV) estimates in multivariate
cointegrating regressions. Those studies were completed with extensive Monte
Carlo simulations by Kitamura and Phillips (1995). From Phillips and Hansen
(1990) we learn that, in contrast with traditional theory for stationary time se-
ries, IV regressions are consistent even when the instruments are stochastically
independent of the regressors, so that the instrument selection seems to be a
problem of first magnitude. Kitamura and Phillips (1997) show that sometimes
the finite sample bias and root mean square error of fully modified instrumen-
tal variables (FM-IV) are exceptionally high (in fact, higher than ordinary least
squares [OLS] and crude IV) as a result of the occasional occurrence of ex-
tremely large estimation errors. As argued by the authors, these outliers are due
to poor initial estimates obtained by the use of IV regressions in the first stage
of the fully modified methodology. When the initial IV estimates are exception-
ally poor due to, e.g., poor instruments, in the second stage the fully modified
procedure can amplify the effects of these preliminary estimates.

Fractional cointegration with long memory errors has been recently consid-
ered by several authors, e.g., Cheung and Lai (1993), Dolado and Marmol (1996),
Marinucci (1998), Robinson and Marinucci (1998, 1999), Jeganathan (1999),
Davidson (2000), Hassler, Marmol, and Velasco (2000), and Kim and Phillips
(2000). In particular, Kim and Phillips (2000) develop a fractional version of
the FM regression method that is robust to the presence of long-range depen-
dence in the regression errors and asymptotically optimal in certain models of
fractional cointegration. Moreover, their estimator carries over reasonably well
in finite samples and compares favorably with the narrow band frequency do-
main least squares procedure of Robinson and Marinucci (1998).

In this paper we introduce a characterization of (fractional) cointegration ex-
ploiting the linear measures of dependence and cross-dependence introduced
by Aparicio and Escribano (1998). The definition is not model dependent and
therefore can be extended to the nonlinear case along the lines of Aparicio and
Granger (1995) and Aparicio and Escribano (1999). This characterization leads
us to propose an estimator of the cointegrating parameter 3 based on the IV
methodology. The instrument is a delayed replica of the regressor in the condi-
tional model when, for simplicity, the DGP is assumed to be a bivariate system
of nonstationary fractionally integrated processes with a weakly stationary er-
ror correction term. Because the instrument is only asymptotically uncorrelated
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with the innovation term, the estimator will be called the pseudo instrumental
variable (PIV) estimator. Therefore, our suggested instrument is by definition
neither spurious, because it is always correlated with the corresponding regres-
sor, nor a poor instrument, because the correlation of unit root processes tends
to one asymptotically.

The paper is organized as follows. In Section 2 we set out the model and
main assumptions. In Section 3 we motivate our IV estimator by introducing
the alternative characterization of fractional cointegration. Section 4 derives the
consistency and limiting distribution of the crude PIV estimator. Section 5 pro-
vides some Monte Carlo evidence about the small sample behavior of PIV rel-
ative to OLS. In Section 6 we derive the asymptotic properties of the so-called
fully modified pseudo instrumental variables (FM-PIV) estimator, and show
that this estimator is consistent and that its limiting distribution is median-
unbiased, a mixture of normals, and asymptotically efficient so that inference
can be conducted in the standard way. Section 7 provides a Monte Carlo study
of the small sample behavior of FM-PIV relative to FM-OLS. Finally, some
concluding remarks and extensions are given in Section 8. Mathematical proofs
of the theorems are gathered in the Appendix.

2. PRELIMINARY DEFINITIONS AND ASSUMPTIONS

An interesting way of classifying time series is in terms of the memory of the
underlying processes, and such a memory can be represented by means of some
serial dependence measures. For stationary sequences, a series is said to have
long memory if its spectral density is unbounded at the origin (correspondingly,
if it has nonsummable autocovariances), in contrast with the short memory case,
where the spectral density is finite and positive (correspondingly, with abso-
lutely summable autocovariances).

A particularly important member of the family of the long memory pro-
cesses is the fractionally integrated process (Granger and Joyeux, 1980; Hosk-
ing, 1981). See Beran (1994), Robinson (1994), and Baillie (1996) for overviews
of the theory and major empirical applications of this family of processes.

A fractionally integrated process x, of order d is stationary if and only if
d < 3 and nonstationary otherwise. Herein we are concerned with the nonsta-
tionary case because this is the most relevant range when dealing with cointe-
gration. Furthermore, as a natural step and to keep things simple, we concentrate
our attention on the simplest case, where the DGP is assumed to be generated
by two cointegrated nonstationary fractionally integrated time series of order
d, with an I(0) error correction term and without any deterministic elements.

More specifically, in this paper we assume that the relevant DGP has a tri-
angular representation

Y = Bx, +ouy,, D

A, =u d> 1 )
t 2t 2’
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where u, = (u,,, u,,)’ is generated by the linear process
u, = EH_,»st_j, u,=0 fort=0,
=0

satisfying the following regularity conditions.

Assumption 1.

(i) The sequence of matrix coefficients {II;};Z, is 1-summable, with II, = I,, the
(2 X 2) identity matrix.

(ii) The sequence of random vectors & = (gy;, &5;)’ is independent and identi-
cally distributed (i.i.d.) with zero mean and covariance matrix ¥ > 0,
E|&|¢ < oo, some { > 4.

(iii) max;sup, E|e;|¢ < oo, ¢ > max{2,2/(2d — 1)}.

(iv) rank(3) = rank(Z72,11;) = 2.

Assumption 1 implies that the u, process is (asymptotically) strictly station-
ary and ergodic with continuous spectral density given by

1 0 [} *
JulV) =~ < > eXp(ij)\)> ( > eXp(ij)\)>
a j=0

Jj=0

and (2 X 2) long-run covariance matrix

Q = 27f,,(0) = (w“ w”>,

Wy Wy

where the asterisk denotes simultaneous transposition and complex conjugation.

3. MOTIVATION OF THE ESTIMATOR

To motivate our estimator of the cointegrating parameter 8 in expression (1),
we use the characterization of cointegration introduced by Aparicio and Escrib-
ano (1997). Let x,,y, be the two I(d) time series of interest, d > 3, and let
Yy (7, 1) = cov(y,, x,—,) represent the cross-covariance function of x,, y,, where
we make explicit the time dependence in vy,,(7, 1) to allow for some degree of
heterogeneity in the series. Aparicio and Escribano (1997) suggest the use of
the ratio

Yy (75 1)

as an alternative characterization of cointegration, where y,.(7,¢) = cov(x,,
X;—,). The next result provides the theoretical justification.
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THEOREM 1. Let x,,y, in DGP (1) and (2) with d > %,7 = o(t). Then,

Yool 1)
T ‘yx(’T, l)

“)

Theorem 1 implies that the rates of convergence of 7y,.(7,¢) and vy, (7, 1)
should be the same as 7 increases without bound. Intuitively, the theorem states
that, under cointegration, the remote past of x, should be as useful as the re-
mote past of y, in long-run linear forecasting. Moreover, Marmol, Escribano,
and Aparicio (1999) prove how result (4) also extends to cointegrated regres-
sions with (stationary and nonstationary) long memory errors.

On the other hand, it is direct to prove in the spurious case where x,, y, are
stochastically independent that

. ‘ny(Ta t)
lim ———— =

=0, 5
T—00 ’}/x(’T, t) )
for all 7, 1, showing that the ratio (3) is consistent against this type of spurious
alternatives.

