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Abstract

Ž .This article links the intertemporal choice model with the non-linear error correction NEC
model. It has three main components. First, it outlines a model of non-linear error

Žcorrection, in which the linear error correction term a 9X the vector time series X ist t
. Ž .cointegrated, a is the cointegrating vector is replaced by the non-linear term g a 9X ,t

Ž .where g . is a non-linear function. Second, several types of asymmetries and the existence
of multiple equilibria are discussed. The implications for the NEC model of trending targets
are also explained. Third, it is shown that non-linear error correction is present in a
trivariate series of UK employment, wage and capital stock. Q 1998 Elsevier Science B.V.
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1. Introduction

Non-linear error correction basically refers to non-linear adjustment to longrun
equilibrium economic relationships. In this article we show that the concept of

U Corresponding author.

Ž

1

Referencia bibliográfica
Published in:
Economic Modelling 15 (1998) 197-216.  ISSN  0264-9993



Ž . Žnon-linear error correction NEC model Escribano, 1986, 1987, 1996; Granger
.and Lee, 1989; Escribano and Mira, 1997 has its structural counterpart in the form

of optimizing a decision process under uncertainty over an infinite horizon where
the decision variable is quasi-fixed and bears asymmetric costs of adjustment
Ž .Pfann and Palm, 1993; Pfann, 1996 . The concept of asymmetry implies that the
costs of adjusting to a higher target level are not necessarily marginally equivalent
to the costs of adjusting to a lower target level.

This article has three main components. First, it outlines a model of non-linear
Ž . Ž Žerror correction NEC , in which the linear error correction term a 9X the vectort

.time series X is cointegrated, a is the cointegrating vector is replaced by thet
Ž . Ž .non-linear term g a 9X , where g . is a non-linear function. Second, several typest

of asymmetries are discussed. The implications for the NEC model of trending
targets are explained. Third, it is shown that non-linear error correction is present
in a trivariate series of UK employment, wage and capital stock.

The article is organized as follows. In Section 2 the non-linear error correction
representation is derived from a general non-linear autoregressive distributed lag

Ž .model and issues of integration and cointegration Engle and Granger, 1987 are
passed in review. Section 3 presents the linear partial adjustment model. In Section
4 the characteristics of the asymmetric adjustment model are linked with the
concept of non-linear error correction. In Section 5 the implications of variables
having trends in mean with respect to NEC models are discussed. Section 6
presents several specifications of asymmetries in the NEC model, that can be
found in the literature. It is shown that these non-linear error corrections are
special cases of the general formulation presented in the article. An empirical
application is given in Section 7 where the non-linear relationship is investigated
between UK time series data on employment real wage costs and the stock of
capital goods. Finally, in Section 8 conclusions are drawn.

2. Non-linear error correction and cointegration

Ž .Let X be an N = 1 -vector of economic variables and suppose that we have Tt
Ž . Ž .observations of each individual series of X . Let E X s m be an N = 1 -vectort t t

whose element can be constant terms, deterministic trends, etc. and define X s Xt t
Ž .y m . If we decompose X s Q ,P 9, where Q is one dimensional and P is ant t t t t t

wŽ . xN y 1 = 1 -vector, we can factorize the joint density of X into the conditionalt
Ž .and the marginal see for example Engle et al., 1983 ,

<D X X , X ,...,X ,už /t ty1 ty2 0

< < Ž .s D Q P , X , X ,...,X ,u D P X , X ,...,X ,u 2.1ž /t t ty1 ty2 0 1 t ty1 ty2 0 2ž /
Ž .If the parameters of interest c are a function of the parameters u ,c s f u1 1

and if P is weakly exogenous for the parameter of interest c , we can maket
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inference on c based on the conditional density without any loss of relevant
information. In particular we will be interested in the conditional expectation
Ž < .E Q P , X , X ,...,X ,u .t t ty1 ty2 0 1

Ž < .Let e s Q y E Q P X ,...,X ,u so that e is a martingale difference se-t t t t ty1 0 1 t
Ž .quence relative to the g-algebra generated by P , X , X . For simplicity we willt ty1 0

assume that e has a constant variance equal to s 2. Suppose the conditionalt e

expectation is represented by a finite autoregressive distributed lag model with a
Ž .non-linear term see Escribano, 1987, 1996 ,

<E Q P , X , X ,...,X ,ut t ty1 ty2 0 1ž /
1 Ž . Ž . Ž .yf B Q y u B P y g Q y aP . 2.2Ž .ty1 t ty1 ty1

Then we can write the equation for Q ast

Ž . Ž .f B Q q u B P s yg Q y aP q e ,Ž .t t ty1 ty1 t

Ž . Ž . Ž .where f B is a finite lag polynomial in the lag operator B, with f 0 s 1, u B is
w Ž .xa 1 = N y 1 -vector of finite polynomials in the lag operator B. The lag operator

k Ž . w Ž .xB is such that B X s X and u 0 is a 1 = N y 1 -vector whose elements aret tyk
Ž .not all equal to 0 so that in Eq. 2.1 there are some contemporaneous weakly

Ž .exogenous variables. The non-linear function g is such that y 2 - dg Z rdz - 0
Ž .see Escribano, 1996 for details .