4. ESTIMATION OF THE COINTEGRATING PARAMETER

Consider now the benchmark DGP given by expressions (1) and (2). In the
previous section we motivated the use of the ratio (3) as an alternative charac-
terization of cointegration. Yet note that for large values of 7 this quotient would
be nothing else but the expression of an IV estimator of the cointegrating pa-
rameter 8, with instrument x,_,. Therefore, Theorem 1 also provides theoreti-
cal justification for using the IV methodology to test for linear cointegration
among fractionally integrated processes. However, before doing that and for
comparative purposes, we include the limiting distribution of the OLS estima-
tor of B, for a sample of size T:

Bovs = . (6)

THEOREM 2. Given the DGP (1) and (2) with d > % and under Assump-
tion 1, asymptotically, as T — oo,

Bors = B, (7)
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fo B,(d,r)dB,(r)

T4 BoLs — B) = —— ,ifd>1, 8)
fB%(d,r)dr
0
1
fBz(”)dB1(”)+A21
T(Bors — B) = - , ifd=1, )
fBzz(r)dr
0
T2 (Bors — B) = Au(d) , ifl<d<l, (10)

i
f B2(d,r)dr
0

with B(r) = (B(r), B»(r)), r € [0,1], being a vector Brownian motion with
long-run covariance matrix Q, B(d, r) = (B,(d, r), B»(d, r))" a vector fractional
Brownian motion given by the functional

1 r
B(d,r) = ﬁfo (r—s)"'dB(s), 11

Ay = 230 E(up gty i), and Ay (d) = 2i2o E(Axgu, ;) and where > and =
denote convergence in probability and weak convergence, respectively.

Then, for all d > %, OLS is a consistent estimator of 8. On the other hand,
the presence of nuisance parameters in the limiting OLS distributions (8)—
(10) prevents us from achieving an asymptotic mixture of normals. In the case
d = 1, these nuisance parameters are given by A,; and w,;, the (2,1)-element
of the long-run covariance matrix ). The expression w,; # 0 implies that B;(r)
and B,(r) are not long-run independent, giving rise to an endogeneity bias.
A,; # 0, in turn, causes the so-called serial correlation or second-order bias.
When d > 1, expression (8) shows that the second-order bias is no longer
present in the limiting OLS distribution. It remains, however, the correspond-
ing endogeneity bias. When 3 < d < 1 the bias present in the limiting OLS
distribution is now of second order.

Although none of these biases affect the consistency properties of [§0LS, they
can be important in finite samples. In effect, these nuisance parameters, A,;
and w,;, produce a finite sample bias in mean and median, respectively. The
limiting distribution is no longer either a mixture of normals or asymptotically
efficient. These nuisance parameters invalidate the use of standard distribu-
tions for testing hypotheses about the cointegrating parameter . This is in con-
trast with the special case where Ay, = A,;(d) = w,; = 0in (1) and (2). In this
case, Dolado and Marmol (2001) show that the OLS limiting distribution of
BOLS becomes
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fo B,(d,r)dB,(r)

T4(BoLs — B) = : (12)

1
f B3(d,r) dr
0

for all d > 3, being now median-unbiased, a mixture of normals, and asymp-
totically efficient, with the limiting distribution depending on nuisance param-
eters in a simple way that permits the construction of test statistics with
asymptotic chi-square distributions under the null hypothesis.

Consider now the asymptotic behavior of the following new estimator of 8
in (1) and (2):

T
E VeXi—r

t=7+1

31)1\/ =7 13)
E xt'xt*T

t=7+1

called the pseudo instrumental variable (PIV) estimator, because x,_, is only
an instrument of x, in the standard sense (i.e., correlated with x, and uncorre-
lated with u,,) for 7 — oo. In finite samples, however, x,_, is not necessarily
independent of the innovation u,,, and consequently x,_,, strictly speaking, is
not an instrument. For fixed 7, PIV could be covered by the IV framework
developed by Phillips and Hansen (1990) with n, = n, = 1 and y;, = x,_, in
their notation.

THEOREM 3. Given the DGP (1) and (2) with d > % and under Assump-
tion 1, asymptotically, as T — o0,7 — o0, and T 't — 0,

Berv 5 B, (14)

1
B,(d,r)dB,(r)

T Bpy — B) = . ifd>1, (15)

J;l B3(d,r)dr
fol B,(r) dB,(r)

1
J B3(r) dr
0

2d—1(Q 4 !
T (Bery —B) — 0, if 2 <d<1. (17)

T(Bery — B) = , ifd=1, (16)
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From this theorem we can make the following comments. First, as expected
from Theorem 1, for all d > 3, PIV is a consistent estimator of 8. Second, when
1<d <1, Brrv is 0, (T 172d) with a degenerate limiting distribution. Third, for
d > 1, Bpry and Boy s have the same limiting distribution, i.e., nonstandard with
endogeneity bias and not asymptotically efficient. Fourth, when d = 1, i.e., in
the unit root case, w,; # 0 but A,; = 0, eliminating one of the sources of the
finite sample bias in the estimation of 8. The estimator, however, is neither a
mixture of normals nor asymptotically efficient, and standard inference remains
invalid.

It is of interest for the Monte Carlo experiments to provide some insights on
the finite sample performance of Bpry relative to Bors and other competing
estimators. Consider the following particular case of DGP (1) and (2):

yt=:8xr+ulz’ u1,=g0ul7,,, +8|z’ |90| < l’ (18)
Ax, = &, (19)

~ NID , . (20)
€y 0 0'22

Under this setup, Gonzalo (1994) proves that
T(Bous — B) = {fo
oy !
X (1- 92)1/2f B,(r)dW,(r)
l—¢ 0

Yy aﬁJIB()dB(H L)
1—o o Jo 2\r)aby\r - 0103 ()

21

1

Bzz(r)dr}_

1

T(BNLS -B)= {fo B%(r)dr}

1
X {(%)“ - 92>‘/2f0 B,(r)dW(r)

1 T, !
+ <1T></3 +6 —)f Bz(r)de(r)}, (22)
¢ %) 0
and
1 —1 1
T(:éMLECM -B)= {fo Bzz(r)d”} {(li—]gL))(] - gz)l/zfo Bz(”)dW1(")},

(23)
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where Wl(r) is a standard Brownian motion independent of B,(r) and where
BNLS and ,BMLECM stand for the nonlinear least squares and the maximum like-
lihood in fully specified error correction model (ECM) estimators of B, respec-
tively. Also, from (16) it is not difficult to show that

1 -1
T(:éPIV -p)= {fo B%(V)d"}

x {(1_ >(1 0 [ aw
1 1
+ <1_ )9—J:) Bz(r)de(r)}. (24)

From expressions (21)—(24), the following comments can be readily de-
duced. First, with respect to the limiting distribution of the OLS estimator, note
that it involves three different parts. The first one is a mixture of normals; the
second one is a unit root term, { [, B3(r)dr} ' [} B,(r)dB,(r), making the dis-
tribution asymmetrical, and the third one represents the serial correlation bias
inducing a mean bias in the distribution. The second and third terms are due to
the presence of w,; and A,,, respectively.

Second, comparing the asymptotic distributions of OLS and NLS, we can
see that A,; is no longer present in the limiting distribution of the latter estima-
tor. However, as argued by Gonzalo (1994), the presence of the unit root term
can make OLS perform better than NLS in finite samples. This is the case if 8
is large and 6 is close to zero.

Third, the presence of the nuisance parameter w,; in the limiting distribution
of PIV gives rise again to the presence of the unit root term and the consequent
median bias. Yet, as expected by looking at expressions (9) and (16), compar-
ing the asymptotic distributions of PIV and OLS, the former clearly appears
preferable for any value of the parameter space. On the other hand, comparing
the asymptotic distributions of PIV and NLS, shows that NLS can be less asym-
metric than PIV if, e.g., B is negative and 6 positive.