Ž . Ž .If both f B and u B have a unit root then Q and P are integrated of ordert t
Ž .one, I 1 . In this case we can obtain different, but observationally equivalent,

Ž .representations from Eq. 2.2 . Taking Taylor series expansions, of order larger
Ž . Ž .than the maximum lag of f B and u B , around the point B s 1 we get

Ž . Ž . ) Ž .Ž . Ž .f B s f 1 s f B 1 y B 2.3

and

Ž . Ž . ) Ž .Ž . Ž .u B s u 1 q u B 1 y B 2.4
U Ž . U Ž . Ž .where f B and u B have all roots outside the unit circle. Substituting 2.3

Ž . Ž .and 2.4 in Eq. 2.2 and rearranging terms we obtain

Ž . Ž .f 1 Q q u 1 Pt t

) )Ž .Ž . Ž .Ž .s yf B 1 y B Q y u B 1 y B P y g Q y aP q e .Ž .t t ty1 ty1 t

Ž .2.5

Ž . Ž . Ž .Now decompose f 1 s G a and u 1 s G a and dividing 2.5 by the scalar1 1 1 2
Ž .G a , we normalize 2.5 as1 1

y1 ) y1 )Ž . Ž .Ž . Ž . Ž .Ž .Q s aP y f 1 f B 1 y B Q y f 1 u B 1 y B Pt t t t

y1 y1Ž . Ž . Ž .yf 1 g Q y aP q f 1 e , 2.6Ž .ty1 ty1 t

3



Ž .which is a non-linear version of Bewley’s representation Bewley, 1979 , with
y1Ž . Ž . Ž .a s yf 1 u 1 . Note that Bewley’s linear representation is obtained from 2.6

Ž . Ž .by setting g Q y aP s 0. See Hylleberg and Mizon 1989 for an alterna-ty1 ty1
tive procedure to derive this representation.

Ž . Ž . Ž . Ž .If we add and subtract f 1 B and u 1 B to 2.3 and 2.4 , respectively, we can
Ž . Ž .rewrite f B and u B as follows

Ž . Ž . w ) Ž . Ž .xŽ .f B s f 1 B q f B q f 1 1 y B

Ž . ) ) Ž .Ž . Ž .s f 1 B q f B 1 y B 2.7

and

Ž . Ž . w ) Ž . Ž .xŽ .u B s u 1 B q u B q u 1 1 y B
Ž . ) ) Ž .Ž . Ž .s u 1 B q u B 1 y B , 2.8

Ž . Ž . Ž .Substituting 2.7 and 2.8 into 2.2 we obtain a non-linear error correction
representation

) ) ) )Ž .Ž . Ž .f B 1 y B Q q u B Pt t

Ž . Ž . Ž .s yf 1 Q y u 1 P y g Q y aP q e . 2.9Ž .ty1 ty1 ty1 ty1 t

Ž . Ž .Decomposing the long-term components as f 1 s G a , u 1 s G a and divid-1 1 1 2
Ž .ing by the scalar a we can normalize 2.9 getting a more explicit representation1

Ž .Ž . Ž .Ž .f B 1 y B Q q u B 1 y B Pa t a t

Ž .s yG Q y aP y g Q y aP q e . 2.10Ž . Ž .1 ty1 ty1 a ty1 ty1 a t

Ž . Ž . ) ) Ž . Ž . Ž . ) ) Ž . Ž . Ž . Ž .where f B s 1ra f B , u B s 1ra u B , g . s 1ra g . anda 1 a 1 a 1
Ž . Ž .e s 1ra e . If g . s 0, we obtain the linear error correction model.a t 1 t a

Ž .In general the function g Q y aP incorporates all departures from thea ty1 ty1
Ž . Ž .linear and symmetric error correction term, G Q y aP . For models 2.61 ty1 ty1

Ž . Ž . Ž .and 2.10 to be balanced, Q y aP must be I 0 since Q and P are both I 1 ,t t t t
Ž .with 1,y a 9 being the cointegrating vector. Also it must hold that a non-linear

w Ž .x Ž .function ga I 0 is still I 0 . This last condition is generally satisfied under
Ža-mixing or near epoch dependence conditions see Escribano, 1987; Escribano

.and Mira, 1997 .
The error correction and Bewley’s representations are observationally equivalent

although in practice one can be preferred over the other. Wickens and Breusch
Ž .1988 mentioned that Bewley’s representation has the advantage of giving the
correct standard errors for the longrun coefficients at the costs of requiring

Ž .instrumental variables estimation IV , since the error term e is correlated witht
Ž .the regressor 1 y B Q . On the other hand, the error correction representationt

can be estimated by OLS and the standard errors of the longrun coefficients may
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Ž .be obtained after some calculations Banerjee et al., 1993 or by non-linear least
Ž .squares Stock, 1987; Escribano and Mira, 1997 .