Fourth, the limiting distribution of MLECM is a median-unbiased mixture
of normals. In fact, it is asymptotically efficient as proved by Phillips (1991).
Moreover, the remaining nuisance parameters are located in such a way that
hypothesis tests can be conducted using standard asymptotic chi-square tests.
Finally, it is clear that OLS, NLS, and PIV are no longer optimal estimators in
the light of expression (23).

5. SMALL SAMPLE STUDY OF OLS AND PIV ESTIMATORS

To assess the relative finite sample performance of the OLS and PIV estima-
tors, in this section we shall conduct a small Monte Carlo experiment. For this,
the proposed DGP is an extension to the fractional case of the DGP used by
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Banerjee, Dolado, Hendry, and Smith (1986), Engle and Granger (1987), Gonzalo
(1994), and Arranz and Escribano (2000), among others.

The DGP is a bivariate cointegrating system of nonstationary fractionally in-
tegrated series of order d and has two equivalent representations. The first one
is based on the cointegrating regression,

Vi :th+ult (25)
uy, = (a—B)A%, + (1 +b)uy — + 1, (26)
Ay, = &, (27)

where the errors 7, and &,, are independent NID (0,0, ) and NID(0,075) vari-
ables, respectively.

The second representation is based on the following ECM for fractionally
integrated series:

Ayt :BAxt_’_(a_B)Adxt—*—b(thl _ﬁxz71)+771n (28)
Alx, = &,,. (29)

Notice that the ECM will only have the usual form, with variables only in
first differences and levels, when the common factor restriction, a = 3, is sat-
isfied or in the unit root (d = 1) case. In effect, in this last case the ECM model
becomes

Ay, = aAx, + b(y,_, — Bx,—y) + 1y,

In general, as we will see in the Monte Carlo experiment, the values of the
parameters a and b are important in terms of the small sample biases of the
cointegrating vector. The reason is that the parameter a is related to the covari-
ance of (&,,, &,,)', where &, = (a — B)A? + mn,,. Thus, e.g., it is clear from
equations (18)—(20) that # = (a — B)0» /o and b = ¢ — 1, so that the closer b
is to 0, the higher the degree of autocorrelation is in the equilibrium errors u ;.
Therefore, the limiting distribution of the estimators of the long-run parameter
B derived in equations (21)—(24) is affected by the parameter values assigned
to (a — B) and b in the experiment.

In the Monte Carlo simulations we consider the following parameter values:
B=1,(a—B)=—-2,—1,—-0.5, and 0 (common factor restriction), b = —0.2
and —0.5, o7 =1, and o7 = 1. The sample sizes are T = 300 and 500 obser-
vations, the long memory parameters of the variables are d = 0.7, 1, and 1.3,
and the number of replications of each experiment is 20,000.

In Tables 1-5 the small sample bias of the OLS and PIV estimators is ana-
lyzed for different values of the lag 7 of the IV x,_, and using five different
statistics: mean bias, median bias, mean squared error (MSE), interquartile range
(IQR), and the concentration probabilities Pr(|8 — 8| = 0.05). Tables 1-3 re-
port the simulation results obtained for (1) variables, whereas Tables 4 and 5
do so for fractionally integrated processes with d = 0.7 and 1.3, respectively.
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TaBLE 1. OLS and PIV estimators of § in equation y, = Bx, + u;,

Mean Median
a—pB bias bias MSE IQR Pr(|B — B] = 0.05)
7 =0 (OLS)
-2.0 —.917E—-01 —.673E—01 154E-01 .831E—01 367
-1.0 —460E—01 —.337E—-01 A71E—02 507E—01 .652
-0.5 —.231E-01 —.168E—01 L202E—02 381E—01 811
0.0 —.302E—03 —.326E—03 A112E—02 333E-01 .884
T=1
-2.0 —.639E-01 —.497E-01 J783E—02 .620E—01 498
-1.0 —.321E—-01 —.248E—01 283E—02 424E—-01 744
-0.5 —.162E-01 —.126E—01 158E—02 358E—01 .843
0.0 —.305E—03 —.271E—03 A115E—02 335E-01 .881
T=2
-2.0 —412E-01 —.349E-01 A410E—02 S10E-01 .632
-1.0 —.208E—-01 —.177E-01 193E—-02 .387E—01 .803
—-0.5 —.105E—-01 —.914E—02 138E—02 350E—01 .858
0.0 —.317E-03 —.296E—03 .120E—02 .337E—-01 877
T=3
-2.0 —.227E-01 —.228E—01 278E—02 496E—01 714
—-1.0 —.115E-01 —.121E-01 .163E—02 388E—01 .830
-0.5 —.591E—02 —.634E—02 134E-02 351E-01 .864
0.0 —.326E—03 —.305E—-03 124E-02 339E-01 874
T=4
—2.0 —.743E—02 —.131E-01 294E—-02 .537E—-01 730
—1.0 —.388E—02 —.756E—02 A71E—02 A401E—-01 834
-0.5 —.210E—02 —.407E—02 .140E—02 356E—01 .863
0.0 —.321E—03 —.336E—03 130E—02 .340E—-01 872
T=5
—2.0 S10E—02 —.588E—02 .398E—02 .602E—01 715
—1.0 .240E—02 —.383E-02 L201E—02 426E—01 .827
—-0.5 .105E—02 —.227E—02 A52E—02 362E—01 857
0.0 —.306E—03 —.339E—-03 136E—02 341E—-01 .867
Note: DGP is Ay, = aAx, — 0.2(y,—; — Bx,—1) + my, with B = 1, Ax, = €, 1, ~ N(0,1), €5, ~ N(0,1),

cov(my,,,€,,) = 0, sample size 300, 20,000 replications.

Consider first the unit root case. Tables 1-3 report the finite sample behav-
ior of the PIV estimator when 7 = 0 (OLS),1,...,5. On the one hand, when
(a — B) = 0, i.e., when the regressor x, is strongly exogenous with respect to
B, OLS and PIV perform (as expected) equally well, with small mean and me-
dian biases, similar IQR, and high concentration probability in moderate sam-
ple sizes. On the other hand, OLS estimation biases increase with the absolute
value of (a — B). In particular, when (¢ — 1) = 2 and b = —0.2, the concen-
tration probability of the OLS estimator is only about 36% when 7 = 300 and
about 55% when T = 500.
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TABLE 2. OLS and PIV estimators of §8 in equation y, = Bx, + u;,

Mean Median
a—pB bias bias MSE IQR Pr(|B — B] = 0.05)
7 =0 (OLS)
—=2.0 —.610E—01 —.449E—-01 .669E—02 S41E—01 551
-1.0 —.306E—01 —.223E—-01 .202E—02 .326E—-01 .803
—0.5 —.154E—-01 —.112E—01 .849E—-03 .246E—01 915
0.0 —.204E—03 —201E—03  452E-03  .210E—01 966
T=1
-2.0 —.427E-01 —.331E—01 .336E—02 402E-01 .688
—1.0 —.215E-01 —.166E—01 119E—02 .273E—01 .878
-0.5 —.109E—01 —.837E—-02 .648E—03 228E—01 .940
0.0 —.221E-03 —.215E-03 463E—03 .210E—01 964
T=2
—=2.0 —.279E—-01 —.234E-01 A71E—-02 .326E—-01 815
—-1.0 —.141E—-01 —.120E—01 784E—03 247E-01 926
—-0.5 —.716E—02 —.613E—02 S552E—03 221E—01 952
0.0 —.241E—-03 —.212E—-03 A473E—03 211E-01 .962
T=3
—=2.0 —.159E—-01 —.155E-01 .107E—02 .305E—01 .888
—-1.0 —.809E—02 —.821E—-02 .629E—03 .240E—-01 945
—0.5 —.417E—-02 —.426E—02 S19E—-03 .220E—01 957
0.0 —.257E-03 —.181E—-03 484E—03 212E—-01 961
T=4
—=2.0 —.619E—02 —.906E—02 .104E—02 .326E—01 .898
—1.0 —.323E-02 —.521E—-02 .626E—03 .247E—01 948
—=0.5 —.175E-02 —.280E—02 S525E-03 222E—-01 958
0.0 —.266E—03 —.230E—-03 495E—03 213E—01 .960
T=5
-2.0 A73E—02  —.425E—02  .135B-02  .364E—01 877
-1.0 J34E—03  —.276E—02  .7I0E—03  .261E—01 939
—-0.5 .233E—03 —.160E—02 554E—-03 227E—01 954
0.0 —.267E—03 —.252E-03 S07E—03 215E-01 958

Note: DGP is Ay, = aAx, — 0.2(y,_, — Bx,_,) + 1y, with B =1, Ax, = €,,, 11, ~ N(0,1), s, ~ N(0,52), s =1,
cov(my,,,€,,) = 0, sample size 500, 20,000 replications.