3. The linear partial adjustment model

In the linear partial adjustment model a representative economic agent is
assumed to construct a contingency plan at time t for a purely non-deterministic
quasi-fixed decision variable1 Q in order to minimize the expected real present
value of a quadratic loss-function over an infinite time horizon. The optimization
problem is as follows

`
22i )Ž . ŽŽ . . < Ž .Minimize E b Q y Q q g 1 y B Q V , 3.1Ý ž /tq i tqi tqi t

Q is0

where E is the mathematical expectations operator, V is the conditioning set oft
available information at time t, b is a real discount value lying between zero and
one, g is a constant positive parameter measuring the adjustment costs of changing
the level of Q over time. QU is the target level of Q and is assumed to be linearly
related to the firms purely non-deterministic forcing variables P and a stochastict
zero mean shock ut

) Ž .Q s aP y u 3.2t t t

wŽ . . U Ž .where a 9 is a N y 1 = 1 -vector of constant parameters. If Q s Q , Eq. 3.2t t
can be interpreted as the longrun equilibrium relation between Q and P, also

Ž .known as the cointegration relationship, with 1,y a being the cointegration
vector.

Ž .The first order condition for 3.1 at time t is

Ž . wŽ . < x ) Ž .Q q g 1 y B Q y bg E 1 y B Q V s Q 3.3t t tq1 t t

or

y1y1 )wŽ . < x Ž . Ž . Ž . Ž .E 1 y B Q V s b 1 y B Q q bg Q y Q . 3.4tq1 t t t t

Ž .The left-hand side of 3.4 cannot be observed as such, but the forward looking
closed form solution for the inhomogeneous second order linear difference equa-
tion is wellknown in literature and can be written as the partial adjustment

Ž .representation see Nickell, 1985

`
i )Ž . Ž .Ž . Ž . w < x Ž .1 y lB Q s 1 y l 1 y bl bl E Q V 3.5Ýt tqi t

is0

1In Section 5 we generalize this approach to the case of variables having trends in the means.
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where l is the root of the characteristic equation

y12 y1 y1Ž . Ž .l y 1 q b q bg l q b s 0, 3.6Ž .
that lies within the unit circle, being

1r22y1 y11 1y1 y1 y1Ž . Ž . Ž .l s 1 q b q bg y 1 q b q bg y 4b 3.7Ž . Ž .2 2 ž /
Žsince both roots are real and lie on either side of the unit circle see Palm and

.Pfann, 1991 . Without loss of generality we may assume that the generating process
Ž .of P is an autoregressive process, where T B is the corresponding autoregressivet

Ž . Ž . Žlag polynomial. Then we substitute 3.2 into 3.5 and obtain see Hansen and
.Sargent, 1980

y1y1Ž . Ž .Ž .Ž Ž .Ž .. Ž Ž .1 y lB Q s a 1 y l 1 y bl T bl 1 y blB T blt

y1 Ž .. Ž .Ž . Ž .yblB T B P q 1 y l 1 y bl u 3.8t t

Ž .which may be simplified into the unique closed form solution of 3.1

Ž . ) Ž . Ž .Ž . Ž .Q s lQ q a 1 y l T B P q 1 y l 1 y bl u 3.9t ty1 t t

) Ž . Ž .Ž Ž .Ž y1 ..y1Ž Ž . y1 Ž ..where T B s 1 y bl T bl 1 y blB T bl y blB T B .
U Ž .T B P is known as the forward looking target of the linear partial adjustmentt

model. The zero mean process of stochastic shocks u is predominantly found tot
follow an autoregressive process in the empirical literature on flexible adjustment

Ž .mechanisms. The resulting autocorrelation in the residual error of 3.9 is elimi-
Ž .nated applying the Koyck transformation procedure, transforming 3.9 into

Ž . Ž . Ž . Ž . Ž .1 y lB f B Q s a 1 y l u B P q h 3.10t t t

where h is a white noise innovation. If, in accordance with Section 2, Q as well ast t
Ž .P have unit roots the partial adjustment model 3.10 can be written as a lineart

Ž . Ž .error correction model with g . s 0 see also Nickell, 1985a

Ž .Ž . Ž .Ž . Ž . Ž .Ž .f B 1 y B Q s y 1 y l Q y aP q a 1 y l u B 1 y B P q ha t ty1 ty1 a t t

Ž .3.11

Ž . Ž .where f B and u B have all roots outside the unit circle.a a

Ž . Ž . Ž . Ž .Define f B s 1 y lB f B . Now we can write 3.10 asl

Ž . Ž . Ž . Ž .f B Q s a 1 y l u B P q h . 3.12l t t t

Ž . Ž . Ž .Decomposing the polynomials f B and u B according to Eq. 2.3 and Eq.l

Ž .2.4 we get
6



Ž . Ž . Ž . ) Ž .Ž .f 1 Q y a 1 y l u 1 P s yf B 1 y B Ql t t l t

Ž . ) Ž .Ž . Ž .qa 1 y l u B 1 y B P q h . 3.13t t

Ž . Ž .Dividing Eq. 3.13 by f 1 , we obtain Bewley’s representationl

y1) )Ž . Ž .Ž .Q s a P y f 1 f B 1 y B Qt t l l t

y1 Ž . ) Ž .Ž . y1 Ž . Ž .qf a 1 y l u B 1 y B P q f 1 h 3.14l t l t

U y1Ž . Ž .where a s f 1 a 1 y l .l

4. Asymmetric adjustment and non-linear error correction

In this section we implement the asymmetric adjustment costs flexible functional
Ž .form proposed by Pfann and Verspagen 1989 into the structural partial adjust-

ment model. The economic agent chooses a contingency plan at time t for a
quasi-fixed decision variable Q in order to minimize the expected real present
value of a non-linear loss-function over an infinite time horizon. The optimization

Ž .problem with asymmetric adjustment costs AAC is as follows

`
i )ŽŽ . ŽŽ . . < Ž .Min E b Q y Q q AAC 1 y B Q V 4.1Ý i tyi tqi t½ 5Q is0

with

2ŽŽ . . ŽŽ . . Ž Ž Ž . .AAC 1 y B Q s g 1 y B Q q 2 exp d 1 y B Qt t t

Ž ŽŽ . .. Ž .y 1 q d 1 y B Q . 4.2t

The constant parameter d measures the difference in costs between an increase
in Q and a decrease in Q. If d ) 0, marginal costs of increasing Q exceed costs of
reducing Q. If d - 0, marginal costs of reducing Q exceed costs of increasing Q. If

Ž .d s 0, 4.1 is just the linear-quadratic optimization problem discussed in the
previous section.

Hence, the symmetric linear partial adjustment model is nested in the asymmet-
Ž .ric model 4.1 . We note that the asymmetric specification is strictly convex under

the standard assumption of g being positive. The exponential AAC also encom-
passes polynomial approximations of many non-linear functions.

Ž .The first order necessary conditions for 4.1 are as follows

� Ž . Ž Ž Ž . . . < 4bE g 1 y B Q q d exp d 1 y B Q y 1 Vtq1 tq1 t

Ž . Ž ) . Ž Ž Ž . . . Ž .s g 1 y B Q q Q y Q q d exp d 1 y B Q y 1 . 4.3t t t t

Ž . UIf 1 y B Q and Q y Q are stationary, the structural parameters of the Eulert t t
Ž .Eq. 4.3 can be estimated consistently using GMM. This approach has been
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Ž . Ž .followed in Pfann and Palm 1993 and Pfann 1996 , for example. The approach of
Ž .Hamilton 1989 is to transform the data into discrete Markov processes, arguing

that non-linearities in the data are generated by stochastic processes that are
subject to discrete shifts in regime. We believe that valuable information being
present in the data will be lost using Hamilton’s transformation method. Novales
Ž .1990 proposed a solution technique for non-linear models positting stochastic
processes for the decision variable Q in order to solve the model for the forcingt
variables. This method is untractable with respect to our approach, since the
parameters of asymmetry have to be chosen a priori in Novales’ method. Palm and

Ž . Ž .Pfann 1997 solve 4.3 numerically using a parameterized expectations algorithm.
Yet, a suitable approximation of the closed form solution may exist and using

additional information more efficient estimates of the structural parameters may
Ž .be obtained. Granger and Lee 1989 considered error correction models where the

Ž .positive residual error of the longrun relationship, max Q y aP ; 0 and thety1 ty1
Ž .negative residual error of the longrun relationship, min Q y aP ; 0 , havety1 ty1

been introduced into the model as separate regressors.
Ž .The optimization model with asymmetries in adjustment costs 4.1 is the

structural counterpart of the asymmetric error correction model. To measure the
asymmetric error correction we introduce the following concepts.

Positive error correction movements are characterized by positive differences
between two subsequent measurement points of the longrun equilibrium error

Ž . Ž .Ž .q Q y aP iff 1 y B Q y aP ) 0t t t tŽ . Ž .Q y aP ' 4.4at t 0 otherwise.

Negative error correction movements are characterized by negative differences
between two subsequent measurement points of the longrun equilibrium error

Ž . Ž .Ž .y Q y aP iff 1 y B Q y aP - 0t t t tŽ . Ž .Q y aP ' 4.4bt t 0 otherwise.

Ž . Ž .The non-linear function ga . introduced in 2.10 is hence expressed as follows
Ž .2see Fig. 2b where Q y aP s ut t t

Ž . Ž .G Q y aP q g Q y aP1 t t a t t

y qŽ .Ž . Ž .Ž . Ž .s y 1 y l Q y aP y 1 y l Q y aP , 4.51 t t 2 t t

Ž .Ž . Ž .q Ž .ysince 1 y B Q y aP s Q y aP q Q y aP , whereas l and l corre-t t t t t t 1 2
1Ž . Ž .spond with l in Eq. 3.11 such that l q l s l.1 22

The corresponding asymmetric error correction model can be obtained substitut-
Ž . Ž .Ž . Ž .ing 4.5 for y 1 y l Q y aP in 3.11 . This givesty1 ty1