By contrast, the improvements obtained with the PIV estimator for the best
value of 7 in each case are quite impressive. All and all, PIV outperforms OLS
in terms of biases, IQR, and concentration probabilities, and, what is more im-
portant, uniformly in 7, which means that the improvement obtained with the
new IV estimator over OLS does not heavily rely on the particular value se-
lected of 7. As we established in Theorem 3, the lag 7 can increase with the
sample size, and in Table 2 we observe that increasing the sample size from
300 to 500 makes the best 7 increase from 7 = 3 to 7 = 4. Notice also that,
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TABLE 3. OLS and PIV estimators of 8 in equation y, = Bx, + u;,

Mean Median
a—pB bias bias MSE IQR Pr(|B — B] = 0.05)
7 =0 (OLS)
—=2.0 —.249E-01 —.180E—01 115E—02 221E—01 .884
-1.0 —.125E-01 —.898E—-02 .346E—03 132E-01 976
—0.5 —.629E—02 —.451E—-02 .144E—-03 992E—02 .996
0.0 —968E—04  —.840E—04  .752E—04  .850E—02 999
T=1
-2.0 —.604E—02 —.590E—02 .170E—03 123E-01 997
—1.0 —.307E—02 —.315E-02 .100E—03 960E—02 999
-0.5 —.159E-02 —.165E—02 .827E—04 .878E—02 .999
0.0 —.104E-03 —.904E—-04 JT1E—04 .852E—02 .999
T=2
—=2.0 351E—02 164E—03 .283E—03 165E—01 981
—-1.0 .170E—02 —.144E-03 128E—03 A11E-01 995
—-0.5 792E—03 —.173E—-03 901E—04 919E—02 998
0.0 —.113E-03 —.859E—-04 789E—04 .858E—02 .999
T=3
-2.0 835E—02 303E—-02  .506E—03  .202E—01 955
—-1.0 412E—-02 126E—02 184E—03 125E-01 988
—0.5 .200E—02 S62E—03 .105E—03 963E—02 997
0.0 —.119E-03 —.871E—04 .805E—04 .864E—02 .999
T=4
—=2.0 .108E—01 438E—02 .669E—03 223E-01 938
—1.0 S536E—02 193E—02 .226E—03 .134E—01 984
—=0.5 262E—02 936E—03 117E-03 997E—-02 .996
0.0 —.116E—03 —.898E—04 .823E—04 .865E—02 .999
T=5
-2.0 121E—01 S04E—02  .776E—03  .235E—01 927
-1.0 601E—02 228E—02  254E-03  .139E—01 981
—-0.5 295E—02 .108E—02 .126E—03 .101E—01 995
0.0 —.109E—03 —.716E—04 .848E—04 .867E—02 999

Note: DGP is Ay, = aAx, — 0.5(y,_, — Bx,_,) + ny,, with B =1, Ax, = €,,, 11, ~ N(0,1), &s, ~ N(0,52), s = 1,
cov(my,,,€,,) = 0, sample size 500, 20,000 replications.

ceteris paribus, the IQR decreases with the sample size and that it does not
heavily depend on 7 for fixed T and (a — B).

When b = —0.5 the AR(1) coefficient of the equilibrium errors (u,,) of equa-
tion (26) is 0.5. Therefore, the memory or temporal dependence is reduced,
giving rise to lower estimation biases and lower required values of 7; see Table 3.
Now the best results for a sample size of 500 observations are given by the
PIV estimator with 7 = 1. OLS performs worse than PIV but better than the
previous OLS when the adjustment coefficient was b = —0.2.
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TABLE 4. OLS and PIV estimators of 8 in equation y, = Bx, + u;,

Mean Median
a—pB bias bias MSE IQR Pr(|B — B] = 0.05)
7 =0 (OLS)
—=2.0 —.354 —.312 170 298 .005
-1.0 —.177 —.155 A435E—-01 153 .081
-0.5 —.885E—01  —.760E—01  .119E—01  .847E—0l 326
0.0 J74E—04 A401E-04  .146E—02  .449E—01 827
T=1
—=2.0 —.171 —.152 398E—01 .139 .078
—1.0 —.854E—01 —.738E—01 .113E—01 .817E—01 .326
-0.5 —.427E-01 —.356E—01 419E—-02 S84E—-01 .609
0.0 117E—03 .627E—04 182E—02 483E—01 797
T=2
—=2.0 —.632E—01 —.619E—01 .848E—02 779E—-01 374
—-1.0 —.316E—01 —.307E—01 368E—02 S88E—01 .619
—-0.5 —.158E—01 —.150E—01 248E—02 524E—01 731
0.0 S55E—04 .290E—03 .208E—02 S04E—-01 776
T=3
—2.0 —.328E—02 —.191E—-01 817E—02 .896E—01 .508
—-1.0 —.161E—-02 —.932E-02 .380E—02 .636E—01 .670
—0.5 —.777E—03 —.464E—02 271E—02 S48E—01 733
0.0 S84E—04 352E—-03 235E—-02 S15E-01 763
T=4
—=2.0 302E-01 257TE—02 .149E—-01 .109 499
—1.0 152E—01 .105E—02 ST3E—02 717E—01 .655
—=0.5 766E—02 .S530E—-03 343E—-02 S86E—01 720
0.0 A51E—03 .335E—-03 267E—02 S531E—01 748
T=5
-2.0 A489E—01 JQ40E—01  219E—01  .122 480
-1.0 245E-01 669E—02  766E—02  .773E—01 637
—-0.5 .123E—01 312E—02 412E—02 .606E—01 705
0.0 122E—-03 353E—-03 298E—02 S43E-01 737

Note: DGP is Ay, = Ax, + (a — B)Axtd —0.5(y—1 = Bx,—1) + My, With B =1, Adxt = €, M, ~ N(O,1), &, ~
N(0,s%), s =1, cov(m, ,,€,,) = 0, d = 0.7, sample size 300, 20,000 replications.

As expected with weakly exogenous variables for the cointegrating param-
eter, the improvement of PIV over OLS is marginal when the equilibrium er-
rors are white noise, i.e., b = —1. In this case the best PIV estimator, again in
terms of having the smallest biases and IQR, is obtained when 7 = 1 (results
not reported but available from the authors upon request).