2 More general non-linear adjustments will be considered in Section 6.
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yŽ .Ž . Ž .Ž .f B 1 y B Q s y1 1 y l Q y aPa t 1 ty1 ty1

qŽ .Ž . Ž . Ž .Ž . Ž .y 1 y l Q y aP q a 1 y l u b 1 y B P q h . 4.62 ty1 ty1 a t t

Ž .Eq. 4.6 can be analyzed using a two step estimation technique, as proposed by
Ž .Engle and Granger 1987 . First, one estimates the cointegrating vector a by OLS,

Ž . Ž .y Ž .qa . Second, Eq. 4.6 can be estimated with Q y aP and Q y aPˆ ˆ ˆty1 ty1 ty1 ty1
as separate regressors identifying l and l .1 2

The adjustment speed parameters, l and l and the parameter of asymmetric1 2
Ž . Ž .adjustment costs, d of Eq. 4.1 and Eq. 4.2 are related. To link, the notion of

Ž .asymmetric speeds of adjustment l ,l with the notion of asymmetry in adjust-1 2
Ž . Ž .ment costs d , we derive a piecewise closed form solution of 4.3 depending on

Ž .the direction of the adjustment as follows. Linearizing 4.2 using a piecewise
second order Taylor series expansion gives

2ŽŽ . . Ž .g 1 y B Q iff 1 y B Q ) 01 t t

2ŽŽ . . Ž .AAC 1 y B Q ' 4.7t ŽŽ . . Ž .g 1 y B Q iff 1 y B Q - 02 t t

0 otherwise

where g and g are constant positive cost parameters of respectively rising and1 2
Ž . Ž .3declining adjustment. Expression 4.7 implies that see Pfann, 1996, page 326

g ) g iff d ) 01 2

Ž .g - g iff d - 0 and 4.81 2

g s g iff d s 0.1 2

Thus, in order to obtain a closed form solution of the non-linear second order
Ž . Ž .difference Eq. 4.3 the continuously differentiable asymmetric specification 4.2

has been approximated by a piecewise linear quadratic expansion. From the
previous section the closed form solution for each piecewise linear-quadratic
approximation is known. The two linearized necessary conditions are

y1y1 )wŽ . < x Ž . Ž . Ž .E 1 y B Q V s b 1 y B Q q bg Q y Q ,tq1 t t 1 t t

Ž . Ž .iff 1 y B Q ) 0 4.9at

and

y1y1 )wŽ . < x Ž . Ž . Ž .E 1 y B Q V s b 1 y B Q q bg Q y Q ,tq1 t t 2 t t

Ž . Ž .iff 1 y B Q - 0. 4.9bt

When Q y QU is negative, we expect Q to rise in the next period.t t t

3 Ž . 2 Ž . 2If 1 y B Q ) 0, g s g q d and g s g , whereas if 1 y B Q - 0, g s g and g s g q d .t 1 2 t 1 2
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Ž . Ž .qThus 1 y B Q ) 0 corresponds with Q y aP and vice versa, i.e. when Qt t t t
U Ž .yQ is positive, we expect Q to fall in the next period. So 1 y B Q - 0t t t

Ž .y Ž .corresponds with Q y aP . The closed form solution of 4.9 is therefore thet t
Ž .NEC model 4.6 . The relationships between the adjustment speed parameters

Ž . Ž .l ,l of 4.6 and the parameters of the piecewise linearly approximated asym-1 2
metric adjustment costs model are as follows

1r22y1 y11 1y1 y1 y1Ž . Ž . Ž .l s 1 q b q bg y 1 q b q bg y 4b 4.10aŽ . Ž .1 1 12 2 ž /
1r22y1 y11 1y1 y1 y1Ž . Ž . Ž .l s 1 q b q bg y 1 q b q bg y 4b . 4.10bŽ . Ž .2 2 22 2 ž /

This completes the formal derivation of the relationship between asymmetric
error correction models and asymmetric adjustment models.

5. Non-linear error correction models and the implications of having trends in the
mean

In the case of Q and P having trends in the means the NEC representationt t
Ž .specified in terms of P and Q according to Eq. 2.10 is as followst t

Ž .Ž . Ž . Ž .Ž . Ž .Ž .f B 1 y B Q q u 1 y B P s f B 1 y B m y u B 1 y B ma t a t a qt a pt

Ž . Ž .qG m y am y G Q y aP1 qty1 pty1 1 ty1 ty1

Ž .yg ym q am q Q y aP q e .a qty1 pty1 ty1 ty1 a t

Ž .5.1

Ž .However, Eq. 5.1 is usually written as

Ž .Ž . Ž .Ž .f B 1 y B Q q u B 1 y B Pa t a t

Ž . Ž . Ž .s C y G Q y aP y g Q y aP q e . 5.21 1 ty1 ty1 a ty1 ty1 a t

Ž .For 5.2 to be a well specified model several conditions need to be satisfied.
Differencing once should be a good detrending procedure for the means so that
Ž . Ž .1 y B m and 1 y B m are not trending. The trends in mean of Q and Pqt p t t t

Ž .should be proportional co-trending in mean , such that m y am is no longerqt p t
Ž .trending. Notice also that the asymmetric terms of g . are forced to satisfy alsoa

Ž .the requirements as well. The cointegrating vector 1,y a is also the vector that is
making the trending variables co-trending.