Table 4 shows the relative performance of PIV and OLS when the variables
are fractionally integrated with d = 0.7. As suggested by equation (12), OLS
and PIV have a nontrivial mean and median-unbiased limiting distribution un-
der the common factor restriction (¢ — 1) = 0. In this particular case, OLS
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TABLE 5. OLS and PIV estimators of § in equation y, = Bx, + u;,

Mean Median
a—pB bias bias MSE IQR Pr(|B — B] = 0.05)
7 =0 (OLS)
—=2.0 S545E—-03 —.204E-03 377E—04 S54E—-02 1.000
-1.0 .289E—03 —.136E—03 .190E—04 362E—02 1.000
—0.5 .161E—03 —.697E—04 143E—04 297E—-02 1.000
0.0 332E-04 275E-04 .128E—04 272E-02 1.000
T=1
—=2.0 292E—-02 .815E—03 781E—04 .678E—02 997
—1.0 .148E—02 .357E—03 293E—04 411E—02 1.000
-0.5 155E—03 .167E—03 .170E—04 313E—-02 1.000
0.0 .330E—-04 281E—04 128E—04 273E—-02 1.000
T=2
—=2.0 A409E—02 126E—02 117E—-03 7156E—02 .993
—-1.0 .206E—02 S82E—03 391E—04 443E—-02 .999
—-0.5 .105E—02 275E—03 .196E—04 323E-02 1.000
0.0 342E—-04 .276E—04 .130E—04 272E—02 1.000
T=3
-2.0 A66E—02 J146E—02  .140E—03  .797E—02 991
—-1.0 235E—02 .690E—03 A51E—04 463E—02 .999
—0.5 119E—-02 333E—03 212E—04 331E—-02 1.000
0.0 354E—04 258E—04 132E—04 274E—-02 1.000
T=4
—=2.0 493E—02 156E—02 A53E-03 BI18E—02 .989
—1.0 .248E—02 743E—03 484E—04 473E—-02 999
—=0.5 126E—02 357E-03 222E—04 .335E—02 1.000
0.0 387E—04 283E—04 133E—-04 275E—-02 1.000
T=5
-2.0 S05E—02 A61E—02  .IS9E—03  .824E—02 988
—-1.0 254E—02 I5TE—03 S02E—04 476E—02 998
—-0.5 129E—-02 .368E—03 229E—04 337E—02 1.000
0.0 406E—04 231E—04 135E—04 274E—02 1.000

Note: DGP is Ay, = Ax, + (a — B)Axtd = 0.2(y—1 = Bx;—1) + My With B =1, Adxt = €, M, ~ N(O,1), &, ~
N(0,s%), s =1, cov(m, ,,€,,) = 0, d = 1.3, sample size 300, 20,000 replications.

occasionally performs better than PIV as a result of a greater number of de-
grees of freedom. For (¢ — 1) # 0 the concentration probabilities of OLS never
go over 32% and in most cases are below 1%, and the biases are in general
very large, reaching a mean bias of 35% for (¢ — 1) = —2. However, when
considering the PIV estimator, results change dramatically, with concentration
probabilities about 75% and smaller IQR. Of course, this is what we expected
in view of expression (17).

Finally, when d is larger than one, from expressions (8) and (15) we know
that OLS and PIV have the same limiting distribution. Therefore in this case
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both OLS and PIV estimators should perform equally well in moderate to large
samples. Our Monte Carlo experiment strongly supports this claim (see Table 5).

6. ASYMPTOTIC EFFICIENCY OF PIV IN THE UNIT ROOT CASE

From the previous section we obtained a lack of optimality of PIV for all
d > 3. Moreover, with respect to OLS we found advantages in using PIV only
in the unit root case. Thus, in the rest of the paper we will focus our attention
on the DGP (1) and (2) in the particular case of d = 1.

To overcome the optimality problems of PIV in the unit root case, we sug-
gest a semiparametric correction of this estimator such as the one originally
proposed by Phillips and Hansen (1990). This procedure, known as fully mod-
ified, proceeds as follows. As a first step, define the following kernel estimators:

k .
Dy = X f(i)T‘ DV (Ax,_jiiy,), (30)

==k

k .
= X €<i)T1 > (Ax,;Ax,), 31)

=k

where X' indicates summation over 1 <, — j = T and i, denotes the PIV
residuals from equation (1), i.e., &i;, = y, — BpX,.

The kernel function €(-) : W — [—1,1] is assumed to be a twice continuously
differentiable even function with €(0) =1, €'(0) = 0,€”(0) # 0, and €(x) = 0
for | x| = 1. Further, we also assume that any of the Parzen, quadratic spectral,
or Tukey—Hanning kernels are used in the estimation of the elements of ().

With respect to the truncation or bandwidth parameter k, to conveniently char-
acterize the rates of expansion of k = k(T') as T — oo, we will use the expan-
sion rate order symbol O, defined in Phillips (1995). We said that k = O,(T¢)
if k ~s;T* as T — oo, where sy is slowly varying at infinity.

Following the same arguments as in Phillips (1995) for the OLS case, it can
be shown that if k, T — oo but kT2 — 0, then @; = w,,, i = 1,2. Hence, in
terms of O,, this implies that k = 0,(T¢) for some ¢ € (0,3). This will be our
assumption about the bandwidth expansion rate of k as T — oo. It is worth
mentioning that this expansion rate includes the optimal growth rate k ~ ¢T '/°
(cf. Andrews, 1991), with ¢ a constant, that applies when minimizing the as-
ymptotic mean squared error of kernel estimates such as (30) and (31).

Now define the endogeneity bias-corrected disturbance

Uy = Uy, — 00 Uy, (32)
which has zero coherence at the origin with u,,, and its feasible counterpart

At A A~ A—1
Uy, = Uy, — @1, 05 Ax,. (33)



662 FRANCESC MARMOL ET AL.

Subtracting @,, @5, Ax, from both sides of (1) yields
3= Bx, + g, 1

where $;" =y, — @, @' Ax,. Therefore, our proposed estimator, called fully
modified pseudo instrumental variable (FM-PIV), has the expression

T
o+
E Ve Xi—7
t=7+1

By = ——, (34)

which contrasts with the formulation of the FM-OLS estimator by Phillips and
Hansen (1990), Bd.s, say, given by

A I3
Bors = : (34")

/\+ — A A—l A+ _ N A A—l N N A . .
where J;” =y, — @, 0 Ax,, A = Ay — @,05 Ay, and Ay, @5, 0,7 = 1,2,

are constructed from equations (30) and (31) using the OLS residuals i, =
Y — BoLsX;-

THEOREM 4. Given the DGP (1) and (2) with d = 1, then, under Assump-
tion 1 with k = 0,(T¢) for some ¢ € (0,%) and T = o(T*), asymptotically, as
T — oo and 7 — oo,

Biw 5 B, (35)

and

fo Bz(”) dBLz(”)

fol B3 (r)dr

where B, ,(r) denotes a Brownian motion with long-run covariance w,, = w;, —
w, w5, and independent of B,(r).

T(Biv — B) = : (36)

From equation (35) it follows that FM-PIV is a consistent estimator of S.
Moreover, from equation (36) it is also median-unbiased, a mixture of normals,
and asymptotically efficient (Phillips, 1991). In particular, and returning to the
DGP (18)—(20), Gonzalo (1994) proves that in this case o} = o,(1 — 6)"/%/

(1 — ¢), and because B;,(r) = %} W,(r), it follows from equations (23) and
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(24) that FM-PIV is asymptotically equivalent to MLECM and, thus, asymptot-
ically efficient.
As a consequence, standard inference remains valid. In particular, consider
the customary t-ratio of 3,
A
_ Beiv — B 37)

1 .
B T “12
(5)1.2)1/2<2 xt2>

t=1

Under the null hypothesis Hy: 8 = By, it is straightforward to prove that,
asymptotically, t5, = N(0,1). More general, the resulting test statistics from
our FM-PIV estimator will have limiting chi-square distributions, thereby re-
moving the obstacles to inference in cointegrated systems that were presented
by the nuisance parameter dependencies in the PIV limiting distribution.

Finally, it is well known that, under Assumption 1,

fo Bz(”) dB1.2(”)

JOI B3(r)dr

as proved by Phillips and Hansen (1990), so that By and B, are asymptot-
ically equivalents. This fact, however, only holds for values of T arbitrarily
large and, of course, does not exclude different behavior in small to medium
samples. The performance in finite samples of both estimators is the topic of
the next section.

T(Bos — B) = (38)

7. FM-PIV AND FM-OLS ESTIMATORS: MONTE CARLO EVIDENCE

The Monte Carlo experiment was described in Section 5. Here we use the same
DGP to study the small sample behavior of FM-PIV relative to FM-OLS. These
estimators have been constructed as follows.

Step 1. Obtain the PIV estimator (equation (13)) for 7 = 0 (OLS), 1,...,8.

Step 2. Compute the residuals i, = y, — Eplvx,.

Step 3. Obtain @, i,j = 1,2, as in expressions (30) and (31). In our experiments, we
used the quadratic spectral kernel and selected the bandwidth using the automatic
procedure of Andrews (1991), after prewhitening with a first-order vector auto-
regression prior to kernel estimation, as suggested by Andrews and Monahan (1992).

Step 4. Obtain ;" =y, — @, @' Ax,.

Step 5. Compute ,BA;IV using expression (34).

Table 6 reports the results of the DGP given in equations (28) and (29) with
parameter values b = —0.2 and a sample size of 300. FM-OLS performs better



664 FRANCESC MARMOL ET AL.

TABLE 6. FM-OLS and FM-PIV estimators of 8 in equation y, = Bx, + u; ,

Mean Median
a—pB bias bias MSE IQR Pr(|B — B] = 0.05)
7 =0 (FM-OLS)
-2.0 —.761E—01 —.551E—-01 A11E-01 718E—01 458
—1.0 —.382E—01 —.275E—01 364E—02 461E—01 710
-0.5 —.192E-01 —.138E—01 .176E—02 367E—-01 831
0.0 —.288E—03 —.247E-03 .110E—02 335E-01 .886
T=1
-2.0 —.760E—01 —.550E—01 A11E-01 716E—01 459
-1.0 —.382E—-01 —.274E—-01 365E—02 461E—01 710
-0.5 —.192E—-01 —.138E—01 177E-02 367E-01 .830
0.0 —.298E—03 —.176E—03 .110E—02 335E-01 .886
T=2
-2.0 —.535E—01 —410E—01 589E—02 S547E-01 582
-1.0 —.269E—01 —.204E-01 236E—02 .398E—-01 781
-0.5 —.136E—01 —.104E—-01 147E—-02 351E-01 854
0.0 —.311E-03 —.233E-03 A112E—02 337E-01 .885
T=3
-2.0 —.351E-01 —.291E-01 325E—02 A458E—-01 .697
-1.0 —.177E-01 —.149E-01 .173E—02 .370E—-01 .825
—-0.5 —.901E—02 —.769E—02 134E-02 346E—01 .863
0.0 —.313E-03 —.273E-03 114E-02 .338E—-01 .882
T=4
-2.0 —.200E—01 —.197E—-01 227E—-02 A439E—-01 763
-1.0 —.102E—-01 —.103E—-01 152E—02 367E—01 .846
-0.5 —.524E—-02 —.542E—02 133E-02 346E—01 .866
0.0 —.317E-03 —.240E-03 A117E-02 337E-01 879
T=35
-2.0 —.764E—02 —.122E—-01 231E—02 A467E—-01 781
—-1.0 —.397E—02 —.672E—02 ASTE—02 377E-01 .849
-0.5 —.214E-02 —.351E-02 138E—02 350E—-01 .866
0.0 —.301E—03 —.217E-03 .120E—02 339E-01 876
T=6
-2.0 253E—02 —.612E—02 .295E—02 503E-01 172
-1.0 112E-02 —.374E—02 177E-02 391E—-01 .842
-0.5 A409E—-03 —.210E—-02 .148E—02 354E-01 .862
0.0 —.300E—-03 —.280E—03 124E-02 339E—-01 873
T=1
-2.0 —.934E-02 —.107E—01 178E—02 381E—01 .829
-1.0 —.482E—02 —.559E—-02 .146E—02 352E-01 .859
-0.5 —.256E—02 —.296E—02 138E—02 344E-01 .867
0.0 —.313E-03 —.267E—03 128E—02 341E-01 .872
T=38
-2.0 —.102E-01 —.101E-01 .180E—02 372E-01 .833
-1.0 —.524E—-02 —.519E-02 149E—-02 .350E—-01 .858
-0.5 —.277E—02 —.278E—02 141E-02 346E—01 .865
0.0 —.302E-03 —.269E—03 134E-02 343E-01 .868

Note: DGP is Ay, = aAx, — 0.2(y,_, — Bx,_,) + 11, with B8 =1, Ax, = €,,, 11, ~ N(0,1), &>, ~ N(0,52), s = 1,
cov(my,,,€,,) = 0, sample size 300, 20,000 replications.
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than crude OLS for all the parameter values of (¢ — ) except in the common
factor case, where both perform equally well.

As for the FM-PIV estimator defined in equation (34), the best results for
b = —0.2 are for 7 = 5 or 6. For example the maximum mean bias with FM-
PIV for 7 = 5 is 0.76% (with FM-OLS it is 7.6%) with corresponding concen-
tration probability about 80% (about 46% in the FM-OLS case) and smaller
IQR. Increasing the sample size to 500 observations only helps to confirm the
uniform superiority of FM-PIV over FM-OLS (see Table 7). Taking b = —0.5,
and therefore reducing the autocorrelation of the equilibrium errors, improves
both FM-OLS and FM-PIV estimators (see Table 8). Nonetheless, even in this
case the performance of the FM-PIV estimator dominates over FM-OLS, and
the best lag of the instrumental variable x,_, is now reduced to 7 = 2.

8. CONCLUDING REMARKS

In this paper we have studied the estimation and inference properties of a re-
cent characterization of the concept of cointegration proposed by Aparicio and
Escribano (1997). Such a characterization exploited the relationship between
the autocovariance and the cross-covariance functions of the series. This, in
turn, led us to propose an estimator of the cointegrating parameter based on the
IV methodology, where the instrument is the lagged regressor from the cointe-
grating equation.

We have shown here that the new PIV estimator is consistent for the cointe-
grating parameter 8. Moreover, in the unit root (d = 1) case, we showed that
PIV is preferable to OLS, because the limiting distribution of the PIV estimator
is free of the serial correlation bias that characterizes the OLS limiting distri-
bution. The small sample results obtained by Monte Carlo simulations confirm
the remarkable improvements of PIV over OLS. Nonetheless, even in this case,
the PIV estimator does have an endogeneity bias in its limiting distribution that
prevents this estimator from having a nuisance-parameter-free mixed normal
limiting distribution.

We propose to eliminate this endogeneity bias by means of the fully modi-
fied methodology originally developed by Phillips and Hansen (1990). We have
chosen this methodology because of its semiparametric nature and because of
its good sampling behavior, as reported by Hansen and Phillips (1990), Phillips
and Hansen (1990), and Kitamura and Phillips (1995), among others. After ap-
plying the new fully modified correction, the estimator obtained, called fully
modified pseudo instrumental variables (FM-PIV), is asymptotically efficient,
median unbiased, and follows a mixture of normals so that standard inference
can be conducted. By Monte Carlo simulations we showed that, relative to the
FM-OLS, our new FM-PIV obtains important improvements in terms of bias
reductions.