To obtain the structural counterpart of the asymmetric error correction model
with P and Q having trends in the means we have to redefine some of thet t
characterizations presented in Section 4.
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The error correction components now become

Ž . Ž . Ž . Ž .Q y aP y m y am iff 1 y B Q y mŽt t q t p t t q t
qŽ . Ž .Q y aP s 5.3.1Ž .t t ya P y m ) 0.t p t

0 otherwise

and

2Ž .Ž . Ž .Ž .a 1 y B Q y m iff 1 y B Q y m ) 01 t q t t q t
y

2Ž . Ž .Q y aP s 5.4t t Ž .Ž . Ž .Ž .a 1 y B Q y m iff 1 y B Q y m - 02 t q t t q t

0 otherwise.

Ž . Ž . Ž . Ž . Ž .After these redefinitions Eq. 4.5 and Eq. 4.6 and Eqs. 4.8 , 4.9a , 4.9b ,
Ž . Ž .4.10a , 4.10b applies.

To clarify the specification error when trends in the means are not correctly
Ž . Ž .accounted for, a simple example is given in Fig. 1a,b. Here Eq. 4.4a and Eq. 4.4b

Ž .Ž .are no longer true, because the area A9, that corresponds to 1 y B Q y aP st t
Ž .1 y B u is positive and Q y aP s u is positive as well. However, in area A,t t t t
Ž .Ž .1 y B Q y aP is negative, whereas Q y aP is positive. The same argumentt t t t

Ž .holds for the condition of Eq. 4.2 which is related to the areas B9 and B of Fig. 1a
and the corresponding area of Fig. 1b.

Moreover, asymmetries may occur between situations where the growth rate of
Ž . Uthe observed decision variable Q exceeds the growth rate of the target Q on thet t

one hand and situations where the growth rate of Q is lower than the growth ratet
of QU on the other hand. This asymmetry may even be observed during periodst

Ž .where the decision variable is above the target see Fig. 1a,b . Similarly, we can
account for asymmetry in growth rates between areas B and B9.

In order to implement the notion of trending asymmetry in an error correction
framework, the adjustment towards the equilibrium should be a correspondence,

Ž .instead of a function see Fig. 2b We are currently investigating the implications
of trending asymmetries in dynamic time series models. This analysis, however, is
considered to be beyond the scope of this article.

6. Type of asymmetries

Ž .In this section we consider more general forms of the non-linear function g .a

that could be empirically interesting in the still young literature on non-linear error
corrections and asymmetric adjustments. All the dynamic representations are in
deviations from the mean, Q s Q y m and P s P y m .t t q t t t p t

Ž .First, we consider a piecewise linear adjustment type of function see Fig. 2c

11



Fig. 1. Non-linear error correction with trend in mean.
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G Q y aP q g Q y aP s m D Q y aPŽ .Ž . Ž .1 t t a t t 1 1 t t t

Ž .ym D Q y aP y m D Q y aP , 6.1Ž . Ž .2 2 t t t 3 3 t t t

y1 iff Q y aP F Ct tD s1 t
0 otherwise

q1 iff C y F Q y aP F Ct tD s2 t
0 otherwise

q1 iff Q y aP G Ct tD s3 t y0 iff Q y aP G C .t t

From Fig. 2c it is clear that the equilibrium is unique, although the adjustment is
Ž y q.slower in the small interval C ,C around the equilibrium and faster out of this

range. This type of asymmetric adjustment represents a generalization of the type
Ž . Ž .of asymmetries analyzed by Granger and Lee 1989 see Fig. 2a . Their model is

obtained when D s 0 and Cys Cqs 0. However, to impose uniqueness of the2 t
equilibrium around the 0 point may be too restrictive in general. If, in the interval
Ž y q. Ž .C ,C close to the equilibrium there is no adjustment see Fig. 3D , a continuum
of equilibria exists. Particular cases of interest that are nested in this formulation
are obtained if Cys 0 and Cq) 0, or if Cy- 0 and Cqs 0. In fact the model

Ž .consider by Hendry and Ericsson 1991 is observationally equivalent to a piece
wise linear adjustment with Cys 0 and Cqs 0.2

Next, we consider a second type of function, namely the more general cubic
Ž .polynomials see Fig. 2e,f

G Q y aP q g Q y aPŽ . Ž .1 t t a t t

2 3
Ž .s m Q y aP q m Q y aP q m Q y aP , 6.2Ž . Ž . Ž .1 t t 2 t t 3 t t t

where m is time dependent for very large values of Q y aP in order to3 t t t
Ž .guarantee the asymptotic stability conditions see Escribano, 1986 or the near

Ž . Ž .epoch dependence conditions NED see Escribano, 1996 . This cubic polynomial
has several advantages over general piecewise linear asymmetries. It determines

Ž y q.endogenously the range of equilibria C ,C , therefore allowing the adjustment
to by asymmetric and non-linear in each regime. Fig. 2f represents the adjustment

Žmechanism observed for UK money demand during the period 1878-1970 see
. Ž .Escribano, 1996 . Eq. 6.2 has the nice property that the adjustment is faster when

the distance between the decision variable and the target becomes larger and, in
general, it can be considered a simple approximation to more general unknown
adjustment mechanisms, which could be estimated by non-parametric techniques
Ž .smoothing splines .