Furthermore, from Kitamura and Phillips (1997) we know that efficient IV
methods such as the generalize instrumental variable estimation (GIVE) meth-
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TABLE 7. FM-OLS and FM-PIV estimators of 8 in equation y, = Bx, + u; ,

Mean Median
a—pB bias bias MSE IQR Pr(|B — B] = 0.05)
7 =0 (FM-OLS)
-2.0 —.505E—-01 —.365E—01 A479E—02 A465E—-01 .638
—1.0 —.253E—01 —.182E—01 IS55E—02 .297E-01 .846
-0.5 —.128E—01 —.913E-02 J734E—-03 237E-01 929
0.0 —.183E—03 —.150E—03 A448E—03 .210E—-01 965
T=1
-2.0 —.504E—-01 —.365E—01 A479E—02 464E—01 .639
-1.0 —.253E—-01 —.182E—-01 155E—02 .297E—-01 .846
-0.5 —.128E—01 —.913E-02 J734E—-03 237E-01 929
0.0 —.182E—03 —.162E—03 448E—03 .210E—01 965
T=2
-2.0 —.357E-01 —.272E—01 251E—02 355E-01 759
-1.0 —.180E—01 —.137E-01 \983E—-03 258E—-01 901
-0.5 —.909E—-02 —.692E—02 .598E—03 223E-01 946
0.0 —.199E—03 —.164E—03 454E—03 210E—-01 965
T=3
-2.0 —.237E-01 —.196E—01 135E—-02 294E-01 857
-1.0 —.120E—-01 —.100E—01 .697E—03 236E—01 936
—-0.5 —.612E—02 —.510E—02 532E—03 219E—01 955
0.0 —.220E-03 —.179E-03 A459E—-03 210E—-01 964
T=4
-2.0 —.140E-01 —.134E-01 .877E—03 271E-01 913
-1.0 —.715E—02 —.693E—02 582E—03 .230E—01 950
-0.5 —.370E—02 —.363E—02 .509E—03 L217E-01 958
0.0 —.231E-03 —.198E—03 465E—03 211E-01 964
T=35
-2.0 —.617E—-02 —.836E—02 812E—03 282E—-01 925
—-1.0 —.322E—02 —.450E—02 S572E—03 233E-01 952
-0.5 —.174E-02 —.244E—-02 S514E-03 219E—-01 958
0.0 —.234E-03 —.202E—03 A472E—03 212E-01 963
T=6
-2.0 —.659E—02 —.781E—02 .681E—03 .250E—01 940
-1.0 —.342E—-02 —.406E—02 543E—03 224E—-01 955
-0.5 —.183E—-02 —.219E-02 510E—03 216E—01 958
0.0 —.233E-03 —.196E—03 A481E—03 213E-01 961
T=1
-2.0 —.704E—02 —.719E—02 .631E—03 235E-01 944
-1.0 —.364E—02 —.373E—-02 .535E—-03 .220E—-01 956
-0.5 —.194E—-02 —.204E—02 S12E—03 215E-01 957
0.0 —.233E-03 —.170E—03 491E—03 214E-01 959
T=38
-2.0 —.286E—02 —.468E—02 .647E—03 238E—01 946
-1.0 —.391E—-02 —.343E-02 541E—03 .220E-01 955
-0.5 —.207E—02 —.183E—02 S18E—03 217E-01 957
0.0 —.230E—-03 —.140E—-03 .503E—03 L215E-01 959

Note: DGP is Ay, = aAx, — 0.2(y,_, — Bx,_,) + 11, with B8 =1, Ax, = €,,, 11, ~ N(0,1), &>, ~ N(0,52), s = 1,
cov(my,,,€,,) = 0, sample size 500, 20,000 replications.
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TABLE 8. FM-OLS and FM-PIV estimators of 8 in equation y, = Bx, + u; ,

Mean Median
a—pB bias bias MSE IQR Pr(|B — B] = 0.05)
7 =0 (FM-OLS)
-2.0 —.206E—01 —.142E-01 978E—03 .220E—-01 904
—1.0 —.103E—01 —.715E—02 .390E—03 .160E—01 968
-0.5 —.522E-02 —.363E—02 242E—-03 .142E-01 987
0.0 —.113E-03 —.554E—-04 .192E—03 136E—01 .993
T=1
-2.0 —.206E—01 —.141E—-01 985E—03 .220E—01 904
-1.0 —.103E-01 —.715E—02 .392E—-03 161E—01 968
-0.5 —.523E-02 —.364E—02 243E—03 .142E—-01 987
0.0 —.128E—03 —.387E—04 .197E—03 136E—01 992
T=2
-2.0 —.583E—02 —.529E—02 .268E—03 AS1E-01 986
—1.0 —.298E—02 —.274E—-02 .216E—03 .140E—01 991
-0.5 —.155E—02 —.146E—02 .204E—03 .138E—-01 992
0.0 —.138E—03 —.557TE—04 .197E—03 137E-01 993
T=3
—2.0 .170E—02 —.783E—03 .305E—03 .166E—01 981
—1.0 J783E—03 —.538E—03 231E—03 144E—-01 988
—-0.5 .326E—03 —.361E—03 213E—03 139E-01 .990
0.0 —.137E-03 —.788E—04 .196E—03 .137E-01 993
T=4
—2.0 —.107E—02 —.138E—02 .225E—-03 .140E—01 989
—1.0 —.597E—03 —.776E—03 214E-03 138E—-01 .990
-0.5 —.360E—03 —471E-03 211E—-03 .137E-01 .990
0.0 —.131E-03 —.100E—03 .199E—03 .137E-01 993
T=35
-2.0 .898E—03 —.229E—-03 .249E—03 .143E-01 986
—-1.0 .396E—03 —.215E-03 228E—03 139E-01 987
-0.5 .145E—03 —.200E—03 223E-03 .138E—-01 988
0.0 —.113E-03 —.147E-03 .205E—03 137E-01 991
T=6
-2.0 191E—02 .320E—03 272E—03 .146E—01 983
-1.0 902E—-03 241E—04 241E—-03 .140E—01 986
-0.5 397E—-03 —.677E—04 233E-03 .139E-01 987
0.0 —.119E—-03 —.128E—03 211E—03 .138E—-01 .990
T=1
-2.0 —.182E—02 —.106E—02 262E—03 .145E—-01 983
-1.0 —.973E-03 —.600E—03 .240E—03 141E—-01 986
-0.5 —.547E—-03 —.410E—-03 234E-03 .140E—-01 986
0.0 —.131E-03 —.139E-03 220E—03 139E-01 989
T=38
-2.0 —.151E-02 —.862E—03 274E—03 .145E—-01 982
—1.0 —.814E—03 —.509E—03 253E—03 .142E—-01 984
-0.5 —.464E—03 —.327E-03 .248E—03 141E-01 985
0.0 —.126E—03 —.150E—03 232E—-03 .140E—-01 987

Note: DGP is Ay, = aAx, — 0.5(y,_, — Bx,_,) + 1y, with B8 =1, Ax, = €,,, 11, ~ N(0,1), s, ~ N(0,52), s = 1,
cov(my,,,€,,) = 0, sample size 300, 20,000 replications.
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ods (Sargan, 1988) and the generalized method of moments (GMM) (Hansen,
1982), after applying the corresponding fully modified transformation, are as-
ymptotically more efficient than the FM-IV procedure with respect to the sta-
tionary components but asymptotically equivalent to FM-IV estimation with
respect to the nonstationary components and, consequently, to our FM-PIV es-
timator. Therefore, it appears that no further modifications in the GIVE or GMM
directions seem necessary in our setup.