13



Fig. 2. Several types of asymmetries.

Another interesting parametric family is the rational polynomials introduced in
Ž .Escribano 1996 .

G Q y aP q g Q y aPŽ . Ž .1 t t a t t

2 L
m Q y aP q m Q y aP q ...q m Q y aPŽ . Ž . Ž .1 t t 2 t t L t t Ž .s , 6.32 M
u Q y aP q u Q y aP q ...q u Q y aPŽ . Ž . Ž .1 t t 2 t t M t t

By the convergence results of Pade approximants, this class of models can´
approximate arbitrarily well any analytic function while satisfying, at the same time,

14



Ž .the required stability conditions for near epoch dependence NED or asymptotic
uncorrelation. For example, Fig. 2e,f could have been generated by this class of
models by choosing polynomials of degree three in the numerator and two in the
denominator, L s 3 and M s 2.

7. An empirical application

The asymmetric adjustment error correction approach may prove useful in
structurally analyzing any economic time series that is assumed to be endogenously

Ž .generated by the optimizing behavior of representative agents. Examples are
Ž . Ž .investment: Gould 1968 , consumption: Hall 1978 and so forth. The empirical

application presented in this section will be limited to the theory and practice of
Ž .dynamic labor demand and is founded on the research described in Pfann 1990 .

The following notations will be used. L s the number of white collar workerst
employed in the UK manufacturing sector at time t; W s the real UK manufactur-t
ing sector white collar wage costs at time t; K s the UK manufacturing sectort

Žcapital stock at time t. The annual UK data run from 1955 to 1986 see Appendix 1
.for the sources and the definitions .

Ž .The characteristics of the series are as follows see Appendix 2

1. L , K and W have a unit root.t t t
2. L , K and W have one cointegrating vector.t t t

In this example the decision variable is white collar employment and the set of
forcing variables consists of real white collar wage costs and capital. We have
chosen white collar workers for the empirical illustration, because it is well-known
from previous research that white collar employment is a quasi-fixed production
factor that bears asymmetric adjustment costs when being changed. In correspon-
dence with the preceding section, the following relation holds

� 4Q s L , and P s K ,W .t t t t t

The equilibrium errors from the cointegration relationship are as follows

u s L q 5.35 q 0.28 OC74 q 1.89 W y 2.59 Kˆt t t t
Ž . Ž . Ž . Ž .4.41 8.20 9.32 10.66

2 Ž .R s 0.49 s s 0.056 ADF s y4.56 7.1

In all equations absolute t-values are given within parentheses. OC74 is a
step-dummy for the oil crisis of fall 1973 being one from 1974 on. In addition to the

Žcorrectly specified test of the cointegrating vectors of the system see Phillips,
.1991 , as presented in Appendix 2, we also present the Augmented Dickey Fuller

Ž . Ž .statistic ADF in 7.1 .
Ž .Judging from Table IIb of Phillips and Ouliaris 1990 the hypothesis of no

15



Fig. 3. Longrun errors of L, K and W, Cointegration relation.

Ž .cointegration is rejected in Eq. 7.1 . Leaving out OC74 reduced the Augmented
Ž .Dickey Fuller statistic ADF to y 1.49. Consequently, structural breaks may blur

Žcointegration relations if they are not adequately dealt with see also Perron, 1989;
.Palm and Pfann, 1991 .

Ž .Fig. 3 shows u of Eq. 7.1 , where the horizontal line plays the role of theˆt
longrun equilibrium between L , K and W .t t t

Ž .The estimated linear error correction model 3.12 is as follows

ˆŽ . Ž . Ž .1 y B L s y 0.0006 y 0.007 1 y B W q 2.28 1 y B K y 0.24 ût ty1 ty1 ty1
Ž . Ž . Ž . Ž .4.16 0.32 4.36 1.90

Ž .7.2

Sample s 1957]1986

2 2 Ž . 2 Ž . 2 Ž .R s 0.46 s s 0.033 x 2 s 0.70 x 2 s 1.85 x 2 s 0.78AR NORM ARCH

The reported statistics are the residual based Ljung]Box test for residual
Ž 2 . Ž 2 .autocorrelation x , the residual based normality test x and the residualAR NORM

Ž 2 .based ARCH test x . All tests have two degrees of freedom. None of theARCH
tests are significant. Thus the model would be an acceptable econometric model.