For practical purposes, FM-PIV estimators require the specification of the
kernel function, €(-), the bandwidth parameter, k, and the truncation lag, 7. Al-
though issues of optimal choice of these parameters are beyond the scope of
this paper, the following comments can provide some insights for the practical
implementation of our estimator. First, from the relevant literature it seems that
the choice of the kernel function is not so important as the choice of the band-
width parameter. No essential differences have been found in the general qual-
itative features from using different kernels (see, e.g., Kitamura and Phillips,
1995).

Second, with respect to the choice of the bandwidth parameter, given that
the expansion rate of the bandwidth parameter k includes the optimal growth
rate k ~ ¢T '/, the method proposed by Andrews (1991), possibly after prewhit-
ening with a first-order vector autoregressive filter prior to kernel estimation,
as suggested by Andrews and Monahan (1992), seems to be a good choice.

Third, regarding the choice of 7, the hint from Theorem 4 is that the trunca-
tion lag 7 of the instrumental variable should increase with the sample size T
but as o(T'/*). If the truncation lag is chosen too small, the tests could be bi-
ased. However, if the truncation point is too large, there could be a loss of
efficiency. As usual, it appears that one of the best options could be to employ
data dependent rules that incorporate the sample information, (see, e.g., An-
drews, 1991) or to use some alternative standard order selection criteria. How-
ever, this is beyond the scope of this paper. In this sense, from the Monte Carlo
simulations we obtained important bias reductions with FM-PIV over FM-OLS
for small values of 7.

Those promising results suggest the extension of the analysis to more gen-
eral multivariate contexts allowing for some cointegrating regressors, and we
are actually doing research in this direction.
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MATHEMATICAL APPENDIX

Proof of Theorem 1. From the definition of fractional cointegration, it follows that,
when x;, y, are cointegrated and assuming 7 = t, 7 = o(¢), there exists a nonzero finite
real number, 3, such that

Yy (75 1) (7t E(u,,x,_,
tim 2200 g gy Y00 gy Bt
T—00 ’yX(T,t) T—00 ’yX(T,t) T—>00 E(er,,T)

Thus, to prove the theorem, it suffices to show that the ratio

E(uy,x,_
( 1tV T) (A.l)
E('xl'xt—fr)
vanishes as 7 goes to infinity, 7 = o(t). For this, consider the denominator,
—1 t—7—1
E(tht—7) = E( 2 lvbj(d)uZ,tj)( P (d)MZ,tTi>7 (A2)
j=0 i=0

where we have used the fact that u, = (u,,, u,,)" is a linear process with u, = 0 for
t = 0 and with ¢;(d) given by the formal expansion A~ = X7, 4;(d)B’. Hence,
E(x,x,_,) is of the same order as

t—7—1

t—7—1
C > d(d)p(d)ocC D j (j—n, (A3)
j=0 Jj=0

where C denotes a generic positive constant and with the symbol o denoting asymptotic
equivalence, i.e., a; o b; if a;/b; — 1 as j — oo. The equivalence in (A.3) follows from
using Stirling’s approximation. Now,

1 1

JUN =) octz"*‘f v dy, a4

0

t

c X
j=0

using an integral approximation and the fact that 7 = o(z). Consequently, E(x,x;_,) is
01,(t2"’"). Therefore, because the numerator of expression (A.1) tends to zero exponen-
tially fast, it follows that (A.1) dies out as 7 goes to infinity. n
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Proof of Theorem 2. Weak convergence of partial sums of multivariate nonstation-
ary fractionally integrated processes of order d > 1 to B(d,r) has been proved by
Marinucci and Robinson (2000). Weak convergence to stochastic integrals of the form
fol B,(d, r)dB,(r) is proved in Dolado and Marmol (2001). The rest of the results fol-

low from a direct application of the continuous mapping theorem (CMT). u

Proof of Theorem 3. Without any loss of generality, we will prove the theorem for
d € (4,2), the extension to d > 2 being straightforward. To prove the theorem, we
proceed by parts. Hence, we will first analyze the denominator of

T
2 Uy Xe—r
N t=7+1
Berv — B = T . (A.5)
25 xtxt*T
t=7+1
We have
T 1 T 1 T 1 T
2 X Xp—r = 5 E xtz + 3 2 xrzfr Y E (x, _xt—7)2~ (A.6)
t=7+1 2t:T+l 2T:T+l 2t:T+l

On the one hand, 3", x2 =37 x2 — S™1x2 where 8 = 7/T and [ -] denotes
the integer part operator. Then, from Dolado and Marmol (2001) and the CMT, asymp-
totically, when T — oo, 7 fixed, we obtain

T 1 5
T34 2 x2= f B3(d,r)dr —J B3(d,r)dr,
0 0

t=71+1

and as 7 — oo with 6 — 0, yields

T2 2 x2= f B2(d,r) dr. (A.7)

t=7+1

In the same manner, noting that /. x>, = 3" x? — 3", _,x2, under As-
sumption 1 we obtain

T 1
T2 > x2. = f B3(d,r)dr. (A.8)
0

r=r+1

Now rewrite x, as Ax, = 1, with A2n,, = u,,,d =1+ p, |o| < 3, so thatx, = x,_; +
—1 T A
e,,(7), where e;,(7) = E_;-:O N2, 0—j+ Then, Et:7+l(xr - xrﬂ')z = Et:T+1622t(T)’ but
because

77! E ezzz(T) T 2 7721+22< __>T ! E M2: M2, - L+0(1)

t=7+1 r=7+1 t=7+1

it follows that

T

> e3(r) = 0,(Tr), (A.9)

1=7+1
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and thus,

T 1 T 1 T
D LD R O

t=7+1 2 r=7+1 r=7+1

1 T 1
- JeMirTir Y (x,—x,,T)2:>f B2(d,r)dr. (A.10)
0

t=7+1

Consider now the numerator of (A.5),

T T T
D oux, = X U x,— X ex(T)uy,. (A.11)
t=7+1 t=7+1 t=7+1

With regard to the first term on the right-hand side of (A.11), from Dolado and Mar-
mol (2001) it turns out that, as T — co,7 — 00,8 — 0,

T 1 ) 3
T4 > xu,= | By(dr)dB,(r) ifl<d< > (A.12)
t=7+1 0
T 1
' > xu,= f B,(r)dB,(r) + A,, ifd=1, and (A.13)
t=7+1 0
I 1
T Y xu, A, (d) if 5 < d<1. (A.14)
r=7+1
As regards the second term on the right-hand side of equation (A.11), note that, for
de (%7%)7 ZtT:T+l e (Tuy, = th:TH Ny Uy, + 23:11 tT:T+1 M2,,—iU1,, and then, when
T — 00,7 — 00,6 — 0,
T o
T 2 e (Tuy, — 2 E(myou) = Ay (d), (A.15)
t=r+1 k=0
which is well defined (cf. Dolado and Marmol, 2001), with A,;(1) = A,;. Theorem 3
now follows from collecting all the previous results and applying the CMT. u
Proof of Theorem 4. We have >/ . ifx,_, = S . ju,x_,
D00 Sy x, . Proceeding as in the proof of Theorem 3, we get
T T T 1
T7 2 x, =T X upx =T X ey ()uy = f B,(r)dBy(r),  (A.16)
1=7+1 1=7+1 1=r+1 0
provided that § — 0 as T'— oo, 7 — oo. Consequently,
T 1
T Y i, = f B,(r)dB, »(r), (A.17)
r=7+1 0

with By »(7) = Bi(r) — w, 05, B,(r) so that E(B;(r)B,(r)) = 0 and thus is long-run
independent.

Last, as regards the denominator of B;,V, note from the corresponding part of the
proof of Theorem 3 that for expression (A.10) to hold, we can apply the results of Newey
and West (1987) to the term >, ., e3,(7) such that equation (A.9) also holds for
7 = o(T/*). The theorem finally follows from (A.10), (A.17), and the CMT. |