Ž .Next, we report the estimated asymmetric error correction model 4.5

ˆŽ . Ž . Ž .1 y B L s y 0.06 y 0.05 1 y B W q 2.17 1 y B Kt ty1 ty1
Ž . Ž . Ž .3.37 0.25 4.13
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q y Ž .y 0.42 u y 0.07 u 7.3ˆ ˆty1 ty1
Ž . Ž .2.19 0.41

Sample s 1957]1986

2 2 Ž . 2 Ž . 2 Ž .R s 0.49 s s 0.032 x 2 s 0.24 x 2 s 1.95 x 2 s 0.51AR NORM ARCH

Ž .The estimated error correction parameters in 7.3 provide us with useful
additional information with respect to the asymmetry between underequilibrium
adjustment and overequilibrium adjustment towards the longrun cointegration
relation. The finding that uy and uq both have negative signs is in line with theˆ ˆty1 ty1
expected error corrections for procyclical variables. The models are not statistically
distinct: the F-statistic testing the statistical significance of the included asymmetry
Ž . Ž .7.3 vs. the linear symmetric model 7.2 yields F s 1.58. However, the adjust-1,25

Žment speed towards a higher target level of white collar employment 1 y g s1
. Ž .0.42 exceeds the adjustment speed towards a lower target level 1 y g s 0.07 .2

The characteristic roots l s 0.58 and l s 0.93 lie within the unit circle. Using1 2
Ž . Ž .5.9a and 5.9b the piecewise linear asymmetric adjustment cost parameters yield
g s 3.07 and g s 114.04, assuming t s 0.95. Thus, we find that g - g , imply-1 2 1 2

w Ž .xing d - 0 see 4.6 , which is in accordance with the related findings on asymmetry
Ž .for white collar workers see Pfann and Palm, 1993 .

8. Conclusions

In this article we showed that non-linear error correction mechanisms that are
found to exist in macroeconomic time series data may be endogenously generated

Ž .resulting from the optimizing behavior of representative agents that face asym-
metric costs of adjustment. The rationale for asymmetric costs is equivalent to the
notion of non-linear error correction mechanisms: the adjustment path to a higher
target level should not necessarily be symmetric with the adjustment path to a
lower target level. Several new types of asymmetries are discussed. We saw how by

Ž .extending the piecewise linear error correction of Granger and Lee 1989 to more
general adjustments we allow for multiple equilibria. Parametric functions like
cubic polynomials or rational polynomials can endogenously generate all the
proposed desired elements, asymmetries and multiple equilibria. Furthermore, we
explained how trends should be included in the non-linear error correction model.
In a numerical example we estimated the adjustment speeds in different phases of
the economic cycle for UK manufacturing white collar workers, finding that white
collar workers are more easily hired in times of economic growth than fired in
times of economic recessions.
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Appendix 1

Sources of the annual UK manufacturing data

The base year of all prices and indices is 1980. Sample: 1955]1986. The following main
data sources were used:

BB: Blue Book
DEG: Department of Employment Gazette
ETAS: Economic Trend Annual Supplement
HABLS: Historical Abstract of British Labour Statistics

Ž .MM: Mendis L. and J. Muellbauer 1984 , British Manufacturing Productivity
1955]1983: Measurement Problems, Oil Shocks and Thatcher Effects, CEPR
Discussion Paper No. 34.

The variables are defined as follows:

L: The natural log of the total numbers of employees in UK manufacturing, have been
obtained from ETAS.

W: The natural log of the real weekly earnings index have been obtained by deflating
Žgross weekly earnings of manual and non-manual workers pre-1970 data: HABLS;

.from 1970 on data: New Earnings Survey in DEG by Py.
Ž .K: The natural log of the gross capital stock at constant prices K have been obtained

from BB for data from 1963 and from MM for pre-1963 data.

Appendix 2

Unit roots and cointegration

Unit root tests

Ž . Ž .Model: 1 y B V s a9X q a V q a 1 y B V q et t 1 ty1 2 ty1 t
� 4V e L ,K ,Wt t t t
Ž .aX q CONST, OC74t

H :a s 00 1
Sample: 1957]1986

L K Wt t t

Fuller’s t y1.37 y2.53 y0.92t̂
2Adjusted R 0.33 0.85 0.50

DW-statistic 2.01 1.42 1.96
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aOC74 is a step-dummy equal to 1 in 1974 and zero elsewhere.

Ž .According to Fullers’s t statistic Fuller, 1976, Table 8.5.2 , we do not reject thet̂

hypothesis that the univariate time series have a unit root. Also, if we take account of the
Ž .fact the one dummy variable OC74 is included in the model and therefore use the

Ž .distribution given by Perron 1989 , we reach the same conclusion.

Johansen’s cointegration tests

Explanatory variable: Lt
Forcing variables: W , Kt t
Sample: 1957]1986

CV, number of cointegration vectors.

H : r0

Ž .CV s 1 r s 0 33.46
Ž .CV s 2 r s 1 4.01

The critical values for a three variate cointegration system are given in Table 1 of
Ž .Johansen 1988 : 23.8 and 26.1 for 5% and 2.5% significant levels respectively. We find that

the hypothesis of no cointegration is rejected in favor of one cointegration vector.
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